
A comparison of plagiarism detection tools

Jurriaan Hage

Peter Rademaker

Nikè van Vugt

Technical Report UU-CS-2010-015

June 2010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



A comparison of plagiarism detection tools

Jurriaan Hage
Peter Rademaker

Nikè van Vugt

Abstract

In this paper we compare five tools for detecting plagiarism in source code texts: JPlag,
Marble, moss, Plaggie, and sim. The tools are compared with respect to their features and
performance. For the performance comparison we carried out two experiments: to compare
the sensitivity of the tools for different plagiarism techniques we have applied the tools to a
set of intentionally plagiarised programs. To get a picture of the precision of the tools, we
have run the tools on several incarnations of a student assignment and compared the top 10’s
of the results.

1 Introduction

Source code plagiarism can be defined as trying to pass off (parts of) source code written by
someone else as one’s own (i.e., without indicating which parts are copied from which author).

Plagiarism occurs often in academic environments. Students then intentionally or unintention-
ally include sources in their work without a proper reference. Manual detection of plagiarism in a
collection of hundreds of student submissions is infeasible and uneconomical. Therefore, software
tools have emerged that assist lecturers in detecting the presence of plagiarism.

It should be understood from the start that none of these tools can actually prove the presence
(or absence, for that matter) of plagiarism. Typically, the tools return a measure of similarity
for each pair of programs (or even for each pair of modules taken from different submissions),
and then human intervention is needed to determine whether the similarity is due to plagiarism,
or is caused, for example, by the fact that a certain assignment is implemented in a standard
way (e.g. stacks and lists are generally implemented in a common way), by students using the
same examples from the lectures, by students working together, or by plain coincidence. Even a
lecturer who suspects students of plagiarism will want to hear their side of the story before passing
a verdict or passing the case on to others for consideration.

Marble [12] is a plagiarism detection tool for Java programs, developed by the first author. It
is used at the Department of Information and Computer Sciences at Utrecht University to assist
lecturers in the detection of plagiarism in programming assignments. Thus far, Marble has helped
in detecting several cases of plagiarism. Even so, the question quickly arises how well a plagiarism
detection tool performs as compared to others, in terms of how well they can counter attempts by
students to hide the plagiarism and to which extent the top-n submissions of highest similarity
for each tool can be shown to be actual plagiarism. The former study is addressed by a sensitivity
analysis in Section 5.1, the latter study is performed for n = 10 in Section 5.2. The studies are
intended to reveal possible weak points of the tools, but may also teach us to which extent different
tools may be complementary. In plagiarism detection, more than in most other areas, different
tools can reinforce each other.

Before we do the quantative performance comparison, we also provide a qualitative evaluation
of the tools. Here we answer such questions as: what kind of interface do the tools provide, what
are the languages they can deal with, and so forth. This issue is addressed in Section 4, while the
criteria we use to perform this evaluation are described in Section 3.

1



The main goal of this paper is to assist lecturers and teaching assistants with an overview of
the current state of the art in plagiarism detection for source code, to highlight the features of
each tool and provide measurements of their performance, in order to make an informed decision
which tool to use for plagiarism detection. Moreover, this evaluation provides pointers for the
maintainers of the tools under evaluation in what ways their tool may be improved.

These goals motivate our choice of tools for the comparison. Generally speaking, we have in-
cluded tools that are non-commercial, readily available, and, because of our particular comparison
benchmark, suited for plagiarism detection for Java. The tools, JPlag, moss, Marble, Plaggie and
sim, are introduced in Section 4. Other tools that we have found during our study, but that are
not considered here, are described in Section 2, which also relates our work to plagiarism tool
comparisons available in the literature.

2 Related work

First, we give an overview of the different implementation strategies that are used by tools for
similarity detection. Next, we discuss all the tools we found in the literature and on the Internet,
whether we include them in our comparison, and if not, why not. Finally, we shortly consider
comparative studies similar to our own, and explain why we feel the need to do some comparisons
of our own.

2.1 Implementation strategies

Since the implementation of the tools is not our main concern – we are interested in comparing
the results of the tools – we give only a short overview of the different comparison techniques
described in the literature.

Many, but not all, approaches start by transforming the original source code file into a token
string, where tokens are the lexical entities that are the building blocks of a program (e.g., iden-
tifiers, keywords and such). On the way, source code aspects that can be easily changed without
changing the semantics of the program (comments, variable names, indentation) are removed. The
token representations of the programs are then compared to detect similarities.

Early systems used a purely attribute-based approach: several properties of a source code file
were counted (see for example [13]). Thus, each file was represented by a sequence of numbers.
Two files with representing sequences that were ’similar enough’ were considered as possible cases
of plagiarism.

Later, structure-based systems were developed, that compare the structure of programs rather
than transforming them into sequences of numbers. Often, the original programs are first tok-
enized, and then the resulting token strings are compared using various string comparison algo-
rithms (e.g., Running-Karp-Rabin Greedy-String-Tiling in [21]). Also the program dependency
graphs used in [15] can be considered structure-based.

2.2 Tools

The criteria for selecting tools for our comparison largely depend on the answers to the following
questions: Can the tool deal with Java programs? Is it readily available? Is it free?

Table 1 provides an overview of the results of our investigation of the literature and the Internet.
Note that we have omitted from the present study a few tools that could have been included. Their
evaluation is still ongoing, and the results will be made available in a future study.

The tools that were selected are described in detail in Section 4. The citations mentioned in
connection with a tool are original sources that describe the tool: a paper by the authors of the
tool, or the tool’s homepage, or both. When no citations are given, we were unable to find them.

2



Tool Included Reason not included
Big Brother no not found
CodeMatch [1] not yet commercial (but free evaluation license possible)
Cogger [17] no not found
DetectaCopias no in Spanish, not found
GPlag [15] no not found
Jones [13] no not found
JPlag [18] yes
moss [2, 20] yes
PDetect [16] no does not support Java
Plaggie [3, 8] yes
PlagioGuard [19] no not found
Saxon no not found
Sherlock [4] not yet
sid [5, 11] not yet
sim [6] yes
TEAMHANDIN no does not support Java
XPlag [9] no meant for inter-lingual plagiarism detection
yap3 [21] no does not support Java

Table 1: Known program plagiarism detection tools

2.3 Comparisons

Comparisons of program plagiarism detection tools can be roughly divided into two categories:
feature comparisons and performance comparisons.

Feature comparisons are qualitative comparisons; they describe the properties of a tool, like
which programming languages it supports, whether it is a local or a web-based application, which
algorithm is used to compare the files, etc (see for instance [14, 10, 19]. By nature, such a
comparison is purely descriptive, and based on such a comparison it is difficult to say which of the
tools should be considered ’the best’.

Performance comparisons are quantitative comparisons; they typically describe some exper-
iments run on some tools. They compare the results of tools, rather than their properties
(see [10, 11]).

Papers presenting one particular tool often provide the results of experiments run to test that
tool (see for instance [20, 11]). In the JPlag technical report [18], a short textual comparison of
the most important features of JPlag, moss and yap3 is given, followed by an extensive empirical
evaluation of JPlag. In the latter, there is also included a long list of so-called ”futile attacks”:
commonly used attempts to fool a plagiarism detector (most of which did not fool JPlag).

In [11] the Software Integrity Diagnosis system (sid) is presented, which is a specific con-
tinuation of a general project that concerns itself with determining the measure of similarity of
two sequences (whether these sequences represent genomes, documents, music or programs). The
measure that sid uses is based on Kolmogorov complexity. The results of sid are compared to
the results of moss and JPlag on the same programs. The authors report that in many cases
the results of the three tools are similar, but that both moss and JPlag seem to be sensitive to
random insertion of redundant code (e.g., a lot of System.out.println statements). The results
of our sensitivity analysis (Section 5) indicate that indeed moss is rather sensitive to numerous
small changes in the source code.

3 Criteria for qualitative comparison

In this section we list the criteria that we use for our qualitative comparison of the selected tools.

3



1 - Supported languages The minimal requirement for tools to be included in this survey was
to support plagiarism detection in Java source code files, but some tools support several
other languages.

2 - Extendability Directly related to supported languages is extendability: the ability of a tool
to be adapted or configured so that it can be used for other programming languages. This
can be useful since it’s quite likely that within a computer science faculty more than one
programming language is used, and one does not want to use a different tool for every
different programming language.

3 - Presentation of results After the running of the tools, a lot of effort has to be done to check
if found similarities between files concern actual cases of plagiarism, cooperation between
students, or a coincidence. In most cases, this takes a lot more time than running the query
itself. Therefore, it is important to present the results in such a way that post processing
can be done as efficiently as possible.

A good presentation of the results should at least contain the following elements:

Summary: Here meta data like the total number of submissions, the succesfull parses, the
parameters used for running the detection, and a chart showing the distribution of
similarities over the result should be shown. Such a histogram can help identifying the
range of similarities that clearly represent no plagiarism, and the range of values that
should be investigated further.

Matches: The matches should be listed sorted by similarity, in a comprehensive way. This
can be done pairwise, or in clusters. It should also be possible to set a certain threshold
on the minimum similarity to include in the result overview.

Comparison tool: To be able to easily compare pairs that are marked as ’similar’ it is help-
ful if there is an editor that is able to display both files next to each other, highlighting
the similarities.

4 - Usability Another criterion is the ease of use of the tool. It should be possible for a user to
use the tool without first having to spend a lot of effort in getting the tool to work. For
instance, a graphical user interface instead of a command line interface can be very helpful.

5 - Exclusion of template code It is normal for student programming assignments to share
some common base code from which students have to complete an assignment. Also, it often
happens that something explained in the lectures can be used in a programming assignment.

In both cases, the results of a search for plagiarism may include many legimate matches,
that do not indicate plagiarism, but can be explained by one of the previously mentioned
legitimate causes. Some plagiarism detection tools allow the user to place such legitimately
shared code in a common base file that will be ignored during the detection phase. This can
help prevent a lot of false positives.

6 - Exclusion of small files Related to the exclusion of template code is the exclusion of small
files. Very small files – such as so called Java beans, that only consist of attributes and their
getter and setter methods – are most likely to return high similarity scores. This is simply a
result of the way such classes are implemented and does not indicate plagiarism. A tool can
either mention the file size in its result, which can help in detecting false positives caused
by small files, or it may provide a way to exclude files up to a certain size.

7 - Historical comparisons With this criterion we denote the ability of a tool to compare a
new set of submissions with submissions from older incarnations of the same programming
assignment, without again mutually comparing the older incarnations. So there must be
a way to distinguish older submissions from newer ones. Either by indicating which are
the new or old submissions when starting the tool, or by putting different incarnations in
different directories.

4



8 - Submission or file-based rating Whether a tool rates the submissions by every separate
file or by submission (a directory containing the files of which the program consists) greatly
influences the readability of the output. When a submission consists of multiple files, it is
important that the plagiarism detection is performed for each file in the submission, since
the detection of plagiarism in only one of the files of the submission is enough to consider
the whole submission as being plagiarized and therefore invalid. When a submission based
rating is used the comparison might still be file based. Then the question is how the file
comparison scores are combined into a score for the whole submission.

9 - Local or web-based Some tools are provided as web services. This requires a lecturer to
send the student assignments over the network. Here you take a risk of exposing confidential
information to the outside world.

Other tools have to be downloaded and run locally.

10 - Open source An advantage of open source is of course the possibility of extending or im-
proving the program to better suit the situation you intend to use it for.

4 Feature comparison

In this section we introduce the tools we selected for our comparison, and discuss in particular the
criteria described in Section 3. The tools are presented in alphabetical order.

JPlag

JPlag [18] was developed by Guido Malpohl at the University of Karlsruhe. In 1996 it started out
as a student research project and a few months later it evolved into a first online system. In 2005
JPlag was turned into a web service [7] by Emeric Kwemou and Moritz Kroll.

JPlag converts programs into token strings that represent the structure of the program, and
can therefore be considered as using a structure-based approach. For comparing two token strings
JPlag uses the “Greedy String Tiling” algorithm as proposed by Michael Wise [21], but with
different optimizations for better efficiency.

1 - Supported languages JPlag supports Java, C#, C, C++, Scheme and natural language
text.

2 - Extendability The only part of JPlag that depends on the language in which the programs
to be checked are written is the front-end, where programs are converted into token strings
(by a parser or a scanner, depending on the programming language). No description is found
of how to make a front-end for a language that is not currently supported.

3 - Presentation of results JPlag presents its results as a set of HTML pages. The pages are
sent back to the client and stored locally. The main page is an overview that includes a
table with the configuration used to run the query, a list of failed parses, a chart showing the
distribution of the similarity values, and listings of the most similar pairs, sorted by average
similarity as well as by maximum similarity.

One distinctive feature of JPlag is the clustering of pairs. This makes it easier to see whether
a submission is similar to several other submissions. This can be the case when students of
previous years have put their solution to the assignment on the web.

When selecting a pair, all files in both submissions are shown side-by-side in frames. Parts
of the files that have been found to be similar on token-level are marked with colors. On
the top of the screen a list of all the similar parts in the submissions is displayed. When
selecting such a part, the editors jump to the corresponding code.

4 - Usability The very easy to use Java Web Start client, the clear listings of the results and the
editor for comparing submissions all contribute to a very easy to use application.

5



5 - Exclusion of template code It is possible to submit a basecode directory containing files
that should be excluded from the comparison.

6 - Exclusion of small files Yes

7 - Historical comparisons No

8 - Submission or file-based rating JPlag expects that every program that has to be exam-
ined is situated in its own directory, which is seen as a separate submission of a student. All
files within such a directory will be considered as belonging to the same submission. Ratings
are by submission.

9 - Local or web-based JPlag is available as a web-based service. There is a Java Web Start
client available on the JPlag website [7] to upload the files to the server. They also provide
extensive instructions on how to write your own JPlag client.

10 - Open source No

Marble

Since there is no English publication on Marble, we take some more time here to explain the
particulars of this tool.

Marble is a tool developed in 2002 at Utrecht University by the first author. The intention was
to create a simple, easily maintainable tool that can be used to detect cases of suspicious similarity
between Java submissions. By collecting all the submitted programs for the various assignments in
the computer science department in Utrecht, and by comparing against these as well, Marble has
been instrumental in exposing a few dozen cases of proven plagiarism. For reasons of scalability it
is essential that the tool can distinguish between old and new submissions, so that old submissions
are not compared to each other anymore.

Marble uses a structure-based approach to compare the submissions. It starts by splitting the
submission up into files so that each file contains only one top-level class. The next phase is one of
normalization, to remove details from these files that are too easily changed by students: a lexical
analysis is performed (implemented in Perl using regular expressions) that preserves keywords
(like class, for) and frequently used class and method names (like String, System, toString).
Comments, excessive white-space, string constants and import declarations are simply removed,
other tokens are abstracted to their token “type”. For example, every hexadecimal number is
replaced by H and every literal character by L.

For each file, Marble actually computes two normalized versions: one in which the order of
fields, methods and inner classes is exactly like that of the original file, and one in which the fields,
methods and inner classes are grouped together, and each group is sorted. Sorting is performed
in a heuristic fashion. For example, the methods are first ordered by number of tokens, then by
total length of the token stream, and finally alphabetically.

In order to be able to extract inner classes, methods and fields from the Java class file without
having to parse, Marble first annotates the braces { and } in the program with their nesting depth,
and splits up classes by matching on braces of the right nesting depth (depth 0 corresponds to
the braces of the class definition, depth 1 to inner classes and methods). Knowing the location
of the opening brace of a method does not directly give the start location of the method, but by
scanning backwards to the first encountered semi-colon or closing brace, it is possible to find it.
Inner classes are treated similarly.

The person running the tool can choose to compare the sorted or the unsorted normalized
versions (or both). Because the sorting is heuristic, small changes to the methods in a class can
totally change the sorting of methods. We have observed one case where a student made a number
of changes, but did not reorder the methods. Because of the changes, corresponding methods in the
original version and the plagiarised version ended up in substantially different positions, negatively
influencing the score. This is why it also makes sense to compare the unsorted versions.

6



The actual comparison of the normalized files is done using the Unix/Linux utility diff. The
score is then computed from the ratio between the number of lines on which they differ from each
other and the total number of lines in the two compared normalized files.

1 - Supported languages Marble supports Java. Support for Perl, PHP and XSLT is experi-
mental.

2 - Extendability The language-dependent part is the normalization phase, which can easily be
adapted for similar programming languages.

3 - Presentation of results The results are outputted to a script named either suspects.nf

(unsorted) or suspects.nfs (sorted), which, when run, outputs for each pair that exceeds a
given threshold of similarity the similarity score, the size of both files, and then opens both
original files in a diff editor to show the differences. The user may also choose not to run
the script, but to open it in a text-editor and manually investigate the suspects.

4 - Usability Marble is available as a Perl script (on demand, from jur@cs.uu.nl) and has a
command line interface.

5 - Exclusion of template code It is not possible to exclude template code.

6 - Exclusion of small files The Marble script uses a threshold value to exclude files below a
certain size.

7 - Historical comparisons If submissions are stored in an appropriately ordered file system
(one directory per assignment, divided into subdirectories for the different incarnations,
which are divided into subdirectories for the different reviewers, that contain the submissions
of that incarnation (each in their own directory)), then Marble is able to compare each file of
a new submission to not only the files from submissions inside the same incarnation, but also
to those in older incarnations – without comparing the older submissions among themselves.

8 - Submission or file-based rating For every pair of files a similarity rating is computed.

9 - Local or web-based Marble is run locally.

10 - Open source No

MOSS

moss is an acronym for Measure Of Software Similarity. moss was developed in 1994 at Stanford
University by Aiken et al. It is being provided as a webservice that can be accessed using a
script that can be obtained from the moss website [2]. A moss account (and submission script)
can be obtained by e-mail from moss@moss.stanford.edu. The moss submission script works
for Unix/Linux platforms and may work under Windows with Cygwin, but the latter is untested
(from personal correspondence with the author).

To measure similarity between documents, moss compares the standardised versions of the
documents: moss uses a document fingerprinting algorithm called winnowing [20]. Document
fingerprinting is a technique that divides a document into contiguous substrings, called k-grams
(with k being picked by the user). Every k-gram is hashed, and a subset of all the k-gram hashes
is selected as the document’s fingerprint. Winnowing is an efficient algorithm for selecting these
subsets.

1 - Supported languages moss can currently analyze code written in the following languages:
C, C++, Java, C#, Python, Visual Basic, JavaScript, FORTRAN, ML, Haskell, Lisp,
Scheme, Pascal, Modula2, Ada, Perl, TCL, Matlab, VHDL, Verilog, Spice, MIPS assem-
bly, a8086 assembly, HCL2.

2 - Extendability Yes (by the authors).

7



3 - Presentation of results The output of moss is an HTML presentation with clickable links
and an integrated HTML diff editor that allow for easy navigation through the results. It
is placed on a web page on the moss web server. A link to that web page is returned when
moss is finished checking the documents. Precautions have been taken to keep the result
pages private. The results cannot be crawled by robots or browsed by people surfing the
Web. The random number in the URL is made known only to the account that submitted
the query, and there is no way to access the results except through that URL. The result
pages expire automatically after 14 days; code is not retained indefinitely on the server.
Taken together, these measures would seem to make the potential for abuse quite small.

4 - Usability When registering to moss a submission script is mailed that can be used to upload
the submissions.

5 - Exclusion of template code moss allows one to supply a base file of code that should be
ignored if it appears in programs; moss never considers code that appears in a base file
to match any other code. Furthermore, moss can automatically eliminate matches to code
that one expects to be shared (e.g., libraries or instructor-supplied code), thereby eliminating
false positives that arise from legitimate sharing of code.

6 - Exclusion of small files Yes

7 - Historical comparisons Yes, at the command line the user can indicate which are new and
which are old submissions.

8 - Submission or file-based rating By default, moss compares files based on submissions
or directories, however, the submission script exposes an option that allows for file to file
comparison.

9 - Local or web-based moss is a web-based system.

10 - Open source No

Plaggie

Plaggie [8, 3] is a source code plagiarism detection engine meant for Java programming exercises.
In appearance and functionality, it is similar to JPlag, but there are also aspects of Plaggie that
makes it very different from JPlag: Plaggie must be installed locally and its source code is open.
Plaggie was developed in 2002 by Ahtiainen et al. at Helsinki University of Technology. It is a
stand-alone command line Java application.

The basic algorithm used for comparing two source code files is the same as for JPlag: tokeni-
sation followed by Greedy String Tiling as described in [18]. The authors mention that they did
not implement the optimisations that were implemented in JPlag.

In the Plaggie readme file, the authors list known unsuccessful attacks (changing comments or
indentation, and changing the names of classes, methods or variables) as well as known successful
attacks (”moving inline code to separate methods and vice versa, inclusion of redundant program
code, changing the order of if-else blocks and case-blocks”) and known problems (accuracy of
Plaggie when used on GUI code or automatically generated code).

1 - Supported languages Java 1.5

2 - Extendability Apparently not.

3 - Presentation of results By default, Plaggie’s results are shown in plain text on the standard
output and are stored in a graphical HTML format (using frames). It also offers an option
to disable the plain text output. The output includes a table showing statistics such as the
distribution of the different similarity values, the number of files in submissions, etc. The
HTML report includes a sortable table containing the top results and their various similarity

8



values. For further inspection a submission can be clicked which leads us to a side-by-side
comparison of the files, highlighting the similarities.

4 - Usability Configuring Plaggie has to be done via a configuration file that is placed in the
directory containing the submissions. Running Plaggie is done using its command line
interface.

5 - Exclusion of template code Template code can be excluded by providing the file contain-
ing the template code. In addition, Plaggie offers the possibility to exclude code from the
comparison based on filename, subdirectory name, or interface.

6 - Exclusion of small files Plaggie does allow excluding submissions from the results below a
certain similarity value. It does not, however, allow the exclusion of files based on their size.

7 - Historical comparisons No

8 - Submission or file-based rating Plaggie compares file by file, but accumulates the results
per submission.

9 - Local or web-based Plaggie is run locally. Its results are in HTML format, which allows
for web-based publication.

10 - Open source Yes, GNU-licensed.

SIM

sim [6] is a software similarity tester for programs written in C, Java, Pascal, Modula-2, Lisp,
Miranda, and for natural language. It was developed in 1989 by Dick Grune at the VU University
Amsterdam. The current version, sim 2.26, is from 2008. Matty Huntjens wrote the shell scripts
that take the output of sim and turn it into a plagiarism report.

The process sim uses to detect similarities is to tokenize the source code first, then to build a
forward reference table that can be used to detect the best matches between newly submitted files,
and the text they need to be compared to. Clever programming makes sure that the computational
time stays within reasonable bounds.

While sim is no longer actively maintained and supported, its source code is publicly available,
as are some binaries [6]. According to the authors, the plagiarism detection side of it is very much
tailored to the situation at the VU University Amsterdam and therefore not very portable.

1 - Supported languages C, Java, Pascal, Modula-2, Lisp, Miranda and natural language texts.

2 - Extendability sim can be readily extended by providing a description of the lexical items of
a new language.

3 - Presentation of results The results of sim are presented in a flat text file that first outputs
some general information about the compared files, such as number of tokens of each of the
files, total number of files, names, etc.

4 - Usability Command line interface, fairly usable.

5 - Exclusion of template code No

6 - Exclusion of small files No

7 - Historical comparisons According to our definition of this criterion (that states that earlier
incarnations are not compared among themselves each time a new incarnation is added): no.
However, according to the sim website [6], sim’s efficiency is very useful here: ”sim is very
efficient and allows us to compare this year’s students’ work with that collected from many
past years”.

9



8 - Submission or file-based rating sim’s output is on a per-file basis, however, files are only
mutually compared if they come from different submission directories.

9 - Local or web-based sim is run locally.

10 - Open source Yes

In Table 2 we summarize the evaluation for easy comparison. Instead of mentioning all sup-
ported languages of the tools again, we have simply counted them. For the criteria ‘3 - Presentation
of results’ and ‘4 - Usability’ we introduce a scale of 1 to 5, 1 meaning ‘poor’ and 5 meaning ‘very
good’.

Feature JPlag Marble MOSS Plaggie SIM

1 - Supported languages (#) 6 1 23 1 5
2 - Extendability no no no no yes
3 - Presentation of results (1-5) 5 3 4 4 2
4 - Usability (1-5) 5 2 4 3 2
5 - Exclusion of template code yes no yes yes no
6 - Exclusion of small files yes yes yes no no
7 - Historical comparisons no yes no no yes
8 - Submission or file-based rating submission file submission submission file
9 - Local or web-based web local web local local
10 - Open source no no no yes yes

Table 2: Feature matrix plagiarism detection tools

5 Performance comparison

In this section we describe two experiments we have performed to measure the performance of the
tools quantitatively. The first of these is a sensitivity analysis, the second a top-n comparison.

In the sensitivity analysis we take two Java classes, refactor them both in seventeen different
ways and consider how similar the refactored versions are to the original versions, according to
each of the tools (Section 5.1, first part). In this way we hope to gain some insight in the weak
and strong points of each tool.

Since we have seen in earlier experiments that combining refactorings quickly degrades the
scores further, we have expanded our sensitivity experiment by also considering the effects of a
combination of refactorings (Section 5.1, second part). Both parts of the sensitivity experiments
compare files rather than submissions.

In our last experiment, the top-n comparison (Section 5.2), we run the tools on a real-life
collection of programs (in which a few cases of plagiarism are known to be hiding), and we consider
the top-10 of highest scoring pairs of submissions for each tool in turn. Hence, this experiments
compares submissions rather than files.

There are several reasons why we feel the need to do this top-n comparison. First of all, when
we want to determine the accuracy of one tool, we could run it on a large collection of real-life
submissions in which numerous occurrences of obvious, less-obvious, and highly-refactored cases of
plagiarism are hidden. Then we could manually check whether the tool found the right plagiarism
candidates. Obviously, for large enough collections this is a very time-consuming task. If, however,
we can run several tools on this same set of submissions, we can use the extra information the
other tools provide to more easily determine whether ‘our’ tool is accurate.

A second reason that we included the top-n comparison is the following. In the sensitivity
experiment, for instance, each tool returns a score for each pair consisting of one original file
and one refactored file. We may normalize the score for maximal similarity to 100, and minimal

10



similarity to 0. If a tool scores 100 for a refactored version in comparison with the original, then
we consider the tool to be insensitive to that particular refactoring. However, it is hard to draw
any conclusions from the other scores in the range 0-100, because each tool has its own way of
computing a score: a score of 90 for one tool does not necessarily mean the same as a score of
90 for another tool. By comparing the top-n’s of all the tools, we have eliminated at least this
problem.

Finally, note that it is very easy to construct a tool that always scores 100 for any comparison
of two files. Such a tool is of course very insensitive and will do well in the sensitivity experiment.
However, it is bound to do badly in the top-10 comparison.

5.1 Sensitivity analysis

We start this subsection with the part of the set-up of this experiment that is common for both
the ‘single refactorings’ and the ‘combined refactorings’ part.

Common set-up
To compare the sensitivity of the tools to (single) counter measures, we have carried out an ex-
periment in which we have created seventeen different versions of the programming assignment
”Animated Quicksort” (and a combi version for the combined sensitivity experiment). This as-
signment was used in a course on Distributed Programming at Utrecht University. The version
at hand consists of five Java files: QSortAlgorithm.java, QSortApplet.java, QSortView.java,
QSortObserver.java, QSortModel.java. Out of these files, the latter three either are small or
are expected to be very similar by nature. Therefore, for both sensitivity experiments, we take
only QSortAlgorithm.java and QSortApplet.java into account.

We consider seventeen strategies that can be used to try and disguise a plagiarized program
(see Table 3). The modifications in this table preserve the semantics of the program but change
its appearance. Furthermore, the modifications do not require in-depth knowledge of the program
and do not take much time to apply. Students who plagiarize often do not have the knowledge or
time to build a program themselves, which makes these modifications ideal candidates to disguise
plagiarism.

Modifications 12 through 17 are based on the refactoring functionalities offered by the popular
Eclipse IDE1, which is known to be used by a lot of students.

Sensitivity to a single refactoring

Below we first describe the set-up for this particular experiment, then the way in which we present
the results, and finally we interpret these results.

Set-up
We denote the original version of the class at hand by ‘version 0’ (i.e., there is a version 0 for both
QSortApplet.java and QSortAlgorithm.java). We create seventeen different versions of each of
the two classes, using the refactorings described in Table 3. The resulting versions are numbered
according to the numbers of the refactorings in Table 3; in each version only a single modification
is applied. In this way we aim to be able to assess the sensitivity of the tools to the different
modification strategies.

Some tools rate per file and others per submission. Since the sensitivity analysis is a per-file
analysis, we sometimes had to explicitly create two submission directories, one containing only a
version 0 and the other containing only a version i, for i = 1..17, in order to ensure that the tool
in question indeed returned a score for each of the pairs ‘(version 0, version i)’.

Presentation of the results
Figures 1 and 2 show the results of the sensitivity experiment. For each modified version, the

1http://www.eclipse.org

11



Version Description

0 Original Animated Quicksort assignment (two files out of five)

1 Translated comments and minor layout changes

2 Moved 25% of the methods

3 Moved 50% of the methods

4 Moved 100% of the methods

5 Moved 50% of class attributes

6 Moved 100% of class attributes

7 Refactored GUI code

8 Changed imports

9 Changed GUI text and colors

10 Renamed all classes

11 Renamed all variables

12 Eclipse - Clean up function: member access (use ’this’ qualifier for field and method
access, use declaring class for static access)

13 Eclipse - Clean up function: code style (use modifier final where possible, use blocks
for if/while/for/do, use parentheses around conditions)

14 Eclipse - Generate hash code and equals function

15 Eclipse - Externalize strings

16 Eclipse - Member type to top level (extract inner classes)

17 Eclipse - Generate getters and setters (for each attribute generate a getter and setter)

Table 3: Semantics preserving modifications applied to version 0

figures show six similarity values. (In Appendix A we have collected similar charts, but there each
chart compares diff to one tool only.)

The first value is the similarity value computed using the Unix diff2 utility directly on the
source files. This serves as a quantification of the effect of the modification. The value is computed
as follows:

similarity = 100− 100 ∗ nr. of different lines (diff)

nr. of lines file1 + nr. of lines file2

Note that it is important to use diff with the option -w, in order to ignore lines that differ only
in the amount and/or position of whitespace.

The next five values are the similarity values as computed by the five plagiarism detection tools
we consider. For Marble the selection of the similarity value is straightforward, since for every
pair of files Marble produces a single similarity score. Other tools, however, return two similarity
scores for every comparison between a pair of files. A score indicating the percentage of lines in
file A that are found to be similar to lines in file B, and vice versa, a score that indicates the
percentage of lines in file B that are similar to lines in file A. For all tools that use this scoring
approach we have selected the maximum score of the two similarity scores.

Interpretation of the results
We do not always know exactly which function a tool uses to compute its scores. Therefore, when
tool X scores higher than tool Y for a certain version, this does not necessarily mean that tool Y
is more sensitive to this kind of attack than tool X.

Moreover, one way of using a plagiarism detection tool is to run it on a set of submissions,
and then check the candidate plagiarism pairs designated by the tool, starting with the pair with
the highest score, then the second highest, and so on, until no candidates are found to be serious
supected cases anymore. In this way, the exact scores are not important.

Still, we can gather some interesting information from Figures 1 and 2. As mentioned before, we
consider a tool score of 100 as indicating insensitivity of the tool to the refactoring. Furthermore,
a very low tool score, a tool score lower than the corresponding diff score and a tool score that

2http://www.gnu.org/software/diffutils/diffutils.html

12



is significantly lower than the corresponding scores of the other tools all are incentives for further
consideration.

From the charts in Figures 1 and 2 we can observe several interesting things. We consider each
version (or group of related versions) in turn. Moreover, for each version and each tool, we choose
between the two figures to get the most meaningful score. For instance, for QSortAlgorithm.java,
versions 7, 8, 9, 15 and 16 score 100 for both diff and each tool, because those refactorings do
not affect that particular file at all. However, they do cause some changes in QSortApplet.java,
hence for these versions we choose the values from Figure 1.

We start with a general remark about the two figures. Four out of the five tools quite often
score 100, and even diff does that occasionally. moss, however, never scores 100. Since this also
happens for identical files, this may be an intrinsic feature of moss, and we tend to consider scores
like 98 and 99 as being 100.

• First of all, in both figures we can see from the scores for version 1 that all tools are insensitive
to changes in layout and comments (strictly speaking, moss is not completely insensitive).

• The bars for versions 2, 3 and 4 show the sensitivity for changes in the location of methods.
Only Marble is completely insensitive to changes to the locations of methods. In Figure 2
we observe that JPlag, moss, Plaggie and sim are considerably sensitive to changes to the
locations of methods. In the same figure, these tools also show a slight decrease in the
similarity score when we change the location of the class attributes.

• None of the tools is completely insensitive to changes in the location of the class attributes
(versions 5 and 6).

• Figure 1 shows that all tools but Marble score significantly lower than diff when GUI code
is refactored.

• The modifications applied in versions 8, 9, 10, and 11 are completely ineffective for all tools
in both files (with a small exception for JPlag and moss). These modifications concern the
renaming of variables and classes and the changing of imports.

• The modifications in versions 12 (in which this qualifiers are added to every field and
method access) seem to cause some confusion for Marble, and quite a lot for moss and sim.
JPlag and Plaggie are insensitive to this type of refactoring. For moss this corresponds to
the results reported in the comparative study by the authors of SID [11], but for JPlag it
does not.

• Almost the same holds for version 13 (Eclipse’s code style clean-up function). However,
Plaggie’s score drops here as well.

• Both JPlag and Marble seem to do poorly on version 14 (generation of hash code and equals
function by Eclipse): they score lower than diff. However, moss, sim, and surprisingly –
since it is very similar to JPlag – Plaggie do fairly well here.

• As for version 15 (externalisation of strings), none of the tools is insensitive, but JPlag and
Marble score higher than diff, whereas the other three score lower.

• JPlag, Plaggie and sim are insensitive to the refactoring from version 16 (member type to
top level), whereas Marble and moss are clearly not. However, Marble scores higer than
diff in both figures, and moss as well in the first (and almost in the second).

• Version 17 (generation of getters and setters): none of the tools are completely insensitive,
but Marble and JPlag seem to have some problems (scoring lower than diff in Figure 2).

At first glance one might be tempted to conclude that, although there are some differences
in rating, all attempts to disguise the plagiarism by the different modifications techniques would
have been found by all of the tools. After all, the tools return a fairly high similarity score for

13



Figure 1:

14



Figure 2:

15



most versions. Note, however, that the validity of the previous statement depends on how the
tools rate non-plagiarism cases. For instance, it could be that the tools rate non-plagiarised pairs
with similar values as we have seen in this experiment. This should be verified in an experiment.
The top-n comparison in Section 5.2 can also provide some information on this aspect. However,
at this moment we can say from our experience with the different tools during our experiments,
that most tools do seem to rate non-similar pairs significantly lower than the scores we have seen
in this sensitivity experiment.

Sensitivity to combined modifications

Here we present the set-up and results of the second part of the sensitivity experiment.

Set-up and presentation of the results
To take the previous experiment a step further, we have combined several effective modifications
(in particular: 4, 6 and 11–17) to see if we can escape detection in this way. These modifications
have shown to be most effective for most of the tools. Moreover, modifications 11-17 are very easy
to apply since they can be performed automatically by the Eclipse IDE. The results in Figure 3
show the scores for QSortApplet.java and QSortAlgorithm.java.

Interpretation of the results
From the results in Figure 3 we observe that the similarity scores in both moss and sim drop
significantly for all files. Marble, JPlag and Plaggie show a smaller decrease in similarity score.
To be able to detect plagiarism in a submission, only one file needs to end up high in the ranking.
From experience with Marble we can say however that a score of 64 for QSortAlgorithm.java

will end up quite high in the listing of the results.

5.2 Top-n comparison

Another idea for comparing the performance of the tools was by means of comparing the top-n
output of the tools. In this subsection we describe the outcomes of this experiment for n = 10.
That is, we consider the top-10 of highest scoring pairs of submissions for each tool in turn. This
gives us a minimum of 10 (since n = 10, and assuming that there are indeed 10 pairs that are
similar enough to be detected by at least one tool) and a maximum of 50 (since we consider five
tools) pairs of programs, for which we then investigate (1) whether we think that the programs are
indeed highly similar, and (2) whether the similarity can be established as being due to plagiarism.

If we consider all of these highly similar pairs together, then the tools that have the most of
these pairs in their top-10, and preferably then the cases that constitute actual plagiarism, are
considered to be good. It should be noted though that how well a tool does in the comparison,
strongly depends on the ways students have tried to hide the plagiarism. For example, if refactoring
technique X is never used to hide plagiarism within our set of submissions, then all things equal,
we shall consider two tools Y and Z to be equally precise, although it might be that Y can well
detect the presence of masking plagiarism with X, while Z is hopeless.

When a tool lists a pair highly, and the elements of this pair turn out not to be similar, then
this is a clear sign that something can be improved, particularly if other tools do not list the
combination.

Set-up
For the top-10 comparison we use a different corpus than the one we used for the sensitivity ex-
periment. At Utrecht University, we have a rather large database of submissions for a Mandelbrot
assignment that have been handed in over the years (starting with course year 2007–2008, and
going all the way back to 2002–2003). It has been confirmed that a few cases of plagiarism are
hiding in this collection. We simply provided the tools with all these submissions, appropriately
ordered in directories.

16



Figure 3: The diff and tool similarity with respect to version 0 for all tools, after applying modi-
fications 4, 6, and 11–17 to QSortApplet.java and QSortAlgorithm.java, respectively

17



Presentation of the results
Table 4 presents the results of the top-10 comparison. For each of the five tools, we looked up the
10 pairs of submissions with highest similarity. It should be noted that this comparison was made
by first converting the output files of the various tools to a comparable format. It is essential to
have some tool support here, particularly if we want to redo the experiment later for other sets
of submissions. The conversion tools also provide evidence that the scores from the various tools
are treated uniformly, and document how the changes were made. Doing the conversion manually
does not easily provide such a proof.

This amounted to a total of 28 different pairs, that are all presented in Table 4, in no particular
order. The row numbers 1–28 are only added for easy reference.

Moreover, we have chosen to provide our qualification of the pair in question, instead of showing
anonymizations of the submissions of which it consists. Six different qualifications appear in the
table:
– the meaning of ‘plagiarism’ is that this pair was confirmed as a case of plagiarism
– the qualifications ‘false alarm’ and ‘similar’ have only a subtle mutual difference: a pair dubbed
‘similar’ contains some files that are indeed similar, but not plagiarized, whereas ‘false alarm’
means that the files were not even similar (and also not plagiarized)
– the qualification ‘resubmission’ stands for a legitimate resubmission of the same program (by
the same student, in different course years, so no plagiarism)
– there are three pairs (rows 21, 25 and 28) qualified as ‘same submission’: indeed these consist
of identical submissions (no plagiarism). Only sim found these pairs, which is not very surprising,
since sim originally is a clone detection tool, which warrants self comparison.
– finally, ‘small file’ indicates that the similarity stems from the fact that the files in question just
are very small (no plagiarism).

The table contains 13 relevant pairs (qualifications ‘plagiarism’, ‘resubmission’ or ‘similar’)
that all contain pairs that are indeed highly similar and should be investigated. There are 4
irrelevant pairs (qualifications ‘same submission’ or ‘small file’) that do not belong in any top-10.
The other 11 pairs (‘false alarm’) we would rather not see in a top-10, but we cannot just say that
they should not be there.

Rows 1, 2 and 17 are linked: the pair in row 1 consists of the pair (A,C) and row 17 of the
pair (B,C), where A and B are new submissions, whereas C was submitted by a different student
one year previously. Row 2 represents the pair (A,B). The parse errors are caused by B being
parse-incorrect.

Each column shows, for the tool mentioned in the header of that column, the scores of its
top-10, plus the scores of the remaining 18 pairs – if we could find those in the results of the tool,
that is.

The reason that Marble shows a score for each row (except for those marked as ‘same submis-
sion’, since those are only compared by sim), while the other tools do not, is that in this particular
run Marble generates a score for each pair that is compared, whereas the other tools generate
scores up to a certain threshold.

Interpretation of the results
From these results we can observe that the top-10’s of JPlag, Marble and moss are fairly similar,
whereas the top-10’s of Plaggie and sim differ quite a lot from the other three. Below, we describe
the top-10’s in more detail.

Performance JPlag For a lot of rows, there is no JPlag score, the cause of which should be
investigated. Out of the 5 cases of plagiarism, JPlag misses 2 because of parse errors (see
also below) and 1 because there is just no score. The other two have fairly high scores.

Performance Marble Marble does quite well, by computing for almost all cases of ‘plagiarism’,
‘resubmission’ and ‘similar’ scores of 82 or higher (the two exceptions are rows 26 and 27,
but still the scores there are higher than all scores for the irrelevant categories ‘false alarm’,
‘same submission’ and ‘small file’).

18



JPlag Marble moss Plaggie sim
1 plagiarism 86 46 60 30
2 plagiarism parse error 82 49 parse error
3 plagiarism 94 94 72 89 70
4 false alarm 43 94 4
5 false alarm 44 94 96
6 false alarm 44 94
7 false alarm 44 94
8 resubmission 95 92 60 92 61
9 similar 100 84 87 100 100
10 resubmission 100 100 84 100
11 false alarm 44 94
12 false alarm 84 56 65
13 false alarm 84 52 69
14 false alarm 85 57 69
15 resubmission 100 100 73 100 100
16 false alarm 47 94
17 plagiarism parse error 92 71 parse error 73
18 false alarm 28 83
19 plagiarism 84 89 49 92 56
20 false alarm 86 54
21 same submission 100
22 similar 79 94 90 43
23 small file 31 97
24 resubmission 96 89 80 97 75
25 same submission 100
26 resubmission 83 61 63 79 63
27 similar 85 75 82 49
28 same submission 100

Table 4: Top 10 comparison for Mandelbrot submissions from course year 2007/2008

Performance MOSS moss finds all but two (see also below) pairs that are worthy of further
investigation. Sometimes the scores of these pairs are rather low, but as discussed before,
this may just be a property of moss. In other words, moss’s threshold score may just be
lower than those of the other tools.

Performance Plaggie Plaggie returns quite a lot of high scores for cases that turn out to be
‘false alarm’. Moreover (or: consequently), several cases that should be investigated end
up lower in the top-10 than these ‘false alarms’ (especially the plagiarisms in rows 1, 3 and
19, which are on positions 414, 44 and 41, respectively). Plaggie also misses two cases of
plagiarism because of parse errors (see also below).

Performance SIM sim’s scores seem rather unpredictable, see for instance the range of scores for
the cases ‘plagiarism’, ‘resubmission’ and ‘similar’, which is 30 (plagiarism) to 100 (‘similar’
and ‘resubmission’). Also, there is a ‘false alarm’ in row 5 with the high score of 96 (note,
however, that this is the only ‘false alarm’ that was deemed important enough by sim to get
a score. This case should be investigated further.)
Positions 1, 2 and 3 from sim’s top-10 contain ‘same submissions’ (rows 28, 25 and 21,
respectively). Row 21 actually appears also on position 9 of this top-10. Moreover, row 9
appears on positions 5 (score 100) and 6 (score 99, not mentioned in Table 4). Finally, row
23 (‘small file’) is on position 7. Summarizing, sim tends to compute high similarity scores

19



for cases that clearly do not belong in a top-10. Mainly, this is caused by the fact that
sim sometimes compares a submission to itself. This is not so surprising, since sim itself
is a clone detection tool, which warrants self comparison. Another reason that the top-10
contains irrelevant pairs is the fact that sim does not provide an option to exclude files below
a certain size.

Missing comparison by sim and moss The pair in row 10 is missing from the output of sim,
and row 22 and 27 are missing from the output of moss. However, both rows clearly need
a closer look (although both turned out not to be plagiarism). Maybe this is a bug in the
tools, or an error in the use of the tools for the experiment. This requires a closer look at
both sim and moss, as well as at our operation of those tools in this experiment, to see what
exactly is going on.

Parse errors Parse errors in one of the submissions from rows 2 and 17 prevent these two pla-
giarism cases from being detected by both JPlag and Plaggie. This parse error is not caused
by the tools, but by one of the submissions itself.
Fortunately both tools keep a log file in which these two cases are mentioned. However, it
is possible to intentionally submit a file that is syntactically incorrect. Small errors – for
example (intentionally) forgetting a closing parenthesis – are usually corrected by the assis-
tants that inspect the submission. To ensure that this kind of trick cannot help in disguising
plagiarism, one could decide to only accept compiling programs for grading.

5.3 Runtime efficiency

Efficiency can be an important issue for plagiarism detection tools. The tools are often run on
a large number of submissions, and these submissions may contain multiple files. Although we
have not carried out precise timing experiments we can at least report that for the experiments
we did, (including an experiment covering 6 incarnations of first year programming assignment)
we have encountered no severe issues with the efficiency of any of the tools. The running time
range from several minutes to about 30 minutes. We do think that a running time of 30 minutes
is still acceptable for the purpose of detecting plagiarism in an academic environment. However,
such tools may not scale up for use in a environment with tighter time constraints. Note also that
the tools offered as a service may be very fast, but if you happen to check for plagiarism when
many others are as well, it may take some time before you get the results.

6 Conclusion

We have compared five plagiarism detection tools. We have compared these tools with respect to
ten tool features, and we have compared the performance by a sensitivity analysis on a collection of
intentionally plagiarised programs and on a set of real life submissions, comparing the performance
by examining the top 10 results for each tool to the results of the others. The results of the
comparison give good insight into the strong and weak points of the different tools.

Our findings from the two comparisons can be summarized as follows:

• Many tools are sensitive to numerous small changes. Refactoring number 12 is an example
of such a transformation.

• All tools do well for the majority of single refactorings, but many tools score rather badly
when refactorings are combined, worse than what may be obtained from simply using diff.

• A striking result of the top-10 comparison is that the top-10’s for JPlag, Marble and moss
are fairly similar, whereas the top-10’s of Plaggie and sim differ quite a lot from the other
three.

• Along the way we have discovered a few cases where a more detailed investigation of the
behaviour of the tools in question is in order.

20



7 Future work

To further support our findings, we may want to extend our comparison to larger and more varied
sets of (real-life) data. We are fortunate to have a large database of Java submissions around. If,
as part of the study, we have to make the submissions we have experimented upon available, then
privacy will become an issue.

On reflection, much of the work in the performance evaluation is due to differences in the
format the results are provided by the tools. We have employed various Perl scripts in order to
reduce this effort, but such script are not infallible. Establishing how the output of each tool
can be transformed into a format that allows easy comparison between tools, is, with the view
on more tools to be considered, a useful undertaking. Furthermore, automatic collection and
transformation of tool output will also allow us to more easily extend our comparison to more
data.

On this note, we have left the comparison of the five tools from this paper to the tools
CodeMatch, sid, Sherlock as work for the future.

A final direction for further research is to consider how the situation is for other languages. The
first author has recently been involved in an investigation how to perform plagiarism detection for
Haskell (still unpublished), but more importantly maybe, the Department of Computer Science is
going to replace Java in its curriculum with C#.

Acknowledgements

We are very grateful to Steven Burrows for giving many helpful directions on how to improve an
earlier verion of this survey. We thank Alexander Aiken for answering questions about moss.

References

[1] http://www.safe-corp.biz/products_codesuite.htm.

[2] http://theory.stanford.edu/~aiken/moss/.

[3] http://www.cs.hut.fi/Software/Plaggie/.

[4] http://www.cs.su.oz.au/~scilect/sherlock/.

[5] http://genome.uwaterloo.ca/SID/.

[6] http://www.cs.vu.nl/~dick/sim.html.

[7] http://wwwipd.ira.uka.de/jplag/.

[8] Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie: Gnu-licensed source code
plagiarism detection engine for java exercises. In Baltic Sea ’06: Proceedings of the 6th Baltic
Sea conference on Computing education research, pages 141–142, New York, NY, USA, 2006.
ACM.

[9] Christian Arwin and S. M. M. Tahaghoghi. Plagiarism detection across programming lan-
guages. In ACSC ’06: Proceedings of the 29th Australasian Computer Science Conference,
pages 277–286, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[10] Steven Burrows, S. M. M. Tahaghoghi, and Justin Zobel. Efficient plagiarism detection for
large code repositories. Softw. Pract. Exper., 37(2):151–175, 2007.

[11] Xin Chen, Brent Francia, Ming Li, Brian McKinnon, and Amit Seker. Shared information and
program plagiarism detection. IEEE Transactions on Information Theory, 50(7):1545–1551,
2004.

21



[12] Jurriaan Hage. Programmeerplagiaatdetectie met marble. Technical Report UU-CS-2006-062,
Department of Information and Computing Sciences, Utrecht University, 2006.

[13] Edward L. Jones. Metrics based plagarism monitoring. In CCSC ’01: Proceedings of the sixth
annual CCSC northeastern conference on The journal of computing in small colleges, pages
253–261, , USA, 2001. Consortium for Computing Sciences in Colleges.

[14] Thomas Lancaster and Fintan Culwin. A comparison of source code plagiarism detection
engines. Computer Science Education, 14:2:101 – 117, 2004.

[15] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. Gplag: Detection of software plagiarism
by program dependence graph analysis. In In the Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD06, pages 872–
881. ACM Press, 2006.

[16] Lefteris Moussiades and Athena Vakali. Pdetect: A clustering approach for detecting plagia-
rism in source code datasets. The computer journal, 48(6), 2005.

[17] Cunningham P. and Mikoyan A.N. Using cbr techniques to detect plagiarism in computing
assignments. In working papers of 1st. European Workshop on Case-Based Reasoning, pages
178–183, November 1-5 1993.

[18] L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: Finding plagiarisms among a set of
programs. Technical report, University of Karlsruhe, Department of Informatics, 2000.

[19] Deepak Rao et al Sanjay Goel. Plagiarism and its detection in programming languages.
Technical report, Department of Computer Science and Information Technology, JIITU, 2008.

[20] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD International Conference
on Management of Data 2003, pages 76–85. ACM Press, 2003.

[21] Michael Wise. YAP3: Improved detection of similarities in computer program and other texts.
SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education),
28, 1996.

22



A Sensitivity charts

This appendix contains, for each tool, a chart showing the result of the tool compared to the result
of diff, for both QSortApplet.java and QSortAlgorithm.java.

Figure 4:

Figure 5:

23



Figure 6:

Figure 7:

Figure 8:

24



Figure 9:

Figure 10:

Figure 11:

25



Figure 12:

Figure 13:

26


