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Abstract: Real-time and short-term prediction of river flow is essential for efficient flood management. 

To obtain accurate flow predictions, a reliable rainfall-runoff model must be used. This study proposes the 

application of two evolutionary algorithms, Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA), to train the Artificial Neural Network (ANN) parameters in order to overcome the ANN drawbacks, 

such as slow learning speed and frequent trapping at local optimum. These hybrid ANN-PSO and ANN-

GA approaches were validated to equip natural hazard decision makers with a robust tool for forecasting 

real-time streamflow as a function of combinations of different lagged rainfall and streamflow in a small 

catchment in Southeast Queensland, Australia. Different input combinations of lagged rainfall and 

streamflow (delays of one, two and three days) were tested to investigate the sensitivity of the model to the 

number of delayed days, and to identify the effective model input combinations for the accurate prediction 

of real-time streamflow, which has not yet been recognized in other studies. The results indicated that the 

ANN-PSO model significantly outperformed the ANN-GA model in terms of convergence speed, accuracy, 

and fitness function evaluation. Additionally, it was found that the rainfall and streamflow with 3-day lag 

time had less impact on the predicted streamflow of the studied basin, confirming that the flow of the studied 

river is significantly correlated with only 2-day lagged rainfall and streamflow.  
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1. Introduction 

Rainfall-runoff modelling is a complex process due to the high spatial and temporal variability of 

rainfall patterns and catchment characteristics (Tokar and Johnson 1999). Rainfall-runoff models can be 

classified as conceptual or empirical models (Machado et al. 2011). Conceptual models, such as lumped 

models (e.g., NAM1, HBV2, etc.) and distributed models (e.g., SHE3, SWAT4, etc.), provide mathematical 

description of the hydrological cycle, based on the physical process of the water flow over the entire 

catchment. Conceptual models are associated with a challenging calibration process, besides requiring a 

large amount of input data. The availability of these data, and their non-linear interaction, make the 

estimation of runoff difficult with these models (Kuok et al. 2010; Machado et al. 2011). Therefore, 

hydrological modellings of data scarce catchments become limited due to lack of land use and land cover 

changes, meteorological, and soil moisture data. In such catchments, where limited data (e.g., rainfall and 

streamflow) are available, empirical models are highly efficient. Empirical models are based on building a 

stable non-linear rainfall-runoff relationship, while not considering the physical processes of the 

hydrological cycle. These models are easy to apply and require less data as well as low computational costs 

(Machado et al. 2011). There are different examples of empirical rainfall-runoff modelling approaches, 

such as autoregressive integrated moving average (ARIMA), genetic programming (GP), multiple linear 

regressive model (MLR), autoregressive-moving average with exogenous term model (ARMAX), etc. The 

stated models are easy to use but indicate poor performance in modelling non-linear hydrological process 

(Zhang et al. 2018). In order to tackle this drawback, many attention has been focused on artificial 

intelligence-based (AI-based) data driven models (Nourani et al. 2014), such as the Artificial Neural 

Network (ANN). Basically, ANN models outperform ARIMA, MLR, and ARIMAX in optimizing model 

parameters, hydrological forecasting, and data processing (Chitsaz et al. 2016; Zhang et al. 2018). The ANN 
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model represents the model input and output by its data-driven relationship (Piotrowski et al. 2011). Many 

researchers have suggested that similar or better predictions have been obtained from the ANN approach 

rather than the conceptual methods (Carcano et al. 2008; Napolinato et al. 2010).  

Over the past decade, the ANN technique has been widely employed in water resources management, 

such as in rainfall-runoff forecasting (Elshorbagy et al. 2010; Ba et al. 2017), flood frequency analysis (Aziz 

et al. 2013), ungauged catchment flood prediction (Aziz et al. 2017), river flow prediction (Imrie et al. 

2000), and drought forecasting (Hosseini-Moghari et al. 2017). ANN presents strong learning ability 

without the provision of any pre-defined model structure. There are different types of algorithms for training 

the ANN, which compares the observed and modelled data, and updates the ANN model parameters at each 

iteration to improve the ANN learning process. Back propagation algorithm (BPA) and its variants (e.g., 

conjugate gradient (CG), gradient descent) have been widely applied for training the ANN. BPA searches 

the error through applying the steepest descent method. In this approach, the ANN parameters are adjusted 

by moving a small step towards the negative gradient of the energy function (Chiang et al. 2004; Asadnia 

et al. 2018). Using gradient search methods often leads to inconsistent and less efficient performance of the 

ANN as the stated techniques are unable to capture the nonlinear rainfall-runoff process, and suffers from 

slow convergence rate (Jain and Srinivasulu, 2004). In order to improve the poor performance of gradient 

descent based methods, Levenberg-Marquardt (LM) training method has been used in many studies (De 

Vos and Rientjes 2008; Taormina et al. 2012). This method is based on coupled gradient descent (GD) with 

Gauss-Newton (GN) methods. However, this method also indicates slow convergence rate (Asadnia et al. 

2018). Therefore, in order to tackle challenges such as slow convergence speed, unpredictable behavior of 

error function, large nonlinear interdependence of ANN parameters, and risk of being trapped in local 

optimum, a global optimization strategy is required to combine deterministic and probabilistic approaches 

and to direct solutions towards the global optima through competitive and systematic evolution process 

(Jain and Srinivasulu, 2004). To overcome these drawbacks, and also to improve ANN performance, a 

number of researchers have applied evolutionary techniques, such as genetic algorithm (GA) and particle 
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swarm optimization (PSO) (Kuok et al. 2010), to build a hybrid and improved ANN model. The 

evolutionary algorithms are critical optimization tools, which are able to solve complex, non-linear, and 

discrete optimization problems (Roy and Singh 2020). The main challenges associated with evolutionary 

algorithms is the adjustment of algorithmic parameters and complex evolutionary process (Jahandideh-

Tehrani et al. 2019). However, stated shortcomings can be addressed through using more efficient and less 

required algorithmic parameter specifications. For instance, as recommended by Roy and Singh (2020), 

PSO is simple and easy to implement by indicating good exploitation ability with less complex evolutionary 

operators. Additionally, the process of combining evolutionary algorithms with other statistical methods 

can significantly improve their search process and obtained optimum solutions (Jahandideh-Tehrani et al. 

2019; Roy and Singh, 2020). GA was first introduced by Holland in (1975), which is inspired by natural 

evolution and Darwinian principles of selection, mutation, and recombination (crossover) with various 

mathematical operators (Jahandideh-Tehrani et al. 2019). PSO was first proposed by Kennedy and Eberhart 

in 1995, which is inspired by the group behavior of animals, including bird flocks and fish schools. Both 

PSO and GA are population-based algorithms, which are first initialized with a population of random 

solutions, after which the solutions are updated over a series of generations to search for the optimum 

solution (Asadinia et al. 2014).  

A hybrid method of PSO and ANN has been developed in this study to improve the performance and 

training process of the ANN. This method is called feedforward artificial neural network-particle swarm 

optimization (ANN-PSO), which improves the convergence rate of ANN and avoid solutions falling into 

local optimum in optimization problems. PSO consists of a population (swarm) of candidate solutions 

(particles), where each particle is characterized with a position and a velocity. The idea of the hybrid ANN-

PSO is to obtain the best set of weights and biases (particle position) where particles (problem solution) are 

flying through problem space to reach the best solution, and this process will prevent the solutions falling 

into local optimum (Kuok et al. 2010). Kouk et al. (2010) applied the hybrid ANN-PSO for hourly rainfall-

runoff modelling in the Sungai Bedup Basin in Malaysia. They also analysed the sensitivity of the ANN-
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PSO to the length of the calibration period, number of hidden layers, delays of days, number of particles 

and maximum iteration. They concluded that the hybrid ANN-PSO can successfully model rainfall-runoff 

relationships, particularly for high peaks. However, considering that the rainfall of the current day was used 

as the model input, predicting the streamflow was impossible in the stated study. Another application of the 

hybrid ANN-PSO has been investigated by Asadnia et al. (2014). They improved the PSO technique for 

training the ANN in order to predict water levels of the Heshui Watershed in China. They compared results 

from the ANN trained by the Levenberg-Marquardt network algorithm (LM-NN) with results from PSO-

based ANN. They found that ANN-PSO models outperform LM-NN by improving convergence rate. 

As mentioned before, GA initializes the search process through generating a group of random solution 

represented as the population of chromosomes at a time and navigates the search space through three 

evolutionary operations: selection, crossover, and mutation to obtain the global optimum. According to the 

fitness calculations for each chromosomes, the selection operator filters the chromosomes with higher 

fitness value for survival or producing offspring in the gene pool of the next generation. Next, crossover 

operator exchanges information of candidate solutions (genetic characteristics) between two random 

positions, in the hope of producing better offsprings. During mutation process, the entire population is 

explored to bring forth any possibility of improvement in the search (Chang 2008; Chandwani et al. 2015). 

Similar to the hybrid ANN-PSO, the combination of GA and ANN has been developed to enhance the speed 

of convergence towards optimal values of weights and bias in rainfall-runoff modelling process 

(Parasuraman and Elshorbagy 2007). Jain and Srinivasulu (2004) applied coupled GA to train the ANN, 

and indicated that the coupled ANN-GA predicted the daily flow more accurately than the conventional 

back proportion (BP)-ANN. In another study by Kasiviswanathan et al. (2013), GA was used to train the 

conventional ANN for the purpose of streamflow prediction using 12-year hydrological recorded data. 

Based on the obtained results and comparison between ANN-GA and conventional ANN, it was reported 

that ANN-GA had faster training capability as well as more accurate modeling results. More recently, an 

application of the ANN-GA to streamflow forecasting has been investigated by Moeeni et al. (2017). They 
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applied GA as an optimization tool to identify the optimum number of hidden layer in ANN. They also 

compared the performance of the ANN-GA with the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model. They concluded that ANN-GA is more efficient in the wet years and flood flows 

forecasting.  

Many studies have investigated the applications of simple ANN in the areas of hydrology and water 

resources without focusing on combining an optimization algorithm with ANN (e.g., Zhang et al. 2000; 

Wang et al. 2017; Ali et al. 2017; Gholami et al. 2018; Lee et al. 2019). This literature review demonstrated 

that further attention is required on using optimization methods in ANN modelling. As the study of ANN-

PSO and ANN-GA in hydrology, particularly rainfall-runoff modelling, is still at an early stage, and little 

research has been conducted on these models for solving hydrological problems and real-time flow 

prediction, the investigation of these models in hydrology is highly recommended (Zhang et al. 2000; Sedki 

et al. 2009). There is also a need for further study to build enough confidence for the application of ANN-

PSO and ANN-GA. Additionally, reliable real-time prediction of river flow is essential for forecasting 

floods and reducing the damages of flood events. Evolutionary algorithms perform as optimization tools to 

improve the training process and convergence rate of ANN models, which has not been considered in the 

literature. This study aims to develop and evaluate both ANN-PSO and ANN-GA rainfall-runoff models to 

forecast real-time streamflow in the Nerang River Basin, Southeast Queensland, Australia. The PSO and 

GA algorithms were coupled with the ANN model to optimize the values of weights and biases in the ANN 

model. Historical rainfall and discharge time series were used for training and testing the hybrid models 

(ANN-PSO and ANN-GA). Additionally, the performance of ANN-PSO was compared with that of ANN-

GA under six scenarios, which were defined based on input combinations of different delays of days of 

rainfall and streamflow.  

2. Materials and Methods 



7 

This section presents the theory and operation of the PSO algorithm, the GA algorithm, and the ANN 

model. Next, the weight training process of the proposed hybrid ANN-PSO and ANN-GA are illustrated. 

Additionally, six applied scenario of model inputs, the selected case study (Nerang River Basin) and the 

model performance evaluation criteria are outlined at the end of current section. 

2.1. Particle Swarm Optimization (PSO) 

PSO is a population-based stochastic optimization technique inspired by the social behaviour of bird 

flocks and fish schools (Silva et al. 2010). This algorithm is initialized with random particles (solutions), 

which are specified with random positions and velocities. The algorithm searches the problem space for 

optima through a series of iterations. During the iterations, the particles search for potential solutions and 

learn over time based on their own experiences and other particles’ experiences. The movement of each 

particle is guided by its best fitness position, which is called personal best (pbest). The overall best value 

of all particles is also guided by the best-known position of the whole population, which is called global 

best (gbest). During each iteration, the velocity and position of each particle are updated regarding both 

pbest and gbest values. This update process is performed by estimating a new velocity term for each particle 

in relation to each particle distance from pbest and gbest (Knight et al. 2015). The new position of the i th 

particle is calculated by 

𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) (1) 

where 𝑋𝑋𝑖𝑖(𝑡𝑡 + 1); 𝑋𝑋𝑖𝑖(𝑡𝑡) = the positions for the i th particle at time (t+1) and t, respectively; and 𝑉𝑉𝑖𝑖(𝑡𝑡 +

1) = the new velocity for the i th particle at time (t+1). The new velocity is determined by 

𝑉𝑉𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤 × 𝑉𝑉𝑖𝑖(𝑡𝑡) + 𝐶𝐶1 × 𝑟𝑟 × �𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑋𝑋𝑖𝑖(𝑡𝑡)� + 𝐶𝐶2 × 𝑟𝑟 × (𝑋𝑋𝑖𝑖𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑋𝑋𝑖𝑖(𝑡𝑡)) (2) 

where 𝑉𝑉𝑖𝑖(𝑡𝑡) = the current velocity for the i th particle at time t; w = the inertia weight; 𝐶𝐶1; 𝐶𝐶2= the 

weighting coefficients for the personal best and global best positions, respectively; 𝑋𝑋𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝= the i th 

particle’s best known position; 𝑋𝑋𝑖𝑖𝑔𝑔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝= the best position known to the swarm; and r = a random number 
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between 0 and 1. 𝐶𝐶1 and 𝐶𝐶2 should be specified properly to obtain optimal solution. The flowchart for basic 

PSO algorithm is shown in Figure 1. 

 

Figure 1. Flowchart of basic PSO algorithm with all steps involved from beginning until termination 

conditions met 

2.2. Genetic Algorithm (GA) 

GA is a population-based heuristic, stochastic optimization algorithm developed by Holland (1975). 

This algorithm is inspired by the concept of Darwinian natural selection and natural genetics, which tends 

to mimic processes observed in natural evolution (Abe et al. 2004; Chang 2008). GA specifies the decision 

variables of an optimization problem to an artificial chromosome, where decision variables (genes) are 

joined together to form a string of values (chromosomes) (Parasuraman and Elshorbagy 2007). A collection 

of chromosomes is named a population, which is defined as one of the potential solutions. The fitness of 
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each chromosome is based on the object function measurements (Chang 2008). As shown in Figure 2, GA 

initializes with random populations and progresses based on three basic operators (selection, 

crossover/recombination, and mutation) to improve the evaluation of solutions through iterations 

(generations). The selection process is defined as implementing chromosomes with higher fitness value for 

survival or generating offspring in the gene pool of the next generation. Crossover operates between pairs 

of chromosomes through exchanging corresponding parts of their gene sequences across a randomly 

selected point. Mutation is carried out through random alteration of the chromosome (Parasuraman and 

Elshorbagy 2007).  

 

Figure 2. Flowchart of basic GA with all steps involved from beginning until termination 

conditions met 

2.3. Artificial Neural Network (ANN) 

2.3.1. Introduction to ANN 
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The adopted ANN in the current study is based on the structure of the multilayer perception (MLP). The 

MLP normally consists of three layers: input layer, hidden layer, and output layer. Each layer can include 

various numbers of neurons (nodes) which link to the neurons in the next layer with the connections called 

weights (w). The inputs of the first layer (input layer) are called external inputs, symbolized by X (Fig. 3). 

Each neuron receives an array of inputs and yields an output. As illustrated in Figure 3, the output of the 

input layer will become the input of the neurons in the next layer (hidden layer). Similarly, the output of 

the neurons in the hidden layer will become the input of the neurons for the next layer (output layer). Finally, 

the output layer indicates the simulated results.  

 

Figure 3. Layout of the MLP network with one hidden layer. The circles represent neurons 

The output of each layer is determined by Equation 3: 

𝑌𝑌𝑛𝑛𝑝𝑝𝑝𝑝 = �𝑌𝑌𝑖𝑖𝑁𝑁
𝑖𝑖=1 𝑤𝑤𝑖𝑖 + 𝑏𝑏𝑖𝑖 (3) 

where N = the total number of neurons of a layer; 𝑌𝑌𝑛𝑛𝑝𝑝𝑝𝑝= the output of a layer; 𝑌𝑌𝑖𝑖= the input of a layer; 𝑤𝑤𝑖𝑖= the weights between neurons; and 𝑏𝑏𝑖𝑖= the bias. In summary, the MLP neural network constitutes a 

nonlinear parameterized map from input vector to output vector. The parameters, weights, and biases should 

be adjusted such that the difference between network output and observed output is minimized.  
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2.3.2. Artificial Neural Network – Particle Swarm Optimization (ANN-PSO) 

To improve the convergence rate and learning speed, PSO was coupled with the ANN to optimize the 

weights and biases of the MLP neural network. A set of weights and biases of the ANN build the position 

of each particle in PSO. Therefore, the dimension of each particle indicates the total number of weights and 

biases.  

Figure 4 summarizes the steps of ANN-PSO. The training process of ANN-PSO starts with the creation 

of random particles, which are characterize by random positions (weight and bias). At this stage, the training 

error (fitness function) should be computed. In the current study, the training error is calculated based on 

the mean squared error (MSE) between the observed and simulated streamflow. As suggested by 

Christiansen et al. (2014), large differences between observed and modelled runoff values are given more 

importance using MSE, and it is more suitable for accurate peak flow predictions. Concerning the high 

complex hydrological process over extreme events (peak flow conditions), MSE has been selected for error 

estimation in the current study. The MSE is determined by equation 4 as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1𝑛𝑛�(𝑄𝑄𝑜𝑜(𝑝𝑝) − 𝑄𝑄𝑝𝑝(𝑝𝑝))2𝑛𝑛
𝑝𝑝=1  (4) 

where 𝑄𝑄𝑜𝑜(𝑝𝑝)= observed streamflow at the t th day; 𝑄𝑄𝑝𝑝(𝑝𝑝) = simulated streamflow at the t th day; and n = 

total number of days. 

After calculating the training error, the weights and biases (positions and velocity of particles) of the 

ANN will be updated for the next iteration. This update is performed to reduce the MSE at each iteration. 

This process should be continued until the termination criterion is met. After completion of the model, a set 

of optimum weights and biases will be generated and introduced to the ANN model. The ANN will apply 

the optimum weights and biases to simulate the outputs.  
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Figure 4. Flowchart of the ANN-PSO training process with all steps involved from beginning until 

termination conditions met 

2.3.3. Artificial Neural Network – Genetic Algorithm (ANN-GA) 

In order to increase solution stability and improve the performance of ANN, such as convergence rate 

and computational time, the GA was combined with the ANN for weight training process. Similar to the 

coupled ANN-PSO, the purpose of coupling the GA with the ANN is to optimize the weights and biases of 

the MLP neural network. As can be seen in Figure 5, the hybrid ANN-GA is initialized through generation 

of random chromosomes (weights and biases). Next, the fitness function (MSE) is evaluated using equation 

4. If the termination criterion is met, the training process is stopped, and optimum values of weights and 

biases are obtained. Otherwise, the chromosomes of the initial population are updated through selection, 

crossover, and mutation operators. As a result of such update, a new generation (iteration) of chromosomes 
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is built, which feeds the ANN model to estimate the fitness function over the second iteration. This process 

is carried out until the termination criterion is satisfied in the proposed the ANN-GA model. 

 

Figure 5. Flowchart of the ANN-GA training process with all steps involved from beginning until 

termination conditions met 

2.4. Scenario Definition for Model Input  

In order to compare the performance of the hybrid ANN-PSO and ANN-GA models for streamflow 

forecasting under different input data, six model input scenarios were assumed. The stated scenarios were 

defined based on combinations of rainfall and streamflow with various lag times (up to three-day delay) as 

inputs for the models. Additionally, applying different combinations of lagged rainfall and streamflow is 

beneficial to identify the sensitivity of the studied river to hydrological conditions of the previous days. In 

others words, the assumed scenarios clarify the correlation between the current streamflow and previous 
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days streamflow and rainfall conditions, which determines the best input combination, which yields the 

most accurate predictions. Table 1 presents the six applied scenarios in the current study. The input data of 

the six stated scenarios consists of lagged rainfall Rt-1, Rt-2, Rt-3, and lagged streamflow, Qt-1, Qt-2, Qt-3, where 

t indicates the current day (time instant). Therefore, Rt-1, Rt-2, Rt-3, denote the rainfall of one previous day, two 

previous days, and three previous days, respectively. Similarly, Qt-1, Qt-2, Qt-3 denote the streamflow of one 

previous day, two previous days, and three previous days, respectively. The output of all the six scenarios 

(model inputs) is the streamflow for the current day, Qt. 

Table 1. Rainfall (R) and streamflow (Q) input combinations for the six scenarios considered in this study. 

The subscript t denotes the time interval (day) and the subscript numbers represent the time lags 

Scenario Input combination 

1 Rt-1, Qt-1 

2 Rt-1, Rt-2, Qt-1 

3 Rt-1, Qt-1 Qt-2 

4 Rt-1, Rt-2, Qt-1, Qt-2 

5 Rt-1, Rt-2, Rt-3, Qt-1, Qt-2 

6 Rt-1, Rt-2, Rt-3, Qt-1, Qt-2, Qt-3 

 

As can be seen in Table 1, Qt and Rt are not applied as input as the model is developed for the purpose 

of predicting streamflow from the rainfall and streamflow data of previous days.  

Before conducting the ANN-PSO and ANN-GA computations, the rainfall and streamflow data needs 

to be normalized to enable the model to capture low, medium, and high flow regimes. Over the process of 

normalization, the rainfall and streamflow data are transformed into the range of -1 and +1. The equation 

of the normalization method is as follows:  

𝑥𝑥𝑛𝑛 = � 𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛� × 2 − 1 

 

(8) 

where 𝑥𝑥𝑛𝑛=  normalized value; 𝑥𝑥 = original value; 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛= minimum value; and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚= maximum value.  

2.5. Case Study and Data 
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As shown in Figure 6, the case study was developed for the Nerang River Basin, with the outlet at the 

Glenhurst gauging station. The Nerang River Basin, a sub-basin of the South Coast Basin, is located in 

Southeast Queensland, Australia, between latitude 27° 58ʹ 30ʺ S - 28° 16ʹ 30ʺ S and longitude 153° 9ʹ 0ʺ E 

- 153° 30ʹ 0ʺ, and has a total area of approximately 493 km2, and the delineated Nerang River Basin for the 

current research is 250 km2, as shown in Figure 6. 

 

Figure 6. Map of the Nerang River Basin, showing the Nerang River, seven rainfall stations, and 

the basin outlet (Glenhurst river gauge station) 

 In order to calibrate and validate the model, daily time series of rainfall and discharge for the period 

2005 to 2018 were obtained. 70% and 30% of the data was randomly selected and applied for both proposed 

models (ANN-PSO and ANN-GA) training (calibration) and testing (validation), respectively. 

 The observed daily discharges of the Glenhurst gauging station (153° 18´ 36.1̋ E, 27° 59´ 59.9 ̋S) were 

provided by the Water Monitoring Information Portal (WMIP). This gauging station is located 22.7 km 
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upstream the river mouth, and according to the WMIP records, the long-term (1968-2018) average 

streamflow (1968-2018) and rainfall (1991-2018) are 2.72 m3/s and 3.39 mm, respectively. Additionally, 

the average evaporation is 4.06 mm over 2005-2018. The average monthly discharge and water level at the 

Glenhurst site over 1968-2018 is indicated in Figure 7. It can be seen that the Nerang River experiences 

high discharges and water levels from January to June (wet season), and low discharges and water levels 

from July to December (dry season). The highest average discharge (almost 6 m3/s) and water level (almost 

0.7 m) occurs in February, whereas September has the lowest average discharge (0.3 m3/s) and water level 

(0.4 m) (Jahandideh-Tehrani et al. 2020).  

 

Figure 7. Average monthly discharges and water levels at the Glenhurst site for the period 1968-2018 (obtained from 

Jahandideh-Tehrani et al. 2020) 

The daily rainfall time series of seven gauging stations were selected within the Nerang River Basin, 

and the data was obtained from the Bureau of Meteorology (BOM). As shown in Figure 6, the gauging 

stations were Hinze Dam (153.29° E, 28.05° S), Numbinbuh Alert (153.21° E, 28.16° S), Wunburra 

(153.26° E, 28.16° S), Little Nerang Dam (153.29° E, 28.14° S), Binna Burra Alert (153.19° E, 28.20° S), 

Sprinbrook Road (153.27° E, 28.20° S), and Numinbah (153.24° E, 28.24° S) with mean long-term rainfall 

of 3.76 , 3.16, 4.75, 4.45, 4.15, 5.83, and 6.58 mm, respectively. The weighted mean long-term rainfall of 

the entire delineated catchment is 4.40 mm. There was some missing rainfall data in the 14-year study period 
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(2005-2018). The data gaps were resolved using the Arithmetic Mean Method in SPSS software. Next, the 

weighted average of the daily total rainfall values from the seven rainfall stations was computed using the 

Thiessen Method. The covered area of each rainfall gauging station was estimated as 81.72 km2 for Hinze 

Dam, 35.89 km2 for Numbinbuh Alert, 27.26 km2 for Wunburra, 33.73 km2 for Little Nerang Dam, 16.27 

km2 for Binna Burra Alert, and 29.86 km2 for Sprinbrook Road.  

2.6. Performance Indices 

To assess and compare the performance of the proposed models, two commonly used statistical 

measurements were applied: correlation coefficient (R2) and Nash-Sutcliffe efficiency coefficient (NSE). 

R2 values range between zero and one, where zero indicates no linear correlation, and one represents perfect 

linear relationship between the simulated and observed values. NSE indicates the ability of the model in 

simulating values away from the mean. The larger the value of R2 and NSE, the better the model 

performance. The R2 and NSE are determined as follows: 

𝑅𝑅2 =

1𝑁𝑁−1∑ (𝑀𝑀𝑖𝑖 − 𝜇𝜇𝑝𝑝)(𝑂𝑂𝑖𝑖 − 𝜇𝜇𝑜𝑜)𝑛𝑛𝑖𝑖=1 𝜎𝜎𝑝𝑝𝜎𝜎𝑜𝑜  (5) 

𝑁𝑁𝑀𝑀𝑀𝑀 = 1 − ∑ (𝑂𝑂(𝑖𝑖) − 𝑀𝑀(𝑖𝑖))2𝑁𝑁𝑖𝑖=1∑ (𝑂𝑂(𝑖𝑖) − 𝜇𝜇𝑜𝑜)2𝑁𝑁𝑖𝑖=1  (6) 

where N = total number of observations; μs and μs = average simulated and observed streamflow, 

respectively; Oi = observed streamflow on i th day; Si = simulated streamflow on i th day; and σs and σo = 

standard deviation of the simulated and observed streamflow, respectively.  

3. Results and Discussions 

To ensure an accurate prediction of streamflow by both ANN-PSO and ANN-GA models, trial and 

error was performed to determine the optimal configuration of ANN-PSO and ANN-GA. In order to 

efficiently compare the performance of PSO and GA in weight training process, similar ANN architecture 

(three neurons and one hidden layer), initial population size (100), and maximum iteration (500) were 
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implemented. Additionally, over the trial and error process, the optimal PSO was found with the 

configuration of C1 = 1.5, C2 = 2.5. Additionally, the best configuration of GA was associated with selection 

probability of 0.15, crossover probability of 0.50, and mutation probability of 0.35. 

Considering that the initial population (weight and bias) of both ANN-PSO and ANN-GA models were 

generated randomly, each of the six stated scenarios were performed three times and the average values of 

performance indices (R2 and NSE) were computed for comparison. Table 2 presents the estimated 

performance indicators of the streamflow forecast obtained from the ANN-PSO and ANN-GA models for 

a different number of delays for day (under six defined scenarios). 

Table 2. Performance indicators of the ANN-PSO and ANN-GA models for training and testing under six scenarios 

Scenario Run 

Training           Testing 

R2 NSE R2 NSE 

PSO GA PSO GA PSO GA PSO GA 

1 

1 0.90 0.89 0.82 0.79 0.84 0.83 0.71 0.68 

2 0.93 0.88 0.86 0.78 0.93 0.84 0.87 0.69 

3 0.93 0.87 0.86 0.72 0.85 0.85 0.71 0.71 

Average 0.92 0.88 0.85 0.76 0.87 0.86 0.76 0.69 

2 

1 0.94 0.86 0.89 0.73 0.89 0.84 0.79 0.71 

2 0.93 0.88 0.86 0.75 0.86 0.86 0.73 0.72 

3 0.95 0.87 0.91 0.74 0.94 0.84 0.85 0.69 

Average 0.94 0.87 0.89 0.74 0.90 0.85 0.79 0.71 

3 

1 0.93 0.86 0.87 0.71 0.84 0.85 0.71 0.70 

2 0.94 0.83 0.88 0.67 0.85 0.84 0.71 0.70 

3 0.91 0.90 0.82 0.82 0.95 0.83 0.89 0.71 

Average 0.93 0.86 0.86 0.73 0.88 0.84 0.77 0.70 

4 

1 0.93 0.84 0.86 0.72 0.88 0.84 0.74 0.72 

2 0.90 0.86 0.81 0.72 0.94 0.84 0.85 0.72 

3 0.92 0.74 0.85 0.71 0.87 0.83 0.76 0.70 

Average 0.92 0.85 0.84 0.72 0.90 0.84 0.78 0.71 

5 

1 0.91 0.86 0.83 0.72 0.87 0.73 0.74 0.53 

2 0.89 0.81 0.79 0.64 0.93 0.79 0.79 0.62 

3 0.91 0.85 0.83 0.71 0.90 0.85 0.80 0.69 

Average 0.90 0.84 0.82 0.69 0.90 0.79 0.78 0.61 

6 

1 0.89 0.87 0.80 0.75 0.94 0.82 0.81 0.61 

2 0.92 0.80 0.85 0.64 0.88 0.83 0.77 0.69 

3 0.94 0.82 0.88 0.66 0.85 0.81 0.72 0.65 

Average 0.92 0.83 0.84 0.68 0.89 0.82 0.77 0.65 
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According to Table 2, ANN-PSO outperformed the ANN-GA model over both training and testing 

periods under all six stated scenarios by showing higher average performance indicators (R2 and NSE). 

Therefore, it is determined that ANN-PSO performed more satisfactory in rainfall-runoff modelling process 

and streamflow prediction.   

Considering the ANN-PSO model, scenario 2 outperformed the other scenarios by showing the best 

model performance indicators (R2= 0.94 and NSE = 0.89 for the training period, and R2 = 0.90 and NSE = 

0.79 for the testing period). Therefore, it is determined that in the studied basin, the river flow of the Nerang 

River was more sensitive to the rainfall of the two previous days and streamflow of the previous day 

concerning the ANN-PSO model. Additionally, the rainfall and streamflow with 3-day lag time had less 

impact on the Nerang River flow. Therefore, the input combination of Rt-1, Rt-2, and Qt-1 yielded the most 

accurate streamflow predictions in terms of using the ANN-PSO model. It can also be observed that 

scenario 3 indicated high performance indices (R2 = 0.93 and NSE = 0.86 for the training period, and R2 = 

0.88 and NSE = 0.77 for the testing period), which placed this scenario in the second position of application. 

The input combinations of scenario 3 are Rt-1, Qt-1, and Qt-2, which confirmed the statement that the Nerang 

River flow was more highly correlated with the rainfall and streamflow conditions of the two previous days. 

Scenario 4 also performed with the combination of a 2-day lagged rainfall and streamflow combination. 

However, the computed performance indices were slightly smaller than the ones in scenarios 2 and 3.  

As shown in Table 2, the ANN-GA model performed almost similarly in rainfall-runoff modelling 

under scenarios 1, 2, 3, and 4. The reason behind the slightly lower performance for scenarios 5 (R2= 0.84 

and NSE = 0.69 for the training period, and R2 = 0.79 and NSE = 0.61 for the testing period) and 6 (R2 = 

0.83 and NSE = 0.68 for the training period, and R2 = 0.82 and NSE = 0.65 for the testing period) is that 

there was slightly less agreement between observed and simulated streamflow compared to scenarios 1, 2, 

3, and 4. Hence, it can be concluded that the streamflow of the current day is less correlated with 3-day 

lagged time of rainfall and streamflow in the studied basin. Additionally, too many number of the network 

inputs generate a network system with more equations than free variables, which leads to overspecification 
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of a network system. As a result, the network indicates poor simulation performance in capturing the 

existing trends in data (Asadnia et al. 2014).  

In terms of convergence rate, Figure 8 shows a comparison of the fitness functions for the ANN-PSO 

and ANN-GA models over 500 iterations. This comparison was made for scenarios 1, 2, and 3 over the 

training period (graphs a, b and c, respectively). It can be seen that the convergence speed of ANN-PSO is 

greater than the speed of ANN-GA in all three scenarios. Over 500 iterations, the ANN-PSO model yielded 

lower MSE values (reaching a minimum of 0.0011 and 0.0009 m6/s2 for scenarios 1 and 3, respectively) 

compared to those of ANN-GA (which reached a minimum of 0.0013 and 0.0012 m6/s2 for scenarios 1 and 

3, respectively). For scenario 2, both models yielded MSE values as low as 0.0009 m6/s2, but the ANN-PSO 

model was faster than the ANN-GA model in reaching this value. Additionally, as indicated in Figure 8, 

the optimal solution obtained by ANN-PSO in the initial stage was significantly better than that of ANN-

GA, confirming that fewer iterations are required for ANN-PSO to reach an optimal solution. For instance, 

for scenario 2, ANN-PSO yielded an MSE value equal to 0.0009 m6/s2 after 25 iterations, whereas the ANN-

GA needed 436 iterations to reach this value. Thus, in addition to the increased accuracy shown by the 

ANN-PSO model as compared to the ANN-GA model, the former was also significantly faster than the 

latter. Thus, it was concluded that the speed, efficiency, and accuracy in convergence are greater for ANN-

PSO.  
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Figure 8. Comparison of the fitness function (MSE) plots of ANN-PSO and ANN-GA for (a) 

scenario 1; (b) scenario 2; and (c) scenario 3 over the training period  
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Figure 9 represents the correlation between observed and predicted daily flows achieved with the ANN-

PSO (graphs a, b and c) and ANN-GA (graphs d, e and f) models for the best runs of scenarios 1, 2, and 3 

over the testing period. Figure 9 clearly highlights the superiority of ANN-PSO over ANN-GA as there is 

stronger correlation between observed and predicted streamflows in all scenarios for this model. Figures 9 

(a), 9 (b), and 9 (c) clearly shows that almost all points are located close to the 1:1 line, which confirms that 

the predicted streamflow generally agrees well with the observed streamflow in ANN-PSO modelling. 

However, it can be seen that a few points are placed below the 1:1 line, particularly in cases of high 

streamflow values, indicating that the ANN-PSO model sometimes underestimates the values of high 

streamflow (Zhang et al. 2018). This could be explained by the fact that the rainfall-runoff relationship 

becomes more complex in case of high (peak) flow conditions. Additionally, considering that peak flow 

events are scarce compared to normal flow condition, fewer data (extreme rainfall and streamflow) are 

available to feed the ANN-PSO and ANN-GA (data-driven) models. As a result, fewer extreme data are 

available to train the data-driven models, which leads to less accuracy in extreme streamflow prediction.   
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Figure 9. Performance comparison of (a) scenario 1; (b) scenario 2; and (c) scenario 3 for the best runs of ANN-PSO and (d) 

scenario 1; (e) scenario 2; and (f) scenario 3 for the best runs of ANN-GA 
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4. Conclusions 

This study addressed the complex process of rainfall-runoff modelling as well as real-time streamflow 

prediction using two data-driven techniques. To obtain an efficient rainfall-runoff model and to improve 

the accuracy of real-time streamflow prediction, the PSO and GA algorithms were coupled with the ANN 

technique separately. The performance and efficiency of two proposed hybrid models, ANN-PSO and 

ANN-GA, were compared to determine the best model in terms of efficiency, convergence speed, and 

accuracy. Additionally, sensitivity of the proposed models to days of delay for rainfall and streamflow were 

evaluated through building six input combinations (scenarios), and comparing the performance indices (R2 

and NSE) of the modelling results. Considering that the initial weights and biases of both the ANN-PSO 

and ANN-GA models were created randomly, each model was run three times under six scenarios, and the 

average values of the performance indicators were computed to compare the six scenarios, and to select the 

input combination that yielded the most accurate streamflow predictions.  

The proposed ANN-PSO and ANN-GA models were applied for real-time streamflow forecasting of 

the Nerang River Basin, Southeast Queensland, Australia. Input data consisted of 1) the weighted rainfall 

of seven gauging stations, which was computed using the Thiessen method, and 2) discharge of the 

Glenhurst station (at the outlet of the basin). The results of the current study revealed that both proposed 

models achieved satisfactory agreement between the observed and predicted streamflow for both low and 

high flow conditions. Additionally, the comparison between ANN-PSO and ANN-GA demonstrated that 

the use of PSO as an optimization tool for weight training process can result in higher convergence speed, 

accuracy, and performance indicators. Additionally, the results of input sensitivity assessment revealed that 

with regard to the ANN-PSO model, the input combination of Rt-1, Rt-2, and Qt-1 yielded the most accurate 

streamflow predictions (R2 = 0.94 and NSE = 0.89, over the training period, and R2 = 0.90 and NSE = 0.79 

over the testing period) as compared to the other input combinations. Considering the ANN-GA model, 

scenarios 5 and 6 showed the least satisfactory performance, meaning that the rainfall and streamflow with 
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3-day lag time had less impact on the streamflow of the studied basin. Hence, the Nerang River flow is 

more dependent on the rainfall of the two previous days and streamflow of the previous day.  

5. Limitations and Future Directions 

The results of the current study demonstrated the benefits of applying the coupled ANN-PSO and ANN-

GA techniques for rainfall-runoff modelling, and confirmed the ability of these tools for real-time 

streamflow forecasting, however, few limitations of the current study should be addressed in future 

research. It is recommended to investigate the capability of other evolutionary algorithms in optimizing the 

ANN parameters. Additionally, the current research limited to the Nerang River Basin area. Therefore, in 

terms of future research directions, it is recommended to validate the general ability of proposed tools 

(ANN-PSO and ANN-GA) in other catchments in Australia, and particularly in Southeast Queensland 

region. It is also recommended to apply proposed model to streamflow prediction using evaporation input 

data to provide more scenarios of model input combinations as the current research was limited to rainfall 

and streamflow input combinations, while evaporation characteristics of the basin can also affect 

streamflow prediction. Moreover, the sensitivity of the model to the number of neurons, initial swarm size, 

initial chromosomes, number of iterations, and number of hidden layers can also be studied in potential 

future research.  
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