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Abstract

Finding and matching personal names is at the core of an

increasing number of applications: from text and Web min-

ing, information retrieval and extraction, search engines,

to deduplication and data linkage systems. Variations and

errors in names make exact string matching problematic,

and approximate matching techniques based on phonetic

encoding or pattern matching have to be applied. When

compared to general text, however, personal names have

different characteristics that need to be considered.

In this paper we discuss the characteristics of personal

names and present potential sources of variations and er-

rors. We overview a comprehensive number of commonly

used, as well as some recently developed name matching

techniques. Experimental comparisons on four large name

data sets indicate that there is no clear best technique.

We provide a series of recommendations that will help re-

searchers and practitioners to select a name matching tech-

nique suitable for a given data set.

1. Introduction

Increasingly large amounts of data are being created,

communicated and stored by many individuals, organisa-

tions and businesses on a daily basis. At lot of this data con-

tains some information about people, for example e-mails,

customer and patient records, news articles, business and

political memorandums. Even most scientific and techni-

cal documents contain details about their authors. Personal

names are often used to search for documents in large col-

lections. Examples include Web searches (the most popular

query in the last few years on Google has always been a

celebrity name, with another four or five names ranked in

the top ten queries1), retrieval of medical patient records,

or bibliographic searches (using author names). Names are

also important pieces of information when databases are

1http://www.google.com/press/zeitgeist.html

deduplicated (e.g. to find and remove duplicate customer

records), and when two data sets are linked or integrated

and no unique entity identifiers are available [5, 6, 30]. As

reported in [28], the use of approximate comparison meth-

ods does improve the matching quality in these applications.

Personal names have characteristics that makes them

different to general text. While there is only one cor-

rect spelling for many words, there are often several valid

spelling variations for personal names, for example ‘Gail’,

‘Gale’ and ‘Gayle’. People also frequently use (or are

given) nicknames in daily life, for example ‘Bill’ rather

than the more formal ‘William’. Personal names sometimes

change over time, for example when somebody gets mar-

ried. Names are also heavily influenced by people’s cul-

tural backgrounds. These issues make matching of personal

names more challenging compared to matching of general

text [3, 24].

As names are often recorded with different spellings, ap-

plying exact matching leads to poor results. In [11], for

example, the percentage of name mismatches in three large

hospital databases ranged between 23% and 36%. To im-

prove matching accuracy, many different techniques for ap-

proximate name matching have been developed in the last

four decades [15, 20, 25, 34], and new techniques are still

being invented [13, 18]. Most techniques are based on a

pattern matching, phonetic encoding, or a combination of

these two approaches.

Computational complexity has to be considered when

name matching is done on very large data sets. The time

needed to determine if two names match is crucial for the

overall performance of an application (besides data struc-

tures that allow to efficiently extract candidate name pairs

while filtering out likely non-matches [23]). Matching

speed is vital when quick response times are needed, for

example in search engines, or crime and biomedical emer-

gency response systems, where an answer should be avail-

able within a couple of seconds.

While similar comparison studies on matching tech-

niques have been done in the past [9, 17, 20, 25, 32, 34],

none has analysed and compared such a comprehensive



number of techniques specifically with application to per-

sonal names. The contributions of this paper are a detailed

discussion of the characteristics of personal names and pos-

sible sources of variations and errors in them, an overview

of a range of name matching techniques, and a comparison

of their performance using several large real world data sets

containing personal names.

We start in Section 2 with a discussion of personal name

characteristics and sources of variations. In Section 3 we

first look at different situations and contexts of name match-

ing, and then present a comprehensive number of name

matching techniques. The results of experimental compar-

isons are discussed in Section 4, and a series of recommen-

dations is given in Section 5 that will help researchers and

practitioners who are faced with the problem of selecting a

name matching technique. Finally, conclusions and an out-

look to future work is discussed in Section 6.

2. Personal name characteristics

Even when only considering the English-speaking

world, a name can have several different spelling forms for

a variety of reasons. In the Anglo-Saxon region and most

other Western countries, a personal name is usually made

of a given name, an optional middle name, and a surname

or family name [24]. Both ‘Gail Vest’ and ‘Gayle West’

might refer to the same person, while ‘Tina Smith’ might be

recorded in the same database as ‘Christine J. Smith’ and as

‘C.J. Smith-Miller’. People change their name over time,

most commonly when somebody gets married (in which

case there are different cultural conventions and laws of

how a person’s name is changed). Compound names are

often used by married women, while in certain countries

husbands can take on the surname of their wives.

In daily life, people often use (or are given) nicknames.

These can be short forms of their given names (like ‘Bob’

for ‘Robert’, or ‘Liz’ for ‘Elizabeth’), they can be varia-

tions of their surname (like ‘Vesty’ for ‘Vest’) or they might

relate to some life event, character sketch or physical char-

acteristics of a person [3]. While having one given and one

middle name is common for Anglo-Saxon names, several

European countries favour compound given names instead,

for example ‘Hans-Peter’ or ‘Jean-Pierre’. In general, there

are no legal regulations of what constitutes a name [3].

In today’s multi-cultural societies and worldwide data

collections (e.g. global online businesses or international

crime and terrorism databases), the challenge is to be able to

match names coming from different cultural backgrounds.

For Asian names, for example, there exist several translit-

eration systems into the Roman alphabet [24], the surname

traditionally appears before the given name, and frequently

a Western given name is added. Hispanic names can con-

tain two surnames, while Arabic names are often made of

several components and contain various affixes that can be

separated by hyphens or whitespaces.

An early study [10] on spelling errors in general words

found that over 80% of errors were single errors – either a

letter was deleted, an extra letter was inserted, a letter was

substituted for another letter, or two adjacent letters were

transposed. Substitutions were the most common errors,

followed by deletions, then insertions and finally transpo-

sitions, followed by multiple errors in one word. Other

studies [15, 19, 27] reported similar results. However, in

a study [11] that looked at patient names within hospital

databases, different types and distributions of errors were

found. With 36%, insertion of an additional name word,

initial or title were the most common errors. This was fol-

lowed in 14% of errors by several different letters in a name

due to nicknames or spelling variations. Other specific er-

rors were differences in punctuation marks and whitespaces

(for example ‘O’Connor’, ‘OConnor’ and ‘O Connor’) in

12% of errors, and different last names for female patients

(8% of errors). Single errors in this study accounted for

39% of all errors, only around half compared to the 80%

reported in [10]. Thus, there seem to be significant differ-

ences between general text and personal names, which have

to be considered when name matching algorithm are being

developed and used. According to [20] the most common

name variations can be categorised as

• spelling variations (like ‘Meier’ and ‘Meyer’) due to

typographical errors that do not affect the phonetical

structure of a name but still post a problem for match-

ing;

• phonetic variations (like ‘Sinclair’ and ’St. Clair’)

where the phonemes are modified and the structure of

a name is changed substantially;

• compound names (like ’Hans-Peter’ or ‘Smith Miller’)

that might be given in full (potentially with differ-

ent separators), one component only, or components

swapped;

• alternative names (like nicknames, married names or

other deliberate name changes); and

• initials only (mainly for given and middle names).

In [19] character level (or non-word) misspellings are

classified into (1) typographical errors, where it is assumed

that the person doing the data entry does know the correct

spelling of a word but makes a typing error (e.g. ‘Sydeny’

instead of ‘Sydney’); (2) cognitive errors, assumed to come

from a lack of knowledge or misconceptions; and (3) pho-

netic errors, coming from substituting a correct spelling

with a similar sounding one. The combination of phonet-

ical and spelling variations, as well as potentially totally

changed name words, make name matching challenging.



2.1 Sources of name variations

Besides the variations in personal names discussed

above, the nature of data entry [19] will determine the most

likely types of errors and their distribution.

• When handwritten forms are scanned and optical char-

acter recognition (OCR) is applied [15, 27], the most

likely types of errors will be substitutions between

similar looking characters (like ‘q’ and ‘g’), or sub-

stitutions of one character with a similar looking char-

acter sequence (like ‘m’ and ‘r n’, or ‘b’ and ‘l i’).

• Manual keyboard based data entry can result in

wrongly typed neighbouring keys (for example ‘n’ and

‘m’, or ‘e’ and ‘r’). While in some cases this is quickly

corrected by the person doing the data entry, such er-

rors are often not recognised, possibly due to limited

time or by distractions to the person doing the data

entry (imagine a busy receptionist in a hospital emer-

gency department). The likelihood of letter substitu-

tions obviously depends upon the keyboard layout.

• Data entry over the telephone (for example as part of

a survey study) is a confounding factor to manual key-

board entry. The person doing the data entry might not

request the correct spelling, but rather assume a default

spelling which is based on the person’s knowledge and

cultural background. Generally, errors are more likely

for names that come from a culture that is different to

the one of the person doing the data entry, or if names

are long or complicated (like ‘Kyzwieslowski’) [11].

• Limitations in the maximum length of input fields can

force people to use abbreviations, initials only, or even

disregard some parts of a name.

• Finally, people themselves sometimes report their

names differently depending upon the organisation

they are in contact with, or deliberately provide wrong

or modified names. Or, while somebody might report

her or his name consistently in good faith, others report

it inconsistently or wrongly for various reasons.

If data from various sources is used, for example in a text

mining, information retrieval or data linkage system, then

the variability and error distribution will likely be larger

than if the names to be matched come from one source only.

This will also limit the use of trained name matching algo-

rithms [2, 9, 31] that are adapted to deal with certain types

of variations and errors. Having meta-data that describes

the data entry process for all data to be used can be valuable

when assessing data quality.

As discussed previously, while there is only one cor-

rect spelling for most general words, there are often no

wrong name spellings, just several valid name variations.

For this reason, in many cases it is not possible to disre-

gard a name as wrong if it is not found in a dictionary

of known names. When matching names, one has to deal

with legitimate name variations (that should be preserved

and matched), and errors introduced during data entry and

recording (that should be corrected) [3]. The challenge lies

in distinguishing between these two sources of variations.

3. Matching techniques

Name matching can be defined as the process of deter-

mining whether two name strings are instances of the same

name [24]. As name variations and errors are quite com-

mon [11], exact name comparison will not result in good

matching quality. Rather, an approximate measure of how

similar to names are is desired. Generally, a normalised

similarity measure between 1.0 (two names are identical)

and 0.0 (two names are totally different) is used.

The two main approaches for matching names are pho-

netic encoding and pattern matching. Different techniques

have been developed for both approaches, and several tech-

niques combine the two with the aim to improve the match-

ing quality. In the following three subsections we present

the most commonly used as well as several recently pro-

posed new techniques.

Matching two names can be viewed as an isolated prob-

lem or within a wider database or application context. Four

different situations can be considered.

1. The matching of two names that consist of a single

word each, not containing whitespaces or other sep-

arators like hyphens or commas. This is normally the

situation when names have been parsed and segmented

into components (individual words) [7], and all sepa-

rators have been removed. Full names are split into

their components and stored into fields like title, given

name, middle name, surname and alternative surname.

Parsing errors, however, can result in a name word

being put into the wrong field, thereby increasing the

likelihood of wrong matching.

2. Without proper parsing and segmentation a name (even

if stored in two fields as given- and surname) can con-

tain several words separated by a hyphen, apostrophe,

whitespace or other character. Examples include com-

pound given names, born surname and married name,

name pre- and suffixes, and title words (like ‘Ms’, ‘Mr’

or ‘Dr’). In this situation, besides variations in a single

word, parts of a name might be in a different order or

missing, and there might be different separators. All

this will complicate the name matching task.

3. In the first two situations names were matched indi-

vidually without taking any context information into



account. However, names are usually stored to-

gether with other personal information about individ-

uals, such as addresses, dates of birth, social secu-

rity numbers, and various other details. Such infor-

mation can be used to increase or decrease the likeli-

hood of a match, especially in situations when there

is no obvious similarity between two names, for ex-

ample due to a name change (where a unique ad-

dress and date of birth combination can indicate a

likely match). This situation, where records contain-

ing more than just names are used to match or link

entities is called data or record linkage [5, 30]. It

has wide applications in census, epidemiology, crime

detection and intelligence, mailing list deduplication,

even in online shopping (matching products with sim-

ilar descriptions). Efficient and accurate name match-

ing is a crucial component for data linkage, and a sub-

stantial body of research has been conducted in this

area [2, 9, 28, 31, 32, 33].

4. Frequency distributions of name values can also be

used to improve the quality of name matching. They

can either be calculated from the data set containing

the names to be matched, or from a more complete

population based database like a telephone directory

or an electoral roll. Additional frequency informa-

tion that can be used for certain matching techniques

includes statistics collected from keyboard typing or

OCR errors.

In this paper we will only consider the first two situa-

tions, i.e. only the basic techniques used to compare two

names without taking any context information into account.

We will assume that all name strings have been converted

into lowercase before matching is performed.

3.1 Phonetic encoding

Common to all phonetic encoding techniques is that they

attempt to convert a name string into a code according to

how a name is pronounced (i.e. the way a name is spoken).

Naturally, this process is language dependent. Most tech-

niques – including all presented here – have been developed

mainly with English in mind. Several techniques have been

adapted for other languages, for examples see [20].

• Soundex

Soundex [16, 20], based on English language pronun-

ciation, is the oldest (patented in 1918 [34]) and best

known phonetic encoding algorithm. It keeps the first

letter in a string and converts the rest into numbers ac-

cording to the following encoding table.

a, e, h, i, o, u, w, y → 0

b, f, p, v → 1

c, g, j, k, q, s, x, z → 2

d, t → 3

l → 4

m, n → 5

r → 6

All zeros (vowels and ‘h’, ‘w’ and ‘y’) are then re-

moved and sequences of the same number are reduced

to one only (e.g. ‘333’ is replaced with ‘3’). The fi-

nal code is the original first letter and three numbers

(longer codes are cut-off, and shorter codes are ex-

tended with zeros). As examples, the Soundex code

for ‘peter’ is ‘p360’, while the code for ‘christen’ is

‘c623’. A major drawback of Soundex is that it keeps

the first letter, thus any error or variation at the begin-

ning of a name will result in a different Soundex code.

• Phonex

Phonex [20] is a variation of Soundex that tries to im-

prove the encoding quality by pre-processing names

according to their English pronunciation before the en-

coding. All trailing ‘s’ are removed and various rules

are applied to the leading part of a name (for exam-

ple ‘kn’ is replaced with ‘n’, and ‘wr’ with ‘r’). As in

the Soundex algorithm, the leading letter of the trans-

formed name string is kept and the remainder is en-

coded with numbers (again removing zeros and dupli-

cate numbers). The final Phonex code consists of one

letter followed by three numbers.

• Phonix

This encoding algorithm goes a step further than

Phonex and applies more than one hundred transfor-

mation rules on groups of letters [12]. Some of these

rules are limited to the beginning of a name, some to

the end, others to the middle and some will be applied

anywhere. The transformed name string is then en-

coded into a one-letter three-digits code (again remov-

ing zeros and duplicate numbers) using the following

encoding table.

a, e, h, i, o, u, w, y → 0

b, p → 1

c, g, j, k, q → 2

d, t → 3

l → 4

m, n → 5

r → 6

f, v → 7

s, x, z → 8

The large number of rules in Phonix makes this encod-

ing algorithm complex and slow compared to the other

phonetic techniques, as we will show in Section 4.



steve stephen steffi

Soundex s310 s315 s310

Phonex s310 s315 s310

Phonix s370 s375 s370

NYSIIS staf staf staf

Double-Metaphone stf stfn stf

Fuzzy Soundex s310 s315 s310

Table 1. Phonetic name encoding examples.

• NYSIIS

The New York State Identification Intelligence System

(NYSIIS) [3] is based on transformation rules similar

to Phonex and Phonix, but it returns a code that is only

made of letters.

• Double-Metaphone

This recently developed algorithm [26] attempts to bet-

ter account for non-English words, like European and

Asian names. Similar to NYSIIS, it returns a code only

made of letters. It contains many rules that take the

position within a name, as well as previous and fol-

lowing letters into account (similar to Phonix). Un-

like all the other phonetic encoding techniques, in cer-

tain cases Double-Metaphone will return two phonetic

codes. For example ‘kuczewski’ will be encoded as

‘ssk’ and ‘xfsk’, accounting for different spelling vari-

ations.

• Fuzzy Soundex

This algorithm is based on q-gram substitutions [16]

and combines elements from other phonetic encoding

algorithms. Similar to Phonix, it has transformation

rules that are limited to the beginning or the end of

a name, or that are applicable anywhere. In [16] the

Fuzzy Soundex technique is combined with a q-gram

based pattern matching algorithm, and accuracy results

better than Soundex are reported within an information

retrieval framework using the COMPLETE [25] name

database (which we use in our experiments as well).

Table 1 shows example encodings for three similar per-

sonal name variations. When matching names, phonetic en-

coding can be used as a filtering step (called blocking in

data linkage [6, 30]), i.e. only names having the same pho-

netic code will be compared using a computationally more

expensive pattern matching algorithm. Alternatively, exact

string comparison of the phonetic encodings can be applied

(resulting in an exact match or non-match), or the phonetic

codes themselves can be compared using a pattern matching

algorithm in order to get an approximate match.

3.2 Pattern matching

Pattern matching techniques are commonly used in

approximate string matching [15, 17, 22], which has

widespread applications, from data linkage [5, 6, 28, 30,

31, 32] and duplicate detection [2, 3, 9], information re-

trieval [13, 18], correction of spelling errors [10, 19, 27],

approximate database joins [14], to bio- and health infor-

matics [11]. These techniques can broadly be classified

into edit distance and q-gram based techniques, plus several

techniques specifically developed for name matching.

A normalised similarity measure between 1.0 (strings are

the same) and 0.0 (strings are totally different) is usually

calculated. For some of the presented techniques, different

approaches to calculate such a similarity exist, as we will

discuss. We will denote the length of a string s with |s|.

• Levenshtein or Edit Distance

The Levenshtein distance [22] is defined to be the

smallest number of edit operations (insertions, dele-

tions and substitutions) required to change one string

into another. In its basic form, each edit has cost

1. Using a dynamic programming algorithm [17],

the distance (number of edits) between two strings s1

and s2 can be calculated in time O(|s1| × |s2|) using

O(min(|s1|, |s2|)) space. The distance can be con-

verted into a similarity measure (between 0.0 and 1.0)

using

simld(s1, s2) = 1.0 −
distld(s1, s2)

max(|s1|, |s2|)

with distld(s1, s2) being the actual Levenshtein dis-

tance function which returns a value of 0 if the strings

are the same or a positive number of edits if they

are different. The Levenshtein distance is symmet-

ric and it always holds that 0 ≤ distld(s1, s2) ≤
max(|s1|, |s2|), and abs(|s1| − |s2|) ≤ distld(s1, s2).
The second property allows quick filtering of string

pairs that have a large difference in their lengths.

Extensions to the basic Levenshtein distance allow for

different edit costs [15], or even costs that depend upon

characters (for example, a substitution from ‘q’ to ‘g’

might be given smaller costs than from ‘x’ to ‘i’ be-

cause of their visual similarity). In recent years, re-

searchers have explored techniques to learn the costs

of edits from training data [2, 9, 31, 33] in order to

improve the matching quality.

• Damerau-Levenshtein Distance

In this variation of the Levenshtein distance a transpo-

sition is also considered to be an elementary edit oper-

ation with cost 1 [10, 22] (in the Levenshtein distance,

a transposition corresponds to two edits: one insert and



one delete or two substitutions). The simdld measure

is calculated similarly to simld.

Other variations of the original edit distance method

have been proposed, see [17, 22] for more details.

• Bag distance

This algorithm has recently been proposed [1] as a

cheap approximation to edit distance. A bag is de-

fined as a multiset of the characters in a string (for ex-

ample, multiset ms(‘peter’) = {‘e’, ‘e’, ‘p’, ‘r’, ‘t’},

and the bag distance between two strings is calcu-

lated as distbag(s1, s2) = max(|x− y|, |y − x|), with

x = ms(s1), y = ms(s2) and | · | denoting the number

of elements in a multiset. For example,

distbag(‘peter’, ‘pedro’) =

distbag({‘e’, ‘e’, ‘p’, ‘r’, ‘t’}, {‘d’, ‘e’, ‘o’, ‘p’, ‘r’})

= max(|{‘e’, ‘t’}|, |{‘d’, ‘o’}|) = 2

It is shown [1] that distbag(s1, s2) ≤ distld(s1, s2),
and thus the simbag measure, calculated similarly to

simld, is always equal to or larger than simld. Bag

distance has a computational complexity of O(|s1| +
|s2|), and is therefore an efficient technique to filter

out candidate matches before applying a more complex

edit distance techniques.

• Smith-Waterman

This algorithm [21] was originally developed to find

optimal alignments between biological sequences, like

DNA or proteins. It is based on a dynamic program-

ming approach similar to edit distance, but allows gaps

as well as character specific match scores. The five ba-

sic operations (with scores as defined in [21]) are (1) an

exact match between two characters with score 5, (2)

an approximate match between two similar characters,

as for example defined in the Soundex transformation

table (e.g. ‘d’ is similar to ‘t’, ‘m’ similar to ‘n’, etc.)

with score 2, (3) a mismatch between two characters

(that are neither equal nor similar) with score -5, (4) a

gap start penalty with score -5, and (5) a gap continua-

tion penalty with score -1.

As it allows for gaps, the Smith-Waterman algorithm

should be especially suited for compound names that

contain initials only or abbreviated names The space

complexity of the algorithm is O(|s1| × |s2|), while

its time complexity is O(min(|s1|, |s2|)× |s1|× |s2|).
There are improvements which reduce the time com-

plexity to O(|s1| × |s2|). The final best score bssw

is the highest value within the dynamic programming

score matrix, and from this a similarity measure can be

calculated using

simswd(s1, s2) =
bssw

divsw × match score

with match score the value when two characters

match, and divsw being a factor that can be calculated

in one of three ways: (1) divsw = min(|s1|, |s2|), (2)

divsw = max(|s1|, |s2|), or (3) divsw = 0.5× (|s1|+
|s2|) (average string length). This corresponds to the

Overlap coefficient, Jaccard similarity, and Dice coef-

ficient, respectively, for q-grams as discussed below.

• Longest common sub-string (LCS)

This algorithm [11] repeatedly finds and removes the

longest common sub-string in the two strings com-

pared, up to a minimum lengths (normally set to 2 or

3). For example, the two name strings ‘gail west’ and

‘vest abigail’ have a longest common sub-string ‘gail’.

After it is removed, the two new strings are ‘ west’ and

‘vest abi’. In the second iteration the sub-string ‘est’

is removed, leaving ‘ w’ and ‘v abi’. The total length

of the common sub-strings is now 7. If the minimum

common length would be set to 1, then the common

whitespace character would be counted towards the to-

tal common sub-strings length as well. A similarity

measure can be calculated by dividing the total length

of the common sub-strings by the minimum, maximum

or average lengths of the two original strings (similar

to Smith-Waterman above). As shown with the exam-

ple, this algorithm is suitable for compound names that

have words (like given- and surname) swapped. The

time complexity of the algorithm, which is based on a

dynamic programming approach [11], is O(|s1|×|s2|)
using O(min(|s1|, |s2|)) space.

• q-grams

q-grams, also called n-grams [19], are sub-strings of

length q [19] in longer strings. Commonly used q-

grams are unigrams (q = 1), bigrams (q = 2, also

called digrams [18]) and trigrams (q = 3) [29]. For ex-

ample, ‘peter’ contains the bigrams ‘pe’, ‘et’, ‘te’ and

‘er’. A q-gram similarity measure between two strings

is calculated by counting the number of q-grams in

common (i.e. q-grams contained in both strings) and

divide by either the number of q-grams in the shorter

string (called Overlap coefficient2), the number in the

longer string (called Jaccard similarity) or the average

number of q-grams in both strings (called the Dice co-

efficient). The time and space complexities of q-gram

based techniques are O(|s1| + |s2|).

It is possible to pad strings before q-gram comparison

is performed, by adding (q−1) special characters to the

start and end of the strings. For example, with bigrams,

‘peter’ would be padded to ‘⊳peter⊲’ (with ‘⊳’ sym-

bolising the start and ‘⊲’ the end character), resulting

in bigrams ‘⊳p’, ‘pe’, ‘et’, ‘te’, ‘er’ and ‘r⊲’. q-grams

2http://simmetrics.sourceforge.net/



at the beginning and end of strings will therefore not

be matched to other q-grams. Padded q-grams will re-

sult in a larger similarity measure for strings that have

the same beginning and end but errors in the middle,

but in a lower similarity measure if there are different

string starts or ends. Empirical results [18] showed that

padding can increase the matching quality.

• Positional q-grams

An extension to q-grams is to add positional informa-

tion (location of a q-gram within a string) and to match

only common q-grams that are within a maximum dis-

tance from each other. For example, ‘peter’ contains

the positional bigrams (‘pe’,0), (‘et’,1), (‘te’,2) and

(‘er’,3). If a maximum distance of comparison is set

to 1, then bigram (‘et’,1) will only be matched to bi-

grams in the second string with positions 0 to 2.

Positional q-grams can be padded with start and end

characters similar to non-positional q-grams, and sim-

ilarity measures can be calculated in the same three

ways as with non-positional q-grams.

• Skip-grams

This algorithm has recently been developed with the

aim to improve matching within a cross-lingual infor-

mation retrieval system [18]. It is based on the idea

of not only forming bigrams of two adjacent charac-

ters, but also bigrams that skip characters (called skip-

grams). Gram classes are defined that specify what

kind of skip-grams are created. For example, for a

gram class gc = {0, 1} and string ‘peter’, the follow-

ing skip-grams are created: ‘pe’, ‘et’, ‘te’, ‘er’ (0-skip

grams) and ‘pt’, ’ee’, ’tr’ (1-skip grams). The authors

of [18] discuss the properties of various gram classes

and how they related to character edits like insertions,

deletions and substitutions. Their experiments with

skip-grams using multi-lingual texts from different Eu-

ropean languages show improved results compared to

bigrams, trigrams, edit distance and the longest com-

mon sub-string technique.

• Compression

Compression based similarity calculations have re-

cently been investigated [8] for use in clustering of bi-

ological sequences, optical character recognition, and

music. The normalised compression distance (NCD)

as defined in [8] is based on commonly available com-

pression techniques, like Zlib or BZ2:

distncd(s1, s2) =
|C(s1s2)| − min(|C(s1)|, |C(s2)|)

max(|C(s1|), |C(s2)|)
,

with C being a compressor (e.g. Zlib or BZ2), | · | the

length of a compressed string, and s1s2 the concatena-

tion of the two input strings. To our knowledge com-

pression based similarity has so far not been applied to

short strings like personal names, and our experimental

results shown in Section 4 are mixed. However, an in-

teresting aspect of compression based similarity is that

this technique does not need any parameters (besides

selecting a compression algorithm), making it poten-

tially attractive for applications where no parameter

tuning is possible or desirable.

• Jaro

The Jaro [32] algorithm is commonly used for name

matching in data linkage systems [30]. It accounts for

insertions, deletions and transpositions. The algorithm

calculates the number c of common characters (agree-

ing characters that are within half the length of the

longer string) and the number of transpositions t. A

similarity measure is calculated as [32]:

simjaro(s1, s2) =
1

3

(

c

|s1|
+

c

|s2|
+

c − t

c

)

The time and space complexities of this algorithm are

O(|s1| + |s2|).

• Winkler

The Winkler [28, 32] algorithm improves upon the Jaro

algorithm by applying ideas based on empirical stud-

ies (like [27]) which found that fewer errors typically

occur at the beginning of names. The Winkler algo-

rithm therefore increases the Jaro similarity measure

for agreeing initial characters (up to four). It is calcu-

lated as [32]:

simwink(s1, s2) = simjaro(s1, s2)

+
s

10
(1.0 − simjaro(s1, s2))

with s being the number of agreeing characters at the

beginning of two strings (for example, ‘peter’ and ‘pe-

tra’ have s = 3).

Most of the presented pattern matching techniques are

not designed to deal with swapped words, which can oc-

cur if names have not been properly parsed and segmented

(as discussed earlier). We have therefore combined one of

the best performing techniques (Winkler, as discussed in

Section 4) with two techniques for dealing with multi-word

names in a hierarchical way, similar to [9, 21].

• Sorted-Winkler

If a string contains more than one word (i.e. it contains

at least one whitespace or other separator), then the

words are first sorted alphabetically before the Win-

kler technique is applied (to the full strings). The idea

is that (unless there are errors in the first few letters

of a word) sorting of swapped words will bring them

into the same order, thereby improving the matching

quality.



• Permuted-Winkler

In this more complex approach Winkler comparisons

are performed over all possible permutations of words,

and the maximum of all calculated similarity values is

returned.

3.3 Combined techniques

Two techniques combine phonetic encoding and pattern

matching with the aim to improve the matching quality.

• Editex

This technique [34] was developed within the frame-

work of an information retrieval system and aims at

improving phonetic matching accuracy by combining

edit distance based methods with the letter-grouping

techniques of Soundex and Phonix. The edit costs in

Editex are 0 if two letters are the same, 1 if they are

in the same letter group, and 2 otherwise. Comparison

experiments in [34] showed that Editex performed bet-

ter than edit distance, q-grams, Phonix and Soundex on

a large database containing around 30,000 surnames.

Similar to basic edit distance, the time and space com-

plexities of matching two strings s1 and s2 with Editex

are O(|s1|×|s2|) and O(min(|s1|, |s2|)), respectively.

• Syllable alignment distance

This recently developed technique, called Syllable

Alignment Pattern Searching (SAPS) [13] is based on

the idea of matching two names syllable by syllable,

rather than character by character. It uses the Phonix

transformation (without the final numerical encoding

phase) as a preprocessing step, and then applies a set

of rules to find the beginning of syllables. An edit dis-

tance based approach is used to find the distance be-

tween two strings. The seven edit (or alignment) op-

erations and scores are: (1) two characters (not sylla-

ble starts) are the same with score 1, (2) two charac-

ters (not syllable starts) are different with score -1, (3)

alignment of a character with a syllable start with score

-4, (4) two syllable starts that are the same with score

6, (5) two syllable starts are different with score -2,

(6) alignment of a gap with a character (not a syllable

start) with score -1, and (7) alignment of a gap with a

syllable start with score -3.

The experimental results presented in [13] indicate that

SAPS performs better than Editex, edit distance and

Soundex on the same large name data set used in [25]

(the COMPLETE data set we are using in our experi-

ments as well). The authors of [13] also discuss ideas

of how to adjust the fixed edit costs in SAPS by using

training data to improve the matching quality.

Pairs Singles

Midwives given names 15,233 49,380

Midwives surnames 14,180 79,007

Midwives full names 36,614 339,915

COMPLETE surnames 8,942 13,941

Table 2. Number of name pairs and single
names in test data sets used for experiments.

4 Experiments and discussion

In this section we discuss the results of a series of

comparison experiments using four large name data sets.

The aim of these experiments was to see which matching

techniques achieve the best matching quality for different

personal name types, and to compare their computational

performance. All name matching techniques were imple-

mented in Python as part of the Febrl (Freely Extensible

Biomedical Record Linkage)3 data linkage system [5].

4.1 Name data sets

Three of the test data sets were based on given- and

surnames extracted from a health data set containing mid-

wives’ records (women who gave birth) from the Aus-

tralian state of New South Wales [4]. A deduplication sta-

tus in this data (indicating which records correspond to the

same women) allowed us to extract true name pairs (known

matches). From these we removed all pairs that were ex-

act matches (i.e. both names were the same), leaving us

with pairs containing names that were to some degree dif-

ferent. We then created a full name data set by concate-

nating given- with surnames (separated by a whitespace).

We also extracted single names from records that did not

have duplicates, and randomly created name pairs (the same

number as known matched pairs in order to get balanced

test data sets). The fourth data set was created in a simi-

lar way using the COMPLETE name database [13, 25] by

forming surname pairs from 90 randomly chosen and man-

ually matched queries.

Table 2 shows the size of our four test data sets.

4.2 Distribution of edit distances

In order to better understand our test data, we calculated

the edit distances for all the known (matched) name pairs.

The results in Table 3 show that there is a wide distribution

of variations within names, with a largest edit distance of

19 in the full names data set. This indicates the challenge

3http://datamining.anu.edu.au/linkage.html



Midwives COMPLETE
given sur- full surnames

names names names

1 ins/del 8.8 % 12.9 % 12.3 % 3.8 %

1 subst 4.5 % 17.5 % 9.1 % 4.7 %

2 edits 18.2 % 5.3 % 12.0 % 21.0 %

3 edits 8.3 % 2.4 % 6.0 % 30.9 %

4 edits 17.5 % 5.6 % 13.4 % 23.4 %

5 edits 19.9 % 11.7 % 15.4 % 10.8 %

6-10 edits 22.8 % 43.5 % 30.1 % 5.4 %

11+ edits – 1.1 % 1.7 % –

Table 3. Distribution of edit distances for
matched name pairs.

of name matching: how to correctly classify two names that

are very different. An interesting question (left for future

work) is to see how the edit distance distribution of ran-

domly chosen name pairs would look.

4.3 Matching results

We ran a total of 123 tests on all four data sets, by ap-

plying all phonetic encoding (combined with exact string

matching of the phonetic codes) and pattern matching tech-

niques presented in Section 3 with their various ways of cal-

culating similarity measures and other options (like padded

and non-padded q-grams, longest common sub-string with

minimum set to 2 and 3, etc.). We evaluated the matching

quality using the f-measure [6] (also called f-score) which

is based on precision and recall and defined as

f = 2

(

P × R

P + R

)

,

with precision and recall defined as P = |TP |/(|TP | +
|FP |) and R = |TP |/(|TP | + |FN |), and TP being

the true positives (known matched name pairs classified as

matches), TN the true negatives (known un-matched name

pairs classified as non-matches), FP the false positives (un-

matched name pairs classified as matches) and FN the false

negatives (known matched name pairs classified as non-

matches). For the similarity measures a threshold can be

varied between 0.0 and 1.0 that influences the classification

performance (name pairs with a similarity value above the

threshold are classified matches, and pairs with similarity

value below as non-matches). Here, we report average f-

measures over all possible threshold values as they indicate

the overall quality of a matching technique. The issue of

selecting a suitable threshold will be discussed in Section 5.

Table 4 shows the best results achieved for each of the

presented techniques on all four data sets. As can be seen,
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Figure 1. Best f-measure results for the four
data sets (similarity measures on the hori-
zontal and f-measures on the vertical axis).

no technique performs better than all others. Pattern match-

ing clearly outperform phonetic encoding techniques. The

simple Phonex technique performs better than the more

complex Phonix and Double-Metaphone algorithms (de-

spite their larger number of transformation rules). Both sur-

name data sets seem to be harder to match than given names,

which might be due to complete surname changes when

women get married or divorced (the Midwives database

only contains women). The Jaro and Winkler techniques

both perform well on all four data sets, showing their suit-

ability for personal name data. The two techniques that

combine phonetic encoding with pattern matching (Editex

and syllable alignment distance) do not perform as well as

one might have expected, and neither do skip-grams.

Details for the best performing pattern matching tech-

niques on the four data sets can be seen in Figure 1. Set-

ting a threshold to achieve best possible classification is not

straight forward, it depends both upon the matching tech-

nique and data to be matched. An optimal value for one

data set and technique will very likely result in sub-optimal

quality for another data set or technique. Unless data with

known matched and un-matched name pairs is available,

achieving optimal matching quality is difficult.

Many of the pattern matching techniques presented in

Section 3.2 have different variations of how to calculate a

similarity measure. This complicates the task of trying to

find a suitable technique for a given data set. We com-

pared a range of variations to see which ones achieve bet-

ter matching quality. The results in Table 5 show that the

Winkler modification (increase similarity measure if start-

ing characters are the same in two names, applied as a post-

processing step to 56 variations of pattern matching tech-

niques) can result in almost 20% matching improvement



Midwives COMPLETE
given sur- full surnames

names names names

Soundex .342 .341 .376 .485

Phonex .423 .369 .499 .579

Phonix .339 .330 .368 .617
NYSIIS .275 .296 .299 .351

DMetaphone .304 .306 .330 .410

FuzSoundex .327 .311 .359 .396

Leven dist .658 .513 .737 .624

Dam-L dist .659 .517 .739 .625

Bag dist .597 .522 .670 .616

SWater dist .889 .579 .802 .617

LCS-2 .915 .564 .877 .514

LCS-3 .909 .529 .866 .500

1-grams .839 .588 .787 .627

2-grams .885 .498 .867 .519

3-grams .783 .442 .833 .416

Pos 1-grams .890 .574 .724 .653

Pos 2-grams .880 .473 .697 .508

Pos 3-grams .768 .416 .659 .416

Skip grams .844 .496 .825 .521

Compr BZ2 .458 .547 .568 .633

Compr ZLib .532 .456 .684 .481

Jaro .853 .601 .829 .712
Winkler .891 .588 .868 .707

SortWink .803 .580 .809 .707

PermWink .888 .598 .883 .707

Editex .631 .561 .706 .646

SAPS dist .656 .426 .710 .532

Table 4. Average f-measure values (best re-
sults shown boldface and worst results un-
derlined).

in certain cases. The Overlap coefficient generally results

in improved matching quality compared to the Dice coeffi-

cient, which in turn seems to perform better (on three data

sets) than the Jaccard similarity. There is no clear advan-

tage of padded over non-padded, or positional over non-

positional q-grams. Positional q-grams perform worse on

the longer full name strings, with their matching limited to

a certain positional range. Bigrams seem to perform bet-

ter than trigrams, however there is no clear indication that

they do better than unigrams. The longest common sub-

string technique with minimum common length set to 2 per-

forms only marginally better than having a minimum com-

mon length of 3. While these results are not exhaustive, they

indicate that there is no single best technique, and that vari-

ations in similarity measure calculations can have dramatic

effects upon the matching quality.

Midwives COMPLETE
given sur- full surnames

names names names

Improvement of Winkler modification (56 tests)

Worst 0.6 % -3.7 % 2.7 % -3.8 %

Average 6.9 % -0.2 % 7.4 % -0.3 %

Best 19.7 % 4.5 % 13.5 % 3.4 %

Overlap versus Dice coefficients

Worst -2.5 % -3.3 % -1.7 % -6.3 %

Average 12.9 % 2.4 % 4.4 % 0.1 %

Best 25.2 % 7.0 % 10.9 % 4.2 %

Dice coefficient versus Jaccard similarity

Worst 5.4 % -0.6 % 0.2 % -4.3 %

Average 8.5 % 1.1 % 2.2 % -1.6 %

Best 11.2 % 3.2 % 4.4 % 1.2 %

Padded q-grams versus non-padded q-grams

Worst -16.9 % -0.8 % 0.1 % 4.4 %

Average -3.0 % 3.1 % 2.7 % 13.2 %

Best 5.8 % 8.4 % 7.9 % 22.5 %

Positional q-grams versus q-grams

Worst -1.7 % -4.2 % -17.6 % -2.0 %

Average -0.5 % -2.0 % -9.7 % -0.3 %

Best 5.1 % -0.8 % -0.5 % 2.8 %

1-grams versus 2-grams

Worst -11.3 % 7.3 % -7.9 % 13.7 %

Average -5.15 % 9.0 % -1.9 % 18.1 %

Best -2.0 % 10.9 % 2.4 % 21.9 %

2-grams versus 3-grams

Worst -4.6 % 0.1 % -1.2 % 2.0 %

Average 1.5 % 4.5 % 2.5 % 10.4 %

Best 11.2 % 8.7 % 6.3 % 17.8 %

LCS minimum common length 2 versus 3

Worst -0.7 % 2.5 % 0.0 % 0.3 %

Average 0.7 % 3.3 % 1.2 % 1.7 %

Best 2.6 % 3.9 % 3.1 % 3.1 %

Table 5. Average f-measure changes for dif-
ferent pattern matching technique variations.

4.4 Timing results

As shown in Table 6, the phonetic encoding techniques

(times shown include encoding of two names) are generally

much faster than pattern matching, due to their complex-

ity being O(|s|) for a given string s. Phonix with its many

rules is the slowest phonetic techniques (almost ten times as

slow as others), while Smith-Waterman is the slowest pat-

tern matching techniques. As expected, the Bag distance is

very fast (followed by simple q-grams), making it suitable

as a filtering technique to remove obvious non-matches.



Midwives COMPLETE
given sur- full surnames

names names names

Soundex 0.026 0.027 0.028 0.026
Phonex 0.031 0.031 0.039 0.030

Phonix 0.274 0.260 0.298 0.267

NYSIIS 0.047 0.047 0.051 0.048

DMetaphone 0.037 0.040 0.049 0.037

FuzSoundex 0.082 0.077 0.095 0.076

Leven dist 0.286 0.276 0.669 0.227

Dam-L dist 0.394 0.380 0.998 0.305

Bag dist 0.073 0.070 0.102 0.067
SWater dist 1.820 1.602 7.575 1.216

LCS-2 0.303 0.269 0.804 0.240

LCS-3 0.264 0.241 0.565 0.217

1-grams 0.078 0.078 0.112 0.068

2-grams 0.082 0.080 0.119 0.080

3-grams 0.085 0.082 0.121 0.082

Pos 1-grams 0.160 0.157 0.285 0.144

Pos 2-grams 0.187 0.185 0.341 0.168

Pos 3-grams 0.213 0.209 0.373 0.189

Skip grams 0.266 0.250 0.458 0.233

Compr BZ2 0.332 0.328 0.505 0.313

Compr ZLib 0.569 0.294 0.261 0.288

Jaro 0.145 0.138 0.233 0.067

Winkler 0.193 0.187 0.284 0.096

SortWink 0.219 0.212 0.347 0.203

PermWink 0.519 0.280 2.826 0.205

Editex 0.622 0.597 1.680 0.473

SAPS dist 0.669 0.630 1.906 0.551

Table 6. Timings results in milli-seconds
(shortest times shown boldface and longest
times underlined).

5 Recommendations

The mixed results presented in the previous section indi-

cate that there is no single best name matching technique,

and that the type of personal name data to be matched has

to be considered when selecting a matching technique. The

following recommendations will help with this.

1. It is important to know the type of names to be

matched, and if these names have been properly parsed

and standardised [7], or if the name data potentially

contains several words with various separators.

2. If it is known that the name data at hand contains a

large proportion of nicknames and similar name varia-

tions, a dictionary based name standardisation should

be applied before performing the matching.

3. Phonetic encoding followed by exact comparison of

the phonetic codes should not be used. Pattern match-

ing techniques result in much better matching quality.

4. For names parsed into separate fields, the Jaro and

Winkler techniques seem to perform well for both

given- and surnames, as do uni- and bigrams.

5. The longest common sub-string technique is suitable

for unparsed names that might contain swapped words.

6. Calculating a similarity measure with respect to the

length of the shorter string (Overlap coefficient) seems

to achieve better matching results (compared to using

the Dice coefficient or Jaccard similarity).

7. The Winkler modification (increase similarity when

name beginnings are the same) can be used with all

techniques to improve matching quality.

8. A major issue is the selection of a threshold that re-

sults in optimal matching quality. Even small changes

of the threshold can result in dramatic drops in match-

ing quality. Without labelled training data [2, 9, 31]

it is hard to find an optimal threshold value. Optimal

threshold values will also vary between data sets.

9. If speed is important, it is imperative to use techniques

with time complexity linear in the string length (like

q-grams, Jaro, or Winkler), as otherwise name pairs

made of long strings (especially unparsed full names)

will slow down matching. Alternatively, filtering using

bag distance followed by a more complex edit distance

based approach can be used.

If additional personal information is available besides

names, for example addresses and dates-of birth, then

proper data linkage techniques [5, 6, 30] should be applied

rather than basic name matching techniques.

6 Conclusion and future work

We have discussed the characteristics of personal names

and the potential sources of variations and errors in them,

and we presented an overview of both pattern matching and

phonetical encoding based name matching techniques. Ex-

perimental results on different real data sets have shown that

there is no single best technique available. The characteris-

tics of the name data to be matched, as well as computa-

tional requirements, have to be considered when selecting a

name matching technique.

Personal name matching is very challenging, and more

research into the characteristics of both name data and

matching techniques has to be conducted in order to better

understand why certain techniques perform better than oth-

ers, and which techniques are most suitable for what type of



data. More detailed analysis into the types and distributions

of errors is needed to better understand how certain types of

errors influence the performance of matching techniques.
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