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Abstract. Twenty-two decision tree, nine statistical, and two neural network algorithms are compared on thirty-
two datasets in terms of classification accuracy, training time, and (in the case of trees) number of leaves. Clas-
sification accuracy is measured by mean error rate and mean rank of error rate. Both criteria place a statistical,
spline-based, algorithm called POLYCLASS at the top, although it is not statistically significantly different from
twenty other algorithms. Another statistical algorithm, logistic regression, is second with respect to the two accu-
racy criteria. The most accurate decision tree algorithm is QUEST with linear splits, which ranks fourth and fifth,
respectively. Although spline-based statistical algorithms tend to have good accuracy, they also require relatively
long training times. POLYCLASS, for example, is third last in terms of median training time. It often requires
hours of training compared to seconds for other algorithms. The QUEST and logistic regression algorithms are
substantially faster. Among decision tree algorithms with univariate splits, C4.5, IND-CART, and QUESThave the
best combinations of error rate and speed. But C4.5 tends to produce trees with twice as many leaves as those
from IND-CART and QUEST.
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1. Introduction

There is much current research in the machine learning and statistics communities on algo-
rithms for decision tree classifiers. Often the emphasis is on the accuracy of the algorithms.
One study, called the STATLOG Project (Michie, Spiegelhalter, & Taylor, 1994), compares
the accuracy of several decision tree algorithms against some non-decision tree algorithms
on a large number of datasets. Other studies that are smaller in scale include Brodley
and Utgoff (1992), Brown, Corruble, and Pittard (1993), Curram and Mingers (1994), and
Shavlik, Mooney, and Towell (1991).
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Recently, comprehensibility of the tree structures has received some attention. Compre-
hensibility typically decreases with increase in tree size and complexity. If two trees employ
the same kind of tests and have the same prediction accuracy, the one with fewer leaves is
usually preferred. Breslow and Aha (1997) survey methods of tree simplification to improve
their comprehensibility.

A third criterion that has been largely ignored is the relative training time of the algo-
rithms. The STATLOG Project finds that no algorithm is uniformly most accurate over the
datasets studied. Instead, many algorithms possess comparable accuracy. For such algo-
rithms, excessive training times may be undesirable (Hand, 1997).

The purpose of our paper is to extend the results of the STATLOGProject in the following
ways:

1. In addition to classification accuracy and size of trees, we compare the training times of
the algorithms. Although training time depends somewhat on implementation, it turns
out that there are such large differences in times (seconds versus days) that the differences
cannot be attributed to implementation alone.

2. We include some decision tree algorithms that are not included in the STATLOG Project,
such as S-PLUS tree (Clark & Pregibon, 1993), T1 (Auer, Holte, & Maass, 1995; Holte,
1993), OC1 (Murthy, Kasif, & Salzberg, 1994), LMDT (Brodley & Utgoff, 1995), and
QUEST(Loh & Shih, 1997).

3. We also include several of the newest spline-based statistical algorithms. Their classi-
fication accuracy may be used as benchmarks for comparison with other algorithms in
the future.

4. We study the effect of adding independent noise attributes on the classification accuracy
and (where appropriate) tree size of each algorithm. It turns out that except possibly for
three algorithms, all the others adapt to noise quite well.

5. We examine the scalability of some of the more promising algorithms as the sample size
is increased.

Our experiment compares twenty-two decision tree algorithms, nine classical and modern
statistical algorithms, and two neural network algorithms. Several datasets are taken from the
University of California, Irvine, Repository of Machine Learning Databases (UCI) (Merz &
Murphy, 1996). Fourteen of the datasets are from real-life domains and two are artificially
constructed. Five of the datasets were used in the STATLOGProject. To increase the number
of datasets and to study the effect of noise attributes, we double the number of datasets by
adding noise attributes to them. This yields a total of thirty-two datasets.

Section 2 briefly describes the algorithms and Section 3 gives some background to the
datasets. Section 4 explains the experimental setup used in this study and Section 5 an-
alyzes the results. The issue of scalability is studied in Section 6 and conclusions and
recommendations are given in Section 7.

2. The algorithms

Only a short description of each algorithm is given. Details may be found in the cited
references. If an algorithm requires class prior probabilities, they are made proportional to
the training sample sizes.
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2.1. Trees and rules

CART: We use the version of CART (Breiman et al., 1984) implemented in thecart style
of the IND package (Buntine & Caruana, 1992) with the Gini index of diversity as the
splitting criterion. The trees based on the 0-SE and 1-SE pruning rules are denoted by
IC0 and IC1 respectively. The software is obtained from thehttp address:ic-www.
arc.nasa.gov/ic/projects/bayes-group/ind/IND-program.html.

S-Plus tree:This is a variant of the CART algorithm written in the S language (Becker,
Chambers, & Wilks, 1988). It is described in Clark and Pregibon (1993). It employs
deviance as the splitting criterion. The best tree is chosen by ten-fold cross-validation.
Pruning is performed with thep.tree() function in thetreefix library (Venables &
Ripley, 1997) from the STATLIB S Archive athttp://lib.stat.cmu.edu/S/. The
0-SEand 1-SEtrees are denoted byST0 andST1 respectively.

C4.5: We use Release 8 (Quinlan, 1993, 1996) with the default settings including pruning
(http://www.cse.unsw.edu.au/~quinlan/). After a tree is constructed, the C4.5
rule induction program is used to produce a set of rules. The trees are denoted byC4T
and the rules byC4R.

FACT: This fast classification tree algorithm is described in Loh and Vanichsetakul (1988).
It employs statistical tests to select an attribute for splitting each node and then uses
discriminant analysis to find the split point. The size of the tree is determined by a
set of stopping rules. The trees based on univariate splits (splits on a single attribute)
are denoted byFTU and those based on linear combination splits (splits on linear func-
tions of attributes) are denoted byFTL. The FORTRAN 77 program is obtained from
http://www.stat.wisc.edu/~loh/.

QUEST: This new classification tree algorithm is described in Loh and Shih (1997). QUEST

can be used with univariate or linear combination splits. A unique feature is that its
attribute selection method has negligible bias. If all the attributes are uninformative
with respect to the class attribute, then each has approximately the same chance of being
selected to split a node. Ten-fold cross-validation is used to prune the trees. The univariate
0-SE and 1-SE trees are denoted byQU0 andQU1, respectively. The corresponding trees
with linear combination splits are denoted byQL0 andQL1, respectively. The results in
this paper are based on version 1.7.10 of the program. The software is obtained from
http://www.stat.wisc.edu/~loh/quest.html.

IND: This is due to Buntine (1992). We use version 2.1 with the default settings. IND comes
with several standard predefined styles. We compare four Bayesian styles in this paper:
bayes, bayes opt, mml, andmml opt (denoted byIB, IBO, IM, andIMO, respectively).
The opt methods extend the non-opt methods by growing several different trees and
storing them in a compact graph structure. Although more time and memory intensive,
theopt styles can increase classification accuracy.

OC1: This algorithm is described in Murthy, Kasif, and Salzberg (1994). We use ver-
sion 3 (http://www.cs.jhu.edu/~salzberg/announce-oc1.html) and compare
three styles. The first one (denoted byOCM) is the default that uses a mixture of univariate
and linear combination splits. The second one (option-a; denoted byOCU) uses only
univariate splits. The third one (option-o; denoted byOCL) uses only linear combination
splits. Other options are kept at their default values.
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LMDT: The algorithm is described in Brodley and Utgoff (1995). It constructs a decision
tree based on multivariate tests that are linear combinations of the attributes. The tree is de-
noted byLMT. We use the default values in the software fromhttp://yake.ecn.purdue.
edu/~brodley/software/lmdt.html.

CAL5: This is from the Fraunhofer Society, Institute for Information and Data Processing,
Germany (Müller & Wysotzki, 1994, 1997). We use version 2. CAL5 is designed specif-
ically for numerical-valued attributes. However, it has a procedure to handle categorical
attributes so that mixed attributes (numerical and categorical) can be included. In this
study we optimize the two parameters which control tree construction. They are the pre-
defined thresholds and significance levelα. We randomly split the training set into two
parts, stratified by the classes: two-thirds are used to construct the tree and one-third is
used as a validation set to choose the optimal parameter configuration. We employ the
C-SHELL program that comes with the CAL5 package to choose the best parameters by
varyingα between 0.10 and 0.90 ands between 0.20 and 0.95 in steps of 0.05. The best
combination of values that minimize the error rate on the validation set is chosen. The
tree is then constructed on all the records in the training set using the chosen parameter
values. It is denoted byCAL.

T1: This is a one-level decision tree that classifies examples on the basis of only one split
on a single attribute (Holte, 1993). A split on a categorical attribute withb categories can
produce up tob+ 1 leaves (one leaf being reserved for missing attribute values). On the
other hand, a split on a continuous attribute can yield up toJ + 2 leaves, whereJ is the
number of classes (one leaf is again reserved for missing values). The software is obtained
from http://www.csi.uottawa.ca/~holte/Learning/other-sites.html.

2.2. Statistical algorithms

LDA: This is linear discriminant analysis, a classical statistical method. It models the
instances within each class as normally distributed with a common covariance matrix.
This yields linear discriminant functions.

QDA: This is quadratic discriminant analysis. It also models class distributions as normal,
but estimates each covariance matrix by the corresponding sample covariance matrix. As
a result, the discriminant functions are quadratic. Details onLDA andQDA can be found
in many statistics textbooks, e.g., Johnson and Wichern (1992). We use the SAS PROC

DISCRIM (SAS Institute, Inc., 1990) implementation ofLDA andQDA with the default
settings.

NN: This is the SAS PROC DISCRIM implementation of the nearest neighbor method. The
pooled covariance matrix is used to compute Mahalanobis distances.

LOG: This is logistic discriminant analysis. The results are obtained with a polytomous
logistic regression (see, e.g., Agresti, 1990) FORTRAN 90 routine written by the first
author.

FDA: This is flexible discriminant analysis (Hastie, Tibshirani, & Buja, 1994), a gen-
eralization of linear discriminant analysis that casts the classification problem as one
involving regression. Only the MARS (Friedman, 1991) nonparametric regression proce-
dure is studied here. We use the S-PLUS functionfda from themda library of the STATLIB
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S Archive. Two models are used: an additive model (degree=1, denoted byFM1) and
a model containing first-order interactions (degree=2 with penalty=3, denoted by
FM2).

PDA: This is a form of penalizedLDA (Hastie, Buja, & Tibshirani, 1995). It is designed for
situations in which there are many highly correlated attributes. The classification problem
is cast into a penalized regression framework via optimal scoring.PDA is implemented
in S-PLUS using the functionfda with method=gen.ridge.

MDA: This stands for mixture discriminant analysis (Hastie & Tibshirani, 1996). It fits
Gaussian mixture density functions to each class to produce a classifier.MDA is imple-
mented in S-PLUS using the librarymda.

POL: This is the POLYCLASSalgorithm (Kooperberg, Bose, & Stone, 1997). It fits a polyto-
mous logistic regression model using linear splines and their tensor products. It provides
estimates for conditional class probabilities which can then be used to predict class
labels.POL is implemented in S-PLUS using the functionpoly.fit from thepoly-
class library of the STATLIB S Archive. Model selection is done with ten-fold cross-
validation.

2.3. Neural networks

LVQ: We use the learning vector quantization algorithm in the S-PLUS class library
(Venables & Ripley, 1997) at the STATLIB S Archive. Details of the algorithm may
be found in Kohonen (1995). Ten percent of the training set are used to initialize the
algorithm, using the functionlvqinit. Training is carried out with the optimized learning
rate functionolvq1, a fast and robustLVQ algorithm. Additional fine-tuning in learning
is performed with the functionlvq1. The number of iterations is ten times the size of the
training set in botholvq1 andlvq1. We use the default values of 0.3 and 0.03 forα, the
learning rate parameter, inolvq1 andlvq1, respectively.

RBF: This is the radial basis function network implemented in the SAS tnn3.sas macro
(Sarle, 1994) for feedforward neural networks (http://www.sas.com). The network
architecture is specified with theARCH=RBF argument. In this study, we construct a
network with only one hidden layer. The number of hidden units is chosen to be 20%
of the total number of input and output units [2.5% (5 hidden units) only for thedna
anddna+ datasets and 10% (5 hidden units) for thetae andtae+ datasets because of
memory and storage limitations]. Although the macro can perform model selection to
choose the optimal number of hidden units, we did not utilize this capability because
it would have taken too long for some of the datasets (see Table 6 below). Therefore
the results reported here for this algorithm should be regarded as lower bounds on its
performance. The hidden layer is fully connected to the input and output layers but there
is no direct connection between the input and output layers. At the output layer, each
class is represented by one unit taking the value of 1 for that particular category and 0
otherwise, except for the last one which is the reference category. To avoid local optima,
ten preliminary trainings were conducted and the best estimates used for subsequent
training. More details on the radial basis function network can be found in Bishop (1995)
and Ripley (1996).
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3. The datasets

We briefly describe the sixteen datasets used in the study as well as any modifications that
are made for our experiment. Fourteen are from real domains while two are artificially
created. Fifteen of the datasets are available from UCI.

Wisconsin breast cancer (bcw). This is one of the breast cancer databases at UCI, collected
at the University of Wisconsin by W.H. Wolberg. The problem is to predict whether a
tissue sample taken from a patient’s breast is malignant or benign. There are two classes,
nine numerical attributes, and 699 observations. Sixteen instances contain a single missing
attribute value and are removed from the analysis. Our results are therefore based on 683
records. Error rates are estimated using ten-fold cross-validation. A decision tree analysis
of a subset of the data using the FACT algorithm is reported in Wolberg et al. (1987) and
Wolberg, Tanner, and Loh (1988, 1989). The dataset has also been analyzed with linear
programming methods (Mangasarian & Wolberg 1990).

Contraceptive method choice (cmc). The data are taken from the 1987 National Indonesia
Contraceptive Prevalence Survey. The samples are married women who were either not
pregnant or did not know if they were pregnant at the time of the interview. The problem is
to predict the current contraceptive method choice (no use, long-term methods, or short-
term methods) of a woman based on her demographic and socio-economic characteristics
(Lerman et al., 1991). There are three classes, two numerical attributes, seven categorical
attributes, and 1473 records. The error rates are estimated using ten-fold cross-validation.
The dataset is available from UCI.

StatLog DNA (dna). This UCI dataset in molecular biology was used in the STATLOG

Project. Splice junctions are points in a DNA sequence at which “superfluous” DNA is
removed during the process of protein creation in higher organisms. The problem is to
recognize, given a sequence of DNA, the boundaries between exons (the parts of the
DNA sequence retained after splicing) and introns (the parts of the DNA sequence that
are spliced out). There are three classes and sixty categorical attributes each having four
categories. The sixty categorical attributes represent a window of sixty nucleotides, each
having one of four categories. The middle point in the window is classified as one of
exon/intron boundaries, intron/exon boundaries, or neither of these. The 3186 examples
in the database were divided randomly into a training set of size 2000 and a test set of
size 1186. The error rates are estimated from the test set.

StatLog heart disease (hea). This UCI dataset is from the Cleveland Clinic Foundation,
courtesy of R. Detrano. The problem concerns the prediction of the presence or absence
of heart disease given the results of various medical tests carried out on a patient. There
are two classes, seven numerical attributes, six categorical attributes, and 270 records.
The STATLOGProject employed unequal misclassification costs. We use equal costs here
because some algorithms do not allow unequal costs. The error rates are estimated using
ten-fold cross-validation.

Boston housing (bos). This UCI dataset gives housing values in Boston suburbs (Harrison
& Rubinfeld, 1978). There are three classes, twelve numerical attributes, one binary
attribute, and 506 records. Following Loh and Vanichsetakul (1988), the classes are
created from the attribute median value of owner-occupied homes as follows: class= 1
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if log(median value) ≤ 9.84, class= 2 if 9.84< log(median value) ≤ 10.075, class= 3
otherwise. The error rates are estimated using ten-fold cross-validation.

LED display (led). This artificial domain is described in Breiman et al. (1984). It contains
seven Boolean attributes, representing seven light-emitting diodes, and ten classes, the
set of decimal digits. An attribute value is either zero or one, according to whether the
corresponding light is off or on for the digit. Each attribute value has a ten percent
probability of having its value inverted. The class attribute is an integer between zero
and nine, inclusive. A C program from UCI is used to generate 2000 records for the
training set and 4000 records for the test set. The error rates are estimated from the test
set.

BUPA liver disorders (bld). This UCI dataset was donated by R.S. Forsyth. The problem
is to predict whether or not a male patient has a liver disorder based on blood tests and
alcohol consumption. There are two classes, six numerical attributes, and 345 records.
The error rates are estimated using ten-fold cross-validation.

PIMA Indian diabetes (pid). This UCI dataset was contributed by V. Sigillito. The pa-
tients in the dataset are females at least twenty-one years old of Pima Indian heritage
living near Phoenix, Arizona, USA. The problem is to predict whether a patient would
test positive for diabetes given a number of physiological measurements and medical test
results. There are two classes, seven numerical attributes, and 532 records. The original
dataset consists of 768 records with eight numerical attributes. However, many of the
attributes, notably serum insulin, contain zero values which are physically impossible.
We remove serum insulin and records that have impossible values in other attributes. The
error rates are estimated using ten-fold cross validation.

StatLog satellite image (sat). This UCI dataset gives the multi-spectral values of pixels
within 3× 3 neighborhoods in a satellite image, and the classification associated with
the central pixel in each neighborhood. The aim is to predict the classification given
the multi-spectral values. There are six classes and thirty-six numerical attributes. The
training set consists of 4435 records while the test set consists of 2000 records. The error
rates are estimated from the test set.

Image segmentation (seg). This UCI dataset was used in the STATLOG Project. The sam-
ples are from a database of seven outdoor images. The images are hand-segmented to
create a classification for every pixel as one of brickface, sky, foliage, cement, window,
path, or grass. There are seven classes, nineteen numerical attributes and 2310 records
in the dataset. The error rates are estimated using ten-fold cross-validation.

The algorithmT1 could not handle this dataset without modification, because the
program requires a large amount of memory. Therefore forT1 (but not for the other
algorithms) we discretize each attribute except attributes 3, 4, and 5 into one hundred
categories.

Attitude towards smoking restrictions (smo). This survey dataset (Bull, 1994) is obtained
fromhttp://lib.stat.cmu.edu/datasets/csb/. The problem is to predict attitude
toward restrictions on smoking in the workplace (prohibited, restricted, or unrestricted)
based on bylaw-related, smoking-related, and sociodemographic covariates. There are
three classes, three numerical attributes, and five categorical attributes. We divide the
original dataset into a training set of size 1855 and a test set of size 1000. The error rates
are estimated from the test set.
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Thyroid disease (thy). This is the UCIann-train dataset contributed by R. Werner.
The problem is to determine whether or not a patient is hyperthyroid. There are three
classes (normal, hyperfunction, and subnormal functioning), six numerical attributes,
and fifteen binary attributes. The training set consists of 3772 records and the test set has
3428 records. The error rates are estimated from the test set.

StatLog vehicle silhouette (veh). This UCI dataset originated from the Turing Institute,
Glasgow, Scotland. The problem is to classify a given silhouette as one of four types of
vehicle, using a set of features extracted from the silhouette. Each vehicle is viewed
from many angles. The four model vehicles are double decker bus, Chevrolet van,
Saab 9000, and Opel Manta 400. There are four classes, eighteen numerical attributes,
and 846 records. The error rates are estimated using ten-fold cross-validation.

Congressional voting records (vot). This UCI dataset gives the votes of each member of
the U.S. House of Representatives of the 98th Congress on sixteen key issues. The problem
is to classify a Congressman as a Democrat or a Republican based on the sixteen votes.
There are two classes, sixteen categorical attributes with three categories each (“yea”,
“nay”, or neither), and 435 records. Error rates are estimated by ten-fold cross-validation.

Waveform (wav). This is an artificial three-class problem based on three waveforms. Each
class consists of a random convex combination of two waveforms sampled at the integers
with noise added. A description for generating the data is given in Breiman et al. (1984)
and a C program is available from UCI. There are twenty-one numerical attributes, and
600 records in the training set. Error rates are estimated from an independent test set of
3000 records.

TA evaluation (tae). The data consist of evaluations of teaching performance over three
regular semesters and two summer semesters of 151 teaching assistant (TA) assignments
at the Statistics Department of the University of Wisconsin—Madison. The scores are
grouped into three roughly equal-sized categories (“low”, “medium”, and “high”) to form
the class attribute. The predictor attributes are (i) whether or not the TA is a native En-
glish speaker (binary), (ii) course instructor (25 categories), (iii) course (26 categories),
(iv) summer or regular semester (binary), and (v) class size (numerical). This dataset
is first reported in Loh and Shih (1997). It differs from the other datasets in that there
are two categorical attributes with large numbers of categories. As a result, decision tree
algorithms such as CART that employ exhaustive search usually take much longer to train
than other algorithms. (CART has to evaluate 2c−1−1 splits for each categorical attribute
with c values.) Error rates are estimated using ten-fold cross-validation. The dataset is
available from UCI.

A summary of the attribute features of the datasets is given in Table 1.

4. Experimental setup

Some algorithms are not designed for categorical attributes. In these cases, each categorical
attribute is converted into a vector of 0-1 attributes. That is, if a categorical attributeX takes
k values{c1, c2, . . . , ck}, it is replaced by a(k − 1)-dimensional vector(d1, d2, . . . ,dk−1)

such thatdi = 1 if X= ci anddi = 0 otherwise, fori = 1, . . . , k− 1. If X= ck, the vector
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Table 1. Characteristics of the datasets. The last three columns give the number and type of added noise attributes
for each dataset. The number of values taken by the class attribute is denoted byJ. The notation “N(0,1)” denotes
the standard normal distribution, “UI(m,n)” a uniform distribution over the integersm throughn inclusive, and
“U(0,1)” a uniform distribution over the unit interval. The abbreviation C(k) stands for UI(1,k).

No. of original attributes

Categorical Noise attributes

Set Size J Num. 2 3 4 5 25 26 Tot. Numerical Categor.

bcw 683 2 9 9 9 UI(1,10)

cmc 1473 3 2 3 4 9 6 N(0,1)

dna 2000 3 60 60 20 C(4)

hea 270 2 7 3 2 1 13 7 N(0,1)

bos 506 3 12 1 13 12 N(0,1)

led 2000 10 7 7 17 C(2)

bld 345 2 6 6 9 N(0,1)

pid 532 2 7 7 8 N(0,1)

sat 4435 6 36 36 24 UI(20,160)

seg 2310 7 19 19 9 N(0,1)

smo 1855 3 3 3 1 1 8 7 N(0,1)

thy 3772 3 6 15 21 4 U(0,1) 10 C(2)

veh 846 4 18 18 12 N(0,1)

vot 435 2 16 16 14 C(3)

wav 600 3 21 21 19 N(0,1)

tae 151 3 1 2 1 1 5 5 N(0,1)

consists of all zeros. The affected algorithms are all the statistical and neural network
algorithms as well as the tree algorithmsFTL, OCU, OCL, OCM, andLMT.

In order to increase the number of datasets and to study the effect of noise attributes on
each algorithm, we created sixteen new datasets by adding independent noise attributes.
The numbers and types of noise attributes added are given in the right panel of Table 1. The
name of each new dataset is the same as the original dataset except for the addition of a ‘+’
symbol. For example, thebcw dataset with noise added is denoted bybcw+.

For each dataset, we use one of two different ways to estimate the error rate of an
algorithm. For large datasets (size much larger than 1000 and test set of size at least 1000),
we use a test set to estimate the error rate. The classifier is constructed using the records
in the training set and then it is tested on the test set. Twelve of the thirty-two datasets are
analyzed this way.

For the remaining twenty datasets, we use the following ten-fold cross-validation proce-
dure to estimate the error rate:

1. The dataset is randomly divided into ten disjoint subsets, with each containing ap-
proximately the same number of records. Sampling is stratified by the class labels to
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Table 2. Hardware and software platform for each algorithm. The workstations are DEC 3000 Alpha Model 300
(DEC), SUN SPARCstation 20 Model 61 (SS20), and SUN SPARCstation 5 (SS5).

Algorithm Platform

Tree & rules

QU0 QUEST, univar. 0-SE DEC/F90

QU1 QUEST, univar. 1-SE DEC/F90

QL0 QUEST, linear 0-SE DEC/F90

QL1 QUEST, linear 1-SE DEC/F90

FTU FACT, univariate DEC/F77

FTL FACT, linear DEC/F77

C4T C4.5 trees DEC/C

C4R C4.5 rules DEC/C

IB IND bayes style SS5/C

IBO IND bayes opt style SS5/C

IM IND mml style SS5/C

IMO IND mml opt style SS5/C

IC0 IND-CART, 0-SE SS5/C

IC1 IND-CART, 1-SE SS5/C

OCU OC1, univariate SS5/C

OCL OC1, linear SS5/C

OCM OC1, mixed SS5/C

ST0 S-PLUS tree, 0-SE DEC/S

ST1 S-PLUS tree, 1-SE DEC/S

LMT LMDT, linear DEC/C

CAL CAL5 SS5/C++
T1 T1, single split DEC/C

Statistical

LDA Linear discriminant anal. DEC/SAS

QDA Quadratic discriminant anal. DEC/SAS

NN Nearest-neighbor DEC/SAS

LOG Linear logistic regression DEC/F90

FM1 FDA, degree 1 SS20/S

FM2 FDA, degree 2 SS20/S

PDA Penalized LDA SS20/S

MDA Mixture discriminant anal. SS20/S

POL POLYCLASS SS20/S

Neural Network

LVQ Learning vector quantization SS20/S

RBF Radial basis function network DEC/SAS
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Table 3. SPECbenchmark summary.

Workstation SPECfp92 SPECint92 Source

DEC DEC 3000 Model 300 (150 MHz) 91.5 66.2 SPECNewsletter, Vol. 5,
Issue 2, June 1993

SS20 SUN SPARCstation 20 Model 61 (60 MHz) 102.8 88.9 SPECNewsletter, Vol. 6,
Issue 2, June 1994

SS5 SUN SPARCstation 5 (70 MHz) 47.3 57.0 SPECNewsletter, Vol. 6,
Issue 2, June 1994

ensure that the subset class proportions are roughly the same as those in the whole
dataset.

2. For each subset, a classifier is constructed using the records not in it. The classifier is
then tested on the withheld subset to obtain a cross-validation estimate of its error rate.

3. The ten cross-validation estimates are averaged to provide an estimate for the classifier
constructed from all the data.

Because the algorithms are implemented in different programming languages and some
languages are not available on all platforms, three types of UNIX workstations are used in
our study. The workstation type and implementation language for each algorithm are given
in Table 2. The relative performance of the workstations according to SPECmarks is given
in Table 3. The floating point SPECmarks show that a task that takes one second on a DEC

3000 would take about 1.4 and 0.8 seconds on a SPARCstation 5 (SS5) and SPARCstation
20 (SS20), respectively. Therefore, to enable comparisons, all training times are reported
here in terms of DEC 3000-equivalent seconds—the training times recorded on a SS5 and
a SS20 are divided by 1.4 and 0.8, respectively.

5. Results

We only report the summary results and analysis here. Fuller details, including the error
rate and training time of each algorithm on each dataset, may be obtained fromhttp://
id001.wkap.nl/mach/ml-appe.htm.

5.1. Exploratory analysis of error rates

Before we present a formal statistical analysis of the results, it is helpful to study the
summary in Table 4. The mean error rate for each algorithm over the datasets is given in the
second row. The minimum and maximum error rates and that of the plurality rule are given
for each dataset in the last three columns. Letp denote the smallest observed error rate in
each row (i.e., dataset). If an algorithm has an error rate within one standard error ofp, we
consider it to be close to the best and indicate it by a

√
in the table. The standard error is

estimated as follows. Ifp is from an independent test set, letn denote the size of the test
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Table 4. Minimum, maximum, and ‘naive’ plurality rule error rates for each dataset. A ‘
√

’-mark indicates that
the algorithm has an error rate within one standard error of the minimum for the dataset. A ‘X’-mark indicates that
the algorithm has the worst error rate for the dataset. The mean error rate for each algorithm is given in the second
row.

set. Otherwise, ifp is a cross-validation estimate, letn denote the size of the training set.
The standard error ofp is estimated by the formula

√
p(1− p)/n. The algorithm with the

largest error rate within a row is indicated by anX. The total numbers of
√

andX-marks for
each algorithm are given in the third and fourth rows of the table.

The following conclusions may be drawn from the table:

1. Algorithm POL has the lowest mean error rate. An ordering of the other algorithms in
terms of mean error rate is given in the upper half of Table 5.
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Table 5. Ordering of algorithms by mean error rate and mean rank of error rate.

Mean error
rate

POL LOG MDA QL0 LDA QL1 PDA IC0 FM2 IBO IMO

.195 .204 .207 .207 .208 .211 .213 .215 .218 .219 .219

C4R IM LMT C4T QU0 QU1 OCU IC1 IB OCM ST0

.220 .220 .220 .220 .221 .226 .227 .227 .229 .230 .232

ST1 FTL FTU FM1 RBF OCL LVQ CAL NN QDA T1

.233 .234 .238 .242 .257 .260 .269 .270 .281 .301 .354

Mean rank
of error rate

POL FM1 LOG FM2 QL0 LDA QU0 C4R IMO MDA PDA

8.3 12.2 12.2 12.2 12.4 13.7 13.9 14.0 14.0 14.3 14.5

C4T QL1 IBO IM IC0 FTL QU1 OCU IC1 ST0 ST1

14.5 14.6 14.7 14.9 15.0 15.4 16.6 16.6 16.9 17.0 17.7

LMT OCM IB RBF FTU QDA LVQ OCL CAL NN T1

18.5 18.9 19.0 19.1 20.7 22.8 24.0 24.3 25.1 25.5 27.5

2. The algorithms can also be ranked in terms of total number of
√

- andX-marks. By this
criterion, the most accurate algorithm is againPOL, which has fifteen

√
-marks and no

X-marks. Eleven algorithms have one or moreX-marks. Ranked in increasing order of
number ofX-marks (in parentheses), they are:

FTL(1), OCM(1), ST1(1), FM2(1), MDA(1), FM1(2),

OCL(3), QDA(3), NN(4), LVQ(4), T1(11).

Excluding these, the remaining algorithms rank in order of decreasing number of
√

-
marks (in parentheses) as:

POL(15),LOG(13),QL0(10),LDA(10),PDA(10),QL1(9), OCU(9),

QU0(8), QU1(8), C4R(8), IBO(8), RBF(8), C4T(7), IMO(6), (1)

IM(5), IC1(5), ST0(5), FTU(4), IC0(4), CAL(4), IB(3), LMT(1).

The top four algorithms in (1) also rank among the top five in the upper half of Table (5).
3. The last three columns of the table show that a few algorithms are sometimes less accurate

than the plurality rule. They areNN (at cmc, cmc+, smo+), T1 (bld, bld+), QDA (smo,
thy, thy+), FTL (tae), andST1 (tae+).

4. The easiest datasets to classify arebcw, bcw+, vot, andvot+; the error rates all lie
between 0.03 and 0.09.

5. The most difficult to classify arecmc, cmc+, andtae+, with minimum error rates greater
than 0.4.

6. Two other difficult datasets aresmo and smo+. In the case ofsmo, only T1 has a
(marginally) lower error rate than that of the plurality rule. No algorithm has a lower
error rate than the plurality rule forsmo+.

7. The datasets with the largest range of error rates arethy andthy+, where the rates range
from 0.005 to 0.890. However, the maximum of 0.890 is due toQDA. If QDA is ignored,
the maximum error rate drops to 0.096.
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8. There are six datasets with only one
√

-mark each. They arebld+ (POL), sat (LVQ),
sat+ (FM2), seg+ (IBO), veh andveh+ (QDA both times).

9. Overall, the addition of noise attributes does not appear to increase significantly the error
rates of the algorithms.

5.2. Statistical significance of error rates

5.2.1. Analysis of variance. A statistical procedure called mixed effects analysis of vari-
ance can be used to test the simultaneous statistical significance of differences between
mean error rates of the algorithms, while controlling for differences between datasets
(Neter, Wasserman, & Kutner, 1990). Although it makes the assumption that the effects
of the datasets act like a random sample from a normal distribution, it is quite robust against
violation of the assumption. For our data, the procedure gives a significance probability less
than 10−4. Hence the null hypothesis that all the algorithms have the same mean error rate
is strongly rejected.

Simultaneous confidence intervals for differences between mean error rates can be ob-
tained using the Tukey method (Miller, 1981). According to this procedure, a difference
between the mean error rates of two algorithms is statistically significant at the 10% level
if they differ by more than 0.058.

To visualize this result, Figure 1(a) plots the mean error rate of each algorithm versus its
median training time in seconds. The solid vertical line in the plot is 0.058 units to the right
of the mean error rate forPOL. Therefore any algorithm lying to the left of the line has a
mean error rate that is not statistically significantly different from that ofPOL.

The algorithms are seen to form four clusters with respect to training time. These clusters
are roughly delineated by the three horizontal dotted lines which correspond to training
times of one minute, ten minutes, and one hour. Figure 1(b) shows a magnified plot of the
eighteen algorithms with median training times less than ten minutes and mean error rate
not statistically significantly different fromPOL.

5.2.2. Analysis of ranks. To avoid the normality assumption, we can instead analyze the
ranks of the algorithms within datasets. That is, for each dataset, the algorithm with the
lowest error rate is assigned rank one, the second lowest rank two, etc., with average ranks
assigned in the case of ties. The lower half of Table 5 gives an ordering of the algorithms
in terms of mean rank of error rates. AgainPOL is first andT1 last. Note, however, that the
mean rank ofPOL is 8.3. This shows that it is far from being uniformly most accurate across
datasets.

Comparing the two methods of ordering in Table 5, it is seen thatPOL, LOG, QL0, andLDA
are the only algorithms with consistently good performance. Three algorithms that perform
well by one criterion but not the other areMDA, FM1, andFM2. In the case ofMDA, its low
mean error rate is due to its excellent performance in four datasets (veh, veh+, wav, and
wav+) where many other algorithms do poorly. These domains concern shape identification
and the datasets contain only numerical attributes.MDA is generally unspectacular in the
rest of the datasets and this is the reason for its tenth place ranking in terms of mean
rank.
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Figure 1. Plots of median training time versus mean error rate. The vertical axis is in log-scale. The solid vertical
line in plot (a) divides the algorithms into two groups: the mean error rates of the algorithms in the left group
do not differ significantly (at the 10% simultaneous significance level) from that ofPOL, which has the minimum
mean error rate. Plot (b) shows the algorithms that are not statistically significantly different fromPOL in terms of
mean error rate and that have median training time less than ten minutes.
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The situation forFM1 andFM2 is quite different. As its low mean rank indicates,FM1 is
usually a good performer. However, it fails miserably in thesegandseg+datasets, reporting
error rates of more than fifty percent when most of the other algorithms have error rates less
than ten percent. ThusFM1seems to be less robust than the other algorithms.FM2also appears
to lack robustness, although to a lesser extent. Its worst performance is in thebos+ dataset,
where it has an error rate of forty-two percent, compared to less than thirty-five percent
for the other algorithms. The number ofX-marks against an algorithm in Table 4 is a good
predictor of erratic if not poor performance.MDA, FM1, andFM2 all have at least oneX-mark.

The Friedman (1937) test is a standard procedure for testing statistical significance in
differences of mean ranks. For our experiment, it gives a significance probability less than
10−4. Therefore the null hypothesis that the algorithms are equally accurate on average is
again rejected. Further, a difference in mean ranks greater than 8.7 is statistically significant
at the 10% level (Hollander and Wolfe, 1999). ThusPOL is not statistically significantly
different from the twenty other algorithms that have mean rank less than or equal to 17.0.
Figure 2(a) shows a plot of median training time versus mean rank. Those algorithms that
lie to the left of the vertical line are not statistically significantly different fromPOL. A
magnified plot of the subset of algorithms that are not significantly different fromPOL and
that have median training time less than ten minutes is given in Figure 2(b).

The algorithms that differ statistically significantly fromPOL in terms of mean error rate
form a subset of those that differ fromPOL in terms of mean ranks. Thus the rank test
appears to be more powerful than the analysis of variance test for this experiment. The
fifteen algorithms in figure 2(b) may be recommended for use in applications where good
accuracy and short training time are desired.

5.3. Training time

Table 6 gives the median DEC 3000-equivalent training time for each algorithm and the
relative training time within datasets. Owing to the large range of training times, only the
order relative to the fastest algorithm for each dataset is reported. The fastest algorithm is
indicated by a ‘0’. An algorithm that is between 10x−1 to 10x times as slow is indicated by
the value ofx. For example, in the case of thedna+ dataset, the fastest algorithms areC4T
andT1, each requiring two seconds. The slowest algorithm isFM2, which takes more than
three million seconds (almost forty days) and hence is between 106 to 107 times as slow.
The last two columns of the table give the fastest and slowest times for each dataset.

Table 7 gives an ordering of the algorithms from fastest to slowest according to median
training time. Overall, the fastest algorithm isC4T, followed closely byFTU,FTL, andLDA.
There are two reasons for the superior speed ofC4T compared to the other decision tree
algorithms. First, it splits each categorical attribute into as many subnodes as the number of
categories. Therefore it wastes no time in forming subsets of categories. Second, its pruning
method does not require cross-validation, which can increase training time several fold.

The classical statistical algorithmsQDA andNN are also quite fast. As expected, decision
tree algorithms that employ univariate splits are faster than those that use linear combination
splits. The slowest algorithms arePOL, FM2, andRBF; two are spline-based and one is a
neural network.
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Figure 2. Plots of median training time versus mean rank of error rates. The vertical axis is in log-scale. The
solid vertical line in plot (a) divides the algorithms into two groups: the mean ranks of the algorithms in the left
group do not differ significantly (at the 10% simultaneous significance level) from that ofPOL. Plot (b) shows the
algorithms that are not statistically significantly different fromPOL in terms of mean rank and that have median
training time less than ten minutes.
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Table 6. DEC 3000-equivalent training times and relative times of the algorithms. The second and third rows
give the median training time and rank for each algorithm. An entry of ‘x’ in the each of the subsequent rows
indicates that an algorithm is between 10x−1–10x times slower than the fastest algorithm for the dataset. The
fastest algorithm is denoted by an entry of ‘0’. The minimum and maximum training times are given in the last
two columns. ‘s’, ‘m’, ‘h’, ‘d’ denote seconds, minutes, hours, and days, respectively.

Table 7. Ordering of algorithms by median training time.

C4T FTU FTL LDA QDA C4R NN IB IM T1 OCU

5 s 7 s 8 s 10 s 15 s 20 s 20 s 34 s 34 s 36 s 46 s

IC1 IC0 PDA LVQ MDA QU1 QU0 LOG LMT QL1 QL0

47 s 52 s 56 s 1.1 m 3 m 3.2 m 3.2 m 4 m 5.7 m 5.9 m 5.9 m

OCM ST1 OCL ST0 FM1 IBO IMO CAL POL FM2 RBF

13.7 m 14.4 m 14.9 m 15.1 m 15.6 m 27.5 m 33.9 m 1.3 h 3.2 h 3.8 h 11.3 h

AlthoughIC0, IC1, ST0 andST1 all claim to implement the CART algorithm, the IND

versions are faster than the S-PLUS versions. One reason is thatIC0 andIC1 are written
in C whereasST0 andST1 are written in the S language. Another reason is that the IND

versions use heuristics (Buntine, personal communication) instead of greedy search when
the number of categories in a categorical attribute is large. This is most apparent in the
tae+ dataset where there are categorical attributes with up to twenty-six categories. In this
caseIC0 andIC1 take around forty seconds versus two and a half hours forST0 andST1.
The results in Table 4 indicate that IND’s classification accuracy is not adversely affected
by such heuristics; see Aronis and Provost (1997) for another possible heuristic.

SinceT1 is a one-level tree, it may appear surprising that it is not faster than algorithms
such asC4T that produce multi-level trees. The reason is thatT1 splits each continuous
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attribute intoJ + 1 intervals, whereJ is the number of classes. On the other hand,C4T
always splits a continuous attribute into two intervals only. Therefore whenJ > 2, T1 has
to spend a lot more time to search for the intervals.

5.4. Size of trees

Table 8 gives the number of leaves for each tree algorithm and dataset before noise attributes
are added. In the case that an error rate is obtained by ten-fold cross-validation, the entry
is the mean number of leaves over the ten cross-validation trees. Table 9 shows how much
the number of leaves changes after addition of noise attributes. The mean and median of
the number of leaves for each classifier are given in the last columns of the two tables.IBO
andIMO clearly yield the largest trees by far. Apart fromT1, which is necessarily short by
design, the algorithm with the shortest trees on average isQL1, followed closely byFTL
andOCL. A ranking of the algorithms with univariate splits (in increasing median number
of leaves) is:T1, IC1, ST1, QU1, FTU, IC0, ST0, OCU, QU0, andC4T. Algorithm
C4T tends to produce trees with many more leaves than the other algorithms. One reason
may be due to under-pruning (although its error rates are quite good). Another is that, unlike
the binary-tree algorithms,C4T splits each categorical attribute into as many nodes as the
number of categories.

Addition of noise attributes typically decreases the size of the trees, except forC4T and
CAL which tend to grow larger trees, andIMO which seems to fluctuate rather wildly. These
results complement those of Oates and Jensen (1997) who looked at the effect of sample
size on the number of leaves of decision tree algorithms and found a significant relationship
between tree size and training sample size forC4T. They observed that tree algorithms
which employ cost-complexity pruning are better able to control tree growth.

6. Scalability of algorithms

Although differences in mean error rates betweenPOL and many other algorithms are not
statistically significant, it is clear that if error rate is the sole criterion,POL would be the
method of choice. Unfortunately,POL is one of the most compute-intensive algorithms. To
see how training times increase with sample size, a small scalability study was carried out
with the algorithmsQU0, QL0, FTL, C4T, C4R, IC0, LDA, LOG, FM1, andPOL.

Training times are measured for these algorithms for training sets of sizeN = 1000,
2000, . . . ,8000. Four datasets are used to generate the samples—sat, smo+, tae+, and
a new, very large UCI dataset calledadult which has two classes and six continuous
and seven categorical attributes. Since the first three datasets are not large enough for the
experiment, bootstrap re-sampling is employed to generate the training sets. That is,N
samples are randomly drawn with replacement from each dataset. To avoid getting many
replicate records, the value of the class attribute for each sampled case is randomly changed
to another value with probability 0.1. (The new value is selected from the pool of alternatives
with equal probability.) Bootstrap sampling is not carried out for theadult dataset because
it has more than 32,000 records. Instead, the nested training sets are obtained by random
sampling without replacement.
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Figure 3. Plots of training time versus sample size in log–log scale for selected algorithms.

The times required to train the algorithms are plotted (in log–log scale) in figure 3. With
the exception ofPOL, FM1 andLOG, the logarithms of the training times seem to increase
linearly with log(N). The non-monotonic behavior ofPOL andFM1 is puzzling and might be
due to randomness in their use of cross-validation for model selection. The erratic behavior
of LOG in theadult dataset is caused by convergence problems during model fitting.
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Many of the lines in figure 3 are roughly parallel. This suggests that the relative compu-
tational speed of the algorithms is fairly constant over the range of sample sizes considered.
QL0 andC4R are two exceptions. Cohen (1995) had observed thatC4R does not scale well.

7. Conclusions

Our results show that the mean error rates of many algorithms are sufficiently similar that
their differences are statistically insignificant. The differences are also probably insignificant
in practical terms. For example, the mean error rates of the top ranked algorithmsPOL,
LOG, andQL0 differ by less than 0.012. If such a small difference is not important in real
applications, the user may wish to select an algorithm based on other criteria such as training
time or interpretability of the classifier.

Unlike error rates, there are huge differences between the training times of the algorithms.
POL, the algorithm with the lowest mean error rate, takes about fifty times as long to train as
the next most accurate algorithm. The ratio of times is roughly equivalent to hours versus
minutes, and figure 3 shows that it is maintained over a wide range of sample sizes. For
large applications where time is a factor, it may be advantageous to use one of the quicker
algorithms.

It is interesting that the old statistical algorithmLDA has a mean error rate close to
the best. This is surprising because (i) it is not designed for binary-valued attributes (all
categorical attributes are transformed to 0-1 vectors prior to application ofLDA), and (ii)
it is not expected to be effective when class densities are multi-modal. Because it is fast,
easy to implement, and readily available in statistical packages, it provides a convenient
benchmark for comparison against future algorithms.

The low error rates ofLOG andLDA probably account for much of the performance of
the better algorithms. For example,POL is basically a modern version ofLOG. It enhances
the flexibility of LOG by employing spline-based functions and automatic model selection.
Although this strategy is computationally costly, it does produce a slight reduction in the
mean error rate—enough to bring it to the top of the pack.

The good performance ofQL0 may be similarly attributable toLDA. The QUEST linear-
split algorithm is designed to overcome the difficulties encountered byLDA in multi-modal
situations. It does this by applying a modified form ofLDA to partitions of the data, where
each partition is represented by a leaf of the decision tree. This strategy alone, however, is
not enough, as the higher mean error rate ofFTL shows. The latter is based on the FACT

algorithm which is a precursor to QUEST. One major difference between the QUEST and
FACT algorithms is that the former employs the cost-complexity pruning method of CART

whereas the latter does not. Our results suggest that some form of bottom-up pruning may
be essential for low error rates.

If the purpose of constructing an algorithm is for data interpretation, then perhaps only
decision rules or trees with univariate splits will suffice. With the exception ofCAL and
T1, the differences in mean error rates of the decision rule and tree algorithms are not
statistically significant from that ofPOL. IC0 has the lowest mean error rate andQU0 is best
in terms of mean ranks.C4R andC4T are not far behind. Any of these four algorithms should
provide good classification accuracy.C4T is the fastest by far, although it tends to yield trees
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with twice as many leaves asIC0 andQU0. C4R is the next fastest, but figure 3 shows that it
does not scale well.IC0 is slightly faster and its trees have slightly fewer leaves thanQU0.
Loh and Shih (1997) show, however, that CART-based algorithms such asIC0 are liable to
produce spurious splits in certain situations.
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