
A Comparison of Presburger Engines for EFSM
Reachability

Thomas R. Shiple 1 James H. Kukula 2 Rajeev K. Ranjan 1

x Synopsys, Inc., Mountain View, CA. { sh±p le , r a j e e v r } 0 s y n o p s y s , corn
2 Synopsys, Inc., Beaverton, OR. k u k u l a 0 s y n o p s y s , corn

Abstract. Implicit state enumeration for extended finite state machines relies on
a decision procedure for Presburger arithmetic. We compare the performance of
two Presburger packages, the automata-based Shasta package and the polyhedra-
based Omega package. While the raw speed of each of these two packages can
be superior to the other by a factor of 50 or more, we found the asymptotic per-
formance of Shasta to be equal or superior to that of Omega for the experiments
we performed.

1 Introduction

Peano arithmetic, the theory of arithmetic with multiplication and addition, is unde-
cidable. However, decision procedures do exist for the subset of arithmetic, known as
Presburger arithmetic, that excludes multiplication [13]. Presburger formulas are built
up from natural number constants, natural number variables, addition, equality, inequal-
ity, and the first order logical connectives. An example of such a formula is I

3x(y = 2x + 1).

Even though the best known procedure for deciding Presburger arithmetic is triply ex-
ponential in the length of the formula [16], several practical applications for Presburger
arithmetic have been found. Pugh [17] uses Presburger arithmetic for data dependence
analysis in optimizing compilers. Amon et al. [1] use Presburger arithmetic to perform
symbolic verification of timing diagrams. Another application, and the one on which
we will be focusing, is reachability analysis of extended finite state machines (EFSMs)
[3, 8, 9, 12].

An EFSM is a system with a finite state controller interacting with an integer dat-
apath of unbounded width [9]. Each transition of the controller has a gating predicate
over the integer variables, and an update function specifying the new values of the in-
teger variables when the transition is taken. Figure 1 depicts a simple EFSM with five
control states, seven input variables (r, i ~ , ia~, ibm, ibm, idz, ida), seven data variables
(ax, a v, bz, by, dx, dr, i), and ten transitions. This machine reads data and then checks
a series of inequalities that determines whether the variable i should be assigned a 0 or
1 value.

2x is an abbreviation for x + x.

281

If the gating predicates and update functions of an EFSM are definable in Pres-
burger arithmetic, then the entire transition relation of the EFSM can be represented as
a single Presburger formula. If the set of initial states is also Presburger definable, then
BFS-based implicit state enumeration can be performed completely within Presburger
arithmetic. Thus, Presburger arithmetic provides an elegant framework for performing
state reachability of EFSMs.

(r == 0)/
(~ == 1)/ . \ t'-'N

b= = ib= ; b u = iby "~,f"~f"

b~ > a x

_-2"
(a~ >_ ~ + d ~) l ' ~ ~ 3) - - - - ~ - \ J

~ _ . ~ (a y < by + d y) l ~ (bz < ar + d~)

< ay + dy)/
i = 1 ;

Fig. 1. An EFSM.

Two basic approaches have emerged for representing, manipulating, and checking
the satisfiability of Presburger formulas: automata-based and polyhedra-based. In the
automata-based approach, the naturals are encoded as bit strings using base 2 encod-
ing [4, 6, 19]. For a Presburger formula defined over k variables, a technique has been
developed to directly translate the formula into a deterministic, finite state automaton
(DFA) that accepts a k-tuple of bit strings if and only if the k-tuple is a solution to the
given formula [4]. Since minimum state DFAs are unique, automata provide a canonical
form for Presburger formulas. In the polyhedra-based approach, Fourier-Motzkin vari-
able elimination is used to eliminate the quantifiers from a Presburger formula [13, 17].
The result is a union of convex polyhedra that is typically represented by a set of ma-
trices; this representation is not canonical. A useful analogy can be made to data repre-
sentations in the Boolean domain: automata are like binary decision diagrams (BDDs),
and polyhedra are like sums of products (SOPs).

To the best of our knowledge, a direct experimental comparison of the performance
of these two basic approaches has never been made. The contribution of this work is
to perform such a comparison. For the polyhedra approach, we use the Omega pack-
age of Pugh et al. [15, 17]. For the automata approach, we developed the Shasta pack-
age, which incorporates the procedure of Boudet and Comon [4] for translating linear
equalities and inequalities to automata, and also uses the automaton data structure of
Henriksen et al. [14].

The context for our comparison is state reachability for EFSMs. It is not clear a
priori which approach would be better. In the Boolean domain, experience shows that
BDDs are generally superior to SOPs, but there are cases where SOPs are exponentially

282

more compact than BDDs [11]. In the final analysis, our experiments show that while
the raw speed of each Presburger engine can be superior to the other by a factor of 50
or more, the asymptotic performance of Shasta is equal or superior to that of Omega.

The remainder of the paper is organized as follows. Section 2 presents more de-
tail on the automata approach for solving Presburger arithmetic, and Section 3 does
the same for the polyhedra approach. Section 4 describes the experimental setup and
analyzes the experimental results.

2 Automata Approach for Solving Presburger Arithmetic

Automata can be used as a data structure to represent Presburger formulas, or more
precisely, the set of solutions to Presburger formulas. In this section, we review the
general ideas behind this concept, and discuss some specifics of the Shasta automata
package used in the experiments.

The first step to consider in representing Presburger formulas by automata is the en-
coding of natural numbers. For this, a base 2 encoding is used, with least significant bit
first, and arbitrary padding with zeroes on the end. Thus, both 011 and 01100 represent
the number 6. A tuple of naturals is represented by simply stacking equal length repre-
sentations of the elements. Thus, the tuple (xl , x2, x3) = (4, 7, 11) can be represented
by a string of bit vectors:

string - -~
Xl: 0 0 1 0 bit
x2:1 1 1 0 vector
x 3 : l 1 0 1 $

An automaton representing a Presburger formula over k variables reads a bit vector of
height k at each step, consuming the least significant bit of each variable in the first
step, the next least significant bit in the second step, and so on.

The atomic formulas of Presburger arithmetic are linear equalities and inequali-
ties. Btichi indirectly showed how these formulas can be represented by automata by
demonstrating how they can be embedded in the logic WS 1S [6]. Recently, Boudet and
Comon developed a direct method for translating an atomic formula into an automaton;
the Shasta package uses this algorithm. Figure 2 shows the automaton that recognizes
the natural number tuples satisfying the linear equality xl + x2 = xa. To illustrate
its operation, for the input tuple (4,7,11), the automaton starts at the initial state and
reads the first bit vector, 011, which leads the automaton back to the initial state. After
reading all the bit vectors, the automaton will be in the accepting state, reflecting that
4 + 7 - - 1 1 .

Presburger formulas are constructed by combining atomic formulas using the first
order logical connectives. These connectives are handled by standard automata oper-
ations: logical conjunction translates to automata intersection, logical negation to au-
tomata complementation, and existential quantification to automata projection. Quan-
tification deserves a closer look. Consider the formula 3x2 (xl + x2 : x3); this defines
the relation xl < x3. The automaton for this formula can be derived by simply "eras-
ing" the second component of each transition label of the automaton in Figure 2, yield-
ing a nondeterministic automaton. To return to a canonical form, this automaton would

283

000,011,101 I 111,010, 100

~ A c c e p L] " ~ i " [s R e j e c t ~

001, 0 1 0 , 1 1 1 , 1 0 ~ ~ 1 1 0 , 1 0 1 , 0 1 1 , 0 0 0

Fig. 2. The automaton representing xl + x2 = x3.

need to be determinized and minimized (Shasta automatically applies state minimiza-
tion after every operation). Given a minimized automaton, satisfiability can be checked
in constant time.

The Shasta package incorporates the automaton data structure of Henriksen et al. [14].
Rather then having 2 k labels annotating the outgoing transitions of each state, a BDD
with multiple terminals is used. Specifically, each state of an automaton points to a
BDD that determines the next state as a function of the incoming bit vector. The ter-
minal nodes of the BDD are the possible next states, and the BDDs for different states
can share common subgraphs. Figure 3 shows the same automaton as Figure 2, with its
transitions represented by BDDs.

Accep, I I R°j"c' I

Fig. 3. The automaton representing xl + x2 = x3, with transitions represented by BDDs.

Shasta actually goes slightly beyond Presburger arithmetic by treating Boolean vari-
ables specially, rather than just as natural number variables that only take the values 0
and 1. This is done simply by ordering all the Boolean variables first, and reading their

284

values just once. The effect at the data structure level is an automaton rooted by a "pure"
BDD, whose terminals are states of the automaton.

Presburger arithmetic is strictly defined over just the naturals, not all the integers.
The Shasta package follows this definition. However, it is possible to extend Presburger
arithmetic to the integers by encoding each integer as a pair of natural numbers [18].

3 Polyhedra Approach for Solving Presburger Arithmetic

The set of solutions to a Presburger formula can be represented in a sum of products
form, whose primitive formulas are linear equalities, inequalities, and congruences:

V, [A. (o = at,, + Z"""'), "A(o, < ,,o,, + Z

^ A(0j -d,, c0j, + c,jkx,)] (1)

Here --d means equivalent modulo d, aijk, bijk, Cijk, and djk are all integer con-
stants, and xi are integer variables. This formula can be given a geometric interpreta-
tion: the conjunction of equalities defines a linear subspace, the conjunction of inequal-
ities defines a convex polyhedron, and the congruences pick out periodic sets.

The essential function required of a Presburger engine is to check the satisfiability
of a formula. To check satisfiability in a polyhedra-based approach, a Presburger for-
mula must first be converted to a sum of products, as in Equation 1. The next step is to
existentially quantify any free variables. If the resulting formula, involving only con-
stants, is true, then the original formula is satisfiable. Thus, we need to construct, for any
Presburger formula, a representation in the form of Equation 1 [13]. As mentioned in
Section 2, Presburger formulas are built up from linear equalities and inequalities using
conjunction, complementation, and quantification. Linear equalities and inequalities are
just trivial instances of the representation in Equation 1. Any conjunction can be simply
distributed over the disjunctions to produce a new disjunctive form. Complementation
of an entire SOP formula can be converted by De Morgan's rule into combinations of
complementations of primitive formulas. The complements of the primitive formulas
can be expressed in terms of uncomplemented primitive formulas.

Lastly, we need to see how to existentially quantify a variable in this representation
and express the result in the same form. The details of this operation are too complex
to provide in this brief treatment, but the main steps can be outlined. First, to quantify a
variable x, all the primitive formulas need to be scaled so that x appears with the same
coefficient, a, which will be the least common multiple of the coefficients of x in the
original primitive formulas. Then ax can be replaced by a new variable y, adding the
new term 0 --a Y to our formula.

Finally, to eliminate y, if there any equalities that include y then one can just use
Gaussian elimination, picking one equality to provide a formula to substitute for y in

285

all its other occurrences. If y does not occur in any equality, then Fourier-Motzkin elim-
ination can be used to check the various inequalities for the existence of a solution.
The basic idea is that for every pair of inequalities f < y and y < g, the inequality
f < g must be satisfied. One also needs to guarantee that the gap between f and g
includes some integer that satisfies the various congruence equations. There are a finite
number of congruence classes, so the possible solutions can be enumerated. Enumerat-
ing the pairs of inequalities and the congruence classes can generate a large number of
new inequalities. This potential for combinatorial explosion is what makes Presburger
arithmetic complex.

The main challenge in using this polyhedra-based representation is efficiency. The
representation is not canonical. Given one representation for the set of solutions to a
formula, one can apply various minimization tactics to search for a smaller equivalent
representation. These tactics can get very expensive and one cannot tell in advance
whether they will succeed in reducing the size of the representation. At the same time
very simple tactics can be quite effective.

The Omega package [15, 17] uses sophisticated versions of these techniques to pro-
vide a complete set of Presburger arithmetic operations. It offers user control over when,
and to what degree, minimization of formulas should be applied. With such polyhedra-
based techniques, it is most natural to support positive and negative numbers on an
equal footing. Note that the Omega package does not provide any direct support for
Boolean variables, unlike the Shasta package.

4 Experimental Results

The purpose of the experiments is to compare the relative performance of the automata-
based Shasta engine to the polyhedra-based Omega engine. In this section, we first
discuss in more detail the context of the experiments, namely EFSM reachability, then
describe the experimental framework and examples used, present the experimental data,
and finally draw some conclusions.

4.1 EFSM Reachability

EFSMs differ from FSMs in that some of the input and state variables of an EFSM can
be unbounded natural numbers. Nonetheless, the BFS-based implicit state enumeration
technique used for FSMs [10] can be carried directly over to the EFSM domain. Let
xi , xs , x~s, and xo represent the sets of natural number variables 2 for the inputs, present
states, next states, and outputs, respectively, of an EFSM, and let I and T represent the
set of initial states and the monolithic transition relation, respectively. Then the set of
states reachable in j or fewer steps is given by:

Rj(xts) :-- Rj-1 (Xts) V ~Xs, Xi, Xo(Rj-1 (Xs) A T(xi, x~, x'~, xo))

2 For this explanation, we do not distinguish Boolean variables.

286

If I and T are Presburger definable, then Rj is a Presburger formula, and hence the
entire calculation can be carried out using a Presburger engine. One major difference
between FSM state enumeration and EFSM state enumeration is that the latter is not
guaranteed to converge, because EFSMs are infinite state systems. Our reachability
algorithm tests for convergence after each step; some of our examples converge, others
do not.

4 .2 E x p e r i m e n t a l F r a m e w o r k a n d E x a m p l e s

The examples are described in a dialect of Verilog that includes wires carrying un-
bounded integer values, and arithmetic modules that operate on them. In particular,
each example is specified as a multi-level circuit, where the components can be adders,
subtractors, multiplexors, comparators, Boolean logic gates, and Boolean and integer
valued flip-flops. There is a single clock that drives all the flip-flops.

We incorporated EFSM reachability into the VIS program [5] by making several
modifications and additions to VIS. First, we added a generic Presburger engine inter-
face which, at the flip of a runtime switch, can use either the Shasta or Omega engines.
This way we perform the same sequence of elementary operations with both engines,
ensuring a fair comparison. Second, we modified the front end of VIS to accept the
Verilog dialect mentioned above. Third, we wrote a new routine to build the transition
relation using a series of generic Presburger engine calls. Specifically, a monolithic tran-
sition relation is built by introducing a variable for each internal circuit net, constructing
the input/output relation of each circuit component, forming the conjunction of all the
component relations, and then existentially quantifying all the internal variables. Fi-
nally, we added a new reachability routine that also makes use of generic Presburger
calls. Customary BDD techniques, such as early variable quantification and the use of
don't cares for minimization, could be applied in the Presburger framework also, but
this has not been done.

We developed several small EFSM examples; these are either typical circuits found
in DSP, communication protocol, and computer applications, or they are intended to test
hypotheses regarding the relative strengths of the two engines. The circuits are briefly
characterized in Table 1; sequential depth refers to the greatest lower bound on the path
length from an initial state to any reachable state. A brief description of each example
follows.

- "ticket" is the ticket mutual-exclusion algorithm from [8], with 2 clients. A client
can enter the critical section when its local ticket number becomes equal to the
last used ticket number, plus one. An extra Boolean input is used to model the
interleaving semantics used in [8].

- "perfect" reads a number a and then computes the sum of all the divisors of a
(excluding a itself). If the sum equals a, then a is called "perfect".

- "sdiv" is a serial divider. A numerator and denominator are read and saved, and then
the denominator is repeatedly subtracted from the numerator until the remainder is
less than the denominator.

- "euclid" implements Euclid's greatest common divisor algorithm. Two numbers
are read and saved. At each cycle the smaller number is subtracted from the larger
number until they become equal.

287

Example State Variables Input Variables Internal Variables Sequential
Boolean Integer Boolean Integer Boolean Integer Depth

ticket 6 4 1 0 43 6 c~
perfect 0 4 1 1 3 13 c~
sdiv 0 4 1 2 1 8 to
euclid 0 4 1 2 2 8
bound 6 6 1 6 25 10 5
movavgn n n + 1 0 1 1 2n + 2 2n
shiftbooln n 0 0 0 0 0 n
shiftintn 0 n 0 0 0 0 n
shifteqn 0 n 0 0 n 0 n

Table 1. Characteristics of circuits.

- "bound" is the EFSM shown in Figure 1. It reads the x, y coordinates of two points
and a difference vector, and checks whether the two points are closer than that
difference. The control states are one-hot encoded.

- "movavgn" reads in a stream of numbers and keeps the sum of the last n numbers
read. It has n registers to store the stream of inputs, and uses a one-hot control word
to keep track of which register to update next.

- "shiftintn" is an integer circular shift register of length n. It has no inputs, and its
initial state is 1, 0 , . . . , 0.

- "shiftbooln" is exactly like shiftintn, except that its variables are Boolean, rather
than integer. Its initial state is TRUE, FALSE FALSE.

- "shifteqn" is an integer circular shift register where, for a given register, if it holds a
0, then a 0 is passed, else a 1 is passed. Thus, for any initial state, after one step, all
registers will contain either 0 or l, and the behavior thereafter is like a pure circular
shift register. The initial state is 1, 0 , . . . , 0.

We had to address the treatment of negative integers, since Shasta and Omega differ
on this point. Rather than encumbering Shasta by extending it to negatives, or burdening
Omega by adding " > 0" constraints on each variable, we decided to let each run in
its "natural" mode. All of the examples were originally conceived as operating on the
naturals; when presented with negative input values, some of the examples (e.g., sdiv)
do not compute meaningful results, but we feel that Omega does not have to work
"harder" because of this.

As mentioned in Section 3, Omega does not support Boolean variables as a special
type. We experimented with two different encodings for Boolean variables for Omega:
1) FALSE is 0 and TRUE is ~ 0, and 2) FALSE is < 0 and TRUE is > 0. We found that
the second gives better results. Also, for the Omega experiments, formula minimization
was applied after every Presburger operation, except for building atomic formulas, by
calling the Omega function "simplify" with arguments (2, 2).

4.3 Results and Discussion

Computation of reachable states for any particular EFSM design proceeds in two phases.
First we build, starting from the netlist representation of the EFSM, a single Presburger

288

formula that defines its transition relation. Columns 3-6 in Table 2 show the CPU time
(in seconds) and memory costs (in kilobytes) for this phase of the computation for each
example, for both Shasta and Omega. The second phase of the computation is the iter-
ative accumulation of reachable states, starting with an initial state, computing images,
and checking for a fixed point. In those designs where a fixed point exists we let the
computation proceed to that fixed point. In those designs where a fixed point does not
exist, we run the computation out to where computational costs have grown signifi-
cantly. Columns 7-10 in Table 2 show the costs for this phase of the computation.

Build Transition Relation
Example Depth Shasta Omega

Time Mem. Time Mem.
ticket 10 17.5 721 1061.5 16335
perfect 20 6.8 582 2.3 1507

sdiv 40 1.8 25 0.4 672
euclid 6 2.3 90 0.5 762
bound 5 196.0 46596 34961.6 29516

movavg2 4 1.9 197 0.9 745
movavg3 6 3.6 950 3.9 1221
movavg4 8 6.7 2417 16.7 1909
movavg5 10 13.9 5956 74.5 3408
movavg6 12 43.5 16253 470.4 7160
shiftbool6 6 0.5 66 4.0 1376
shiftbool7 7 0.6 74 17.6 2630
shiftbool8 8 0.8 74 80.1 5186
shiftbool9 9 0.9 90 377.7 10420
shiftbooll0 10 1.0 98 1751.2 21266
shiftintl2 12 0.9 123 0.2 541
shiftintl 3 13 1.1 147 0.2 590
shiftintl4 14 1.2 147 0.2 623
shiftint 15 15 1.3 180 0.2 655
shiftintl6 16 1.4 205 0.2 696
shifteq4 4 1.2 295 6.1 1204
shifteq5 5 2.5 786 66.5 3039
shifteq6 6 8.7 3195 742.4 9126

Table 2. Results on building transition relations

Reaehability
Shasta Omega

Time Mem. Time Mem.
10.6 0 308.2 0
36.3 1483 2636.9 11043

2953.8 65872 414.6 3891
275.8 60834 83.4 2908
241.4 0 253.8 8602

0.7 0 0.4 0
3.2 0 1.8 0

13.31 16 6.0 0
49.5 25 18.6 0

208.8 0 51.3 0
0.8 8 1.7 434
1.2 8 3.5 1360
1.7 25 8.0 2777
2.3 25 17.6 5603
3.0 41 41.6 11248
4.8 57 146.5 2048
6.0 66 238.2 2531
7.2 74 372.3 3097
8.8 74 550.7 3711

10.7 74 785.5 4391
0.8 41 0.9 303
4.8 106 3.0 1622

33.7 254 11.6 5292

and performing reachability.

All experiments were run on a Sun Ultrasparc 3000 with a 168 MHz clock and 512
MB of main memory. The CPU times shown are as reported by the standard UNIX
function "time". Transition relation build times do not include the time to read the input
files. The memory costs shown are not very accurate, especially for reachability. We
use the UNIX "sbrk(0)" function to determine the highest address of allocated memory
before and after a function, and report the difference. This fails to account for the use of
recycled free memory (this explains the 0KB figures in the table), and may also include
memory speculatively allocated but not actually used.

289

Neither Shasta nor Omega emerge as consistently superior. In building transition
relations, we never observed Omega running significantly 3 faster than Shasta. On the
other hand, there are examples where Shasta runs much faster than Omega (ticket,
bound, movavgn, shiftbooln, and shifteqn).

For the reachability computation itself the results are more mixed. There are ex-
amples where Shasta runs much faster than Omega; for other examples, Omega runs
much faster than Shasta. In particular for the euclid design, Shasta could complete only
6 steps (due to memory use), while Omega could complete eight steps (we show the
costs through step six for both tools). Considering both the model build and reachabil-
ity phases together, Shasta is significantly faster on shiftbooln and ticket, while there
are no examples where Omega is significantly faster for both phases.

The above analysis compares the absolute runtimes of the two engines. By varying
the reachability depth on the fixed-sized examples, and by varying the circuit size on
the parameterized examples, we are able to empirically estimate the asymptotic per-
formance of the two tools (Table 3). Overall, Shasta has the same or better (perfect,
shiftbooln and shiftintn) asymptotic performance in all cases analyzed.

Example Phase
euclid reach.
sdiv reach.

perfect reach.
movavgn build

reach.
shiftbooln build

reach.
shiftintn build

reach.
shifteqn build

reach.

Shasta Omega Function ot see Figure
exponentialexponential reachability i 4a

cubic cubic depth 4b
quadratic quintic 4c

exponential
exponential

exponential
exponenti~

exponentialexponendal
exponential exponential

linear linear
quadratic exponential

linear
quadratic

exponential
exponential

circuit
size

4d

Table 3. Asymptotic performance.

One conceivable factor that could give Shasta an advantage is its special treatment
of Boolean variables. If we focus on the build phase, the presence of a significant num-
ber of Boolean state or internal variables (examples ticket, bound, movavgn, shiftbooln,
shifteqn) is a perfect predictor of when Shasta outperforms Omega. However, for reach-
ability, the presence of Boolean state variables does not assure Shasta is better: Shasta is
faster for ticket and shiftbooln, but is the same or slower for bound and movavgn. Fur-
thermore, Shasta's superiority in reachability on shiftbooln cannot be explained sim-
ply by the presence of Boolean variables, since it similarly outperforms Omega on
shiftintn, which has no Boolean variables. Recently, Bultan et al. [7] proposed a variant
of Omega, where a Presburger formula with integer and Boolean variables is repre-
sented by a set of Omega and BDD pairs. They observed a drastic improvement over

3 For mntimes of more than 7 seconds, "significantly" means, here and throughout, more than a
factor of 3.

290

4096

1024

256

64

16

0.2

0.0625

(a) perL comp. for Euclid (log-linear *eale)

Shasta CPU
Omega CPU " ~ 7

/ . 7 ' / ' /

. , / ' #

/

../-"*"

2 3 4 5 6 7
Reachability Depth

4096
(b) Perf. comp. for Sdiv (log-tag scale)

1024

2S6

64

16

4

1

0.25

0.0625

Shasta
Ome PU -*---

. ~ ' ~

2 4 8 16 32 64
Reachability Depth

4096

1024

266

64

16

4

0.25

0.0625

(c) Perf. e~rnp, for Perfect (log-log scalD)

Shasta GI~U Om~Pu
,7*

Z /
#"

/ /

j "

1

(d) Perf. comp. lot Movavg (log-linear sealt)

128

64

32

16

8

4

2

1

0.5

0.26

Shasta CPU
Omega C P / / I ÷ - -

, / , - f ~

z

2 4 8 16 32 3 5
Reach~lr~t Depth W'4~lth

Fig. 4. Various plots comparing the performance of Omega vs. Shasta. The vertical axis is CPU
time in seconds. Note that graphs a and d are log-linear, and b and c are log-log.

the standard Omega tool on the one example they studied; it would be instructive to
perform a direct comparison within our framework.

Does the implementation of Shasta reflect the true potential of the automata-based
approach? Fortunately, we were able to answer this question to some degree by com-
paring Shasta directly to Mona, a second-generation automata package that supports the
logic WS1S [2, 14]. Rather than trying to integrate Mona into VIS, we just manually
coded two examples (sdiv and euclid) in Mona's WS 1S language, using the embedding
suggested by B/ichi. We also hardcoded the reachability computation out to a fixed
number of steps for each example. By ensuring the same variable ordering, we were
able to exactly match the automata (with BDD transitions) built by both Shasta and
Mona. A performance comparison between Shasta and Mona on these two examples
revealed that Mona consistently outperforms Shasta by almost a factor of 2 in runtime.
In conclusion, even though the runtimes of Shasta could be reasonably halved, this does
not fundamentally alter the observations made above in comparing Shasta to Omega.

5 Conclusions

Our research is focused on performing implicit state enumeration of EFSMs. The heart
of such an approach is a computational engine for deciding the validity of Presburger
formulas. Having found two very different types of engines discussed in the literature,

291

we performed a set of experiments to discover which type of engine would work bet-
ter for our application. Despite the different approaches taken by the automata-based
Shasta and polyhedra-based Omega packages, their overall performance on our exper-
imental EFSM reachability problems was remarkably similar. In absolute terms, these
packages were ablelo analyze small designs with up to roughly a dozen state variables;
the complexity of the Presburger decision problem prevents their application to much
larger problems.

While neither package is consistently superior, we do observe large differences in
performance, with each tool sometimes faster than the other by factors of more than
50. If it were possible to predict which approach would work better on which problem,
it might be possible to build a hybrid engine that would outperform either package.
We found that Shasta consistently builds the transition relation faster when Boolean
variables are present, but this advantage does not always carry over to reachability. In
the absence of a reliable predictor for performance, a simple hybrid approach, where
both tools are applied and the slower tool aborted when the faster tool has finished,
could be practical, since the performance differences between the tools can be so large.

There is a rough analogy between these two Presburger packages and approaches
used in the Boolean domain. The automata-based Shasta package resembles a BDD
package, while the polyhedra-based Omega package resembles a SOP Boolean func-
tion package. In the Boolean domain, BDD packages are widely accepted as the supe-
rior technology for general Boolean function representation. However in the Presburger
domain, the BDD-like Shasta package does not enjoy such a clear cut practical ad-
vantage. In addition, while we have not observed any cases where Shasta has worse
asymptotic performance, in the Boolean domain cases are known to exist where a SOP
representation is superior to BDDs [11]. Thus, we expect that similar situations exist in
the Presburger domain where Omega will outperform Shasta not only in raw terms, but
also in asymptotic performance.

Acknowledgments We thank Kurt Keutzer for suggesting to us the use of Presburger
arithmetic for analyzing EFSMs, and Adnan Aziz for modifying VIS to support EFSMs.

References

1. T. Amon, G. Bordello, T. Hu, and J. Liu. Symbolic timing verification of timing diagrams
using Presburger formulas. In Proc. 34th Design Automat. Conf., pages 226--237, June 1997.

2. M. Biehl, N. Klarlund, and T. Rauhe. Mona: Decidable arithmetic in practice. In B. Jonsson
and J. Parrow, editors, Fourth International Symposium Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 1135 of LNCS, Uppsala, Sweden, 1996. Springer-Verlag.

3. B. Boigelot and P. Wolper. Symbolic verification with periodic sets. In D. L. Dill, editor,
Proc. Computer Aided Verification, volume 818 of LNCS, pages 55-67, Stanford, CA, June
1994. Springer-Verlag.

4. A. Boudet and H. Comon. Diophantine equations, Presburger arithmetic and finite automata.
In H. Kirchner, editor, Trees and Algebra in Programming - CAAP, volume 1059 of LNCS,
pages 30--43. Springer-Verlag, 1996.

5. R.K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng,
S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R.
Shiple, G. Swamy, and T. Villa. VIS: A system for verification and synthesis. In R. Alur and

292

T. A. Henzinger, editors, Proceedings of the Conference on Computer-Aided Verification,
volume 1102 of LNCS, pages 428--432, New Brunswick, NJ, July 1996. Springer-Verlag.

6. J. R. Btichi. On a decision method in restricted second order arithmetic. In Proc. Int.
Congress Logic, Methodology, and Philosophy of Science, pages 1-11, Berkeley, CA, 1960.
Stanford University Press.

7. T. Bultan, R. Gerber, and C. League. Verifying systems with integer constraints and boolean
predicates: A composite approach. In Proceedings of the 1998 International Symposium on
Software Testing and Analysis (ISSTA '98), 1998.

8. T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state programs using
Presburger arithmetic. In O. Grumberg, editor, Proc. Computer Aided Verification, volume
1254 of LNCS, pages 400--411, Haifa, June 1997. Springer-Veflag.

9. K.-T. Cheng and A. Krishnakumar. Automatic functional test generation using the extended
finite state machine model. In Proc. 30th Design Automat. Conf., pages 86-91, June 1993.

10. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential machines
based on symbolic execution. In J. Sifakis, editor, Proceedings of the Workshop on Auto-
matic Verification Methods for Finite State Systems, volume 407 of LNCS, pages 365-373.
Springer-Verlag, June 1989.

11. S. Devadas. Comparing two-level and ordered binary decision diagram representations of
logic functions. IEEE Trans. Computer-AidedDesign, 12(5):722-723, May 1993.

12. S. Devadas, K. Keutzer, and A. Krishnakumar. Design verification and reachability analysis
using algebraic manipulation. In Proc. lnt'l Conf. on Computer Design, pages 250--258, Oct.
1991.

13. H.B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York, 1972.
14. J.G. Henriksen, J. Jensen, M. JCrgensen, N. Klarlund, R. Paige, T. Rauhe, and A. Sandholm.

Mona: Monadic second-order logic in practice. In Tools and Algorithms for the Construction
and Analysis of Systems, First International Workshop, TACAS "95, volume 1019 of LNCS,
pages 89-110. Springer-Verlag, May 1995.

15. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega
library (Version 1.1.0) interface guide, http://www.cs.umd.edu/projects/omega, Nov. 1996.

16. D. Oppen. A 22~p'~ upper bound on the complexity of Presburger arithmetic. Journal of
Computer and System Sciences, 16(3):323-332, July 1978.

17. W. Pugh. A practical algorithm for exact array dependence analysis. Communications of the
ACM, 35(8):102-114, Aug. 1992.

18. B. L. van der Waerden. Modern Algebra, volume 1. Ungar, 1953.
19. P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger arithmetic con-

stralnts. In Proc. of Static Analysis Symposium, volume 983 of LNCS, pages 21-32. Springer-
Verlag, Sept. 1995.

