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With small to modest sample sizes and complex models, maximum likelihood (ML)
estimation of confirmatory factor analysis (CFA) models can show serious estimation
problems such as non-convergence or parameter estimates outside the admissible
parameter space. In this article, we distinguish different Bayesian estimators that can
be used to stabilize the parameter estimates of a CFA: the mode of the joint posterior
distribution that is obtained from penalized maximum likelihood (PML) estimation, and
the mean (EAP), median (Med), or mode (MAP) of the marginal posterior distribution that
are calculated by using Markov Chain Monte Carlo (MCMC) methods. In two simulation
studies, we evaluated the performance of the Bayesian estimators from a frequentist
point of view. The results show that the EAP produced more accurate estimates of the
latent correlation in many conditions and outperformed the other Bayesian estimators in
terms of root mean squared error (RMSE). We also argue that it is often advantageous
to choose a parameterization in which the main parameters of interest are bounded,
and we suggest the four-parameter beta distribution as a prior distribution for loadings
and correlations. Using simulated data, we show that selecting weakly informative four-
parameter beta priors can further stabilize parameter estimates, even in cases when
the priors were mildly misspecified. Finally, we derive recommendations and propose
directions for further research.

Keywords: measurement error, latent variable models, Bayesian methods, prior distribution, Markov Chain Monte
Carlo, penalized maximum likelihood estimation, constrained maximum likelihood estimation, confirmatory
factor analysis

INTRODUCTION

In the social and behavioral sciences, constructs (e.g., intelligence, extraversion) are often
conceptualized as latent variables that are measured by error-prone observed indicators (e.g.,
items). Structural equation modeling (SEM) is a very prominent approach that is used to correct
for measurement error when assessing multivariate relationships among latent constructs (Bollen,
1989; Hoyle, 2012). In the SEM approach, a measurement part is distinguished from a structural
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part. In the measurement part, measurement models are specified
to allow for an error-free estimation of the relations in the
structural model. In research practice, maximum likelihood (ML)
estimation is routinely used to obtain parameter estimates for
structural equation models. However, one major limitation of
ML estimation is that it needs large sample sizes to reveal its
optimal properties (e.g., unbiasedness, efficiency). With small to
modest sample sizes and complex models, ML estimation can
show serious estimation problems such as non-convergence or
parameter estimates that are outside the admissible parameter
space (e.g., negative variances; see Anderson and Gerbing, 1984;
Boomsma, 1985; Hoogland and Boomsma, 1998; Chen et al.,
2001; Gagné and Hancock, 2006; Wolf et al., 2013; Smid and
Rosseel, 2020).

In the last decades, several researchers have shown that
the Bayesian approach has the potential to solve some of the
estimation problems that occur in small sample applications of
SEM (e.g., Lee, 2007; Song and Lee, 2009; Kaplan and Depaoli,
2012; Muthén and Asparouhov, 2012). First, if appropriate prior
distributions are used, the Bayesian approach guarantees that
parameter estimates will be within the admissible range, and
estimation problems can usually be avoided. Second, Bayesian
methods allow for the stabilization of parameter estimates by
specifying weakly informative prior distributions for the SEM
parameters (Lee and Song, 2004; Chen et al., 2014; Can et al.,
2015; Depaoli and Clifton, 2015; McNeish, 2016; Lüdtke et al.,
2018; van Erp et al., 2018; Miocevic et al., 2020). The basic idea
is that incorporating even a small amount of information into the
prior distribution of the SEM parameters provides some direction
for their estimation, while inferences can still be driven by the
data (Gelman et al., 2014).

In this article, we focus on the estimation of confirmatory
factor analysis (CFA) models in which several latent factors
are measured by a set of observed variables (Bollen, 1989).
We investigate two critical issues in the Bayesian estimation of
CFA models with small sample sizes. First, we discuss different
Bayesian point estimators that can be used as estimates for CFA
model parameters: the mode of the joint posterior, and the mode,
mean, or median of the marginal posterior. Furthermore, we
clarify that two popular methods for calculating Bayesian point
estimates, penalized maximum likelihood (PML) estimation
and Markov Chain Monte Carlo (MCMC) methods, produce
different Bayesian point estimates and compare the performance
of the different Bayesian point estimators to the traditional ML
estimation of CFA models. Second, we discuss the specification
of prior distributions in the Bayesian approach and argue that it
can be advantageous to choose a parameterization in which the
model parameters (i.e., standardized loadings, latent correlations)
are bounded. More specifically, we suggest the four-parameter
beta distribution as a prior distribution for bounded parameters
(see also Muthén and Asparouhov, 2012; Merkle and Rosseel,
2018) and investigate in a simulation study how the specification
of weakly informative prior distributions can help to stabilize
parameter estimates in small sample size conditions.

The article is organized as follows. We start by describing
how a basic CFA model is estimated with traditional ML
estimation. We then discuss the specification of CFA models

in the Bayesian approach and describe different Bayesian
estimators that can be used to estimate CFA model parameters.
In the context of a CFA model with two latent factors, we
discuss issues of parameterization and the specification of prior
distributions, and we illustrate conditions under which the
different Bayesian estimators produce different results. We then
present the results of two simulation studies in which we
compare traditional ML estimation with the Bayesian approach.
In the first simulation study, we evaluate the influence of
correctly and misspecified prior distributions on the quality
of parameter estimates in small sample size conditions. In
the second simulation study, we investigate the robustness of
the Bayesian approach against distributional misspecifications
(i.e., non-normality). Finally, we derive recommendations and
propose directions for further research.

CONFIRMATORY FACTOR ANALYSIS

Let x denote a vector of p observed variables. Then, a CFA model
with m latent factors is represented as follows:

x = ν+3η+ ε, (1)

where ν is a p × 1 vector containing intercepts, 3 is a p × m
matrix of factor loadings, η is an m × 1 vector of latent factors,
and ε denotes the vector of multivariate normally distributed
residuals with zero mean vector and covariance matrix �. In
the following, we assume that the mean structure is saturated
and completely reflected in the intercepts, that is, E(x) = ν.
Thus, the focus is on modeling the covariance structure 6 of the
observed variables.

The covariance matrix of the observed variables 6 can be
written as a function of the model parameters of the CFA model:

6(θ) = 383T
+�, (2)

Where 8 is the m × m covariance matrix of the latent factors,
θ = (θ1,. . .,θq) is a q× 1 vector that contains the q non-redundant
parameters in 3, 8, and � that are estimated; and 6(θ) is the
model-implied covariance matrix. Thus, the covariance of the
observed variables can be decomposed into a part due to the
covariance structure of the latent factors and a part that is due
to measurement error.

Maximum Likelihood Estimation
Maximum Likelihood estimation is routinely used to obtain
parameter estimates of CFA models (Jackson et al., 2009). Let
x1,. . .,xn denote a set of independently and identically distributed
p× 1 vectors of observed variables that are multivariate normally
distributed. Then, for an observed data set, X = {xi}i=1,...,n, the
likelihood function is written as:

L(θ|X) =
n∏

i=1

f (xi; ν,6(θ)), (3)

where f (x; µ, 6) denotes the multivariate normal density with
mean vector µ and covariance matrix 6. It is known that the
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sample-based covariance matrix S = 1
n
∑n

i=1 (xi − x)(xi − x)′ is
a sufficient statistic for 6, and hence for 6(θ), which also
implies sufficiency for θ. Thus, the likelihood can be written
as L(θ| X) = L(θ|S), and the sample covariance matrix S of the
p observed variables can be used as input in the SEM framework.
The log-likelihood can be simplified as (Bollen, 1989):

l(θ) = log L(θ|S)

= −
n
2
[p · log (2π) + log |6 (θ)| + tr

(
6 (θ)−1 S

)
], (4)

where tr is the trace operator, that is, the sum of the diagonal
elements of a square matrix. The value θ̂ML = arg max

θ

l(θ) that

maximizes l(θ) is the ML estimate. It should be emphasized that
the latent variables η do not appear in the likelihood in Equation
4. Therefore, it has also been referred to as the marginal likelihood
where the latent variables are integrated out (Fox et al., 2017;
Merkle et al., 2019).

Statistical inference in ML estimation is based on the
asymptotic covariance matrix of the ML estimator θ̂ML which
is obtained from the negative second partial derivatives of the
log-likelihood function with respect to the model parameters:

ACOV(̂θML) =

{
−

[
∂2l (θ)
∂θ∂θ′

]∣∣∣∣
θ=̂θML

}−1

, (5)

where the diagonal elements of the q × q matrix are used
as estimates of standard errors. The term in brackets is also
known as observed information matrix (with θ̂ML plugged into
the matrix of the second partial derivatives of l (θ); see Held and
Bové, 2014). In research practice, robust standard error estimates
are often used for statistical inference in SEM (Savalei, 2014;
Maydeu-Olivares, 2017).

The desirable properties of ML estimation (e.g., most
efficient estimates) are based on asymptotic theory and are only
guaranteed to hold with large sample sizes (Yuan and Bentler,
2007). In small samples and complex models, ML estimation is
prone to serious estimation problems such as failure to converge
or inadmissible solutions (e.g., negative variance estimates or
correlations that are larger than one; Anderson and Gerbing,
1984; Wothke, 1993; Chen et al., 2001; Yuan and Chan, 2008).
Furthermore, in small to medium samples, SEMs that correct for
measurement error, even though approximately unbiased, can
produce much more variable estimates of structural relationships
(i.e., larger empirical sampling variance) than biased manifest
approaches that ignore measurement error and use manifest
scale scores (Hoyle and Kenny, 1999; Ledgerwood and Shrout,
2011; Savalei, 2019; see also Li and Beretvas, 2013; Zitzmann
et al., 2016).

Constrained Maximum Likelihood
Estimation
As mentioned above, in standard ML estimation, parameter
estimates are not constrained to any specific interval, and
nothing prevents, for example, variance estimates from becoming
negative (Savalei and Kolenikov, 2008; Held and Bové, 2014).

Constrained ML estimation can mitigate estimation problems
and avoid parameter estimates outside the admissible parameter
space. For example, Lüdtke et al. (2018) showed in simulation
studies that constrained ML estimation of the trait-state-
error model for multi-wave data (Kenny and Zautra, 1995)
outperformed unconstrained ML estimation in terms of the
frequency of estimation problems and the accuracy of the
parameter estimates (see also Gerbing and Anderson, 1987; Chen
et al., 2001).

In constrained estimation, the parameter space over which
optimization is performed is restricted to admissible values (e.g.,
variances are constrained to be positive; Schoenberg, 1997). To
this end, inequality constraints that restrict parameter estimates
to lower and upper bounds must be specified (see Savalei and
Kolenikov, 2008). More specifically, in the constrained estimation
approach, a multivalued function h is specified on the vector of
SEM parameters, that is, h(θ) ≥ 0. For example, if a parameter θ

(e.g., correlation) is supposed to be bounded by a lower bound
l and an upper bound u, that is, l ≤ θ ≤ u, the constraints
would be given as follows: h(θ) = (θ − l, u − θ) ≥ (0, 0).
Further possible constraints include restricting factor loadings or
residual variances to positive values. Note that the constrained
ML estimator θ̂CML is the parameter vector θ that maximizes
the log-likelihood l(θ) in Equation 4 and fulfills the constraints
that are imposed in h. Statistical inference can be based on the
asymptotic covariance matrix that is obtained from plugging
θ̂CML into the matrix of second derivatives of l(θ):

ACOV(̂θCML) =

{
−

[
∂2l (θ)
∂θ∂θ′

]∣∣∣∣
θ=̂θCML

}−1

, (6)

where the diagonal elements of the q × q matrix are again used
as estimates of standard errors (Dolan and Molenaar, 1991; but
see Schoenberg, 1997, for alternative standard error estimation
methods). The asymptotic covariance in Equation 6 can be
enforced to be positive definite in empirical data if the parameter
estimates are slightly pulled away from the boundary (e.g., by
constraining correlations to the interval [−1+ε, 1−ε]).

In most SEM programs such as Mplus (Muthén and Muthén,
2012) and lavaan (Rosseel, 2012), unconstrained ML estimation
that does not impose any restrictions on the admissible parameter
space is used as the default (see Kline, 2016). In the present article,
we compare the performance of constrained and unconstrained
ML estimation of CFA models with different Bayesian estimators.
These are discussed in the next section.

Bayesian Approach to Confirmatory
Factor Analysis
In the Bayesian approach, statistical inference is based on the
posterior distribution, which is determined by the likelihood
function and the prior distribution π(θ) of model parameters (for
a general introduction to the Bayesian approach, see Jackman,
2009; Gelman et al., 2014; van de Schoot et al., 2021). Using
the observed data X (or the sufficient statistic S) and the
prior distributions, the joint posterior distribution p(θ|X) of the
parameters is determined by multiplying the likelihood with the
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prior:

p (θ |X)

=
L(θ|X)π (θ)∫
L(θ|X)π (θ) dθ

= L (θ |X)π (θ)C ∝ L (θ |X)π (θ) ,

(7)

where C = 1/
∫
L (θ | X)π (θ) dθ is a normalizing constant. As

can be seen, the posterior distribution is proportional to the
product of the likelihood and the prior. If a researcher does not
want to make assumptions about a parameter, non-informative
(diffuse) prior distributions that are intended to have only a
minimal influence on the results are selected (van de Schoot et al.,
2021). Moreover, the Bayesian approach offers the opportunity to
stabilize parameter estimates by specifying a weakly informative
prior distribution π(θ) “which contains some information –
enough to ‘regularize’ the posterior distribution, that is, to keep
it roughly within reasonable bounds – but without attempting
to fully capture one’s scientific knowledge about the underlying
parameter” (Gelman et al., 2014, pp. 51). Thus, the idea is
to incorporate a small amount of information into π(θ) that
provides some direction for the estimation of model parameters
but, at the same time, still allows the inferences to be driven by
the likelihood (Baldwin and Fellingham, 2013; Chung et al., 2013;
Lüdtke et al., 2013; Depaoli and Clifton, 2015). In the following,
we discuss different Bayesian point estimates that are obtained
from the posterior distribution p (θ |X).

Bayesian Point Estimates
Point estimates in the Bayesian approach are usually calculated
by summarizing the center of the marginal posterior distribution
of the particular parameters of interest (e.g., latent correlation).
More formally, let θ(−d) = (θ1,. . .,θd−1, θd+1,. . ., θq) denote the
vector of parameters in which the dth entry of θ has been omitted.
The univariate marginal posterior distribution of θd, in which all
other components of θ are integrated out, is given by:

pd (θd | X) =
∫

p(θ|X)dθ(−d) = C
∫

L(θ|X)π(θ)dθ(−d). (8)

Bayesian point estimates of θd are obtained from location
parameters (i.e., mean, median, mode) of the marginal posterior
distribution. The posterior mean θ̂d,EAP (d = 1,. . .,q) is given by
the expectation of the posterior distribution:

θ̂d,EAP =

∫
θdpd (θd | X) dθd =

∫
θdp (θ | X) dθ. (9)

The posterior median (Med) θ̂d,Med is the median of the
marginal posterior distribution∫ θ̂d,Med

−∞

pd (θd | X) dθd = 0.5. (10)

The posterior mode θ̂d,MAP is given by the value that
maximizes the marginal posterior distribution (maximum-a-
posteriori; MAP):

θ̂d,MAP = arg max
θd

pd (θd|X) (11)

Note that all three Bayesian point estimates θ̂d,EAP, θ̂d,Med
and θ̂d,MAP are functionals of the joint posterior distribution
and involve high-dimensional integration to obtain the marginal
posterior distribution. In practice, simulation-based methods
such as MCMC are often used to evaluate these high-
dimensional integrals. As another option for a low number of
parameters, numerical integration techniques can be employed
(Held and Bové, 2014).

Alternatively, the mode of the joint posterior distribution
p (θ|X) can be used as a Bayesian point estimate:

θ̂PML = arg max
θ

p (θ|X) = arg max
θ

[
log L (θ|X)+ log π(θ)

]
.

(12)
Note that for the computation of θ̂PML (penalized maximum

likelihood estimate; PML estimate; see Section “Penalized ML
Estimation”) it is not required to evaluate the normalization
constant of the posterior distribution. Three points need to
be made about the mode of the joint posterior. First, with a
diffuse prior (i.e., π is a constant function with respect to θ),
the likelihood is proportional to the posterior distribution (see
Equation 12), and the mode of the joint posterior coincides with
the ML estimator. Second, it needs to be emphasized that the
univariate modes θ̂d,MAP (d = 1,. . .,q) of the marginal posterior
distributions may not equal the components of the mode θ̂PML
of the joint posterior distribution (Held and Bové, 2014). Note
that the EAP has (in contrast to MAP and Med) the desirable
property that it is invariant with respect to marginalization (see
Equation 9); that is, the EAP for θd of the univariate posterior
distribution pd equals the EAP of the multivariate posterior p (see
Fox, 2010, p. 69). Third, for a multivariate normally distributed
estimate θ̂ML ∼ MVN(θ, n−1V1) and a multivariate normal prior
distribution (i.e., π (θ) ≡ MVN(θ0,V0)), it is well known that the
posterior distribution is also multivariate normal (Gelman et al.,
2014), that is

p (θ|X) ≡ MVN
((

V−1
1 + n−1V−1

0
)−1 (V−1

1 θ̂ML + n−1V−1
0 θ0

)
,

n−1 (V−1
1 + n−1V−1

0
)−1

)
. (13)

In this case, all estimators θ̂PML, θ̂d,MAP, θ̂d,Med, and θ̂d,EAP
coincide. However, as ML estimates are only asymptotically
normally distributed and often priors different from the
normal distribution are used, it is not guaranteed that the
different Bayesian estimators perform similarly, particularly
in small samples. This fact is essential as different estimation
methods produce different Bayesian point estimators. In
the following, we distinguish between PML estimation
and MCMC methods.

Penalized ML Estimation
Penalized ML estimation maximizes the log-posterior function:

w (θ) = l (θ)+ log π(θ). (14)

The log-posterior is a function of the log-likelihood l(θ) = log
L(θ|X) and additional information given by the prior log π(θ).
The maximizer θ̂PML is also referred to as the maximum a
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posteriori (MAP) estimator (Gelman et al., 2014). Alternatively,
the logarithm of the prior distribution logπ (θ) can be interpreted
as a penalty term that is added to the log-likelihood function,
which motivates the label “penalized” ML (Cole et al., 2014; see
also Cousineau and Helie, 2013). It should also be emphasized
that constrained ML estimation can be regarded as a variant of
PML estimation when uniform prior distributions are imposed
on the admissible parameter space (e.g., Rindskopf, 2012). In this
case, it holds that θ̂PML = θ̂ CML.

Statistical inference in PML estimation can be obtained by
plugging in the PML estimate θ̂PML into the matrix of second
derivatives of the log-likelihood l(θ):

ACOV
(̂
θPML

)
=

{
−

[
∂2l (θ)
∂θ∂θ

′

]∣∣∣∣
θ=̂θPML

}−1

, (15)

where the diagonal elements are used as estimates of standard
errors. Note that the standard error estimates only rely on the
log-likelihood l(θ) part and that the part of the prior distribution
log π(θ) is ignored. The motivation for pursuing this strategy
is that the prior is only used to stabilize the estimation. Based
on experience from our simulations, it is vital to ignore the
prior part in the computation of uncertainty for obtaining valid
frequentist statistical inference because it would otherwise result
in undercoverage.

Penalized maximum likelihood estimation has been shown
to circumvent estimation problems, particularly when the
likelihood is flat, and has been successfully applied to stabilize
parameter estimates in a wide range of models such as logistic
regression models (Firth, 1993; Heinze and Schemper, 2002),
latent class models (Galindo-Garre and Vermunt, 2006; DeCarlo
et al., 2011), item response theory models (Mislevy, 1986; Harwell
and Baker, 1991), and multilevel models (Chung et al., 2013).
It should also be emphasized that in the pre-MCMC era, PML
estimation was the standard approach for obtaining estimates
for Bayesian factor analysis models (e.g., Martin and McDonald,
1975; Press and Shigemasu, 1989) and Bayesian SEM models (e.g.,
Lee, 1981; Lee, 1992; Poon, 1999). Furthermore, PML estimation
bears strong similarities to regularized ML estimation, in which,
too, penalty functions are added to the log-likelihood (Jacobucci
and Grimm, 2018; van Erp et al., 2019; Fan et al., 2020). Note that
regularized estimation is often applied for effect selection, such
as the determination of non-vanishing item loadings in factor
analysis (Jin et al., 2018) or the allowance of non-invariant item
parameters in multiple-group factor analysis (Huang, 2018).

MCMC Estimation
Another strategy that is used to obtain Bayesian estimates is
to apply simulation-based techniques. This is motivated by the
fact that in practice, the joint posterior distribution of the
parameters is often difficult to evaluate because high-dimensional
integration is required to compute the normalization constant C
(see Equation 7; Held and Bové, 2014, Ch. 8). Simulation-based
techniques – implemented in general-purpose Bayesian software
such as WinBUGS (Spiegelhalter et al., 2003), JAGS (Plummer,
2003), NIMBLE (de Valpine et al., 2017), or Stan (Carpenter
et al., 2017) – use MCMC algorithms to approximate the

posterior distribution by iteratively sampling from conditional
distributions. The most prominent MCMC methods are Gibbs
sampling, Metropolis-Hastings sampling, and the no-U-turn
sampler (Gelman et al., 2014; Junker et al., 2016).

In the present study, we implemented a Metropolis-
Hastings step within a Gibbs sampling algorithm to estimate
the parameters of the CFA model. The Metropolis-within-
Gibbs algorithm uses the following sampling steps to generate
observations from the conditional distributions. At the (t + 1)th
iteration with current values

(
θ
(t)
1 , . . . , θ

(t)
q

)
sample:

θ
(t+1)
1 from p(θ1|X,θ

(t)
2 , θ

(t)
3 , ..., θ

(t)
q )

θ
(t+1)
2 from p(θ2|X,θ

(t+1)
1 , θ

(t)
3 , ..., θ

(t)
q )

...

θ(t+1)
q from p(θq|X,θ

(t+1)
1 , θ

(t+1)
2 , ..., θ

(t+1)
q−1 ) (16)

There are q steps in the (t + 1)th iteration. All conditional
distributions are unidimensional, and parameters are updated
conditional on the latest value of the other parameters.

We now show how one component of the parameter vector θ,
say θd, is updated in the Metropolis-within-Gibbs algorithm. To
generate a sample from the conditional distribution of θd given
the most recent values of the other parameters, we rewrite the
conditional distribution using Bayes theorem:

p(θd|X,θ
(t+1)
1 , θ

(t+1)
2 , ..., θ

(t+1)
d−1 , θ

(t)
d+1, ..., θ

(t)
q ) ∝

L(θ(t+1)
1 , θ

(t+1)
2 , ..., θ

(t+1)
d−1 , θd, θ

(t)
d+1, ..., θ

(t)
q |X) · π(θd) (17)

The conditional distribution is proportional to the product
of the likelihood and the prior distribution for θd. A new value
is sampled from a proposal distribution N(θ(t)d , τ

2(t)
θd
) where

θ
(t)
d is the value of θd from the previous iteration and τ2

θd
is

the proposal distribution standard deviation, which is adapted
in the MCMC algorithm (see Section “Analysis Models and
Outcomes”). Negative proposed values are not accepted, and the
value from the previous iteration is used. Then the Metropolis-
Hastings ratio is calculated as follows:

M
(
θ
(∗)
d , θ

(t)
d

)
=

L(θ(t+1)
1 , θ

(t+1)
2 , θ

(t+1)
d−1 , θ

(∗)
d , θ

(t)
d+1, ..., θ

(t)
q |X) · π(θ

(∗)
d )

L(θ(t+1)
1 , θ

(t+1)
2 , θ

(t+1)
d−1 , θ

(t)
d , θ

(t)
d+1, ..., θ

(t)
q |X) · π(θ

(t)
d )

,

(18)

where M = M
(
θ
(∗)
d , θ

(t)
d

)
is the Metropolis-Hastings ratio as a

function of the proposed value θ
(∗)
d and the previous value θ

(t)
d .

The proposed value θ
(∗)
d is then accepted and set to θ

(t+1)
d with

probability min(1, M). Acceptance rates of roughly between
0.40 and 0.50 are considered optimal in the literature (Hoff,
2009; Gelman et al., 2014) to obtain an MCMC chain that has
relatively low autocorrelation and mixes well (i.e., moves around
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the sample space in a seemingly random fashion without any
long-term trends).

When the chain converges, the draws
θ(t) =

(
θ
(t)
1 , ..., θ

(t)
d , ..., θ

(t)
q

)
can be seen as samples from

the joint posterior distribution of the CFA model parameters (for
a detailed discussion of assessing convergence in MCMC, see
Cowles and Carlin, 1996; Gill, 2007; Jackman, 2009). Usually, the
initial draws are discarded (burn-in phase) because the initial
draws are affected by the starting values of the chain (Gelman
et al., 2014). Bayesian point estimators are constructed from the
samples of the posterior distribution. The expected a posteriori
(EAP) estimator for a parameter θd, θ̂d,EAP, is obtained by
averaging across the T iterations, that is,

θ̂d,EAP = T−1
T∑
t=1

θ
(t)
d . (19)

The median θ̂d,Med is estimated by computing the sample
median of the draws θ

(t)
d (t = 1, . . ., T). The mode θ̂d,MAP can

be defined as the univariate mode of the kernel density estimate
(Silverman, 1998) of the univariate density for the sample of θ

(t)
d

(t = 1, . . ., T) (see Johnson and Sinharay, 2016). Notably, it has
been proposed that the multivariate mode (PML) could also be
estimated by choosing the sampled parameter that maximizes
the posterior distribution (see the discussion in the Stan users
group1):

θ̂PML−MCMC = arg max
t=1,...,T

p
(
θ(t)|X

)
. (20)

However, if the PML is of primary interest, deterministic
optimization using the Newton approach (see Section “MCMC
Estimation” and Equation 12) is generally preferable.

The standard deviation of the posterior distribution can
be used as a measure of uncertainty (Gelman et al., 2014).
Comparable to a confidence interval in the frequentist approach,
it is possible to calculate a Bayesian credibility interval (BCI). The
BCI is based on percentile points of the posterior distribution
and describes the probability that the interval covers the true
value of the parameter after observing the data. Note that in
contrast to the confidence interval in the frequentist approach,
no assumptions about the sampling distribution (e.g., symmetry,
normality) need to be made for the BCI.

Finally, it should also be emphasized that in the presented
MCMC approach, the Bayesian point estimates are based on the
marginal likelihood L(θ|X) – or L(θ|S) if the sufficient statistic
S is used – in which the latent variables η are integrated out
(Equation 4). However, in many applications of MCMC-based
SEM, a joint estimation approach is used that relies on the joint
likelihood L(θ, η|X), which also includes the latent variables η

in the likelihood (Lee, 2007; Muthén and Asparouhov, 2012).
In the joint estimation approach, the MCMC method2 generates

1https://shortly.cc/ArTE6
2In the joint estimation approach, the joint likelihood L (θ, η|X) =∏n

i=1 f (xi; ν+3ηi,�) · f (ηi; 0,8) is considered, and the MCMC method
generates samples for θ and η (t = 1,. . .,T): θ(t), η(t)p (θ, η | X) ∝
L (θ, η | X) · π (θ). Note that the joint estimation approach needs the raw
data X instead of the sufficient statistic S (see Choi and Levy, 2017).

samples for θ and η. When individual factor scores are not of
interest, however, the latent variables η are nuisance parameters
that can reduce the computational efficiency of the MCMC
algorithm (Hayashi and Arav, 2006; Choi and Levy, 2017; Lüdtke
et al., 2018; Hecht et al., 2020; Merkle et al., 2020).

Previous Research Comparing Bayesian Estimation
Approaches
The different Bayesian point estimators, that is, θ̂PML, θ̂d,EAP,
θ̂d,MAP, and θ̂d,Med, can be evaluated from a frequentist point of
view – population parameters θ are treated as fixed but unknown
constants, and the distribution of the Bayesian estimators is
evaluated across all possible samples from the population (Stark,
2015). For simple univariate quantities (e.g., proportions, means),
Bolstad and Curran (2017) compared frequentist properties
(i.e., bias and RMSE) of mode, median, and mean using
analytical derivations (see also Carlin and Louis, 2009; Efron,
2015). For more complex statistical models, several studies
used simulated data to compare the performance of Bayesian
estimators for different model parameters. Hoeschele and Tier
(1995) compared the MAP and EAP (obtained from MCMC
methods) for estimating variance components in multilevel
models (see also Browne and Draper, 2006). Like the present
study, Choi et al. (2011) evaluated two Bayesian estimators
(MAP and EAP obtained from numerical integration) to estimate
a polychoric correlation. The EAP estimates were biased and
pulled toward the prior distribution (i.e., shrinkage effect),
but less variable than the MAP estimates. In the context
of IRT models, Azevedo et al. (2012; see also Azevedo and
Andrade, 2013; Waller and Feuerstahler, 2017) and Kieftenbeld
and Natesan (2012) compared PML and EAP estimates for
a multiple-group 2PL model and the graded response model,
respectively. In both studies, it turned out that the EAP
estimates slightly outperformed PML in terms of RMSE (see
also Bürkner, 2020). Yao (2014) and Johnson and Kuhn (2015)
compared MAP and EAP estimation for person parameter
estimation in unidimensional IRT models. Again, EAP estimates
were biased (i.e., shrinkage effects) but were also less variable
than MAP estimates (see also Johnson and Kuhn, 2015).
For log-linear models, Galindo-Garre et al. (2004) found that
the MAP outperformed the EAP for estimating main and
interaction effects.

In the context of SEM and CFA models, systematic
comparisons of the frequentist performance of Bayesian
estimators are scarce. Simulation studies that evaluated the
performance of different Bayesian estimators for estimating
SEMs focused on either the Med (e.g., Hox et al., 2012, 2014;
Depaoli and Clifton, 2015; Holtmann et al., 2016), the EAP
(e.g., Lee and Song, 2004; Natesan, 2015) or the MAP (e.g.,
Zitzmann et al., 2016). One notable exception is the study by
Miocevic et al. (2020) that evaluated the EAP, MAP, and Med
for estimating an indirect effect (i.e., the product of two path
coefficients) in a latent mediation model using MCMC methods.
The relative performance of the different estimators in terms of
RMSE depended on the specification of the prior distribution
(accurate vs. inaccurate) and the size of the true indirect effect,
with a slight disadvantage for the MAP when accurate priors were
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specified. However, it is unclear whether these findings generalize
to other SEM parameters (e.g., loadings, latent correlations),
making it difficult for applied researchers to choose between
different Bayesian estimators. This lack of guidance is also
reflected in the fact that popular software packages for SEM use
different Bayesian estimators as default. The commercial software
packages Mplus (Muthén, 2010) and Amos (Arbuckle, 2017)
provide the Med, whereas the R package blavaan (Merkle and
Rosseel, 2018) uses the EAP (see Taylor, 2019). In the present
study, we evaluate the performance of four different Bayesian
estimators for latent correlations and loadings in CFA models.

CFA WITH TWO FACTORS:
PARAMETERIZATION, PRIOR
DISTRIBUTIONS, AND ESTIMATION
METHODS

In the following, we consider a CFA model with two
latent variables, which are each measured by three observed
indicator variables (see Figure 1). We use this model to
discuss three relevant issues in the practical application of
the Bayesian approach: model parameterization, specification of
prior distributions, and different Bayesian estimators (mode of
the joint posterior, and mean, median, and mode of the marginal
posterior). Although this is a very simple model, it is a building
block for many more complicated SEM models, such as latent
mediation models or multilevel SEMs (Hoyle, 2012; Kline, 2016).

Parameterization
To mitigate estimation problems, it can be advantageous to
choose a parameterization of the CFA model that transforms
the optimization problem of estimating unbounded parameters
into an optimization involving bounded parameters. We start

FIGURE 1 | Confirmatory factor analysis (CFA) model with two latent factors.
The variances of the latent factors are set to 1.0.

with an unstandardized parameterization in which the two latent
variables η1 and η2 are measured by indicators xj (j = 1,. . ., 6):

xj = λ∗j ηm[j] + ε∗j , (21)

Where m[·] is a function that maps the item index j to
the corresponding index m[j] of the latent variable, λ∗j are
the unstandardized non-negative loadings, and ε∗j are normally

distributed residuals with Var
(
ε∗j

)
= ω∗jj. Two strategies for

identifying the metric of the latent factors are often used (Kline,
2016; see also Gonzalez and Griffin, 2001). In the first strategy
(reference variable method) the first loading of each latent factor
is set to one, and the variances and covariance of the latent factors
are freely estimated. In the second strategy, the variances of the
latent variables are set to one, that is, Var(η1) = Var(η2) = 1, and
the latent correlation between the factors is directly estimated.
In the Bayesian framework, the reference variable method has
been the most common choice (see Lee, 1981; Erosheva and
Curtis, 2017; Merkle and Rosseel, 2018; Miocevic et al., 2020).
This may be explained by the fact that the second strategy is not
easily applicable to general SEM models because the variances of
endogenous latent variables are not free parameters in standard
SEM specifications (Kline, 2016; see also Kaplan and Depaoli,
2012; van Erp et al., 2018).

In this paper, we suggest a parameterization of the CFA
model in which the parameters of interest are bounded,
and the standardized loadings and the latent correlation are
directly estimated (Little, 2013). Using a parameterization with
bounded or standardized parameters has the advantage that it
is straightforward to restrict correlations to admissible values
between −1 and 1. This is more difficult to accomplish
when the correlation is derived from the variances and
covariance of the latent variables (e.g., very small variance
estimates; Rindskopf, 1984)3. Furthermore, a parameterization
with bounded parameters is often more convenient for applied
researchers when specifying thoughtful prior distributions (Smid
et al., 2020; Zitzmann et al., 2021). Let σj denote the standard
deviation of the observed indicator xj, then Equation 21 can be
rewritten as:

xj = σj(λjηm[j] + εj), (22)

where λj (j = 1,. . .,6) are the standardized loadings, and
εj are the residuals of the standardized solution. It can be
shown that the parameterizations in Equations 21 and 22

are equivalent. It holds that σ2
j =

(
λ∗j

)2
+ ω∗jj, λj = λ∗j /

√
ω∗jj,

and Var(εj) = 1 – λ2
j . Thus, the standardized error variance

is positive if the standardized loadings are restricted to be
positive. In many applications, especially with established
scales, restricting loadings to positive values seems plausible

3This was confirmed by preliminary simulation studies in which we also included
unconstrained ML estimation with the reference variable method (i.e., first loading
fixed to 1). The parameterization with bounded parameters clearly outperformed
the parameterization with freely estimated variances and covariance of the latent
variables in terms of estimation problems (e.g., convergence) and quality of
parameter estimates (e.g., RMSE).
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because researchers commonly have strong presumptions on
the direction of relationships between the observed and latent
variables. Technically, the parameterization in Equation 22
can be implemented in the SEM framework by introducing
an intermediate layer of latent variables (phantom variables;
see Rindskopf, 1984) and non-linear constraints for the
measurement error variances.4

In the present study, our main focus is on estimating the
correlation between the latent variables, that is, Cov(η1, η2) = ρ.
As we are interested in estimating the latent correlation that
corrects for the unreliability of the scale scores, it is instructive
to see how the reliability of the manifest sum score is related
to the standardized loadings of the measurement model. In
the data-generating model, we assume that the standardized
loadings of the indicators for a latent factor are equal and set
to λ (tau-congeneric measurement model; Traub, 1994). Then,
the indicator-specific reliability is given by Rel1 = λ2, and the
reliability of the sum score of I items is:

RelI =
λ2

λ2 + (1− λ2)/I
=

Rel1
Rel1 + (1− Rel1)/I

. (23)

As can be seen, the reliability of the sum score RelI is a function
of the indicator-specific reliability Rel1 and the number of items.
Thus, by rearranging terms, the reliability of an indicator can be
written as:

Rel1 =
RelI

1+ I(1− RelI)
. (24)

For example, with I = 3, a standardized loading of λ = 0.58
translates into a reliability of 0.60 for the sum score (see Table 1).
This relationship between the standardized loading and the
reliability of the sum score is helpful when specifying the prior

4For constrained ML estimation, it can be shown that this parameterization of
the CFA model with standard deviations that are constrained to be positive and
loadings that are restricted to the interval [0, 1] is (analytically) equivalent to a
parameterization in which the loadings and error variances of the unstandardized
solution are constrained to be positive and the variances of the latent factors are
set to one. Thus, using the parameterization of the CFA model in Equation 21
for constrained ML estimation should – in theory – provide the same results as
a CFA model with the corresponding inequality constraints on the loadings and
error variances.

TABLE 1 | Relationship between standardized loading, indicator-specific reliability,
and reliability of sum score for three indicators.

λ Rel1 RelI

0.35 0.13 0.30

0.43 0.18 0.40

0.50 0.25 0.50

0.58 0.33 0.60

0.66 0.44 0.70

0.76 0.57 0.80

0.87 0.75 0.90

λ = standardized loading; Rel1 = indicator-specific reliability; RelI = reliability of
sum score.

distributions for the loadings because, in most cases, it is easier to
make plausible assumptions about the overall reliability of a scale
than about every single item (Smid et al., 2020).

Specification of Prior Distributions
In the CFA model, the standardized loadings and latent
correlations are bounded parameters. For bounded parameters,
the beta distribution is a natural choice. The density f of the beta
distribution X ∼ Beta(a, b) on the interval [0, 1] is given as:

f (x) = B
(
a, b

)−1xa−1(1− x)b−1, x ∈ [0, 1] (25)

where B is the Beta function. The mean and the variance can be
computed as:

E (X) =
a

a+ b
and Var (X) =

ab(
a+ b

)2
(a+ b+ 1)

. (26)

Alternatively, the beta distribution can be parameterized as
a function of a mean µ and a prior sample size ν, that is,
X ∼ Beta(µ, ν), where µ = a(a + b)−1 and ν = a + b − 2
(Hoff, 2009). The prior sample size is explained by the fact
that the uniform distribution, which reflects complete ignorance
about a parameter, is given by setting a = b = 1. Thus, a prior
sample size of ν = 1 + 1 − 2 = 0 corresponds to the uniform
prior on [0, 1]. The variance of the beta distribution is given as
Var(X) = µ(1− µ)(ν + 3)−1. For the given µ and ν, the original
a and b parameters are determined by a = (ν + 2)µ and b = (ν +
2)(1− µ), respectively.

However, the beta distribution is only appropriate for
parameters with a parameter space that equals [0, 1]. The four-
parameter beta distribution (also known as a scaled, stretched,
or generalized beta distribution) extends the support of the beta
distribution to arbitrary bounded intervals and allows a more
flexible specification of prior distributions (Johnson et al., 1994).
The four-parameter beta distribution Y ∼ Beta4(a, b, l, u) can
be obtained by shifting a beta-distributed random variable X ∼
Beta(a, b) by lower (l) and upper (u) bounds: Y = l + (u − l)X.
The density of Y is then given as:

f (x) =
(
u− l

)−1 B
(
a, b

)−1
(
x− l
u− l

)a−1(u− x
u− l

)b−1
, x ∈ [l, u]

(27)
Again, the four-parameter beta distribution can be

reparameterized as Y∼ Beta4(µ, ν, l, u) with a prior guess
of µ = a(a + b)−1 and a prior sample size of ν = a + b − 2.
The parameters of the original specification Y ∼ Beta4(a, b, l,
u) can be obtained as a = (ν + 2)(µ − l)(u − l)−1 and b = (ν
+ 2)(u − µ)(u – l)−1. In previous research, the four-parameter
beta distribution has been applied as prior distribution for item
parameters in three-parameter logistic models (Zeng, 1997;
Gao and Chen, 2005), and for correlations between observed
scores (Gokhale and Press, 1982; O’Hagan et al., 2006) or
latent variables in factor models (Muthén and Asparouhov,
2012; Merkle and Rosseel, 2018). However, to the best of our
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FIGURE 2 | Four-parameter beta distributions for a standardized loading λ (left panel) and the correlation ρ (right panel). With a larger prior sample size (νλ or νρ),
the distribution puts more probability mass around the prior guess (µλ or µρ).

knowledge, we are not aware of any applications of the four-
parameter beta distribution as prior distribution for loadings in
the SEM framework (see Table 1 in van Erp et al., 2018, for an
overview of prior distributions in the SEM context).

When specifying the lower and upper bounds of the four-
parameter beta distribution, the numerical stability of parameter
estimates can be improved if parameters are coerced further away
from the boundaries by a small value ε (e.g., ε = 0.001). For
a standardized loading λ that can be assumed to be bounded
between 0 and 1, we suggest a Beta4(µλ, νλ, ε, 1 − ε) prior
distribution and interpret µλ as a prior guess for the standardized
loading and νλ as the sample size of prior observations on which
the prior guess is based (Lüdtke et al., 2018)5. If only little
information is available about the standardized loading or the
reliability of a scale, a small value for νλ is chosen so that the
prior distribution is only weakly centered around the prior guess
µλ. Figure 2 (left panel) shows for a prior guess of µλ = 0.50
(i.e., standardized loading of 0.50) how increasing νλ (i.e., prior
sample sizes of 1, 3, and 10) changes the shape of the four-
parameter beta distribution. Note that with µλ = 0.50 and νλ = 0,
the four-parameter beta distribution corresponds to a uniform
distribution on the interval [ε, 1 − ε], which reflects complete
ignorance about the size of the loading.

5Alternatively, if a researcher is not willing to make assumptions about the sign of
the loading (i.e., loadings are assumed to be positive), the loadings can be restricted
to [−1, 1]. However, if this specification is chosen, researchers need to define
one marker item for which loadings must be restricted to [0, 1]. Otherwise, sign
switching issues can occur in the MCMC algorithm. In preliminary simulations,
we investigated the effect of both restrictions. If the loadings of the data-generating
model were all positive, the performance for the two variants of restrictions was
very similar.

For the latent correlation that is restricted to the interval
[−1, 1], we suggest a Beta4(µρ, νρ, −1 + ε, 1 − ε) distribution
where µρ is the prior guess for the correlation and νρ is again
the prior sample size on which the prior guess is based (see for
a similar approach Muthén and Asparouhov, 2012; Merkle and
Rosseel, 2018). Figure 2 (right panel) illustrates the influence
of the prior sample size νρ (1, 3, and 10) on the shape of the
Beta4(µρ, νρ, − 1 + ε, 1 − ε) with a prior guess of µρ = 0.30.
Setting µρ = 0 and νρ = 0 gives the uniform distribution on [−1
+ ε, 1− ε].

Illustrative Comparison of Different
Bayesian Point Estimates
To illustrate how the different Bayesian point estimates can
produce different estimates of the latent correlation, we further
simplify the two-factor model and assume that all loadings are
equal. Thus, we need to estimate only two parameters6: the
correlation ρ (ranging between −1 and 1) and the standardized
loading λ (ranging between 0 and 1). Thus, for this simplified
model, the likelihood function L(ρ,λ|S) is only a function of ρ

and λ, given the sufficient statistic S. Furthermore, we assume
uniform priors for both parameters (i.e., constant functions with
respect to ρ and λ), which results in a joint posterior p (ρ,λ | S)

6For this illustration, we further reduced the number of estimated parameters,
assumed that the indicators had a variance of one, and also fixed the variances of
the indicators in the analysis model to one. The main purpose of the illustration
was to demonstrate the differences between the mode from the joint posterior
and the EAP that is obtained from the marginal posterior distribution. A more
systematic and realistic evaluation of the different estimators is provided in the
two main simulations.
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that is proportional to the likelihood. In PML estimation, the
mode of the joint posterior distribution is calculated as:

(ρ̂PML, λ̂PML) = arg max
(ρ,λ)

p (ρ,λ|S) = arg max
(ρ,λ)

L(ρ,λ|S) (28)

and ρ̂PML is used as a point estimate of ρ. Note that this
is the first component of the multivariate mode, which is
calculated by directly maximizing the density of the joint
posterior distribution. It becomes clear from Equation 28 that the
PML estimate is also the constrained ML estimate because the
likelihood function is maximized, that is θ̂PML = θ̂ CML.

In contrast, when using MCMC methods, the univariate mode
(MAP), median (Med), and mean (EAP) are often used as point
estimates for ρ. The marginal posterior distribution pρ of ρ is
obtained by integrating the joint posterior p (ρ,λ|S) with respect
to λ:

pρ (ρ|S) =
∫

p (ρ,λ|S) dλ = C
∫

L(ρ,λ, |S)dλ, (29)

where C = 1/
s

L (ρ,λ|S) dρdλ is the normalizing constant.
The corresponding marginal location parameters are given as
follows:

ρ̂MAP = arg max
ρ

pρ (ρ|S) = arg max
ρ

∫
L(ρ,λ, |S)dλ, (30)

∫ ρ̂Med

−∞

pρ (ρ|S) dρ = 0.5, and (31)

ρ̂EAP =

∫
ρpρ (ρ|S) dρ =

s
ρL(ρ,λ|S)dρdλ

s
L(ρ,λ|S)dρdλ

. (32)

In our simple bivariate case, the univariate EAP ρ̂EAP can be
calculated by numerically evaluating the posterior on a bivariate
discrete grid of values ρ and λ. The integrals in Equation 32
can be obtained by numerical integration using a rectangle
rule (see also Choi et al., 2011). Similarly, the median ρ̂Med
and the univariate MAP ρ̂MAP can be obtained by a numerical
evaluation of the integrals in Equations 30 and 31. However,
this would not be practical with a larger number of parameters,
and simulation-based MCMC techniques are needed to evaluate
high-dimensional integrals (Held and Bové, 2014).

We now employ an idealized scenario to illustrate the
difference between the different Bayesian estimates of the latent
correlation. In this case, the empirical covariance matrix S
(i.e., the sufficient statistic) obtained from the data was set to
be equal to the true covariance matrix 6 =6(θ). Hence, the
likelihood estimates (i.e., the constrained ML and the PML
estimates) coincided with the data-generating parameters. The
true correlation was ρ = 0.70, and the standardized loading was
λ = 0.50. Figure 3 shows, for a small sample size of N = 30,
a contour plot of the joint posterior distribution for ρ and λ

(upper left panel) and the marginal posterior distribution of ρ

(lower left panel). As can be seen, the mode of the joint posterior
(ρ̂PML = 0.700) provides a different Bayesian estimate of the
correlation than the mode (ρ̂MAP = 0.710), mean (ρ̂EAP = 0.568)
or median (ρ̂Med = 0.610) of the marginal posterior. This can be

explained by the fact that the marginal posterior is negatively
skewed, and the mean and—to a slightly lesser extent—the
median are pulled toward zero (i.e., shrinkage effect; see also
Choi et al., 2011). However, with a larger sample of N = 100, the
Bayesian estimates from the joint posterior (upper right panel)
and the marginal posterior (lower right panel) agree more closely
(ρ̂PML = 0.700, ρ̂MAP = 0.704, ρ̂EAP = 0.675, and ρ̂Med = 0.686), and
the marginal posterior distribution of ρ is more symmetrically
centered around the true value of 0.70.

Illustrative Simulation Study
To further explore how these differences between the Bayesian
point estimates affect their frequentist properties, we ran a
small simulation study in which we manipulated the sample
size (N = 30, 50, 100, and 1000) and the magnitude of
the true correlation (ρ = 0.10, 0.30, 0.50, 0.70, and 0.90).
The standardized loading was set to 0.50. We generated
1000 replications for each condition and calculated the
bias, variability (i.e., the standard deviation of the empirical
sampling distribution), and the RMSE (which combines
bias and variability into a measure of accuracy) for the
different point estimates (PML, MAP, EAP, and Med) of the
latent correlation ρ.

The results are shown in Table 2 and confirm the findings
from the illustration that the mode from the joint posterior
(PML) and the mode from the marginal posterior (MAP)
perform very similarly. Both produced approximately unbiased
estimates of the latent correlation, except for the condition
with a very large correlation (ρ = 0.90) and a small sample
size (N = 30). By contrast, the mean (EAP) and the median
(Med) of the marginal posterior provided negatively biased
estimates, particularly in conditions with small sample sizes.
However, the EAP and Med were also less variable (i.e., smaller
empirical sampling variability) than the estimates produced by
both the PML estimate and the MAP, resulting in overall more
accurate estimates in terms of the RMSE, which combines
bias and variability. The results also show that there is a
turning point at which, with a larger true correlation, the
bias introduced by the EAP outweighs the gains in efficiency
(i.e., less variable estimates of the EAP). Thus, the EAP
seems to be most beneficial with a small to moderate true
correlation (i.e., ρ ≤ 0.50) and does not generally result
in more accurate estimates of the latent correlation. A very
similar pattern holds true for the Med. However, in almost
all conditions, the Med was outperformed by either the EAP
or the MAP in terms of RMSE. Notably, the multivariate
mode (PML) performed similarly to the univariate mode
(MAP). However, in other models, particularly with strongly
correlated parameter estimates, the multivariate and univariate
modes can provide substantially different point estimates.7

Finally, the findings confirm that with large samples, the

7For example, in the context of state-trait models, Lüdtke et al. (2018) found
in simulation studies that PML (obtained from constrained ML estimation) was
clearly outperformed by the MAP (obtained from MCMC) in terms of the accuracy
of the estimated variance components (e.g., stable trait variance, state variance).
This can be explained by the fact that using marginal distributions stabilizes point
estimates if model parameters are substantially correlated.
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FIGURE 3 | Illustrating the difference between the joint and marginal posterior distribution: the red square in the first row indicates the (multivariate) mode of the joint
posterior distribution for N = 30 (upper left panel) and N = 100 (upper right panel); the green triangle, blue circle, and purble star in the second row indicate the
(univariate) mode, mean, and median of the marginal posterior distribution for the correlation ρ for N = 30 (lower left panel) and N = 100 (lower right panel). Note
that with N = 30, the mode of the joint posterior (PML) for ρ strongly deviates from the mean of the marginal posterior (EAP).

different Bayesian point estimates converge and produce almost
identical results.

We also investigated the performance of the different Bayesian
point estimates for the loading parameter λ (see for the detailed
results Supplementary 1 at https://doi.org/fwr7). Across all
conditions (i.e., true correlations and sample sizes) the biases
for the four estimators were relatively small (PML: M = −0.001,
range = −0.010 to 0.005; MAP: M = −0.004, range = −0.019
to 0.006; Med: M = −0.013, range = −0.040 to 0.003; EAP:
M = −0.017, range = −0.050 to 0.001). In addition, the PML
provided slightly more accurate estimates in terms of RMSE
than the three Bayesian estimates that were based on the
marginal posterior.

In the following, we report the results of two simulation
studies that provide a more comprehensive comparison of the
different Bayesian point estimates. In these simulations, MCMC
methods are used to evaluate the high-dimensional integrals that

are needed for computing the MAP, EAP, and Med from the
marginal posterior distribution.

SIMULATION STUDY 1

Simulation study 1 had two main goals. First, we evaluated
the performance of the different Bayesian estimators and
compared them with unconstrained ML estimation. For small
sample sizes, we expected unconstrained ML estimation to
show serious estimation problems (i.e., non-convergence or
inadmissible parameter estimates). In addition, based on our
illustration, we assumed that using the EAP (obtained from
MCMC) as a point estimate would produce more stable
estimates of latent correlations than the multivariate mode
from PML estimation, particularly in conditions with small
sample sizes and small to moderate correlations. Second, we
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TABLE 2 | Illustrating differences between the mode of the joint posterior (PML) and the mode (MAP), median (Med), and mean (EAP) of the marginal posterior as point
estimators of the correlation: bias, standard deviation, and RMSE as a function of the true correlation (ρ) and sample size (N).

Bias SD RMSE

ρ N PML MAP Med EAP PML MAP Med EAP PML MAP Med EAP

0.1 30 0.000 0.001 −0.017 −0.024 0.417 0.416 0.322 0.293 0.417 0.416 0.322 0.294

50 0.005 0.007 −0.003 −0.007 0.301 0.305 0.273 0.259 0.301 0.305 0.272 0.259

100 −0.011 −0.009 −0.011 −0.012 0.210 0.213 0.208 0.205 0.211 0.213 0.208 0.206

1000 0.001 0.001 0.001 0.001 0.061 0.061 0.060 0.060 0.061 0.061 0.060 0.060

0.3 30 −0.001 0.002 −0.053 −0.073 0.410 0.406 0.308 0.281 0.410 0.405 0.312 0.290

50 0.007 0.010 −0.019 −0.031 0.294 0.295 0.258 0.246 0.294 0.295 0.259 0.248

100 0.002 0.006 −0.002 −0.006 0.196 0.198 0.192 0.189 0.196 0.198 0.192 0.189

1000 −0.002 −0.002 −0.003 −0.003 0.061 0.061 0.061 0.061 0.061 0.061 0.061 0.061

0.5 30 0.005 0.006 −0.093 −0.126 0.345 0.340 0.262 0.244 0.345 0.340 0.278 0.274

50 0.006 0.010 −0.040 −0.060 0.278 0.276 0.237 0.226 0.278 0.276 0.241 0.234

100 0.004 0.008 −0.008 −0.015 0.186 0.185 0.174 0.169 0.186 0.185 0.174 0.170

1000 0.001 0.002 0.001 0.001 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060

0.7 30 −0.026 −0.024 −0.150 −0.192 0.299 0.292 0.231 0.221 0.300 0.293 0.275 0.292

50 −0.004 −0.002 −0.081 −0.108 0.234 0.229 0.190 0.183 0.234 0.229 0.206 0.212

100 0.001 0.003 −0.030 −0.043 0.169 0.166 0.142 0.137 0.169 0.166 0.145 0.143

1000 −0.001 0.000 −0.001 −0.001 0.054 0.054 0.055 0.055 0.054 0.054 0.055 0.055

0.9 30 −0.069 −0.070 −0.227 −0.277 0.218 0.213 0.182 0.181 0.228 0.224 0.290 0.331

50 −0.039 −0.039 −0.145 −0.178 0.164 0.160 0.132 0.131 0.169 0.165 0.196 0.221

100 −0.021 −0.022 −0.083 −0.102 0.124 0.122 0.095 0.091 0.126 0.124 0.126 0.137

1000 0.001 0.001 −0.006 −0.009 0.052 0.052 0.045 0.043 0.052 0.052 0.045 0.044

SD = standard deviation of empirical sampling distribution; RMSE = root mean square error; ρ = true latent correlation; N = sample size; PML = mode of joint posterior
(obtained from maximizing the joint posterior); MAP = mode of marginal posterior (obtained from maximizing the marginal posterior); Med = median of marginal posterior
(obtained from numerical integration); EAP = mean of marginal posterior (obtained from numerical integration). Biases smaller than −0.05 or larger than 0.05 are
printed in bold.

evaluated the extent to which the parameter estimates of the
Bayesian approach are sensitive to different specifications of the
prior distributions for the standardized loadings and the latent
correlation. We assumed that by choosing weakly informative
and correctly specified prior distributions (i.e., four-parameter
beta distributions), the estimates of the latent correlations could
be stabilized. Furthermore, we explored whether the Bayesian
approach produces more accurate estimates, even with mildly
misspecified prior distributions. Overall, we expected the impact
of choosing different prior distributions to be more pronounced
with small sample sizes.

Simulation Model and Conditions
The data-generating model was a two-factor CFA model, as
given by Figure 1. Each factor was measured by three mean-
centered and normally distributed indicators. The indicators
were assumed to be parallel, with standardized loadings of 0.50
and a variance of one. This resulted in a reliability of RelI = 0.50
for each scale (i.e., sum score of the three items) and a reliability
of Rel1 = 0.25 for a single indicator. We manipulated the latent
correlation between the two factors (ρ = 0.30, 0.50, and 0.70) and
the sample size (N = 30, 50, and 100). For each of the 3 × 3 = 9
conditions, we generated 1,000 simulated data sets.

Analysis Models and Outcomes
Each of the simulated data sets was analyzed with a two-factor
CFA model in which the loadings were freely estimated, and the

variances of the two factors were each fixed to one. The model had
21− 13 = 8 degrees of freedom (the mean structure was assumed
to be saturated). Two ML estimation approaches were used. In
unconstrained ML estimation, we imposed no constraints on
the parameter estimates (loadings, residual variances, and the
latent correlation). In constrained ML estimation, we used the
parameterization in which standard deviations of the indicators
are constrained to be positive, the standardized loadings are
restricted to the interval [0, 1], and the latent correlation is
restricted to the interval [−1, 1]8. In the Bayesian approach,
we used PML estimation and MCMC methods, and varied the
prior distribution for the standardized loadings and the latent
correlation. PML estimation was implemented using a quasi-
Newton optimization (employing the nlminb optimizer in the
R package stats) using the wrapper function pmle from the
R package LAM (Robitzsch, 2020). The standard errors were
calculated based on the second derivatives of the observed log-
likelihood function (see Equation 15). The estimated standard
errors were used to calculate 95% confidence intervals.

8For constrained ML estimation, we also included the equivalent parameterization
(see Equation 20) in which the loadings and residual variances were constrained
to be positive and the latent correlation was restricted to the interval [−1, 1].
As expected, the results for both parameterizations were virtually identical in
every replication (results were numerically identical in 95.5% of the replications
for N = 30, in 98.4% for N = 50, and in 99.9% for N = 100). Moreover,
the parameterization using standardized instead of unstandardized loadings
performed slightly better in terms of RMSE.
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For the MCMC method, we implemented an adaptive
Metropolis-Hastings algorithm in which the proposal
distribution is adapted during the burn-in phase (see Equation
18; Draper, 2008). In this procedure, a desirable acceptance rate
r along with a tolerance level (r − δ, r + δ) is specified (in our
case r = 0.45 and δ = 0.10). Then, in the burn-in phase of the
algorithm, the empirical acceptance rates r∗ for each parameter
are calculated in batches of 50 iterations. At the end of each
batch, the proposal distribution standard deviation (e.g., for the
latent correlation τρ ) is updated as follows:

τρ =


τ̃ρ

(
2− (1−r∗)

1−r

)
if r∗ > r + δ

τ̃ρ

(
1/
(

2− r∗
r

))
if r∗ < r − δ

τ̃ρ else

, (33)

Where r∗ is the empirical acceptance rate from the most
recent batch of iterations, and τ̃ρ is the proposal distribution
standard deviation that was used in the most recent batch. Thus,
the proposal distribution standard deviations are modified if the
acceptance rate is not within the tolerance level (r − δ, r + δ).
The modification of the proposal distributions was stopped after
the burn-in phase (2,500 iterations). To evaluate the tuning phase
for the proposal distribution standard deviations, we investigated
the empirical acceptance rates for one condition of the main
simulation. The average acceptance rate for the model parameters
was close to the desired value of 0.45, which is considered optimal
in the literature to achieve efficient MCMC chains (Hoff, 2009).

This algorithm was implemented using the function amh from
the R package LAM (Robitzsch, 2020). Before running the main
simulation study, we investigated the behavior of the MCMC
sampler in preliminary simulations by inspecting two criteria: (a)
the potential scale reduction factor (PSR; Gelman et al., 2014),
and (b) the effective sample size (see Zitzmann and Hecht, 2019,
for a discussion). Applying these two criteria suggested that an
average chain length of 5,000 iterations with a burn-in period of
2,500 iterations was sufficient to provide a good approximation
of the posterior distribution. The Bayesian point estimates were
defined as the mean (EAP), mode (MAP), and median (Med) of
the marginal posterior distribution. Furthermore, the Bayesian
credible interval (BCI) was defined by the 2.5th and the 97.5th
percentiles of the posterior distribution (Gelman et al., 2014).

For both the PML and the MCMC methods, we varied the
prior distributions for the standardized loadings and the latent
correlation. For each standardized loading, we specified a four-
parameter beta distribution Beta4(µλ, νλ, ε, 1 − ε) with a
prior guess of µλ = 0.5 and prior sample sizes of νλ = 1
and νλ = 3 (see Figure 2). In addition, we included a prior
distribution with µλ = 0.5 and νλ = 0, which corresponds to a
uniform distribution on [ε, 1 − ε]. For the latent correlation, we
specified a four-parameter beta distribution Beta4(µρ, νρ, −1 +
ε, 1 − ε) with a prior guess that matched the true correlation
of the data-generating model (i.e., µρ = ρ) and two levels of
prior sample sizes (νρ = 1 and 3). We also specified a prior
distribution with µρ = 0 and νρ = 0, which corresponds to
a uniform distribution on [−1 + ε, 1 − ε]. This resulted in
3 (loadings) × 3 (correlations) = 9 different specifications of

the prior distributions. Note that these prior distributions were
correctly specified (i.e., prior guess matched the true population
value or uniform prior distribution was specified) and only
differed in the amount of information that was incorporated into
the prior specification (i.e., prior sample size).

We also investigated the impact of misspecified prior
distributions. To this end, we specified a wide range of four-
parameter beta distributions for the standardized loadings and
the correlation. For the standardized loadings, we included
misspecified priors with a prior guess of µλ = 0.80 and prior
sample sizes of νλ = 1 and νλ = 3. For the latent correlation,
we specified a prior distribution with a prior guess of µρ = 0.50
and prior sample sizes of νρ = 1, and νρ = 3. However, we also
included misspecified priors that underestimated (with a prior
guess of µρ = 0.20) or overestimated (with a prior guess of
µρ = 0.80) the true correlation. Again, each misspecified prior
was included with prior sample sizes of νρ = 1 and νρ = 3.
In addition, we used an uniform distribution for the latent
correlation (i.e., µρ = 0 and νρ = 0). These prior settings for
correlations were fully crossed with the different prior settings for
correctly and misspecified prior settings on standardized factor
loadings. In total, we specified 5 (standardized loadings) × 7
(correlations) = 35 models with different prior specifications, and
we estimated them with both the PML and the MCMC methods.

For the standard deviations of the indicator variables, we
used improper prior distributions that are constant (Muthén
and Asparouhov, 2012). The specification of the improper prior
distribution for the standard deviation was held constant across
the conditions of the simulation and the analysis models. The
R code for the data-generating model and the different analysis
models is provided in Supplementary 2 at https://doi.org/fwr7.

We used three criteria to evaluate the different estimation
approaches: bias, RMSE, and coverage rate. Bias was calculated by
determining the difference between the mean parameter estimate
and the true population parameter value from each design cell.
We assessed the overall accuracy with the (empirical) RMSE,
which combines the squared empirical bias and the variance
of the parameter estimates into a measure of overall accuracy.
Finally, we determined the coverage rate of the 95% confidence
intervals. A coverage rate between 91% and 98% was considered
acceptable (Muthén and Muthén, 2002).

Results
We first report the results for the two ML estimation approaches.
Second, we compare the different Bayesian estimators in the case
of correctly specified prior distributions. Third, we investigate the
impact of misspecified prior distributions on the performance of
the Bayesian approach.

ML Estimation
For unconstrained ML estimation, a solution was considered to
show estimation problems when the algorithm did not converge
using the defaults in the nlminb optimizer or when the algorithm
converged to a solution that included an inadmissible estimate
(i.e., correlation smaller than−1 or larger than 1). Table 3 shows
that the percentage of estimation problems for unconstrained
ML estimation strongly depended on the sample size and the
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TABLE 3 | Simulation study 1: percentage of solutions with estimation problems
for unconstrained maximum likelihood (ML) estimation and constrained maximum
likelihood (CML) estimation by magnitude of the true correlation (ρ) and
sample size (N).

ML CML

ML Conv Conv+Adm Boundary ML = CML

ρ ρ ρ ρ

N 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

30 54.5 64.4 67.9 51.3 57.3 53.4 6.3 11.1 21.6 28.0 33.0 34.8

50 73.1 82.7 88.0 70.9 77.5 73.9 3.4 6.3 17.0 53.1 61.7 64.3

100 94.0 97.6 99.6 93.9 96.4 92.8 0.4 1.4 7.2 87.1 92.8 91.6

ML Conv = percentage of converged solutions for unconstrained ML estimation;
ML Conv+Adm = percentage of converged solutions with admissible values for
unconstrained ML estimation, that is, estimated correlation was within the interval
[−1, 1]; CML Boundary = percentage of solutions for constrained ML estimation
with boundary estimate for correlation; ML = CML = percentage of solutions
in which estimated correlation for ML and CML estimations were numerically
identical (up to three decimal places). Note that ML Conv+Adm are not conditional
percentages and, thus, values cannot exceed those of ML Conv.

magnitude of the true correlation. For example, with N = 30
and ρ = 0.30, only 54.5% of the replications converged, and
51.3% of the replications provided converged solutions with
admissible estimates. In contrast, for constrained ML estimation,
all replications converged. However, in small samples and with
a large correlation, a substantial percentage of the solutions
for constrained ML estimation showed values at the boundary
of the parameter space (e.g., estimated correlation equals one).
Furthermore, the results also show that with increasing sample
size, the estimates of unconstrained ML and constrained ML
converged to each other. For example, in the condition with
N = 100 and a large correlation (ρ = 0.70), unconstrained
and constrained estimation provided (numerically) identical
estimates of the latent correlation in 91.6% of the replications.

Table 4 shows the bias and RMSE for unconstrained and
constrained ML estimation as a function of the sample size and
the true correlation. The results are presented for three different
subsets of replications. First, we included only replications in
which unconstrained ML estimation converged and estimated
correlations had admissible values; that is, they fell within the
range of −1 and 1 (“Conv+Adm” in Table 4). Second, we
present results for all replications in which unconstrained ML
estimation converged, and inadmissible values (i.e., correlations
smaller than −1 or larger than 1) were truncated to −1 or 1
(“Conv”). Third, we show the results for all replications (“All”).
Note that only constrained ML estimation converged for all
replications. As can be seen, the two approaches performed very
similarly across the different subsets of replications. The results
also show that the estimates produced from replications without
estimation problems (“Conv+Adm”) are a highly selective set
of estimates that strongly differ in terms of RMSE from the
estimates that are provided by the full set of replications (“All”).
In the following, we use constrained ML estimation, which is
equivalent to PML estimation with uniform distributions on the
admissible parameter space, and compare it with the Bayesian
estimation approach.

Bayesian Estimation With Correctly Specified Priors
Table 5 shows the bias for PML and the EAP (obtained from the
MCMC method) with uniform and different correctly specified
prior distributions as a function of the sample size and the
magnitude of the true correlation. In these specifications, the
prior guesses for the correlation (i.e., µρ = 0.30, 0.50, or 0.70)
as well as the standardized loading (i.e., µλ = .50) were set to
the true value (when the prior sample sizes of the corresponding
priors were at least one). Note that when using a prior sample
size of zero, µρ was set to zero, and a uniform distribution was
specified. As can be seen, both the PML and the EAP produced
biased estimates of the correlation, particularly when the sample

TABLE 4 | Simulation study 1: bias and RMSE for unconstrained maximum likelihood (ML) estimation and constrained maximum likelihood (CML) estimation of the latent
correlation as a function of the true correlation (ρ), the sample size (N), and different sets of replications.

Bias RMSE

Conv+Adm. Conv. All Conv+Adm. Conv. All

ρ N ML CML ML CML CML ML CML ML CML CML

0.3 30 0.022 0.055 0.043 0.068 −0.016 0.352 0.358 0.395 0.395 0.411

50 0.025 0.035 0.040 0.049 −0.003 0.284 0.288 0.310 0.309 0.328

100 0.003 0.006 0.004 0.006 −0.004 0.202 0.201 0.203 0.203 0.210

0.5 30 −0.037 −0.003 0.019 0.048 −0.025 0.299 0.295 0.332 0.322 0.360

50 −0.042 −0.032 −0.015 −0.005 −0.049 0.266 0.262 0.299 0.285 0.316

100 0.000 0.002 0.006 0.008 0.003 0.196 0.194 0.202 0.201 0.206

0.7 30 −0.124 −0.088 −0.034 −0.008 −0.068 0.299 0.269 0.299 0.274 0.344

50 −0.071 −0.063 −0.012 −0.005 −0.035 0.242 0.234 0.252 0.245 0.275

100 −0.026 −0.025 −0.004 −0.003 −0.004 0.172 0.171 0.184 0.183 0.185

RMSE = root mean square error; ρ = true latent correlation; N = sample size; ML = unconstrained ML estimation; CML = constrained ML estimation. Conv+Adm = all
replications in which unconstrained ML converged with admissible values, that is, estimated correlation was within the interval [−1, 1]; Conv = all replications in which
unconstrained ML estimation converged and estimated correlations outside [−1, 1] are truncated to −1 or 1; All = all replications (only constrained ML produced estimates
for all replications). Biases smaller than −0.05 or larger than.05 are printed in bold.
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TABLE 5 | Simulation study 1: bias and RMSE for the mode of the joint posterior (PML) and the mean of the marginal posterior (EAP) as Bayesian point estimates of the
latent correlation with different correctly specified prior distributions as a function of the sample size and true correlation (ρ).

Bias SD RMSE Gain

ρ ρ ρ

N Meth νρ νλ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

30 PML 0 0 −0.001 −0.052 −0.069 0.415 0.393 0.330 100 100 100

0 1 0.034 −0.010 −0.017 0.434 0.399 0.313 105 101 93

0 3 0.043 0.001 −0.003 0.424 0.389 0.302 103 98 90

1 0 0.086 0.153 0.158 0.370 0.364 0.264 92 100 91

1 1 0.119 0.198 0.192 0.374 0.347 0.230 95 101 89

1 3 0.121 0.213 0.209 0.364 0.346 0.219 92 102 90

3 0 0.049 0.092 0.165 0.283 0.257 0.233 69 69 85

3 1 0.086 0.117 0.190 0.291 0.249 0.208 73 69 83

3 3 0.088 0.121 0.210 0.280 0.245 0.196 71 69 85

EAP 0 0 −0.072 −0.146 −0.215 0.284 0.263 0.236 71 76 95

0 1 −0.021 −0.077 −0.124 0.331 0.300 0.245 80 78 81

0 3 −0.008 −0.057 −0.098 0.342 0.310 0.248 83 79 79

1 0 0.058 0.129 0.104 0.221 0.173 0.149 55 54 54

1 1 0.081 0.153 0.133 0.266 0.209 0.137 67 65 57

1 3 0.089 0.164 0.136 0.277 0.221 0.138 70 69 58

3 0 −0.006 0.002 0.087 0.169 0.151 0.105 41 38 41

3 1 0.018 0.035 0.112 0.191 0.178 0.116 46 46 48

3 3 0.024 0.045 0.122 0.197 0.185 0.118 48 48 50

50 PML 0 0 −0.018 −0.010 −0.041 0.335 0.302 0.275 100 100 100

0 1 0.004 0.021 −0.011 0.343 0.293 0.255 102 97 92

0 3 0.006 0.027 0.001 0.331 0.286 0.247 99 95 89

1 0 0.042 0.139 0.148 0.312 0.321 0.248 94 116 104

1 1 0.061 0.165 0.167 0.310 0.309 0.228 94 116 102

1 3 0.060 0.170 0.188 0.301 0.305 0.216 91 116 103

3 0 0.021 0.070 0.149 0.250 0.234 0.228 75 81 98

3 1 0.045 0.094 0.161 0.257 0.220 0.212 78 79 96

3 3 0.045 0.097 0.181 0.249 0.217 0.202 75 79 98

EAP 0 0 −0.068 −0.091 −0.147 0.251 0.230 0.213 77 82 93

0 1 −0.033 −0.037 −0.085 0.278 0.245 0.213 83 82 82

0 3 −0.026 −0.022 −0.065 0.283 0.250 0.215 85 83 81

1 0 0.013 0.103 0.095 0.214 0.191 0.149 64 72 63

1 1 0.027 0.123 0.117 0.243 0.217 0.141 73 82 66

1 3 0.032 0.131 0.127 0.250 0.226 0.142 75 86 68

3 0 −0.023 −0.004 0.074 0.170 0.158 0.131 51 52 54

3 1 −0.004 0.027 0.096 0.191 0.175 0.138 57 59 60

3 3 0.003 0.036 0.102 0.195 0.180 0.138 58 61 62

100 PML 0 0 −0.006 −0.004 0.005 0.222 0.211 0.183 100 100 100

0 1 0.005 0.008 0.013 0.220 0.203 0.176 99 96 97

0 3 0.009 0.012 0.017 0.216 0.199 0.173 97 95 95

1 0 0.021 0.099 0.165 0.216 0.266 0.196 98 134 140

1 1 0.032 0.101 0.166 0.211 0.252 0.191 96 129 139

1 3 0.035 0.100 0.168 0.208 0.246 0.189 95 126 139

3 0 0.016 0.040 0.156 0.193 0.185 0.187 87 89 134

3 1 0.027 0.048 0.161 0.190 0.179 0.184 86 88 134

3 3 0.030 0.052 0.159 0.188 0.177 0.181 85 87 132

EAP 0 0 −0.039 −0.052 −0.056 0.191 0.188 0.166 88 92 96

0 1 −0.019 −0.028 −0.033 0.198 0.190 0.161 90 91 90

0 3 −0.014 −0.018 −0.022 0.200 0.189 0.160 90 90 88

1 0 −0.006 0.045 0.105 0.183 0.199 0.136 82 96 94

(Continued)
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TABLE 5 | Continued

Bias SD RMSE Gain

ρ ρ ρ

N Meth νρ νλ 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

1 1 0.007 0.059 0.114 0.190 0.202 0.132 86 100 96

1 3 0.013 0.064 0.119 0.192 0.203 0.131 87 101 97

3 0 −0.020 −0.011 0.074 0.157 0.158 0.138 71 75 86

3 1 −0.004 0.007 0.085 0.164 0.159 0.136 74 75 88

3 3 0.002 0.015 0.089 0.167 0.159 0.135 75 76 88

SD = standard deviation of empirical sampling distribution; RMSE = root mean square error. PML = penalized maximum likelihood (mode of joint posterior); EAP = mean
of marginal posterior; νρ = prior sample size for latent correlation; νλ = prior sample size for standardized loading; biases smaller than -0.05 or larger than 0.05 are printed
in bold. For the RMSE gain, the RMSE of PML estimation with uniform prior distributions is used as a reference method; values smaller than 100 indicate that the RMSE
of the respective method is lower than the RMSE of the reference method.

sizes were small (N ≤ 50). In addition, there was a tendency
that increasing the prior sample size from νρ = 1 to νρ = 3,
and thereby selecting a more informative prior distribution for
the latent correlation, decreased the bias for both the PML
(νρ = 1: M = 0.129, SD = 0.053, range = 0.021 to 0.213; νρ =3:
M = 0.099, SD = 0.044, range = 0.016 to 0.210) and the EAP
(νρ =1: M = 0.086, SD = 0.038, range = −0.006 to 0.164; νρ =3:
M = 0.036, SD = 0.023, range = −0.023 to 0.122). Interestingly,
the results were less clear for increasing the sample size from νρ =
0 to νρ = 1, particularly for the PML.

For the RMSE, which combines bias and the variability
of an estimator, we used the PML method with uniform
prior distributions on the standardized loadings and the latent
correlation as a reference method. As this specification of the
PML method is equivalent to constrained ML estimation, it
allows a direct comparison of the Bayesian approaches with
the best performing ML approach. The RMSE gain in Table 5
reports the relative gain of an estimator compared to the reference
method (i.e., values larger/smaller than 100 indicate that the
RMSE for the respective method is larger/smaller than for the
reference method). The results show that the EAP obtained from
the MCMC method clearly outperformed PML estimation across
all sample size conditions and true values of the latent correlation.
As expected from the illustration, the differences between the
mode of the joint posterior distribution (PML) and the mean
(EAP) of the marginal posterior were most pronounced in
conditions with a very small sample size (N = 30) and a small true
correlation. For example, in the condition with N = 30, ρ = 0.30,
and uniform prior distributions, the RMSE of the estimates
produced by the EAP were only 71% as large as the estimates
produced by the PML. This is an important finding because it
clearly shows that, even with (diffuse) uniform distributions on
the loadings and the correlation, using the EAP (obtained from
MCMC) stabilizes the parameter estimates compared to the PML
(or constrained ML) method.

To further understand the RMSE differences, we calculated
the empirical standard deviation (SD) of the estimators across
the 1000 replications within each cell. The results show that the
estimates of the PML were consistently more variable (across the
different prior specifications) than those of the EAP. For both
estimators, PML and EAP, selecting a more informative prior

distribution for the correlation (e.g., νρ = 3 instead of νρ = 1) had
a large positive effect on the accuracy of the parameter estimates.
By contrast, choosing a more informative prior distribution
for the standardized loadings did not consistently influence the
accuracy of the estimates of the latent correlation. Thus, adding
information to the prior distribution for the parameter of interest
was the only specification that helped to stabilize estimates of the
latent correlation in small sample sizes.

The main findings for bias and RMSE are summarized in
Figure 4 for the case with uniform prior distributions on the
standardized loadings and the correlation. We also show the
results for the mode (MAP) and the median (Med) of the
marginal posterior of ρ. As can be seen, the Med performed
similar to the EAP but showed slightly larger RMSE values.
By contrast, the MAP provided less accurate estimates of the
correlation in terms of RMSE and was even outperformed by the
PML in almost all conditions (except for N = 100 and ρ = 0.3).

Furthermore, we assessed the coverage rates for the PML and
MCMC methods. As can be seen in Table 6, the PML method
provided acceptable coverage rates with percentages close to
the nominal 95% in conditions with N = 100. In addition, the
coverage rates produced by the MCMC method were sometimes
too low, even in conditions with N = 100. However, these low
coverage rates can be explained by the fact that the MCMC
method was also more biased in these conditions.

Finally, we also investigated the bias and RMSE of the different
Bayesian estimates for a standardized loading. The main results
are summarized in Figure 5 for the case with uniform prior
distributions (for the detailed results, see Supplementary 3
at https://doi.org/fwr7). Overall, the findings are in line with
the results for the correlation. The EAP produced the most
accurate estimates of the loadings in terms of RMSE across
the investigated conditions, even though the estimates were
slightly negatively biased, particularly in conditions with N = 30.
Interestingly, with smaller sample sizes, the univariate mode
(MAP) was clearly outperformed by the multivariate mode
(PML). Further simulation research should compare the different
Bayesian point estimates for more extreme values of the loading
(i.e., standardized loading of 0.3 or 0.9). It is possible that with
smaller or larger loading values, the bias introduced by the
EAP outweighs the gains in variability, resulting in different
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FIGURE 4 | Simulation Study 1: Bias (left panels) and RMSE gain (right panels) of the estimators of the correlation (ρ) as a function of the sample size and the
magnitude of the true correlation. For the RMSE gain, PML is used as a reference method; values smaller than 100 indicate that the RMSE of the respective method
is lower than the RMSE of the reference method; PML = mode of joint posterior; MAP = mode of marginal posterior; Med = median of marginal posterior;
EAP = mean of marginal posterior. Results are shown for models with uniform prior distributions for the correlation and the standardized loadings.

conclusions about the overall accuracy of the different Bayesian
point estimates.

Bayesian Estimation With Misspecified Priors
We also assessed the impact of misspecified prior distributions.
Table 7 shows the bias and RMSE for N = 30 and N = 100.
The main findings can be summarized as follows. First,

even in the case of misspecified prior distributions, the EAP
outperformed the PML in terms of the RMSE and provided
more accurate parameter estimates across most conditions and
prior specifications. Second, a misspecified prior distribution
for the loading had only a small and sometimes even positive
effect on the RMSE. One possible explanation is that we only
included misspecified priors that overestimated the true size of
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TABLE 6 | Simulation study 1: coverage rates of the latent correlation for
penalized maximum likelihood and Markov chain monte carlo methods with
different correctly specified prior distributions as a function of the magnitude of the
true correlation (ρ) and sample size.

PML MCMC

ρ ρ

N νρ νλ 0.3 0.5 0.7 0.3 0.5 0.7

30 0 0 85.8 87.0 91.1 98.9 98.6 98.0

0 1 87.6 91.2 96.8 97.5 97.9 97.9

0 3 88.5 94.1 97.5 97.3 97.7 98.1

1 0 88.9 90.3 94.7 99.2 98.0 89.3

1 1 90.0 93.6 97.7 98.2 95.9 84.3

1 3 90.7 94.2 98.3 98.2 95.5 83.3

3 0 92.8 95.6 96.8 99.6 99.5 99.4

3 1 95.2 97.0 98.3 99.6 99.0 98.5

3 3 97.5 97.8 98.8 99.2 99.1 98.0

50 0 0 86.6 90.1 93.1 97.1 98.2 97.4

0 1 88.4 92.7 95.7 95.5 96.1 96.7

0 3 90.1 93.6 97.4 94.9 95.7 97.0

1 0 87.9 90.0 96.5 97.5 96.9 89.4

1 1 89.9 92.4 98.2 96.2 95.6 87.3

1 3 92.0 91.8 98.8 95.6 93.8 85.3

3 0 91.8 96.4 97.7 98.8 98.8 98.3

3 1 95.1 97.2 98.7 98.0 98.3 96.5

3 3 96.7 97.0 99.3 97.9 97.5 95.5

100 0 0 89.9 92.7 97.0 95.6 95.7 96.8

0 1 92.1 94.8 97.0 95.3 96.1 97.2

0 3 92.8 95.4 97.5 94.8 96.4 96.9

1 0 91.0 92.3 94.4 96.8 96.7 89.9

1 1 92.3 92.5 94.6 96.1 94.9 88.5

1 3 93.0 91.0 95.1 95.5 94.5 87.8

3 0 93.8 95.8 95.1 97.3 98.5 97.0

3 1 95.5 96.3 95.1 97.1 97.8 96.4

3 3 95.8 96.1 95.8 96.6 98.0 95.1

PML = mode of joint posterior (obtained from penalized maximum likelihood) with
standard errors (calculated from observed information matrix); MCMC = Bayesian
Credible Interval (BCI) based on MCMC; ρ = true latent correlation; νρ = prior
sample size for latent correlation; νλ = prior sample size for standardized loading.
Coverage rates smaller than 91% or larger than 98% are printed in bold.

the loading (i.e., µλ = 0.80). Overestimating the reliability of the
indicators by assuming a large positive loading comes close to a
manifest approach that ignores the unreliability of scale scores
when calculating the correlation. However, with small sample
sizes, it has been shown that a manifest approach can produce
more accurate estimates of structural relationships than a latent
approach that corrects for measurement error (e.g., Lüdtke et al.,
2008; Ledgerwood and Shrout, 2011; Savalei, 2019). Third, for
the prior distribution of the correlation, the results clearly show
that overestimating the true size of the latent correlation (i.e.,
µρ = 0.80) had a more negative impact on the accuracy of the
estimates in terms of RMSE than underestimating the size of the
true correlation (i.e., µρ = 0.20). More importantly, choosing a
small correlation of 0.20 as a prior guess for the prior distribution,
even though misspecified, produced more accurate estimates of

the correlation than the Bayesian approach with uniform priors
on the loadings and the correlation, particularly when the sample
size was N = 30. Thus, a conservative approach that uses smaller
prior guesses for the latent correlation seems to be a promising
strategy when the goal is to stabilize the estimates of the latent
correlations with weakly informative prior distributions (i.e.,
prior sample sizes of 1 or 3).

SIMULATION STUDY 2

The previous simulation study assumed that the observed
variables were multivariate normally distributed. However, the
true distribution is rarely known for real data, and the CFA
will likely be misspecified to some extent. In Simulation Study
2, we investigate how robust the Bayesian approach is against
the misspecification of the distributional assumptions. More
specifically, we consider the case of observed variables that
are linearly related but have non-normal marginal distributions
(Foldnes and Olsson, 2016). Again, we compared the different
Bayesian point estimates obtained from the joint posterior (PML)
or the marginal posterior distribution (MAP, EAP, and Med). As
a benchmark, we also included ML approaches that are based
on robust estimation approaches (Yuan et al., 2004; Yuan and
Zhang, 2012). For further comparisons, we also considered an
unweighted least squares (ULS) estimation method (Browne,
1974). Limited information methods such as ULS are expected
to be more robust in modeling violations than ML estimators
(MacCallum et al., 2007).

Simulation Model and Conditions
The data-generating model was again a two-factor CFA model
with six observed variables. We generated a covariance structure
(see Equation 2) that followed a CFA model with parallel and
standardized loadings of 0.50 and a variance of one for the
observed variables. The procedure of Foldnes and Olsson (2016)
was used to generate six observed variables that preserved the
covariance structure and had a prespecified level of skewness
and kurtosis for the marginal distributions of observed variables.
Six different combinations of skewness and kurtosis values were
chosen to implement a range of non-normal distributions for
the observed variables: 0/0 (skewness/excess kurtosis), 0/3, 0/7,
1/3, 1/7, and 2/7. Again, we manipulated the latent correlation
between the two factors (ρ = 0.10, 0.30, 0.50, 0.70, and 0.90)
and the sample size (N = 30, 50, 100, and 500). For each
of the 5 × 5 × 4 = 100 conditions, we generated 1,000
simulated data sets.

Analysis Models
Each of the simulated data sets was analyzed with a two-
factor CFA in which the loadings were freely estimated, and
the variances of the two factors were set to one. We used PML
estimation with a uniform prior distribution on the standardized
loadings and the correlation. In addition, we included a robust
version of PML (PMLR) in which the sufficient statistics x and S
were replaced by a robust sample mean vector xrob and a robust
sample covariance matrix Srob that were obtained with the R
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FIGURE 5 | Simulation Study 1: Bias (left panels) and RMSE gain (right panels) of the estimators of a loading (λ) as a function of the sample size and the
magnitude of the true correlation. For the RMSE gain, PML is used as a reference method; values smaller than 100 indicate that the RMSE of the respective method
is lower than the RMSE of the reference method; PML = mode of joint posterior; MAP = mode of marginal posterior; Med = median of marginal posterior;
EAP = mean of marginal posterior. Results are shown for models with uniform prior distributions for the correlation and the standardized loadings.

package rsem (Yuan and Zhang, 2012). The robust estimation
procedure provides Huber-Type M-estimates of means and
covariances and has been shown to produce more efficient
parameters, particularly for distributions with heavy tails (Yuan
et al., 2004). For comparison purposes, we also included an ULS
estimation method. The ULS estimate is defined as:

θ̂ULS = arg min
θ

tr
{
(S−6(θ))T (S− 6(θ))

}
(34)

The ULS method was also specified with robustly estimated
means and covariances (ULSR; Yuan et al., 2004). Finally, the
MCMC method was applied to obtain the mode (MAP), mean
(EAP), and median (Med) of the marginal posterior distributions.
We specified uniform distributions for the standardized loadings
and the correlation. For the standard deviations of the indicator
variables, we used improper prior distributions that are constant
for all conditions of the simulation and all (Bayesian) analysis
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TABLE 7 | Simulation study 1: bias and RMSE for the latent correlation as a function of different misspecified prior distributions and the sample size.

Bias RMSE

µλ = 0.5 µλ = 0.8 µλ = 0.5 µλ = 0.8

Meth µρ νρ νλ = 0 νλ = 1 νλ = 3 νλ = 1 νλ = 3 νλ = 0 νλ = 1 νλ = 3 νλ = 1 νλ = 3

N = 30

PML 0 0 −0.038 0.009 0.019 −0.139 −0.022 0.391 0.393 0.379 0.361 0.367

0.5 1 0.161 0.196 0.201 −0.008 0.119 0.388 0.396 0.397 0.325 0.344

0.5 3 0.094 0.120 0.123 −0.019 0.089 0.281 0.281 0.278 0.261 0.263

0.2 1 −0.027 0.021 0.026 −0.114 −0.002 0.320 0.322 0.317 0.323 0.318

0.2 3 −0.086 −0.040 −0.039 −0.136 −0.046 0.269 0.259 0.255 0.290 0.272

0.8 1 0.297 0.328 0.347 0.112 0.237 0.432 0.444 0.447 0.358 0.384

0.8 3 0.337 0.360 0.392 0.153 0.271 0.427 0.436 0.453 0.329 0.373

EAP 0 0 −0.141 −0.070 −0.050 −0.180 −0.103 0.303 0.307 0.314 0.313 0.314

0.5 1 0.131 0.151 0.161 −0.035 0.056 0.222 0.264 0.276 0.247 0.268

0.5 3 0.004 0.038 0.048 −0.066 0.011 0.157 0.188 0.196 0.199 0.202

0.2 1 −0.121 −0.071 −0.058 −0.163 −0.088 0.242 0.248 0.252 0.277 0.268

0.2 3 −0.178 −0.140 −0.131 −0.192 −0.131 0.245 0.231 0.228 0.266 0.243

0.8 1 0.360 0.340 0.330 0.145 0.222 0.387 0.377 0.375 0.282 0.319

0.8 3 0.309 0.320 0.327 0.151 0.231 0.334 0.346 0.352 0.252 0.300

N = 100

PML 0 0 −0.011 0.002 0.006 −0.039 −0.024 0.203 0.196 0.194 0.194 0.181

0.5 1 0.089 0.090 0.090 0.031 0.035 0.273 0.261 0.255 0.231 0.212

0.5 3 0.032 0.042 0.046 0.002 0.014 0.183 0.180 0.179 0.173 0.162

0.2 1 −0.008 0.004 0.008 −0.034 −0.020 0.190 0.184 0.183 0.186 0.173

0.2 3 −0.036 −0.024 −0.020 −0.055 −0.040 0.172 0.165 0.164 0.176 0.164

0.8 1 0.188 0.185 0.163 0.091 0.082 0.332 0.324 0.302 0.262 0.234

0.8 3 0.218 0.216 0.203 0.135 0.118 0.340 0.332 0.321 0.286 0.253

EAP 0 0 −0.059 −0.034 −0.024 −0.113 −0.069 0.191 0.187 0.187 0.207 0.185

0.5 1 0.039 0.054 0.059 −0.053 −0.016 0.199 0.207 0.208 0.195 0.180

0.5 3 −0.016 0.003 0.011 −0.069 −0.030 0.155 0.156 0.157 0.171 0.154

0.2 1 −0.062 −0.039 −0.029 −0.109 −0.066 0.176 0.171 0.171 0.197 0.174

0.2 3 −0.095 −0.072 −0.061 −0.128 −0.086 0.174 0.163 0.160 0.195 0.170

0.8 1 0.191 0.182 0.178 0.038 0.059 0.278 0.270 0.266 0.213 0.204

0.8 3 0.177 0.173 0.176 0.041 0.064 0.248 0.249 0.253 0.195 0.189

RMSE = root mean square error. PML = penalized maximum likelihood (mode of joint posterior); EAP = mean of marginal posterior; µρ = prior guess for latent correlation;
νρ = prior sample size for latent correlation; µλ = prior guess for loading νλ = prior sample size for loading; biases smaller than –0.05 or larger than 0.05 are printed in
bold. For each sample size condition, RMSE values larger than the RMSE for the PML method with uniform priors on loadings (µλ = 0.5, νλ = 0) and the correlation
(µρ = 0, νρ = 0) are printed in bold. The true correlation and loadings were set to ρ = 0.50 and λ = 0.50, respectively.

models. The R code for the data-generating model and the
different analysis models is provided in Supplementary 4 at
https://doi.org/fwr7.

Results
Table 8 shows the bias and RMSE for the different estimators
of the correlation for conditions with a true correlation of
ρ = 0.50 (see Supplementary 5 for detailed information about
the other conditions). We again report RMSE gain with PML as
the reference method (i.e., values larger/smaller than 100 indicate
that the RMSE for the respective method is larger/smaller than
for PML). Overall, the results confirm the previous findings that
the EAP and Med produce (negatively) bias estimates of the
correlation. However, with smaller sample sizes (N ≤ 50), the
estimates of the EAP and the Med were also more accurate in
terms of the RMSE gain. When the variables strongly deviated

from normality and the sample size was large, the robust
estimation approaches (PMLR, ULSR, and ULSR) were slightly
more efficient (i.e., smaller SD of the parameter estimates) than
the different Bayesian point estimates. However, the results
also reveal that, for moderate deviations from normality, the
conclusions about the performance of the different Bayesian
point estimates are relatively robust against distributional
misspecifications. In addition, it should be mentioned that
the multivariate mode (PML) consistently outperformed the
univariate mode (MAP) across all conditions.

Furthermore, we obtained similar results for the estimates
of the loadings (see Supplementary 6); that is, the estimates
produced by the EAP and Med were slightly biased but
overall more accurate in terms of RMSE than the other
approaches. Again, the performance differences between the
Bayesian point estimates were relatively robust against deviations
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TABLE 8 | Simulation study 2: bias and RMSE for the latent correlation as a function of the distribution of the observed variables (skewness and kurtosis) and
the sample size.

Bias RMSE Gain

skew/kurt N PML PMLR ULS ULSR MAP Med EAP PML PMLR ULS ULSR MAP Med EAP

0/0 30 −0.065 −0.067 −0.010 −0.011 −0.003 −0.131 −0.154 100 101 99 101 116 80 77

50 −0.019 −0.020 0.016 0.017 −0.018 −0.085 −0.092 100 101 96 98 114 85 82

100 −0.014 −0.016 0.008 0.008 −0.051 −0.063 −0.061 100 101 94 95 116 95 92

500 −0.002 −0.002 0.002 0.001 −0.011 −0.012 −0.013 100 101 99 100 102 101 101
0/3 30 −0.038 −0.033 0.000 0.007 0.027 −0.106 −0.130 100 100 101 98 119 80 77

50 −0.042 −0.036 0.002 0.001 −0.037 −0.102 −0.109 100 98 97 94 108 84 81

100 −0.007 −0.004 0.015 0.016 −0.041 −0.058 −0.056 100 94 96 91 117 95 92

500 −0.003 −0.005 0.001 −0.002 −0.011 −0.013 −0.014 100 97 99 95 104 101 101
0/7 30 −0.043 −0.024 0.007 0.016 0.024 −0.108 −0.133 100 95 101 98 116 82 79

50 −0.021 −0.011 0.019 0.021 −0.021 −0.085 −0.092 100 96 97 93 115 87 84

100 −0.004 −0.004 0.018 0.013 −0.037 −0.054 −0.052 100 92 98 89 117 94 91

500 −0.003 −0.002 0.001 0.002 −0.012 −0.013 −0.014 100 92 99 91 101 100 101

1/3 30 −0.048 −0.046 0.003 0.004 0.026 −0.110 −0.136 100 99 103 99 119 81 79

50 −0.023 −0.018 0.016 0.019 −0.019 −0.086 −0.093 100 98 95 94 111 82 79

100 −0.006 −0.012 0.013 0.008 −0.042 −0.055 −0.054 100 99 94 93 116 96 92

500 0.002 −0.002 0.005 0.001 −0.006 −0.008 −0.009 100 97 99 96 103 101 101

2/7 30 −0.015 −0.009 0.033 0.029 0.064 −0.078 −0.105 100 95 99 93 114 77 74

50 −0.017 −0.017 0.017 0.001 −0.014 −0.079 −0.086 100 94 97 94 113 87 84

100 −0.003 −0.015 0.015 0.001 −0.035 −0.051 −0.049 100 93 98 89 117 96 93

500 0.003 −0.014 0.007 −0.011 −0.006 −0.007 −0.008 100 95 99 94 103 100 100

RMSE = root mean square error. PML = penalized maximum likelihood; PMLR = penalized maximum likelihood with robustly estimated covariance matrix;
ULS = unweighted least squares; ULSR = unweighted least squares with robustly estimated covariance; MAP = mode of marginal posterior; Med = median of marginal
posterior; EAP = mean of marginal posterior; µρ = prior guess for latent correlation; νρ = prior sample size for latent correlation; skew = skewness; kurt = kurtosis;
Biases smaller than –0.05 or larger than 0.05 are printed in bold. For the RMSE gain, the RMSE of PML estimation is used as a reference method; values smaller than
100 indicate that the RMSE of the respective method is lower than the RMSE of the reference method. The true correlation and loadings were set to ρ = 0.50 and
λ = 0.50, respectively.

from normality, and larger sample sizes were needed to show the
gains in efficiency for the robust estimation approaches (with the
exception that the ULS method performed less favorably with
N = 500).

DISCUSSION

In this article, we showed that a Bayesian approach can stabilize
the parameter estimates of a CFA model in small sample size
conditions. We discussed different Bayesian point estimators—
the mode (PML) of the joint posterior distribution and the
mean (EAP), median (Med), or mode (MAP) of the marginal
posterior distribution—and evaluated their performance in two
simulation studies from a frequentist point of view. The results
showed that the EAP outperformed the PML in terms of RMSE
and produced more accurate estimates of latent correlations in
many conditions. These performance gains can be explained
by the fact that the EAP pulls large estimates toward zero
(i.e., shrinkage effect), resulting in less variable estimates of the
correlation. However, there is a turning point at which, with a
larger true correlation, the EAP is less accurate than the PML
because the bias introduced by the shrinkage effect outweighs
the gains in efficiency (see Choi et al., 2011). As expected,
with larger sample sizes, the differences between the Bayesian
point estimates vanished, and the different Bayesian estimators

performed similarly. We also suggested the four-parameter beta
distribution as a prior distribution for loadings and correlations
and argued that it could often be advantageous to choose a
parameterization in which the main parameters of interest are
bounded (Muthén and Asparouhov, 2012; Merkle and Rosseel,
2018). Another finding of our simulation study was that selecting
weakly informative four-parameter beta distributions as priors
helped stabilize parameter estimates (e.g., Depaoli and Clifton,
2015; van Erp et al., 2018). Importantly, this was also the case
when the prior was mildly misspecified.

The main limitation of our simulation study is that we used a
very simple CFA model with only two latent factors and a small
number of items with no cross-loadings (i.e., simple structure).
It would be straightforward to extend the discussed approaches
to models with more latent factors. In constrained ML estimation
and PML estimation, appropriate determinant constraints could
be implemented to ensure the positive definiteness of the
correlation matrix of latent variables (Wothke, 1993; Rousseeuw
and Molenberghs, 1994). For the MCMC method, determinant
constraints could be introduced in the Metropolis-Hastings step
to check for the positive definiteness of the correlation matrix (see
Browne, 2006).

In addition, we only assessed the quality of statistical
inferences (i.e., coverage rates) with normally distributed
variables. It would be an interesting topic for future research
also to investigate robust estimation approaches for Bayesian
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CFA models. First, one could use robustly estimated covariance
matrices as input for Bayesian CFA models. In this case, robust
standard errors must also be applied in Bayesian estimation
because the model is misspecified (Müller, 2013; Walker,
2013; Bissiri et al., 2016). Second, models with more flexible
distributions for the latent factors and residuals could be applied
(Lin et al., 2018). For example, Zhang et al. (2014) proposed
a Bayesian factor analysis model with scaled t-distributions
(and freely estimated degrees of freedom) that are less sensitive
to outlier values.

The results of the present study could be extended into
several directions. First, it would be interesting to explore
further the potential of PML estimation for CFA models in
challenging data constellations (e.g., small samples, complex
models; Rosseel, 2020). PML estimation seems to be particularly
promising when researchers do not need full access to the
posterior distribution and are only interested in obtaining stable
point estimates for the parameters of interest. In contrast to
simulation-based MCMC techniques, which can be slow and
challenging to implement, PML estimation shares the advantage
of traditional ML estimation that a deterministic optimization
of the log-posterior is performed with clear convergence criteria
and reasonable computational efficiency (Cousineau and Helie,
2013). In Simulation Study 1, for example, the average run
time was about 2 min for MCMC but only two seconds for
PML. The run time differences could be considerably larger
with more complex models (Chung et al., 2013). Second, data
sets in psychological research often have a multilevel structure
(e.g., individuals are nested within clusters/groups) and, in many
applications, it is of interest to analyze relationships among latent
constructs at both levels of analysis (e.g., individual level and
group level; Heck and Thomas, 2015). However, a notable finding
in the multilevel literature is that a substantial number of groups
is needed to obtain stable parameter estimates of group-level
relationships (Lüdtke et al., 2011; Li and Beretvas, 2013; Kelava
and Brandt, 2014; Can et al., 2015). Thus, an important topic
for future research could be to extend the Bayesian approaches
discussed here to multilevel CFA models (Kim et al., 2016).
Finally, it would be interesting to compare the different Bayesian
estimators to other approaches that have been suggested as
solutions for estimation problems in small sample size conditions

(Rosseel, 2020). For example, a two-step approach, such as factor
score regression, has been suggested as a robust alternative
to SEMs in challenging data constellations (Smid and Rosseel,
2020). Besides, alternative error correction approaches could
be used that introduce lower bounds to circumvent small
estimates of reliability in order to stabilize the estimation of
latent correlations (Grilli and Rampichini, 2011). Using these
lower bounds, l can be translated into a uniform distribution
of standardized loadings on the interval [l, 1]. However, using
lower bounds for the indicator-specific reliability larger than zero
possibly introduces too much information. Besides, parameter
estimates could be pretty sensitive to the subjective choice
of lower bounds.

To conclude, this article showed that the Bayesian approach
has great potential for estimating CFA models with small
sample sizes. Using simulated data, we showed that the four-
parameter beta distribution can be used as a prior distribution
for standardized loadings and latent correlations to stabilize
parameter estimates in challenging data constellations. However,
in real applications, the specification of prior distributions should
be accompanied by a sensitivity analysis that tests how sensitive
the resulting parameter estimates are to different specifications of
prior information (Depaoli and van de Schoot, 2017).
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