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Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people

each year in the United States, with an overall mortality of ∼30%. Most cases of SAH

result from a ruptured intracranial aneurysm, require long hospital stays, and result

in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral

vasospasm (CV) have been implicated as leading causes of morbidity and mortality

in these patients, necessitating intense focus on developing preclinical animal models

that replicate clinical SAH complete with delayed CV. Despite the variety of animal

models currently available, translation of findings from rodent models to clinical trials

has proven especially difficult. While the explanation for this lack of translation is unclear,

possibilities include the lack of standardized practices and poor replication of human

pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of

SAH. In this review, we summarize the different approaches to simulating SAH in rodents,

in particular elucidating the key pathophysiology of the various methods and models.

Ultimately, we suggest the development of standardized model of rodent SAH that better

replicates human pathophysiology for moving forward with translational research.
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INTRODUCTION

Although a variety of rodent models for subarachnoid hemorrhage (SAH) are in use, there
is no standardized method of simulating the human equivalent, making translation to clinical
observations challenging. Development of a rodent model began with Barry et al., who induced
SAH by puncturing the basilar artery with a tungsten electrode (Barry et al., 1979). Additional
models have been developed, predominantly involving intravascular perforation of a vessel in the
Circle of Willis or direct injection of blood into the cisterna magna or prechiasmatic cistern. While
each of these models has their advantages and disadvantages, none involve the spontaneous rupture
of an intracranial aneurysm, as is observed in the majority of clinical cases. Thus, the purpose of
this review is to address the current data surrounding SAH models and subsequently propose a
bridge between these models and those that would more replicate the human equivalent to direct
future preclinical model development and clinical studies.
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CLINICAL SAH

Non-traumatic SAH affects ∼30,000 people per year in the
United States (Rincon et al., 2013), with ∼15% of patients dying
before they ever reach the hospital (Connolly et al., 2012) and
in-hospital mortality estimated at 20% (Rincon et al., 2013).
Around 10% of SAH cases are due to non-aneurysmal bleeding
in idiopathic perimesencephalic hemorrhage, while another 5%
are due to anomalies such as intracranial arterial dissections
and vascular malformations, among other rare causes (Marder
et al., 2014). The remaining 85% of clinical SAH results from
the spontaneous rupture of a cerebral aneurysm (Van Gijn and
Rinkel, 2001). Intracranial aneurysms form at sites of high shear
wall stress such as the arterial bifurcations in the Circle of Willis
(Wong et al., 2008). The most common sites include the anterior
cerebral artery (ACA), internal carotid artery (ICA), or the
middle cerebral artery (MCA); whereas, aneurysms in vessels of
the posterior circulation are less frequent but routinely observed
(Wong et al., 2008). Symptom onset is characteristically marked
by a sudden headache, often described as “the worst headache of
my life (Gorelick et al., 1986).” As the majority of cases are due to
aneurysmal subarachnoid hemorrhage (aSAH) and because non-
aneurysmal SAH patients tend to experience fewer complications
and better outcomes than aSAH patients (Cánovas et al., 2012;
Boswell et al., 2013), the majority of this review will focus on
aSAH.

Most patients surviving the initial bleed are critically ill and
require prolonged intensive care unit stay (Diringer, 2009),
resulting in significant public health costs. Additionally, aSAH
has an earlier mean age of onset and is associated with higher
disability and morbidity rates when compared to other types of
stroke (Kolias et al., 2009). It has been shown that early treatment
of aSAH increases the likelihood of having no to minimal
disability following discharge from the hospital (Siddiq et al.,
2012). Thus, it is important to understand the pathophysiology of
aSAH in order to ensure its early treatment and direct preclinical
studies to expound on existing standards of care.

Cerebral Vasospasm and Delayed Cerebral
Ischemia in Clinical SAH
Following aSAH, patients often develop complications from the
bleed that contribute to the high mortality rate of this disease.
Hydrocephalus, seizures, cerebral ischemia, tissue shifts and
herniations, hyponatremia, cardiac anomalies, and respiratory
depression are formidable consequences that can result (Diringer
et al., 2011). However, the leading cause of morbidity and
mortality after aSAH is delayed cerebral ischemia (DCI).

DCI occurs in nearly 33% of aSAH cases and is defined
as new focal neurological signs, acute mental status decline,
or appearance of new infarction on computed tomography or
magnetic resonance imaging (MRI) (MacDonald et al., 2014).
Clinical identification of DCI is often difficult since fever,
infection, hypoxia, sedatives, and electrolyte imbalances produce
a similar clinical picture (Vergouwen et al., 2010). Additionally,
acute mental status decline is undetectable in the subset of SAH
patients that remain comatose throughout hospitalization; thus,
the incidence of DCI may be higher than documented. Further

work to elucidate the underlying mechanism of DCI will allow
for development of additional treatments that may prove more
effective.

Themost supported theory regarding the pathogenesis of DCI
points to a phenomenon known as cerebral vasospasm (CV),
which is a narrowing of cerebral arteries leading to a transiently
sustained interruption of blood flow to the brain parenchyma
(Velat et al., 2011). Approximately 30–70% of aSAH patients, will
experience CV between days 4 and 14 after aneurysm rupture,
with peak vessel constriction occurring on days 7 and 8 (Izzy and
Muehlschlegel, 2014), making the identification, treatment, and
prevention of CV paramount to achieving favorable outcomes
following aSAH. Because CV is a causative mechanism of DCI,
treatment of diagnosed DCI focuses on attempting to reverse
CV by inducing hypertension, hypervolumia, and hemodilution
(HHH therapy)(Siasios et al., 2013). Although such measures
can be helpful after symptom onset, it nevertheless remains
an enigma why certain patients develop CV and symptomatic
ischemia following aSAH, while others remain asymptomatic
with minimal CV. Currently, the only documented and verified
risk factor for the development of CV is a larger hemorrhage
volume assessed by CT scan and quantitated using the Fisher
scoring system (Fisher et al., 1980; Ko et al., 2016).

Pathophysiology of Clinical SAH
After aneurysm rupture, blood enters the subarachnoid space
at arterial pressure and produces immediate pathophysiological
effects and early brain injury (EBI) (MacDonald et al., 2014).
Intracranial pressure (ICP) rises above 20 mmHg, mean arterial
blood pressure (MABP) falls reflexively, and cerebral perfusion
pressure (CPP) is reduced; this can lead to severe headache or
syncope due to decreased cerebral blood flow (CBF) (Voldby
and Enevoldsen, 1982). Following acute conditions, vessel
constriction due to delayed CV contributes to further reductions
in CPP (Dhar et al., 2012). In practice, detecting impairment
in CPP early in the management of SAH is essential in
monitoring for DCI (Diringer et al., 2011). Ischemia, infarction,
hydrocephalus, and impaired cerebral autoregulation further
contribute to increased ICP and exacerbate the reductions in
CPP and CBF (Zoerle et al., 2015). A delicate balance must be
maintained with managing MABP following SAH, as increases
can lead to elevation of ICP, while decreases may result in
further worsening of CPP and exacerbation of DCI. Current
recommendations for MABP focus on hemodynamic stability,
encouraging a stepwise titration of MABP with assessment of
neurological status at each level to determine if the target value is
appropriate (Diringer et al., 2011). Overall, vigilant management
of physiological outcomes is critical in the SAH patient, as
extremes in ICP, CPP, CBF, andMABP can ultimately lead to poor
functional outcomes (Zoerle et al., 2015).

Mortality and Functional Outcomes of
Clinical SAH
After aSAH, up to 15% of patients will die immediately following
the ictus, and the total case fatality rate approaches 50%
(MacDonald et al., 2014). Long-term survival is correlated with
increased consciousness and neurological grade on admission,
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less blood volume on initial CT scan, and age at ictus (Rosengart
et al., 2007). Clinically, stratifying SAH based on the acute
presentation can be accomplished with several widely used rating
systems, such as the Glasgow Coma Scale, World Federation of
Neurological Surgeon’s scale, Fisher grade, and Hunt and Hess
scale. These scales each have their own utility and are aimed at
predicting the risk for CV or clinical outcome based on groupings
of symptoms such as amount of subarachnoid blood, degree of
mentation, focal deficits, and motor dysfunction. These scales
integrate information regarding risk factors and symptoms in an
effort to guide management and predict prognosis. In addition to
stratification of SAH presentations, functional assessment tools
are widely used for survivors of the initial hemorrhage. These
instruments assign a quantitative value to deficits following SAH,
analyzing factors such as language and speech, motor function
and sensory loss, consciousness, coordination, and independence
in activities of daily living (McGeoch et al., 2002; Rademaker
et al., 2002a,c,d). Measures include the National Institutes of
Health Stroke Scale (NIHSS), Barthel Index, modified Rankin
scale (mRS), and Glasgow Outcome Scale (GOS).

Those who survive aSAH experience long-term complications
such as memory impairment, epilepsy, neurocognitive
dysfunction, neuropsychiatric disturbances, and focal
neurological deficits (Al-Khindi et al., 2010). Hütter et al. (1995)
published that SAH patients report deficits in verbal short-term
memory, concentration, language, motivation, interests, mental
capacity, free-time activities, social relationships, and fine motor
coordination (Hütter et al., 1995). Longitudinally, 40–50% of
patients require help in common household activities, and
almost 50% exhibit disability in leisure and vocational activities
(Lindberg et al., 1992). Approximately 40% will be cognitively
impaired (Dombovy et al., 1998), which is influenced by the
incidence of CV, DCI, and infarction, but unrelated to the
initial location of the ruptured aneurysm (MacDonald et al.,
2012). Cognitive domain deficits commonly affected in aSAH
patients with DCI are verbal memory, language, and visuospatial
memory and skills (Caeiro et al., 2011; Chu et al., 2015a).
DCI has been associated with poor outcomes after SAH, but
even with good outcomes, persistent cognitive deficits can still
manifest, limiting psychosocial functioning. The correlation
between neuropsychological and neurophysiological measures
indicate frontal lobe damage, which in some patients persisted
for years after the initial insult (Ravnik et al., 2006). Additionally,
cognitive deficits also occurs in patients with CV and no DCI
(Larsson et al., 1989; Richardson, 1991; Pluta et al., 2009;
Miller et al., 2014). Neuropsychiatric disturbances including
depression, anxiety, apathy, and sleep disorders are common
following aSAH (Hackett and Anderson, 2000). Patients that
do not undergo neuropsychological testing and subsequent
treatment following SAH have worse outcomes than those that
do (Kreiter et al., 2002), indicating a pressing need to evaluate
all SAH patients for potential cognitive disability. It has also
been shown that the Glascow Coma Scale score is able to
predict self-reported quality of life in patients, but is otherwise
unable to predict neurocognitive impairment (Cedzich and
Roth, 2005). Little is known about the molecular pathways
involved in mediating these long-term neurocognitive and

neuropsychiatric outcomes after SAH. These findings indicate a
need for additional mechanistic research and more efficient tools
to predict functional outcomes, especially neurocognitive and
neuropsychiatric impairments in SAH patients.

SAH is a devastating clinical disease with numerous
debilitating outcomes. Understanding EBI, the
pathophysiological changes that occur, and identifying predictors
of CV and DCI will improve functional outcomes and reduce
mortality following SAH. In order to further improve the
outcomes of SAH patients, a standardized rodent model that
better replicates human pathophysiology must be developed for
use in preclinical studies.

PRECLINICAL MODELS OF
NON-ANEURYSMAL SAH

While most cases of SAH in humans are due to rupture of
an intracranial aneurysm, the majority of rodent studies have
used models that more mimic non-aneurysmal SAH. This
disparity is most likely due to the difficulty in producing a
cerebral aneurysm in rodents (Hashimoto et al., 1984). Twomain
approaches to modeling non-aneurysmal SAH have been used:
(1) direct injection of blood into the subarachnoid space, or (2)
endovascular perforation of a cerebral vessel. While each of these
models allows for the study of how extravascular blood within
the subarachnoid space affects various outcomes after SAH, none
addresses the specific consequences related to the formation
and spontaneous rupture of an intracranial aneurysm, which
may have its own independent additive or blood-dependent
synergistic effect on SAH outcome.

Direct Injection of Blood
Direct injection of autologous or heterologous whole blood
into the subarachnoid space is the most commonly used
method of inducing non-aneurysmal SAH in rodents. During
the procedure, stereotactic frames are used to produce precise
coordinates for injection in an effort to control the location
and distribution of blood in the subarachnoid space. Blood is
either injected into the cisterna magna or prechiasmatic cistern,
with each location producing a characteristic pattern of blood
distribution. The former results in a blood clot primarily localized
around vessels of the posterior circulation and the latter around
vessels of the anterior circulation (Prunell et al., 2002; Raslan
et al., 2012). Figure 1 provides a representative visualization of
the blood distribution in the cisterna magna and prechiasmatic
cistern injection models.

Direct injection models may involve a single or double
injection of blood (Vatter et al., 2006; Weidauer et al., 2006; Lee
et al., 2008, 2009; Güresir et al., 2010, 2012; Cai J. et al., 2012;
Raslan et al., 2012; Boyko et al., 2013). In double injectionmodels,
the second infusion is typically performed 24 h after the first
and injection occurs in the cisterna magna. Double injection of
blood into the prechiasmatic cistern has not been performed,
presumably because the hemorrhagic insult is more severe and
the rodents may not be able to sustain two infusions. In general,
less blood is required to produce the same deficits in the
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FIGURE 1 | Representative illustrations of blood clot distribution in the

cisterna magna and prechiasmatic cistern models. Images correspond to (a)

cisterna magna control, (b) prechiasmatic cistern control, (c) cisterna magna

experimental, and (d) prechiasmatic cistern experimental mouse brains.

Cisterna magna and prechiasmatic cistern injections primarily result in blood

clots surrounding the posterior and anterior circulations, respectively. The

scale bar represents 2cm. Photo was obtained from Cai J. et al. (2012).

prechiasmatic cistern location compared to the cisterna magna
site. The various blood volumes that have been introduced into
both locations and the injection characteristics are summarized
in Table 1.

The direct injection model allows for a predictable
distribution of blood, but can introduce variations in physiologic
parameters. Given the large volume of blood and location of
injection into the cisterna magna, pressure rises may cause
blood to enter the spinal canal, potentially confounding results
due to the functional impairments produced (Leonardo et al.,
2012). In order to avoid this complication, many authors choose
to remove CSF prior to injection to create more potential
space for blood (Ram et al., 1991; Takanashi et al., 2001; Gules
et al., 2002; Vatter et al., 2006; Takata et al., 2008; Güresir
et al., 2010, 2012; Cai C. Y. et al., 2012; Muñoz-Sanchez et al.,
2012b; Raslan et al., 2012). Unfortunately, this can alter the
ICP, potentially affecting all observed outcomes. Another source
of error is often seen in autologous blood injection models, as
some have attempted to maintain normovolemia after blood
withdrawal and SAH induction by replacing equivalent volumes
of saline (Solomon et al., 1987; Glenn et al., 2002; Lin et al.,
2003) or donor blood (Solomon et al., 1985) into the systemic
circulation. However, because total blood volume decreases
following SAH, this step may alter results by keeping MABP
artificially high. Additionally, cisterna magna models commonly
keep the animal tilted from 20 to 40◦ angle after injection to
facilitate blood distribution into the anterior circulation (Gules
et al., 2002; Lee et al., 2008). This manipulation likely disrupts
intracranial pressure (ICP) and other important physiological
parameters.

As noted in Table 1, the amount of time over which blood is
injected also varies widely among different researchers. Ideally,
blood injection would occur at a rate that maintains a pressure
similar to MABP in order to mimic the true pressure seen in
a spontaneous arterial bleed. In an effort to adhere to these
conditions, Prunell et al. (2002) attempted to keep ICP at the
same level as MABP during manual injection of blood, rather
than choosing constant injection rates (Prunell et al., 2002, 2003).
Additionally, Ram et al. (1991) did not allow ICP to rise to over
25 mmHg at any point during the injection (Ram et al., 1991).
While these elegant procedures eliminate possible confounding
variables, they are nevertheless technically strenuous and difficult
to reproduce.

Endovascular Perforation
In addition to the direct injection of whole blood, SAH can
be simulated by endovascular perforation (Table 2). This model
involves advancing a suture into the ICA until it perforates a
vessel within the Circle of Willis. Briefly, the method involves
surgically exposing the bifurcation of the common carotid artery
(CCA) into the ICA and external carotid artery (ECA). The
suture is then threaded through the ECA into the ICA and
advanced into the Circle of Willis at the branch point of the ICA
into the ACA and MCA (Bederson et al., 1995).

Unlike most direct injection models, the bleed produced
via endovascular perforation occurs at MABP. Furthermore, no
needle is inserted through brain structures, greatly reducing the
risk of intracerebral hemorrhage or confounding alterations in
ICP. However, the volume of blood produced by this model
depends on the size of suture used to perforate the artery, and
even with the same size suture, the amount of blood is variable
from rodent to rodent (Schwartz et al., 2000). Researchers have
used a number of suture sizes to control the hemorrhage severity.
While the sutures are usually sharpened, some have chosen a
blunted tip in order to prevent endothelial damage when passing
the suture through the ICA (Veelken et al., 1995; Parra et al.,
2002; Lee et al., 2009). For further protection, Park et al. (2008)
used hollow tubing and a tungsten filament rather than a suture
to avoid injury to the vasculature before puncture (Park et al.,
2008). With this model, it is not possible to control whether the
suture perforates either the ACA or MCA specifically (Bederson
et al., 1995). In some cases, the ICA can even be perforated
(Bederson et al., 1995). Thus, in addition to the variation in
hemorrhage volume, differences in puncture location between
rodents in a given study may result in a non-uniform blood
distribution.

Another complicating factor of the endovascular perforation
model is the common practice of ligating the ECA into a stump
to facilitate advancing the suture through the CCA and into the
ICA (Bederson et al., 1995, 1998; Schwartz et al., 2000; Gules
et al., 2002; Parra et al., 2002; Prunell et al., 2003; Van Den Bergh
et al., 2005; Park et al., 2008; Sugawara et al., 2008; Lee et al.,
2009; Silasi and Colbourne, 2009). As a result of this ligation,
CBF is increased on the ipsilateral side, potentially exacerbating
the severity of hemorrhage for a given filament size. In attempts
to reduce extracranial blood loss as a result of ECA ligation, the
CCA (Westermaier et al., 2009b) or ICA and carotid communicis
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TABLE 1 | Summary of single- and double-injection cisterna magna models and single-injection prechiasmatic cistern models in published studies that used various

strains of mice or rats.

Rodent Injection 1 (µL) Injection length (s) Injection rate (µL/s) References Comments

CISTERNA MAGNA—SINGLE INJECTION

C57BL/6 mice 60 60 1.0 Lin et al., 2003 Replaced 60 µL saline

SD rats 70 or 300 5 or 30 14 or 10 Delgado et al., 1985

SD rats 70 – – Rasmussen et al., 1992

SD rats 300 15 20.0 Boyko et al., 2013

SD rats 300 15 20.0 Glenn et al., 2002 Replaced 300 µL saline

SD rats 300 – – Solomon et al., 1985 Replaced 300 µL donor blood

SD rats 300 15 20.0 Prunell et al., 2003 Attempted to keep ICP at the level of MABP

SD rats 300 30 10.0 Schwartz et al., 2000

SD rats 300 120 2.5 Gules et al., 2002 Removed 300 µL CSF

SD rats 370 – – Solomon et al., 1987 Replaced 370 µL saline

SD rats 600 60 10.0 Swift and Solomon, 1988

SD rats 500 1200 0.4 Ram et al., 1991 Removed 200 µL CSF

SD rats 300 180–240 – Jackowski et al., 1990 Injections were made in 50 µL sequential

steps, each over 3–4min

Wistar rats 100 30 3.3 Munoz-Sanchez et al., 2012a Removed 100 µL CSF

Wistar rats 200 – – Turowski et al., 2007

C57BL/6 mice 60 – – Chaichana et al., 2007 Replaced 60 µL saline

Rodent Injection 1 (µL) Injection 2 (µL) Injection length (s) Injection rate (µL/s) References Comments

CISTERNA MAGNA—DOUBLE INJECTION

SD rats 200 or 300 100 or 200 600 or 180 0.33/0.17 and

1.67/1.11

Lee et al., 2008

SD rats 200 100 60 and 30 3.3 Lee et al., 2009

SD rats 200 200 180 1.1 Cai J. et al., 2012 Remove 100 µL CSF each time

SD rats 200 200 – – Vatter et al., 2006 Remove 100 µL CSF first time

SD rats 200 200 – – Weidauer et al., 2006

SD rats 250 250 – – Güresir et al., 2010 Remove 100 µL CSF each time

SD rats 250 250 – – Güresir et al., 2012 Remove 100 µL CSF each time

SD rats 200 100 180 1.1 and 0.56 Raslan et al., 2012 Remove 100 µL CSF first time

SD rats 300 300 15 20.0 Boyko et al., 2013

SD rats 300 300 120 2.5 Gules et al., 2002 48 h apart, remove 300 µL CSF each

time

SD rats 300 300 120 2.5 Meguro et al., 2001 48 h apart, remove 100 µL CSF first

time

Wistar rats 500 300 600 0.8 and 0.5 Takata et al., 2008 48 h apart, remove 200 µL CSF first

time

SD rats 300 300 120 2.5 Wang et al., 2010

SD rats 300 300 180 1.7 Qin et al., 2015 48 h apart, remove 300 µL CSF each

time

SD rats 300 300 600 0.5 Zhang Z. Y. et al., 2015 48 h apart

SD rats 200 200 120 1.7 Zhao et al., 2016 48 h apart

SD rats 340–440 340–440 – – Chang et al., 2015a 48 h apart

SD rats 300 300 – – Chang et al., 2015b 48 h apart, removed 100 µL CSF

each time

SD rats 200 100 80 and 40 2.5 He et al., 2015 48 h apart, removed 100 µL CSF

each time

Rodent Injection 1 (µL) Injection length (s) Injection rate (µL/s) References Comments

PRECHIASMATIC CISTERN—SINGLE INJECTION

CD1 mice 100 15 6.7 Sabri et al., 2009

(Continued)
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TABLE 1 | Continued

Rodent Injection 1 (µL) Injection length (s) Injection rate (µL/s) References Comments

SD rats 200, 250, or 300 – – Prunell et al., 2002 Attempted to keep ICP at the level of MABP

SD rats 200 12 16.7 Prunell et al., 2003 Attempted to keep ICP at the level of MABP

SD rats 200 120 1.7 Cai J. et al., 2012

SD rats 300 20 15.0 Jeon et al., 2010

Wistar rats 300 60 5.0 Piepgras et al., 1995

SD rats 300 180 1.7 Zhang D. et al., 2015

SD rats 250 – – Ansar and Edvinsson, 2008 Injected at a pressure equal to that of MABP

(80–100 mmHg)

SD rats 300 20 15.0 Zhang X. S. et al., 2015

Information presented includes rodent strain, injection volumes (µL), duration of injection (s), and injection rate (µL/s). Specific notes on the replacement volume of blood or saline, in

addition to details regarding minor alterations to the model, are provided if mentioned in the referenced text. SD, Sprague Dawley.

(Van Den Bergh et al., 2005) have been clamped before placing
the suture in the ECA. Finally, some researchers have left the
suture in the ECA for 20–30min before advancing it through the
ICA, in order to obtain baseline measurements for data analysis
(Schwartz et al., 2000; Westermaier et al., 2009a,b).

PRECLINICAL MODELS OF ANEURYSMAL
SAH

Thus far, the rodent models discussed do not involve aneurysm
formation and rupture, even though non-aneurysmal SAH
only represents ∼10% of human SAH cases (Marder et al.,
2014). The endothelial changes and local pro-inflammatory
state associated with development of an aneurysm and its
subsequent rupture may contribute to SAH outcomes. However,
the incidence of spontaneous cerebral aneurysms in rodents
is extremely low (Handa et al., 1983; Kim and Cervos-
Navarro, 1991), making true aSAH difficult to study in rodents.
Without such an understanding of these potential aneurysm
effects, challenges arise in evaluating putative preventative and
therapeutic paradigms in experimental models.

In an attempt to address the discrepancy between
experimental models and clinical reality, extensive effort
has been extended to the study of intracranial aneurysm
induction in rodents. Methods involving hypertension and
hemodynamic stress can result in aneurysm formation, although
the aneurysms are relatively small and can take as long as 3
months to develop (Handa et al., 1983; Hashimoto et al., 1984;
Li et al., 2014). Elastase can also be injected to degrade the
internal and external elastic lamina of cerebral vessels, causing
aneurysm formation in ∼3 weeks (Nuki et al., 2009; Hoh et al.,
2010; Tada et al., 2011, 2014; Ruzevick et al., 2013; Wada et al.,
2013; Hosaka and Hoh, 2014; Starke et al., 2014a,b; Shimada
et al., 2015). Using this hypertension, hemodynamic stress, and
elastase triad, others have characterized the first mouse model
that featured intracranial aneurysm formation (Nuki et al.,
2009; Wada et al., 2013). In the method, C57BL/6J mice were
injected with elastase at the right basal cistern and continuously
infused with angiotensin-II to produce the desired hypertension
and hemodynamic stress (Nuki et al., 2009). Accordingly,

intracranial aneurysms of 500µm size were produced, exhibiting
a dose-dependent relationship between aneurysm incidence and
concentrations of both elastase and angiotensin-II.

The choice of hypertensive agent is a key factor to consider

in an aSAH model. Angiotensin-II can be used as the
hypertensive agent (Nuki et al., 2009; Kanematsu et al., 2011;
Pena Silva et al., 2014; Chu et al., 2015b), supported by data
demonstrating that angiotensin-converting enzyme inhibitors
can attenuate aneurysm rupture (Li et al., 2014). However,

administering angiotensin II to promote aneurysm rupture
may have confounding effects through its involvement in

systemic inflammation and reactive oxygen species generation

in the vessel wall (Tada et al., 2011, 2014). As an alternative,
deoxycorticosterone acetate (DOCA) and saline can also

induce intracranial aneurysm formation and rupture in a

dose-dependent manner (Tada et al., 2014). Using a model
involving unilateral nephrectomy, subcutaneous DOCA pellet

implantation, 1% NaCl drinking water supplementation, and
elastase injection, aSAH can successfully be induced in mice

(Makino et al., 2012; Wada et al., 2013; Peña-Silva et al.,
2015; Shimada et al., 2015). With this methodology, intracranial

aneurysms form in the Circle of Willis and spontaneously
rupture between days 7 and 16 after aneurysm induction,

and rupture is reliably indicated by a simple assessment of
neurological symptoms in the mice (Wada et al., 2014). While
this novel approach offers promising results in developing
an improved aSAH model in mice with features that are
reflective of human parameters, limitations exist that can pose
problems in experimental settings. First, the practice of unilateral
nephrectomy can alter systemic levels of renin and other
hormones affecting systemic blood pressure (Tada et al., 2014).
In light of this, it is possible to achieve similar levels of
systemic hypertension with the subcutaneous DOCA implants
supplemented with 1% NaCl drinking water alone without
altering the physiology of the anatomical organs in charge of
the renin-angiotensin system (Klanke et al., 2008; Amann et al.,
2009; Hartner et al., 2009; Rinne et al., 2013), although this
has not been investigated in the setting of cerebral aneurysms.
Furthermore, mice are typically euthanized to confirm aneurysm
rupture after the onset of neurological symptoms, precluding
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TABLE 2 | Summary of endovascular perforation models in published studies that used various strains of mice or rats.

Rodent Suture size References Comment

ENDOVASCULAR PERFORATION

C57BL/6 mice 5–0 Feiler et al., 2010

C57BL/6 mice 5–0 Parra et al., 2002 ECA ligated, blunted suture tip

SD Rats 3–0 and 4–0 Schwartz et al., 2000

SD Rats 3–0 Gules et al., 2002

SD rats 3–0 Prunell et al., 2003

SD rats 3–0, 4–0, or 5–0 Westermaier et al., 2009a Suture left in ECA for 20–30min before advancing through

ICA

SD rats 3–0 Westermaier et al., 2009b CCA clamped before placing suture in ECA, suture left in ECA

for 20–30min before advancing through ICA

SD rats 3–0 Bederson et al., 1998 ECA ligated

SD rats 3–0 Bederson et al., 1995 ECA ligated

SD rats 4–0 Sugawara et al., 2008 ECA ligated

SD rats 0.076mm tungsten filament Park et al., 2008 ECA ligated, hollow tubing

SD rats 3–0 Silasi and Colbourne, 2009 ECA ligated

Wistar rats 3–0 Van Den Bergh et al., 2005 ECA ligated, ICA and carotid communicis clamped before

suture threaded into ECA

Wistar rats 3–0 Veelken et al., 1995 Blunted suture tip

Wistar rats 4–0 Tiebosch et al., 2013

C57BL/6 mice 5–0 Egashira et al., 2015a Blunted suture tip

C57BL/6 mice 5–0 Siler et al., 2015

C57BL/6 mice 5–0 Vellimana et al., 2011 ECA ligated

SD Rats 4–0 Suzuki et al., 2010

SD Rats 4–0 Topkoru et al., 2013

C57BL/6 mice 5-0 Bühler et al., 2015 ECA ligated

C57BL/6 mice 5–0 Sheng et al., 2011

SD Rats 3–0 Hockel et al., 2012

SD Rats 4–0 He et al., 2012

SD Rats 4–0 Li et al., 2012

C57BL/6 mice 5–0 Egashira et al., 2015b Blunted suture tip

SD Rats 4–0 Britz et al., 2007

SD Rats 4–0 Hasegawa et al., 2011

SD Rats 4–0 Duris et al., 2011

SD Rats 3–0 Shishido et al., 2015

SD Rats 4–0 Li et al., 2016

SD Rats 3–0 Huang et al., 2015

SD Rats 3–0, 0.08mm tunsgten filament Hollig et al., 2015 Hollow tubing

SD Rats 0.075mm tungsten filament Xu et al., 2015 Hollow tubing

Information presented includes rodent strain and the size of the suture. Details regarding alterations to the model, such as the use of a blunted suture tip or ligation of the ECA, are also

included if mentioned in the referenced text. SD, Sprague Dawley; ECA, external carotid artery; CCA, common carotid artery; ICA, internal carotid artery.

further measurements of longitudinal aSAH outcomes unless
in vivo imaging studies are performed. Additionally, while
reflective of the unpredictable clinical course of aSAH, the
spontaneous nature of aneurysm rupture in this model prevents
synchronization of experimental rodent groups.

COMPARISON OF PRECLINICAL SAH
MODELS AND CLINICAL SAH

Direct injection models are widely employed because they allow
investigators to control the initiation, volume, and rate of

hemorrhage; although, the volumes used, and injection rates vary
widely across studies. Additionally, the inability to simulate vessel
rupture limits the translatability to clinical SAH. Alternatives

such as the endovascular perforation model do incorporate vessel

rupture, and this model is also advantageous in simulating several
important physiologic parameters of clinical SAH, including

direct entry of blood from the vasculature that occurs at MABP.
However, there are several potential variables that can affect

hemostasis and outcome in this model. Unfortunately, the

amount and location of blood is not as controllable as with
the direct injection methods and there is significant chance of
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artificial injury to the vasculature when advancing the suture.
Finally, neither the injection nor endovascular perforation
models include the formation and rupture of an aneurysm
(Table 3). Further optimization of a spontaneous aneurysm
formation and rupture model of aSAH is needed. If such a
standardized and translational model can be developed, it would
be optimal for studying the pathophysiology of aSAH and
evaluating putative therapeutic avenues to improve outcomes.

CEREBRAL VASOSPASM AND DELAYED
CEREBRAL ISCHEMIA IN RODENT
MODELS OF SAH

Following SAH, in addition to EBI, the most dreaded
complication is cerebral vasospasm (CV), a prolonged narrowing
of cerebral arteries resulting in diminished perfusion in the
tissue distal to the narrowing (Greenberg et al., 2000). The
consequences of CV include DCI, infarction, and diffuse
edema, leading to poor outcomes for patients experiencing this
unpredictable vascular event (Biller et al., 1988). In light of the
delayed nature of CV and severe consequences, it is necessary to
develop preventative measures and treatments for CV that can
attenuate its ominous effects. In order to accomplish this task,
efforts should be placed on developing a rodent model of aSAH
that reproducibly yields delayed CV in a way that reflects the
timing, location, and severity of clinical SAH.

Identification of Cerebral Vasospasm in
Rodent Models of SAH
Various methods have been developed and used to assess
the occurrence and severity of CV following experimental
SAH, each with their advantages and disadvantages. The most
straightforward method of identifying CV is via histological
analysis using fixed coronal brain slices and measuring the

TABLE 3 | Presents a summary of the advantages and disadvantages of the two

blood injection and endovascular perforation preclinical SAH models.

Model Advantages Disadvantages

Endovascular

perforation

Bleed is at physiologic MABP Inability to control the

hemorrhage volume

No needle insertion through brain

structures

Artificial injury of vasculature

Reduced risk of ICH ECA ligation

Cisterna magna Controlled hemorrhage volume Lacks vessel rupture

High variability in

physiological parameters

Head rotation artificially

elevates ICP

Prechiasmatic

cistern

Controlled hemorrhage volume Lacks vessel rupture

Reproducibility

Most translational with respect to

outcomes

intraluminal or adventitial diameter of photomicrographs
(Bederson et al., 1998; Meguro et al., 2001; Alkan et al.,
2002; Gules et al., 2002; Lee et al., 2008, 2009; Park et al.,
2008; Sugawara et al., 2008; Sabri et al., 2009; Güresir et al.,
2010, 2012; Jeon et al., 2010; Cai J. et al., 2012; Raslan
et al., 2012). Ideally, perfusion is performed with reagents
at 37◦C to avoid thermoregulatory vasoconstriction; although,
most protocols either do not specify perfusion temperatures
or document using ice-cold solvents (Lord et al., 2012). While
this method proves experimentally convenient, varying degrees
of dehydration among brain samples can result in significant
differences in measured vessel diameters (Cai J. et al., 2012).
Indeed, Cai and colleagues showed that the intraluminal diameter
wasmuch smaller in post-mortem histological analysis compared
to synchrotron radiation angiography, an in vivo method (Cai
J. et al., 2012). Furthermore, histological analysis is a terminal
measurement, precluding the ability to repeat measurements of
CV in the same animal at different time points.

In addition to histological analysis, some researchers identify
CV via gel casting of the cerebral vasculature (Parra et al.,
2002; Lin et al., 2003; Takata et al., 2008; Altay et al., 2009).
Briefly, animals are perfused with 10% formalin, followed by
perfusion with a combination of gelatin and India ink. Cerebral
vessels are imaged using a video-linked dissecting microscope,
and diameters are measured from the digitized images. While
this method avoids desiccation seen in traditional histological
analysis, limitations still exist. Parra and colleagues showed that
the perfusion pressure of the gelatin cast expands the vessels,
removing measurable CV when rats are perfused at pressures
greater than MABP (Parra et al., 2002). Additionally, the group
found that particulate and air emboli within the gelatin fixative
could induce artifact that resembled CV histologically (Parra
et al., 2002). In light of these findings, it is recommended
that perfusion pressure remain at MABP to avoid increasing
luminal diameter of vessels. While some studies document
perfusing animals at pressures close to physiological values
(Gules et al., 2002; Sugawara et al., 2008), many studies either
do not report perfusion pressures or document values that tend
to be higher than the MABP (Parra et al., 2002; Takata et al.,
2008).

Many researchers have addressed the aforementioned issues
by using angiography to study the rodent cerebral vessels
(Delgado et al., 1985; Verlooy et al., 1991; Piepgras et al., 1995).
Since rodent vessels are too small for accurate measurement
with typical angiographic techniques, synchrotron radiation
angiography and digital subtraction angiography are used to
visualize vessel diameter in vivo (Vatter et al., 2006; Weidauer
et al., 2006; Turowski et al., 2007; Cai J. et al., 2012). These
methods employ radiologic techniques resulting in images with
higher resolution. However, their use in assessing CV is limited
due to the toxicity of the contrasts used. Indeed, angiography
appears to remain a terminal measure that cannot be used to
obtain serial in vivomeasurements of CV.

A possible solution for measuring CV serially in vivo may
be found in MRI. In 2005, Van Den Bergh and colleagues used
MRA to determine the degree of CV in the rat, employing 3D
time of flight images to measure vessel diameter (Van Den Bergh
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et al., 2005). The results produced were similar to those obtained
in histological or angiographic methods (Bederson et al., 1998;
Gules et al., 2002; Parra et al., 2002; Sugawara et al., 2008;
Lee et al., 2009). Furthermore, the resolution achieved via MRI
can be greater than angiographic methods, especially when 4.7T
magnets are used. However, the method is disadvantageous in
that MRI can be both time-consuming and expensive, and the
rodent must be anesthetized for the procedure which itself could
affect CV pathophysiology and the neuroinflammatory milieu
following SAH.

Arteries Affected by Cerebral Vasospasm
in Rodent Models of SAH
In the current rodent models of SAH, the location of CV appears
to be dependent on the site of hemorrhage and the model
used (Table 4). For example, in rat models employing a single
injection of blood within the cisterna magna, CV predominantly
occurs in the basilar artery (BA) (Delgado et al., 1985; Ram
et al., 1991; Gules et al., 2002), and less frequently in the
posterior communicating artery (Pcom) (Gules et al., 2002).
In rat cisterna magna models employing double injection, CV
also primarily occurred in the BA (Meguro et al., 2001; Vatter
et al., 2006; Lee et al., 2008, 2009; Takata et al., 2008; Güresir
et al., 2012; Raslan et al., 2012), and the Pcom (Meguro et al.,
2001); however, CV was additionally observed in both the ACA
(Lee et al., 2009; Cai J. et al., 2012) and MCA (Takata et al.,
2008). This difference is likely due to the greater volumes of
blood introduced into the subarachnoid space with repeated
hemorrhage in the double injectionmodels that allows for greater
overall dispersal. Furthermore, when single injections were made
in the rat prechiasmatic cistern rather than the cisterna magna,
CV was predominantly found in the ACA (Jeon et al., 2010; Cai
J. et al., 2012) and MCA (Piepgras et al., 1995; Sabri et al., 2009;
Cai J. et al., 2012). In contrast to these rat studies, mouse single
injection cisterna magna models elicited CV not only in the BA,
but also in the ACA andMCA (Lin et al., 2003). This discrepancy
is perhaps due to the smaller size of the mouse cranial vault
compared to the rat and thus a larger clot distribution.

In the endovascular perforation model, CV is observed in the
ICA (Bederson et al., 1998; Parra et al., 2002; VanDen Bergh et al.,
2005; Sugawara et al., 2008), ACA (Bederson et al., 1998; Lee et al.,
2009), MCA (Parra et al., 2002), Pcom (Gules et al., 2002), and
even the BA (Gules et al., 2002; Lee et al., 2009). This variability
in the CV location is likely due to an inability to directly control
both the specific hemorrhage location and the amount of blood
in this model. In contrast, when Altay and colleagues specifically
transected a vein in the cisterna magna of mice simulating non-
aneurysmal SAH, they noted CV only in the MCA (Altay et al.,
2009).

Timing of Cerebral Vasospasm in Rodent
Models of SAH
The need for a reliable tool to measure the rodent vasculature
in vivo is necessary to properly quantify the temporal nature
of CV in these preclinical models. Initiation of CV is difficult
to determine, as rodents are typically sacrificed to measure

vessel diameter directly, preventing temporal observation of
vessel narrowing. However, using the methodologies herein
described, several studies have recorded chronological findings
of CV occurrence in both the direct injection and endovascular
perforation models of SAH.

In rodent single injection cisterna magna models, CV is most
common at 2 d (Delgado et al., 1985; Gules et al., 2002), but
has also been shown at 10min (Delgado et al., 1985), 6 h (Lin
et al., 2003), 12 h (Lin et al., 2003), 36 h (Lin et al., 2003), and 3
d (Ram et al., 1991). In double injection cisterna magna models,
CV is most reproducibly found at 3 d (Takata et al., 2008; Güresir
et al., 2010, 2012) and 5 d (Meguro et al., 2001; Vatter et al.,
2006; Weidauer et al., 2006; Lee et al., 2008; Güresir et al., 2010;
Raslan et al., 2012). Moreover, maximal narrowing of vessels in
this model has been reported at 7 d (Dombovy et al., 1998; Lee
et al., 2009). Injection into the prechiasmatic cistern resulted in
CV at 2 d (Piepgras et al., 1995), 3 d (Cai J. et al., 2012), 5 d (Cai
J. et al., 2012), 7 d (Sabri et al., 2009; Cai J. et al., 2012), and 8 d
(Jeon et al., 2010). Finally, in endovascular perforation models,
CV is seen at 1 h (Bederson et al., 1998), 90min (Lee et al., 2009),
1 d (Sugawara et al., 2008; Lee et al., 2009), 2 d (Gules et al., 2002;
Van Den Bergh et al., 2005), and 3 d (Parra et al., 2002).

Of these models, in regards to the development of CV, the
double injection model into the cisterna magna has classically
been cited as the most similar to humans, due to the paralleled
maximal narrowing of cerebral vessels at 7 d (Dombovy et al.,
1998; Lee et al., 2009). However, some researchers have studied
CV in this model on 7 and 9 d after SAH and were not able to
reproduce the findings (Vatter et al., 2006; Takata et al., 2008).
Similarly, injection in the prechiasmatic cistern produces CV at 7
and 9 d (Sabri et al., 2009; Jeon et al., 2010; Cai J. et al., 2012). It
remains unclear what model most reproducibly replicates clinical
SAH pathophysiology in regard to the development of CV.

Severity of Cerebral Vasospasm in Rodent
Models of SAH
In addition to the temporospatial nature of CV in rodent SAH
models, the severity of CV can be assessed and is an important
consideration. It is generally regarded as the degree of vessel
constriction, either as a decrease in the luminal diameter or cross
sectional area (Sobey and Faraci, 1998), although some studies
have reported a decrease in vessel perimeter (Meguro et al.,
2001). Notably, there is no standardized method for quantifying
the severity of CV; however, it can be expressed as the percent
reduction in vessel size regardless of the methodology employed,
as reflected in Table 4. Due to the lack of standardization, the
severity of rodent CV ranges widely, from as low as 10% in some
studies to 64% in others depending on location of CV and on the
method used to measure vessel size. In single injection cisterna
magna models, the degree of constriction ranges from 20 to 40%
(Delgado et al., 1985; Gules et al., 2002; Lin et al., 2003). In double
injection cisterna magna models, CV tends to be more severe,
with a constriction ranging from 20 to 64% (Meguro et al., 2001;
Gules et al., 2002; Vatter et al., 2006; Weidauer et al., 2006; Lee
et al., 2008, 2009; Takata et al., 2008; Güresir et al., 2010, 2012;
Cai J. et al., 2012; Raslan et al., 2012). In prechiasmatic cistern
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TABLE 4 | Summary of cerebral vasospasm itemized by the model used for SAH induction in published studies that used various strains of mice or rats.

Rodent Location Severity (% Reduction) Time References Comments

CISTERNA MAGNA-SINGLE INJECTION

SD rats BA 50 3 d Ram et al., 1991 CV measured using photographs

of the BA

SD rats BA 34 or 40* and 23 or 27* 10min, 2 d Delgado et al., 1985 Blood volumes of 70 or 300* µL

C57Bl/6 mice BA 24, 11, 12, 13 6 h, 12 h, 24 h, 36 h Lin et al., 2003 No CV at 1 h, 2 d, 3 d, 4 d, or 7 d

ACA 27, 38, 24, 19, 16, 21 6 h, 12 h, 24 h, 36 h, 48 h, 72 h No CV at 1 h, 4 d, or 7 d

MCA 21, 16, 15, 12 6 h, 12 h, 24 h, 36 h No CV at 1 h, 2 d, 3 d, 4 d, or 7 d

SD rats BA 20 2 d Gules et al., 2002 No CV at 7 d

Pcom 20 2 d No CV at 7 d

Wistar rats ICA, ACA, MCA,

and PCA

No significant difference 5 d Turowski et al., 2007

C57Bl/6 mice BA 9 24 h Chaichana et al., 2007

C57Bl/6 mice MCA 18 6 h Luo et al., 2016 CV measured via two-photon

imaging

SD rats BA 20 5 d Raslan et al., 2012

CISTERNA MAGNA-DOUBLE INJECTION

SD rats BA 47 5 d Vatter et al., 2006 No CV at 2 d, 3 d, 7 d, 9 d

SD rats BA 9 and 46 3 d, 5 d Güresir et al., 2012

SD rats BA 7 and 45 3 d, 5 d Güresir et al., 2010

SD rats BA 40 5 d Raslan et al., 2012

SD rats BA 36 5 d Lee et al., 2008 No CV immediately after SAH

Wistar rats BA 20 3 d Takata et al., 2008 No CV at 7 d

MCA 23 3 d No CV at 7 d

SD rats BA 32 5 d Weidauer et al., 2006 No CV at 11 d

SD rats BA 37 and 32 5 d, 7 d Meguro et al., 2001

Pcom 39 and 46 5 d, 7 d

SD rats BA 4 and 10 90min, 24 h Lee et al., 2009

ACA 23 and 26 90min, 24 h

SD rats ACA 51, 50, 44, 30 1 d, 3 d, 5 d, 7 d Cai J. et al., 2012

MCA 59, 57, 52, 42 1 d, 3 d, 5 d, 7 d

SD rats BA 33 7 d Gules et al., 2002

Pcom 35 7 d

SD rats BA 38 5 d Wang et al., 2010

SD rats BA 40, 36, 22 3 d, 5 d, 7 d Zhao et al., 2016

SD rats BA 50 and 46 3 d Chang et al., 2015a

SD rats BA 47 3 d Chang et al., 2015b

SD rats BA 67 3 d He et al., 2015

PRECHIASMATIC CISTERN-SINGLE INJECTION

SD rats ACA 55, 60, 32, 31 1 d, 3 d, 5 d, 7 d Cai J. et al., 2012

MCA 56, 64, 50, 44 1 d, 3 d, 5 d, 7 d

SD rats ACA 50 8 d Jeon et al., 2010

CD1 mice MCA 51 7 d Sabri et al., 2009

ACA No significant difference 7 d

Wistar rats MCA 16 2 d Piepgras et al., 1995

ENDOVASCULAR PERFORATION

SD rats ICA 17 1 d Sugawara et al., 2008

Wistar rats ICA 12 2 d Van Den Bergh et al., 2005

C57Bl/6 mice MCA 57 3 d Parra et al., 2002

SD rats ICA 51 60min Bederson et al., 1998

ACA 43 60min

SD rats ACA 45 and 48 90min, 24 h Lee et al., 2009

(Continued)

Frontiers in Molecular Neuroscience | www.frontiersin.org 10 March 2018 | Volume 11 | Article 71

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Leclerc et al. Subarachnoid Hemorrhage Preclinical Models

TABLE 4 | Continued

Rodent Location Severity (% Reduction) Time References Comments

BA 33 and 44 90min, 24 h

SD rats BA 17 2 d Gules et al., 2002 No CV at 7 d

Pcom 25 2 d No CV at 7 d

C57Bl/6 mice MCA 27 2 d Vellimana et al., 2011

C57Bl/6 mice ACA 33 3 d Sheng et al., 2011

MCA 29 3 d

ICA 31 3 d

SD rats BA 43 5 d Qin et al., 2015

MCA 23 5 d

ACA 42 5 d

SD rats BA 33 3 d Huang et al., 2015

Information presented includes rodent strain, severity, and location of cerebral vasospasm, and the timing of vasospasm post-SAH induction. Severity of cerebral vasospasm is measured

as the percent reduction in vessel diameter. CV, cerebral vasospasm, SD, Sprague Dawley; BA, basilar artery; ACA, anterior cerebral artery; MCA, middle cerebral artery; Pcom, posterior

communicating artery; PCA, posterior cerebral artery; ICA, internal carotid artery.

single injection models, the degree of CV is reported as 17–62%
(Piepgras et al., 1995; Sabri et al., 2009; Jeon et al., 2010; Cai
J. et al., 2012). Finally, endovascular perforation models show a
vessel reduction of 10–57% (Bederson et al., 1998; Gules et al.,
2002; Parra et al., 2002; Van Den Bergh et al., 2005; Sugawara
et al., 2008; Lee et al., 2009). The vast ranges recorded in these
studies once again exemplify the need for both a standardized
model of SAH induction and method for quantifying CV.

Cerebral Vasospasm-Induced Neuronal
Death in Rodent Models of SAH
Among histopathological outcomes observed and reported,
neuronal cell loss is an important parameter for consideration in
rodent SAH models. The causal mechanism of neuronal death
after SAH can in part be attributed to EBI and to CV and
subsequent ischemia. At 24 h, 5, 7 d, and as far as 8 d post-SAH,
CV and neuronal death were observed simultaneously in rodent
specimens (Lee et al., 2009; Sabri et al., 2009; Güresir et al., 2010;
Jeon et al., 2010).

Several methods are available to evaluate neuronal death.
Conventional techniques such as H&E staining (Prunell et al.,
2003; Feiler et al., 2010; Güresir et al., 2010) can depict
global necrosis of brain tissue and slightly more neuron-
specific stains like cresyl violet can offer added specificity
(Westermaier et al., 2009b). However, these stains detect
features such as vacuolation and hyperchromatism that are
not specific to neuronal degeneration, and are thus prone to
false positives (Cammermeyer, 1961). Silver stains are more
specific for degenerating neurons, but are more time-consuming
and intensive (de Olmos et al., 1994). Addressing these issues,
TUNEL and Fluoro-Jade have been used to assess tissues for
degenerating neuronal cells (Takata et al., 2008; Lee et al., 2009;
Sabri et al., 2009; Silasi and Colbourne, 2009; Jeon et al., 2010).
TUNEL reveals DNAbreaks in cells undergoing programmed cell
death via an immunohistochemical staining procedure (Gavrieli
et al., 1992), while Fluro-Jade detects the cell bodies, dendrites,
axons, and axon terminals of degenerating neurons via an acidic

fluorophore that binds specifically to dying neurons (Schmued
et al., 1997). Fluoro-Jade can identify both apoptotic and necrotic
cells, as opposed to the apoptosis-specific TUNEL method; as
such, the neuronal damage assessed with TUNEL is often less
pronounced than that identified with Fluoro-Jade (Lee et al.,
2009). For example, apoptotic cells were not observed in the
mouse hippocampus subjected to TUNEL in a 2009 study
although neuronal injury was visualized in that region using
Fluoro-Jade imaging (Sabri et al., 2009).

Regardless of the staining method used, neuronal damage
is commonly observed in the hippocampus and cortex in all
the rodent SAH models assessing this outcome (Prunell et al.,
2003; Takata et al., 2008; Lee et al., 2009; Westermaier et al.,
2009b; Feiler et al., 2010; Güresir et al., 2010; Jeon et al.,
2010). Neuron death can also occur in regions such as the
cerebellum (Jeon et al., 2010) and basal ganglia (Lee et al.,
2009). Interestingly, the study identifying necrotic cells in the
cerebellum utilized a prechiasmatic cistern injection model of
SAH, thus observing neuronal damage in a location relatively
distant from the injection site (Jeon et al., 2010). In contrast,
cisterna magna injection models produce neuronal death in the
hippocampus and cerebellum, locations in close proximity to
the clot site (Takata et al., 2008; Lee et al., 2009; Güresir et al.,
2010; Jeon et al., 2010). In a 2003 study comparing the incidence
of neuronal cell loss between SAH models, only 11% of rats in
the perforation model exhibited neuronal loss compared to 28
and 44% of rats in the cisterna magna and prechiasmatic cistern
models, respectively (Prunell et al., 2003). Additionally, Lee et al.
(2009) showed that neuronal degeneration has a tendency for
sidedness in the endovascular perforation model, where cell
death occurs more frequently ipsilateral to the puncture (Lee
et al., 2009).

Molecular Pathways of Cerebral
Vasospasm
Multiple molecular pathways of CV have been proposed,
including nitric oxide scavenging, disruption of endothelin-1
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(ET1), toxicity of blood breakdown products, and inflammation.
It is likely that not one pathway is responsible for the
development of CV, but rather that each of these pathways is
acting concurrently and influencing each other throughout the
course of CV pathophysiology.

ET1 is a soluble factor primarily produced by the vascular
endothelium and is a canonical potent vasoconstrictor (Sumner
et al., 1992; Schneider et al., 2007). ET1 binds the ETA and ETB
receptors expressed by the vascular smooth muscle cells resulting
in vasoconstriction via phospholipase C activation, inositol
trisphosphate (IP3) production, and calcium mobilization
(Schneider et al., 2007). Following SAH, ET1 is produced
by activated mononuclear leukocytes in the CSF and is
elevated acutely in patients that develop CV and neurological
deterioration (Fassbender et al., 2000; Thampatty et al., 2011).
Given the potent and prolonged effects of ET1, it remains a top
contender in mediating the development of CV, and, therefore,
also remains a therapeutic target (Penn et al., 2015). Although, a
recent meta-analysis of the four clinical trials investigating the
use of clazosentan, an endothelin receptor antagonist, showed
that the drug does reduce the incidence of CV and DCI, but does
not significantly improve neurologic outcomes (Shen et al., 2013).

A second main theory for the molecular pathways involved in
the development of CV is regarding the presence of red blood
cells, and their main cellular component, hemoglobin, in close
proximity to the major cerebral vessels traversing through the
CSF (MacDonald and Weir, 1991; Zhang et al., 2001; Asleh
et al., 2003; Buehler et al., 2009). This correlation is further
strengthened by the known association between the volume of
blood in the subarachnoid space and the severity of angiographic
vasospasm (Kolias et al., 2009) and a study involving monkeys
where removal of the blood clot was shown to reverse
angiographic vasospasm (Zhang et al., 2001). More specifically,
CV has its onset around day 3 after aSAH, peaks on days 6–8, and
usually lasts 2–3 weeks (Kolias et al., 2009). Phagocytosis and lysis
of RBCs occurs by 16–32 h, peaks around day 7, and continues for
days, with clumps of intact RBCs still enmeshed in the arachnoid
for up to 35 days (MacDonald and Weir, 1991). Furthermore, it
has been documented that changes in hemoglobin concentrations
within the CSF tend to mirror the evolution of CV, though
the mechanisms by which extracorpuscular hemoglobin causes
delayed arterial narrowing are multiple and poorly understood
(Dreier et al., 2002; Nishizawa and Laher, 2005; Pluta et al., 2009).
Possibilities include neuronal apoptosis, scavenging or decreased
production of the vasodilator nitric oxide, increased ET1 levels,
direct oxidative stress on smooth muscle cells, ROS production
and lipid peroxidation of cell membranes, modification of
potassium and calcium channels, and differential up-regulation
of genes (Pluta et al., 2009). In addition to hemoglobin itself,
its breakdown products heme, iron, bilirubin, and bilirubin
oxidation products have been implicated in initiating oxidative
stress and a toxic neuroinflammatory cascade that contributes to
the development of CV (MacDonald and Weir, 1991; Clark and
Sharp, 2006). Improving the clearance of blood products from
the brain remains a viable therapeutic target following SAH, as it
would also inhibit nitric oxide scavenging and thereby shift the
balance toward a more vasodilatory environment.

Comparison of Cerebral Vasospasm and
Delayed Cerebral Ischemia in Preclinical
Models and Clinical SAH
It is difficult to assess whether similar arteries are affected in
preclinical models and clinical SAH due to the limited and
varied number of arteries assessed in preclinical studies when
compared to clinical counterparts. In addition, whereas in clinical
SAH the timing of CV usually occurs 6–8 days post-stroke, in
preclinical models the timing varies dramatically both within
and between models. This discrepancy is particularly noteworthy
given the implications of CV in poor functional outcomes
following clinical SAH. Moreover, barriers to the reproducibility
of CV in preclinical models hinder efforts to studying the
mechanisms that underlie its pathophysiological sequelae, as well
as its severity. One other barrier to studying severity of CV is
the histopathological methods used to measure vessel narrowing,
which often tend to warp the shape or size of the vessels prior
to analysis. Finally, despite the severe clinical consequences of
DCI in clinical SAH, it is frequently not observed in preclinical
models.

PATHOPHYSIOLOGY OF RODENT
MODELS OF SAH

In addition to the anatomic changes that occur in cerebral vessels
following SAH, several physiological parameters are substantially
affected. CBF, ICP, MABP, CPP change throughout the course
of SAH pathophysiology, and these variables are related by the
following equation:

CPP = MABP − ICP

Following the bleed, there is an acute rise in ICP, which is
mirrored by a compensatory rise in MABP in an attempt to
maintain CPP. This results in a decrease in both CPP and CBF
if the magnitude and rate of change in ICP is greater than that
of MABP (Young and Bowling, 2012). With time, CBF typically
recovers due to the reflex rise in the MABP, unless CPP has
decreased dramatically, in which case autoregulation is impaired
and global ischemia ensues (McMullan et al., 2010).

These physiological parameters can bemeasured in preclinical
SAH models. In non-aneurysmal SAH, all of these parameters
follow the patterns seen in humans and return to near-baseline
levels within 1 h post-induction of SAH. Figure 2 diagrams
the interrelatedness between CBF, ICP, MABP, and CPP at
baseline and within 1 h following experimental SAH in rodents.
Additionally, Table 5 provides specific values for ICP, MABP,
CPP, and CBF obtained from the various non-aneurysmal SAH
models immediately following SAH and after 1 h (or as otherwise
stated). These values have not been measured in aSAH mouse
models due to the inability to predict the timing of spontaneous
aneurysm rupture. As aSAH models are further developed and
standardized, the quantification of physiological variables may
be facilitated and improve our understanding of the differences
in pathophysiology between the various SAH preclinical models
and relevance to clinical SAH.
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FIGURE 2 | Temporal changes in CBF, ICP, MABP, and CPP over 1 h after induction of SAH with the x-axis representing the progression of time and the y-axis as

relative change in each parameter. Due to the variation in the absolute values of these parameters after SAH (refer to Table 5), the relative changes in the variables are

shown because these trends are preserved in nearly all preclinical studies and in humans. CBF and CPP sharply decrease shortly after SAH, followed by a return to

near-baseline values within 1 h. Similarly, there is an acute increase in both ICP and MABP, followed by a return to baseline or near-baseline values within 1 h. Values

for CBF were taken from studies that measured CBF using laser Doppler flowmetry.

Cerebral Blood Flow in Rodent Models of
SAH
CBF is the most studied physiological variable in rodent models
due to its importance in evaluating ischemia following SAH.
Clinically, CBF exhibits a biphasic pattern: blood flow drops to
a nadir near zero flow immediately after the bleed, followed by a
return to levels slightly below baseline, decreasing once again if
delayed CV occurs (Luft et al., 2004).

In order to evaluate CBF fluctuations following SAH in
rodents, laser Doppler flowmetry (LDF) is most commonly used,
although other methods such as MRI and autoradiography are
also employed (Van Den Bergh et al., 2005; Tiebosch et al.,
2013). LDF involves advancing a laser-emitting fiber optic probe
into the epidural space of an anesthetized rodent and measuring
changes in the wavelength of backscattered light detected by the
probe as erythrocytes pass through vessels beneath it (Sutherland
et al., 2014). This method obtains instantaneous measurements
of relative changes in CBF and can be used at any time during
SAH induction experiments. However, LDF is disadvantageous
in that it measures cortical blood flow rather than total CBF.
Additionally, it only provides temporal measurements, as any
spatial information is limited by the location in which the probe
is placed. Despite these limitations, LDF is the current method of
choice in conducting rodent CBF measurements.

In the cisterna magna single injection models employing LDF,
CBF drops acutely to 6–82% of baseline values, recovering to 58–
100% of baseline values within 1 h (Schwartz et al., 2000; Prunell
et al., 2003; Lee et al., 2009; Raslan et al., 2012). In the cisterna
magna double injection model, there is an acute decrease to 30–
52% of baseline after the first injection (Lee et al., 2009; Cai J.
et al., 2012; Raslan et al., 2012); however, CBF tends to remain
below baseline in these models, sometimes for as long as 2–3
d following injection (Lee et al., 2009; Cai J. et al., 2012). The
return of CBF to original values following SAH thus depends on
the number of injections and amount of blood injected into the
cisterna magna. The notion that the double hemorrhage model

imparts a greater physiologic insult than the single injection
model is further evidenced by a study performed by Raslan and
colleagues in which CBF fell to 20% below baseline initially and
30% below baseline at 5 d concurrent with CV in the BA (Raslan
et al., 2012). In the prechiasmatic cistern injection model, the
CBF nadir ranged from 6 to 31% of baseline with a return to
∼80–100% of baseline values 1 h after SAH (Piepgras et al., 1995;
Prunell et al., 2003; Sabri et al., 2009; Jeon et al., 2010; Cai J.
et al., 2012). Finally, in the endovascular perforation model, the
CBF nadir was between 6 and 71%, with regression to 44–81% of
baseline values (Bederson et al., 1995, 1998; Schwartz et al., 2000;
Prunell et al., 2003; Park et al., 2008; Lee et al., 2009; Westermaier
et al., 2009a,b; Feiler et al., 2010). Based off of these values, the
perforation model appears to be the most debilitating in terms of
CBF, where the severity of the CBF reduction after perforation is
likely due to the extent of insult, which is difficult to control with
this method.

In addition to LDF, radiolabeled tracer molecules have also
been used to measure CBF. This method involves injecting a
chemically inert diffusible tracer such as [14C]N-isopropyl-p-
iodoamphetamine into the circulation. Arterial blood is then
withdrawn at a continuous rate, the animal is sacrificed, and brain
tissue is extracted. A scintillation counter is used to measure the
concentration of the tracer in both the arterial blood and brain
sections, and CBF is calculated from these concentrations and the
rate of blood withdrawal (Sakurada et al., 1978). Microspheres
have been employed in a similar manner, but to date, both of
these methods have been used only in single (Kim and Cervos-
Navarro, 1991; Klanke et al., 2008) and double cisterna magna
injection models (Delgado et al., 1985; Solomon et al., 1985; Swift
and Solomon, 1988; Jackowski et al., 1990; Ram et al., 1991;
Lee et al., 2008; Takata et al., 2008). Single injection models
employing this technique show an acute decrease in CBF from
50 to 82% of baseline, with return to baseline values within a few
days thereafter (Solomon et al., 1985; Swift and Solomon, 1988;
Jackowski et al., 1990). One double injection model showed a
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62% decrease in CBF, followed by a regression to initial values
over 24 h; however, CBF then decreased once again to 70% of
baseline at 5 d, again exhibiting a biphasic pattern (Lee et al.,
2008). Overall, the recovery of CBF to near original values is
highly variable, even when investigators inject similar volumes
of blood in the cisterna magna: recovery was noted at 24 h
(Swift and Solomon, 1988), 2 d (Jackowski et al., 1990), 7 d
(Lee et al., 2008; Cai J. et al., 2012), and 35 d (Takata et al.,
2008). The variations in observations, in conjunction with the
terminal nature of experiments, make radiolabel tracer molecules
less attractive than LDF or more recently developed radiographic
techniques.

In light of the limitations of both LDF and radiolabeling
methods, recent advances have been made in measuring rodent
CBF using MRI (Van Den Bergh et al., 2005; Vatter et al., 2006;
Güresir et al., 2010, 2012; Tiebosch et al., 2013). The method
involves acquiring T1-weighted images that are ultimately
constructed into perfusion maps used to calculate global CBF.
Additional benefit is added in that these measurements of
CBF can be conducted serially in vivo. In contrast to other
studies up to that point, Van Den Bergh and colleagues found
that there was no significant difference in CBF following SAH
induced by endovascular perforation compared with injection
models. Another endovascular perforation study demonstrated
a baseline increase of 200% of CBF at 2 d and 150% at 7 d
in both the ipsilateral and contralateral somatosensory cortex,
contradictory to the findings of prior studies which document
decreases in CBF (Tiebosch et al., 2013). Although justification
is unclear for the discrepancy between MRI and LDF findings
in perforation models, a possible explanation may be due to
the fact that MRI measures global blood flow, while standard
LDF only measures cortical flow in specific locations dependent
upon probe placement. Furthermore, some areas of the brainmay
be hyperperfused in relation to others as a protective measure
following SAH induction, which would not be identified using
LDF alone. In addition to investigations with the perforation
models, other studies have employed MRI to investigate the
subacute stages of CBF following SAH in the cisterna magna
injection models. In double hemorrhage models, CBF showed
a 33–50% decrease at 3 d and 27–44% at 5 d (Vatter et al.,
2006; Güresir et al., 2010, 2012). Not surprisingly, there was
also marked CV at 5 d in each of these experiments, which was
responsible for the delayed reduction in CBF (Vatter et al., 2006;
Güresir et al., 2010, 2012). Unlike the recorded discrepancy in
data for endovascular perforation models, the biphasic nature of
CBF identified by MRI is in line with studies using LDF for the
double injection models.

In conclusion, CBF can be measured in rodent models using
LDF, radiolabeling methods, and MRI. Radiolabeling methods
tend to have some variability and require euthanizing the animal
to obtain the data output, making them less attractive. While
LDF is easy to perform and is currently the mainstay of CBF
measurements, its use is mainly limited to during SAH induction
and immediately thereafter. On the other hand MRI is more
time consuming, difficult to perform, and it is not plausible to
measure CBF during the acute phase after SAH induction, as is
commonly done with LDF. Although, MRI offers the benefit of

serial measurements in vivo and the ability tomeasure global CBF
and CBF in specific regions of interest such that correlations can
possibly be made to the location of CV at that time.

Intracranial Pressure in Rodent Models of
SAH
In addition to CBF, ICP is a commonly assessed physiological
parameter following SAH. In the neurointensive care setting,
increases in ICP are observed in over 50% of SAH patients
(Badjatia et al., 2005). Typically, an ICP greater than 20 mmHg
results in increased mortality and disability (MacDonald and
Weir, 1991). In order to maintain an ICP within an appropriate
range, the pressure is monitored continuously by insertion of a
catheter through the parenchyma into the ventricles. The catheter
is coupled to a pressure gauge that provides ICP values on a
continuous basis (MacDonald and Weir, 1991).

Experimentally, a rise in ICP is often used as an indicator that
SAH has occurred. As reflected in Figure 2, there is an acute rise
in ICP after experimental SAH induction from the average rodent
baseline of 5–7 mmHg, followed by a fall to either baseline or
near baseline levels. While general trends in ICP can be outlined,
measurements in rodent SAH models vary widely, perhaps due
to the limitations of the method used to record ICP. At present,
ICP is typically measured continuously via a catheter that is
inserted into the rodent cranium through burr holes created in
the calvarium, similar to the procedure done in humans.

More complications arise in injection models, as the added
blood volume can alter ICP. Some studies attempt to correct
for this confounding variable by not allowing ICP to increase
above an arbitrarily-defined threshold while making the injection
(Ram et al., 1991). Others have made multiple injections over
a defined time period (Lacy and Earle, 1983), or attempted
to keep the increase in ICP parallel to that of MABP during
injection (Prunell et al., 2002, 2003). However, this is far from
the ideal injection, which would occur at physiologic MABP.
Furthermore, researchers often hold the rodent upside down
following injection into the cisterna magna to facilitate blood
distribution (Ram et al., 1991; Lin et al., 2003; Lee et al.,
2008; Takata et al., 2008; Güresir et al., 2010, 2012; Cai J.
et al., 2012; Munoz-Sanchez et al., 2012a). This step will falsely
elevate the measured ICP. While injection models may elevate
ICP erroneously due to the punctures created in the rodent
cranium and subsequent maneuvers to distribute blood, these
complications are not observed in the endovascular perforation
model.

Despite the limitations in measuring ICP, important trends
can be identified in the values obtained for this outcome
following SAH. In cisterna magna single injection models, an
acute rise from 18 mmHg to as much as 120 mmHg is observed
following blood injection, with a subsequent decrease ranging
from baseline values to 18mmHg (Lacy and Earle, 1983; Solomon
et al., 1985; Jackowski et al., 1990; Schwartz et al., 2000; Prunell
et al., 2003; Lee et al., 2009; Cai J. et al., 2012). Interestingly,
cisterna magna double injection models show a less dramatic
increase, from 60 to 67 mmHg (Lee et al., 2009; Cai J. et al., 2012),
followed by a reduction in ICP that remains consistently above
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baseline at 20–26 mmHg (Lee et al., 2009; Cai J. et al., 2012).
In prechiasmatic cistern injections, the ICP rises to 46–107mm
Hg following injection, decreasing to values between 11 and 19
mmHg over time (Piepgras et al., 1995; Prunell et al., 2002, 2003;
Jeon et al., 2010). Finally, in endovascular perforation models,
the ICP acutely rises to values between 27 and 110 mmHg,
subsequently decreasing to between 17 and 32 mmHg, which is
higher than what is observed in injection models (Bederson et al.,
1998; Schwartz et al., 2000; Prunell et al., 2003; Park et al., 2008;
Lee et al., 2009; Westermaier et al., 2009a,b; Feiler et al., 2010).

Cerebral Perfusion Pressure in Rodent
Models of SAH
To date, direct measurement of CPP in rodents has not been
described. Indirect quantification of CPP is possible via Equation
(1). In this simple calculation, CPP is derived from the ICP
and MABP, parameters that are easily measured using the
methods outlined herein. BothMABP and ICP increase following
SAH; however, the rise in MABP does not match that of ICP.
Consequently, the CPP immediately following SAH falls. If the
ICP rise is high enough, it may cause death due to lack of cerebral
perfusion. Figure 2 depicts the pathophysiologic pattern of an
immediate decrease in CPP after SAH, followed by a return to
baseline levels within 1 h.

In cisterna magna single injection models, there is an acute
20–85% decrease in CPP, with recovery to baseline within about
1 h (Lacy and Earle, 1983; Jackowski et al., 1990; Prunell et al.,
2003; Lee et al., 2009). The only study measuring CPP in a
double injection model showed an acute decrease to 27% of
baseline values, with a subsequent return to 92% of starting CPP
(Lee et al., 2009). It is reasonable to suggest that the greater
degree of hemorrhage in the double injection model prevents a
return of CPP to initial values. Finally, in prechiasmatic cistern
injection models, CPP acutely decreases to 23–49% of initial
values, with recovery to baseline shortly thereafter (Piepgras
et al., 1995; Prunell et al., 2003). In contrast to the injection
models, more CPP data is available for studies inducing SAH
using endovascular perforation. This model exhibits the greatest
degree of CPP change; however, values are often inconsistent or
contradictory. Acutely, there is a drastic decrease from 7 to 54%
of initial CPP, followed by a return to 55–100% of baseline within
an 1 h (Bederson et al., 1995, 1998; Prunell et al., 2003; Lee et al.,
2009; Westermaier et al., 2009a,b; Feiler et al., 2010). One study
even noted an extreme rise in ICP to 150 mmHg, resulting in
a rapid drop of CPP and subsequent death of the rodents (Lee
et al., 2009). Ultimately, the larger magnitude of CPP change
observed in endovascular perforation models likely results from
to the inability to control the degree of hemorrhage after filament
insertion, in addition to the possibility of a longer duration of
insult compared with injection models.

Mean Arterial Blood Pressure in Rodent
Models of SAH
As reflected In Figure 2, MABP typically rises acutely following
experimental SAH to preserve CPP and falls to baseline
or near baseline levels thereafter, similar to the clinical
counterpart.

The magnitude of the MABP increase observed in rodent
studies varies with the SAH model and is typically measured
by either a tail artery catheter, tail cuff sphygmomanometer
(Sugawara et al., 2008; Zhao et al., 2011), femoral artery
cannula (Lacy and Earle, 1983; Delgado et al., 1985; Jackowski
et al., 1990; Schwartz et al., 2000; Prunell et al., 2003), or a
radiotelemetry system (MacMillan et al., 2002; Pemberton et al.,
2002; Zoerle et al., 2015). In 1992, Rasmussen et al. showed that
the autoregulation of MABP and CBF was markedly disturbed as
far as 5 d beyond induction of SAH in a single injection cisterna
magna model, hypothesizing that such prolonged disturbance
could possibly be due to delayed CV (Rasmussen et al., 1992).
In additional single injection cisterna magna studies, the MABP
acutely rose to 105–150% of baseline value immediately after
SAH (Lacy and Earle, 1983; Delgado et al., 1985; Jackowski et al.,
1990; Schwartz et al., 2000; Prunell et al., 2003). Regardless of this
instance, the MABP values for single injection cisterna magna
models predominantly returned to baseline values over time
(Delgado et al., 1985; Jackowski et al., 1990; Prunell et al., 2003;
Lee et al., 2009). In double injection cisterna magna models, only
one study recorded MABP data, showing an acute 90% decrease,
followed by a return to initial values, further demonstrating that
autoregulatory mechanisms may be disrupted following SAH
induction (Lee et al., 2009). In prechiasmatic cistern injection
models, MABP rises to 109–127% of baseline values, followed by
recovery to initial MABP (Prunell et al., 2002, 2003; Jeon et al.,
2010; Cai J. et al., 2012).

Endovascular perforation models generally produce higher
transient MABPs than injection models. However, these results
vary greatly depending on the size of the suture employed
(Prunell et al., 2003; Lee et al., 2009). For example, perforation
with a 4-0 prolene suture will not significantly raise the MABP,
while a 3-0 suture will produce a MABP higher than that
induced by a 300 µL autologous blood injection in the cisterna
magna (Schwartz et al., 2000). Furthermore, one study recorded
a transient drop in blood pressure after perforation rather
than the expected rise (Park et al., 2008). As in the case
of the similar prechiasmatic cistern study, this drop may be
attributed to a failure in autoregulatory mechanisms due to
the hemorrhagic insult. Overall, following SAH induced by
endovascular perforation, MABP will typically increase to 105–
140% of baseline values (Schwartz et al., 2000; Prunell et al., 2003;
Park et al., 2008; Lee et al., 2009; Westermaier et al., 2009a,b;
Feiler et al., 2010). Unlike othermodels, the recovery is not always
to initial values, but between 89 and 117% of MABP recorded
prior to SAH induction (Schwartz et al., 2000; Prunell et al., 2003;
Park et al., 2008; Lee et al., 2009; Westermaier et al., 2009a,b;
Feiler et al., 2010).

Comparison of Pathophysiology in
Preclinical Models and Clinical SAH
Previous studies that utilized preclinical models of SAH have
shown large variability in the absolute values of physiological
parameters following induction of SAH both across and within
different models. Whereas in clinical SAH the absolute value
of these parameters typically depends on the magnitude of the
hemorrhage, in preclinical models it can be influenced by a
number of different factors, such as the model and surgical
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procedures used, anesthetics used, and measurement methods,
particularly in the endovascular perforation model. On the
other hand, trends in the relative change in these physiological
parameters after the initial insult generally tend to be preserved
between preclinical models of SAH and clinical SAH. In general,
these variables can be assessed in rodent models of SAH, and new
techniques are emerging to allow formore accurate measurement
of such parameters. In optimizing these protocols, experimental
methods should be standardized such that the data obtained
in experimental models can not only be linked to functional
outcomes in rodents, but can also be reliably correlated with the
clinical picture of SAH in humans.

MORTALITY AND FUNCTIONAL
OUTCOMES IN RODENT MODELS OF SAH

Assessment of Neurological Function in
Rodent Models of SAH
Studies of experimental SAH in rodents frequently include
documentation of changes in rodent body weight. A reduction
in weight after SAH tends to correlate with an overall decrease in
neurological function. Overall, there is no apparent difference in
magnitude of weight loss among the SAHmodels. In rats, weight
loss following surgery ranged from 5 to 12%, regardless of which
methodwas used to induce SAH (Delgado et al., 1985; Rasmussen
et al., 1992; Glenn et al., 2002; Parra et al., 2002; Prunell et al.,
2002; Kojima et al., 2005; Takata et al., 2008; Lee et al., 2009;
Jeon et al., 2010). Uniquely, one endovascular perforation study
conducted in the mouse showed a weight loss of ∼20%, slightly
higher than that seen in the rat models (Feiler et al., 2010).

Motor ability is another functional parameter observed after
SAH, whether assessed with specific tests or with general
observations of animal motility. The majority of studies showed
that rodents are drowsy after surgery, but very few experience
focal deficits or paralysis for up to 15 d past surgery (Barry
et al., 1979; Delgado et al., 1985; Solomon et al., 1987; Swift
and Solomon, 1988; Rasmussen et al., 1992; Bederson et al.,
1995; Piepgras et al., 1995; Gules et al., 2002; Lin et al., 2003;
Altay et al., 2009; Lee et al., 2009; Raslan et al., 2012). While,
other investigations have reported rodent paresis following SAH
(Prunell et al., 2003; Kojima et al., 2005; Lee et al., 2008; Raslan
et al., 2012). For example, a study of the three major SAH
models showed hemiparesis in 33% of rodents injected in the
prechiasmatic cistern, compared with 14% in the single injection
cisterna magna model and 11% in the perforation model (Prunell
et al., 2003). Additionally, Kojimia et al. observed a light paresis in
36% of rodents subjected to endovascular perforation, attributing
it to cerebral ischemia following SAH (Kojima et al., 2005).

Motor and behavioral function can be compositely evaluated
with scoring systems analogous to those used clinically. A test
developed by Bederson et al. (1986) observes forelimb flexion,
resistance to lateral pushing, and circling behavior of rodents.
Animals that have experienced ischemic events will incur a
higher score on the Bederson scale (Rademaker et al., 2002b).
Many protocols modify the scale to easily and serially detect
neurological impairments after SAH (Parra et al., 2002; Vatter

et al., 2006; Feiler et al., 2010; Güresir et al., 2010, 2012);
however, the scales are limited due to the subjectivity in assessing
each mouse, introducing variation in scores from observer to
observer (Rosengart et al., 2007). Because of this setback, study
results can be contradictory: some show the greatest decline
in scores between 0 and 3 d following SAH with subsequent
improvement (Parra et al., 2002; Vatter et al., 2006; Feiler et al.,
2010), while others observe the most severe deficits at 5 d after
SAH (Güresir et al., 2010, 2012). The worst neurological scores
incurred on the Bederson scale occur between 0 and 5 d and
are correlated with maximum CV (Vatter et al., 2006). Another
scoring system is described by Garcia et al. which assesses motor
activity through observations of spontaneous activity, symmetry
of movement in the extremities, forepaw outstretching, climbing,
lateral push, and vibrissae touch response (Garcia et al., 1995).
Perforation models show a deficit by these criteria 1 d after SAH,
which recovered thereafter, reaching near baseline levels at 7 d
(Sugawara et al., 2008; Tiebosch et al., 2013). Using this scale, Cai
et al. compared the prechiasmatic cistern injection model to the
cisterna magna model, where the former had lower neurological
scores at 3 d, although there was no significant difference between
the groups (Cai J. et al., 2012). Additionally, a similar scoring
system described by Feldmen et al. was used to compare a double
to single hemorrhage cisterna magna model at 1 and 2 d, and
weeks 1, 2, and 3 after SAH (Feldman et al., 1996; Boyko et al.,
2013). Similar deficits resulted between both hemorrhage groups
at 24 h after each injection, but deficits were attenuated by 1 week
(Boyko et al., 2013).

Other tests include the use of apparatuses like grids, cylinders,
ledge-tapered balance beams, pellet retrieval reaching chambers,
staircases and ladder rungs to assess motor function (Rosengart
et al., 2007). Sensorimotor function can be tested on apparatuses
like the accelerated rotarod (Dunham and Miya, 1957). The
use of these tests involves pre-training rodents for specific tasks
before induction of SAH, followed by serial testing each day after
hemorrhage (Takata et al., 2008; Silasi and Colbourne, 2009).
Some studies have revealed an immediate decrease in function
following SAH, with progressive improvement over a period of
4 weeks (Takata et al., 2008). In contrast, others observe no
significant differences in skills with measurements conducted
until 3 weeks following SAH (Silasi and Colbourne, 2009).

In addition to motor and sensorimotor assessment, cognitive
impairments in spatial and working memory can be evaluated
using the Morris Water Maze (MWM) task (Morris, 1984).
The MWM involves placing animals in a round pool filled
with opaque water and observing the rodents as they swim
to a submerged platform to escape the water. Parameters
such as initial heading angle, escape latency, swim time, and
path length are measured and correlate to spatial learning
and working memory functions. Trials with the MWM show
increases in both swim time and distance between 3 and 5
weeks after SAH (Takata et al., 2008; Silasi and Colbourne,
2009). Another study showed increased escape latency at 2–5
d after hemorrhage; however, the increase in escape time was
attributed to subacute motor deficits rather than memory deficits
(Jeon et al., 2010). The same study showed no other deficits
in working or reference memory on days 6–8, postulating that
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the neurologic deficits take more time to manifest (Jeon et al.,
2010).

In addition to the cognitive function assessments, affective
behavior tests include forced swim, elevated plus maze, sucrose
preference, and open field tests (Boyko et al., 2013). Notably,
rats that had undergone a double hemorrhage had worse deficits
compared to single hemorrhage rats (Boyko et al., 2013).

Cerebral Vasospasm and Delayed
Neurological Deficits in Rodent Models of
SAH
To accurately depict the clinical course of SAH in humans,
delayed CV in rodents should result in neurological deficits due
to cerebral ischemia. For example, Parra and colleagues showed
a correlation between proximal MCA diameter and neurological
score in a perforation model, indicating that CV played a role in
neurological deficits following SAH in this model (Parra et al.,
2002). Additionally, a cisterna magna model showed the worst
neurological deficit at 5 d concurrent with the maximal degree
of CV (Güresir et al., 2010, 2012). In a comparison of injection
models, there was delayed CV at 3 d and 7 d with marked
neurological deficits also appearing at 3 d (Cai J. et al., 2012).
Departing from these trends, some injection models showed the
greatest CV at 5 d, but yielded the worst neurological deficit at
0–3 d with attenuation by 5 d (Vatter et al., 2006; Lee et al., 2008).
In the same manner, a prechiasmatic cistern model showed CV
at 8 d, but no change in a working memory task completed that
same day (Jeon et al., 2010). Although this case did not exhibit
working memory defects, a spatial learning deficit manifested
at 5 d, the final day of serial measurements of this parameter
(Jeon et al., 2010). CV was not assessed at 5 d, inhibiting the
correlation between spatial learning deficits and documented
arterial narrowing.

In addition to these acute and subacute correlations, future
studies are necessary that observe the effect of CV on long-term
outcomes after SAH in rodents. Working and spatial memory
tasks carried out weeks after hemorrhage result in significant
neurological deficits (Takata et al., 2008; Silasi and Colbourne,
2009; Boyko et al., 2013), despite the fact that CV is largely
attenuated in rodents roughly 1 week following SAH. These
observations could be a result of neuronal death induced by DCI
following CV, but additional studies are necessary to establish this
correlation. Although studies have evaluated acute brain damage
following hemorrhage with MRI (Van Den Bergh et al., 2005;
Vatter et al., 2006; Güresir et al., 2010, 2012; Tiebosch et al., 2013),
the damage has not been assessed during the weeks to months
after the initial bleed. Further studies are necessary to evaluate
the extent of neuronal damage in the rodent brain at these time
points and its relation to longitudinal neurological function and
overall survival.

Mortality in Rodent Models of SAH
Rodent models of SAH exhibit a wide range of mortality
(Table 6). Cisterna magna single injection models
produce 0–16% mortality (Delgado et al., 1985; Solomon
et al., 1985; Ram et al., 1991; Glenn et al., 2002; Gules et al.,

2002; Lin et al., 2003; Prunell et al., 2003; Turowski et al., 2007;
Munoz-Sanchez et al., 2012a; Boyko et al., 2013), while cisterna
magna double injection models exhibit a greater range of 0–43%
rate within the first few days (Glenn et al., 2002; Gules et al., 2002;
Weidauer et al., 2006; Lee et al., 2008, 2009; Cai J. et al., 2012).
At a later time point of 9 d following hemorrhage, mortality
was as high as 53% in one double injection model (Vatter et al.,
2006). The discrepancy in ranges between the two models is
likely due to the amount of blood injected, with more blood
increasing mortality risk. The prechiasmatic cistern injection
model shows a higher mortality than the cisterna magna models,
likely due to the hemorrhage location and smaller volume of
the prechiasmatic cistern. In this model, mortality ranges from
10 to 33% within several days following hemorrhage (Prunell
et al., 2002, 2003; Sabri et al., 2009; Jeon et al., 2010; Cai J. et al.,
2012). However, mortality varies depending on the volume of
blood administered. For example, Prunell and colleagues showed
that a volume of 300 µL of autologous blood produces almost
100% mortality in rats 1 week post-injection, while 200 µL
produces only 25% mortality (Prunell et al., 2002). Compared
with injection models, endovascular perforation yields a higher
mortality, with rates ranging from 16 to 66% (Bederson et al.,
1995, 1998; Gules et al., 2002; Prunell et al., 2003; Kojima et al.,
2005; Van Den Bergh et al., 2005; Park et al., 2008; Sugawara
et al., 2008; Lee et al., 2009; Silasi and Colbourne, 2009; Feiler
et al., 2010; Tiebosch et al., 2013).

Comparison of Functional Outcomes and
Mortality in Preclinical Models and Clinical
SAH
Similar to the physiological parameters previously discussed,
functional outcomes and mortality in preclinical models of SAH
appear to be highly variable within and across models. This is
due in part to subjective nature of the tests and lack of inter-
observer reliability, varied methods used to induce experimental
SAH, varied mode of determining functional outcomes and time
point used to assess mortality. It is clear that no studies exist
to determine functional outcomes and mortality at long-term
time points, something that is needed to assess the worthiness
of the existing preclinical models in replicating the human
disease process. Commonly, functional outcomes and mortality
following clinical SAH is related to specific pathological factors,
such as the extent of insult, and the occurrence of EBI, CV,
and DCI, and baseline function must be taken into account.
Although assessments of post-SAH functional outcomes have
their limitations, the lack of focal deficits in the majority of
preclinical studies does replicate the clinical counterpart. Finally,
the biggest downfalls of preclinical models is their lack of
replication of delayed neurological deficits coinciding with the
onset of DCI, which are major contributors to poor outcomes
following clinical SAH.

CONCLUSIONS

Many rodent models of SAH and variations thereof exist in
current preclinical experimentation. The most commonly used
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TABLE 6 | Summary of mortality itemized by the model used for SAH induction in published studies that used various strains of mice or rats.

Rodent Number Mortality References Comment

CISTERNA MAGNA-SINGLE INJECTION

Wistar rats 13 23 Munoz-Sanchez et al., 2012a 3 SAH rats died during procedure, 1 within 48 h; 1 sham rat died

Wistar rats 7 0 Turowski et al., 2007 1 rat died due to anesthesia

SD rats 22 0 Glenn et al., 2002 1 rat died due to cannulation complications

SD rats 25 0 Ram et al., 1991 Some rats died during photography of the BA

SD rats 52 12 Delgado et al., 1985 0.3mL blood injection + angiography at 5, 10, 15, 30, 60, 90min and 1, 2, 3, 5, 7

d post-surgery; deaths attributed to respiratory failure secondary to obstruction of

the tracheal tube

6 0 0.07mL injection of blood + angiography at 10min and 2 d post-surgery

8 0 0.3mL injection of blood, no angiography

SD rats 6 0 Solomon et al., 1985

C57Bl/6 mice 59 2 Lin et al., 2003 1 mouse died of respiratory failure immediately following SAH, 1 died of internal

bleeding from an IP injection

SD rats 7 0 Prunell et al., 2003

SD rats 10 0 Gules et al., 2002

CISTERNA MAGNA-DOUBLE INJECTION

SD rats 8 and 14* 25 and 43* Güresir et al., 2010 3 d sacrifice; 5 d sacrifice*

SD rats 15 or 54* 40 or 2* Lee et al., 2008 0.3/0.2mL of blood injection; 0.2/0.1mL blood injection*

SD rats 45 47 Vatter et al., 2006 6 rats died within 6 h of second blood injection, 5 rats between 2 and 3 d, 9 rats

between 3 and 5 d, 1 rat at 6 d

SD rats 57 23 Cai J. et al., 2012 Mortality defined as death within 48 h of surgery

SD rats 23 0 Lee et al., 2009

SD rats 11 9 Gules et al., 2002 Death occurred on the 3rd day after the second injection of blood

SD rats 19 21 Wang et al., 2010 Mortality defined as death within 120 h of surgery

SD rats 30 20 Zhang D. et al., 2015 Mortality defined as death within 48 h of surgery

SD rats 48 0 Zhao et al., 2016

SD rats 25 20 Zhang D. et al., 2015 Mortality defined as death within 72 h of surgery

PRECHIASMATIC CISTERN-SINGLE INJECTION

SD rats 54 13 Cai J. et al., 2012 Mortality defined as death within 48 h of surgery

SD rats 13 31 Jeon et al., 2010 Death occurred within 24 h of surgery

CD1 mice 10 10 Sabri et al., 2009 Death occurred within 24 h of surgery

SD rats 12 25 Prunell et al., 2003

SD rats 4, 4*, 12# 100, 50*, 25# Prunell et al., 2002 Groups injected with 0.3mL, 0.25 mL*, and 0.2 mL# autologous blood

SD rats 194 19 Zhang D. et al., 2015

SD rats – 4 Ansar and Edvinsson, 2008 Did not report sample size

SD rats 44 18 Zhang X. S. et al., 2015

ENDOVASCULAR PERFORATION

SD rats 25 57 Gules et al., 2002 4 animals died within 6 h, 6 within 6–24 h, and 3 within 24-48 h

SD rats 41 44 Lee et al., 2009 Death occurred within 24 h of arterial puncture; 7 rats died due to cardiac arrest

following hemorrhage, the rest generally within 6 h

SD rats 45 20 Park et al., 2008 Mortality defined as death within 48 h of surgery

95 46 Mortality defined as death within 48 h of surgery

SD rats 32 16 Sugawara et al., 2008 Stratifying mortality into the degree of hemorrhage gives a mortality of 0, 11, and

23.5 for rats that had mild, moderate, and severe SAH, respectively.

SD rats 21 57 Bederson et al., 1998 Mortality defined as death within 24 h of surgery at sacrifice point

23 65 Animals sacrificed 60min after surgery

11 45

Wistar rats 30 43 and 57 Tiebosch et al., 2013 Mortality defined as death within 48 h of surgery

SD rats 46 33 Silasi and Colbourne, 2009 All but two rats died within 12 h of surgery

SD rats 16 44 Prunell et al., 2003 86 of these rats died within 24 h

C57Bl/6 mice 10 30 Feiler et al., 2010 1 mouse died at 1 d, 2 mice died at 2 d

(Continued)
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TABLE 6 | Continued

Rodent Number Mortality References Comment

SD rats 16 50 Bederson et al., 1995 Death occurred within 24 h of surgery

Wistar rats 14 21 Kojima et al., 2005 Death occurred within 12 h of surgery

C57Bl/6 mice 58 19 Egashira et al., 2015a Death occurred within 24 h of surgery

SD rats 12 17 Suzuki et al., 2010 Mortality defined as death within 24 h of surgery

12 25 Mortality defined as death within 48 h of surgery

12 17 Mortality defined as death within 120 h of surgery

33 24 Mortality defined as death within 24 h of surgery

SD rats 35 34 Topkoru et al., 2013 Death occurred within 72 h of surgery

C57Bl/6 mice 10 10 Bühler et al., 2015 Death occurred within 7 d of surgery

C57Bl/6 mice 23 9 Sheng et al., 2011 Death occurred within 72 h of surgery

SD rats 10 50 Hockel et al., 2012 Death occurred within 72 h of surgery

SD rats 50 18 He et al., 2012 Did not specify the time points used for calculating mortality

SD rats 39 38 Li et al., 2012 Did not specify the time points used for calculating mortality

C57Bl/6 mice 17 24 Egashira et al., 2015b Death occurred within 24 h of surgery

10 20 Death occurred within 8 d of surgery

SD rats 39 15 Hasegawa et al., 2011 Mortality defined as death within 72 h of surgery

SD rats 34 29 Duris et al., 2011 Mortality defined as death within 6 h of surgery

SD rats 27 7 Ostrowski et al., 2006 Mortality defined as death within 6 h of surgery

SD rats 116 25 Shishido et al., 2015 Mortality defined as death within 24 h of surgery

SD rats 15 and 15 40 and 20 Hollig et al., 2015 Mortality defined as death within 24 h of surgery

SD rats 9 33 Xu et al., 2015 Death occurred within 24 h of surgery

SD rats 122 42 Huang et al., 2015 Did not specify the time points used for calculating mortality

Information presented includes rodent strain, number of animals that died, and the percent of animals that died. Notes are included if the study mentions that animals died during a

study procedure, if the investigators used a different definition for mortality, or if animals died within a short time period after the surgical procedure. SD, Sprague Dawley; BA, basilar

artery.

are the prechiasmatic and cisterna magna blood injection models
and the endovascular perforation model. Each protocol offers its
own advantages and disadvantages in observing outcomes of EBI,
CV, physiologic parameters like CBF, and neurological deficits.
However, all these models lack the spontaneous rupture of an
intracranial aneurysm, which is needed for better replication
of the early and delayed clinical aSAH pathophysiology.
Furthermore, the lack of standardized procedures in the currently
available models has led to considerable variation in the
reporting of important outcomes, such as the onset, location,
severity, and time course of CV making it difficult to compare
across studies and to translate findings to clinical practice.
Nonetheless, the prechiasmatic cistern anterior circulationmodel
has been proposed as the most translational model in terms
of reproducibility and outcomes (Attia and Loch MacDonald,
2015). With further optimization and continued research, a
rodent model that parallels human SAH can be established.
If this is achieved, translational capacity of preclinical models

can be maximized and clinical interventions will improve as a
result.
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