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Abstract

Background: Genomic prediction faces two main statistical problems: multicollinearity and n≪ p (many fewer
observations than predictor variables). Principal component (PC) analysis is a multivariate statistical method that is often
used to address these problems. The objective of this study was to compare the performance of PC regression (PCR)
for genomic prediction with that of a commonly used REML model with a genomic relationship matrix (GREML) and to
investigate the full potential of PCR for genomic prediction.

Methods: The PCR model used either a common or a semi-supervised approach, where PC were selected based either
on their eigenvalues (i.e. proportion of variance explained by SNP (single nucleotide polymorphism) genotypes) or on
their association with phenotypic variance in the reference population (i.e. the regression sum of squares contribution).
Cross-validation within the reference population was used to select the optimum PCR model that minimizes mean
squared error. Pre-corrected average daily milk, fat and protein yields of 1609 first lactation Holstein heifers, from Ireland,
UK, the Netherlands and Sweden, which were genotyped with 50 k SNPs, were analysed. Each testing subset included
animals from only one country, or from only one selection line for the UK.

Results: In general, accuracies of GREML and PCR were similar but GREML slightly outperformed PCR. Inclusion of
genotyping information of validation animals into model training (semi-supervised PCR), did not result in more
accurate genomic predictions. The highest achievable PCR accuracies were obtained across a wide range of numbers
of PC fitted in the regression (from one to more than 1000), across test populations and traits. Using cross-validation
within the reference population to derive the number of PC, yielded substantially lower accuracies than the highest
achievable accuracies obtained across all possible numbers of PC.

Conclusions: On average, PCR performed only slightly less well than GREML. When the optimal number of PC was
determined based on realized accuracy in the testing population, PCR showed a higher potential in terms of
achievable accuracy that was not capitalized when PC selection was based on cross-validation. A standard approach for
selecting the optimal set of PC in PCR remains a challenge.

Background
For many years, dairy cattle breeding programs have

been very successful in identifying the best animals via

progeny-testing schemes. Progeny-testing was first im-

plemented in Denmark and was soon used all over the

world [1]. One drawback of the progeny-testing scheme

in dairy cattle breeding is the long generation intervals,

which limits the response to selection, despite the high

accuracy of selection achieved.

In order to reduce the generation interval by trying to

obtain more accurate estimated breeding values (EBV)

before progeny information is available, the use of mo-

lecular markers in connection with phenotypes to pre-

dict genetic merit has been investigated for some time

[2]. Recent advances in molecular techniques have made

large-scale applications of such techniques possible. In

2001, Meuwissen et al. [3] showed by simulation that

genome-wide dense markers can adequately be used to

estimate breeding values with a considerably high
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accuracy. Prediction of these EBV based on marker in-

formation is known as genomic prediction, and the sub-

sequent selection step is known as genomic selection

(GS). In GS, DNA information is used to predict the

genetic merit of young animals, in order to reduce gen-

eration intervals. In recent years, GS has been imple-

mented in dairy cattle breeding programs [4-8] and has

been described as the most promising molecular applica-

tion in livestock [9].

In practise, genomic prediction involves two steps.

First, the effect of each SNP (single nucleotide poly-

morphism) is estimated in a reference population that

consists of animals with both known phenotypes and

marker genotypes. In the second step, genomic breeding

values (GEBV) of young animals are estimated using

only their marker information, to rank the animals for

selection.

Despite the fact that several methods have been pre-

sented to estimate SNP effects, there are still many

important questions and problems to be addressed, in-

cluding statistical issues. These statistical issues concern

mainly multicollinearity in the SNP dataset, due to link-

age disequilibrium (LD) among markers, which leads to

unstable estimates in least-squares regression. Moreover,

a major problem in the statistical models used to esti-

mate SNP effects is that the number of variables that

needs to be estimated (p) is much larger than the num-

ber of observations (n), thereby removing least squares

from possible analysis methods. In the field of statistics,

these problems are frequently overcome by using principal

component analysis (PCA) and subsequent regression on

the principle components (PC) (PCR; principal compo-

nent regression) instead of on the original variables.

In general, PCA can be used to solve multicollinearity

problems among predictor variables and to reduce the

dimensional space. In genetic studies, PCA has been

used mainly for population studies and has been a

powerful tool to identify population structures and mi-

gration patterns, and to correct for stratification in asso-

ciation studies by capturing genetic variation [10-15].

One of the first applications of PCA in population genet-

ics was by Menozzi et al. [16] to produce maps of hu-

man genetic variation across mainland regions.

Likewise, in animal breeding, PCA has recently been

used to infer population clusters from different breeds

[17] and to represent genotypes in the prediction of

GEBV [18-21]. Daetwyler et al. [22] used PCA to investi-

gate the impact of population structure on the accuracy

of GEBV in a multi-breed sheep population. Results of

these studies, which used either simulations or real data,

describe PCA as a promising method for animal breed-

ing to produce accurate GEBV. In these studies, the

main benefits of using PCA were a significant reduction

in data quantity (>90%) and fast computation. However,

to date, there is only a limited number of studies based

on real data that compare PCR for genomic prediction

with a more commonly used genomic prediction model

such as GBLUP (best linear unbiased prediction, in

which the pedigree additive relationship matrix is re-

placed with a marker-derived relationship matrix) [23].

Since PCA is able to recover population structure, it

may be expected that using this information is beneficial

for genomic prediction applied to data with strong

population structure. One such application is across-

population genomic prediction, e.g. genomic prediction

based on reference data that only includes data from

other populations and not from the predicted population

itself. Whether the ability of PCA to detect population

structure is also beneficial in applications of across-

population genomic prediction is currently unknown.

The main objective of this research was to investigate

the potential of PCR for across-population genomic pre-

diction, as applied to yield traits in Holstein cows from

different countries. More precisely, the objectives were

(i) to compare the predictive accuracy of PCR with a

REML model that uses a genomic relationship matrix

(GREML) and (ii) to investigate the effect of alternative

methods of extracting and selecting PC on the accuracy

of genomic predictions.

Methods
Data

We used 66 116 daily records up to 45 weeks in lactation

for milk, fat and protein yields from 1609 first lactation

Holstein heifers. Heifers originated from four countries,

Ireland (IRL; Teagasc, Moorepark Dairy Production),

United Kingdom (UK; Scottish Agricultural College), the

Netherlands (NLD; Wageningen UR Livestock Research)

and Sweden (SWE; Swedish University of Agricultural

Science). The UK data included animals from two diver-

gent selection lines, a line selected for high fat and protein

yield and a control line that represents the UK national

average for fat and protein yield [24]. These two lines were

therefore considered as two groups (UK_1 and UK_2). All

phenotypes were pre-adjusted to account for the mean

overall lactation curve, herd, diet group, milking fre-

quency, year-month of milk test-day by management

group, and experimental treatments. For a full description,

see [24,25]. For each animal, a single pre-adjusted pheno-

type was obtained as the average daily milk, fat and

protein yields for lactation weeks 3 to 15, derived from in-

dividually predicted lactation curves. Descriptive statistics

of the pre-adjusted phenotypes are in Table 1.

All animals were genotyped within the RobustMilk pro-

ject (www.robustmilk.eu) with the Illumina BovineSNP50

Beadchip (Illumina Inc., San Diego, CA) containing 54

001 SNPs. Quality control checks on the SNPs used the

following criteria: (1) a GenCall score greater than 0.20
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and a GenTrain score greater than 0.55 for individual ge-

notypes; (2) a call rate greater than 95%; (3) a minor allele

frequency greater than 0.01 in each country; and (4) no

extreme deviation from Hardy Weinberg Equilibrium

(χ2 < 600). After editing, 37 069 SNPs remained across

the 29 autosomes and the X-chromosome.

Reference and test datasets

The across-country dataset was split into five subsets

and, in each analysis, four subsets were used as the refer-

ence set and the other one for testing. The first three

test datasets included animals from only one country

(Ireland, the Netherlands or Sweden), while the last two

each contained one of the UK selection lines, such that

each animal had its genomic breeding value predicted

once for each trait and model. The number of cows in

each subset ranged from 181 to 618 (Table 2). Accur-

acies of predicted genomic breeding values were calcu-

lated as Pearson correlations between the predicted

genomic breeding values and the adjusted phenotypes

within each test dataset (i.e. within country, and within

line for the UK animals).

Principal component analysis

Assume a matrix X of order (n × p) where n individuals

have been genotyped for p SNPs. The elements of this

matrix may be 0, 1 or 2, representing the genotype of

each individual for each SNP (0 and 2 for homozygotes

and 1 for heterozygotes). The main idea of PCA is to re-

veal hidden structure in the data, to reduce the number

of variables in the dataset, and to solve the multicolli-

nearity problem (high correlation between columns in

X). It extracts the most important information, in terms

of variation, and re-expresses the original dataset in a

simplified way. Thus, PCA aims at finding a small set k

(k < p) of PC that explain as much of the variability in X

as possible. This is achieved through an orthogonal

transformation of the original dataset such that as much

of the original variability as possible is included in the

first few PC. So, PC are linear combinations of a set of

random variables in X, i.e. the matrix T with PC is ob-

tained by:

T ¼ e′X;

where e represents the eigenvectors derived from spec-

tral decomposition of the covariance (or correlation)

matrix of X. In genomic data, the covariance (correlation

matrix) of the SNP genotypes (of order p × p) can be

used or alternatively the similarity matrix of the individ-

uals (G matrix, of order n × n). The first PC is then de-

fined as the vector:

T1 ¼ e′

1X ¼ e11X1 þ e12X2 þ⋯þ e1pXp;

which captures the maximum variance in X, with the

constraint that e′e = 1. For all PC combinations, it holds

that: cov(Ti,Tj = 0) for all i ≠ j (i,j = 1,2,…,p).

The basis of PCA is either the spectral decomposition of

the covariance (correlation) matrix of X or the singular

value decomposition (SVD) of X. The SVD represents a

more general view of the eigenvalue decomposition for

non-square matrices X. In general, PCA based on SVD

and eigen decomposition are expected to yield similar re-

sults if X is square and symmetric [26]. Moreover, SVD on

an n× p matrix X is expected to yield the same results as

on its p × p correlation matrix.

Principal component regression and genomic prediction

The concept of PCR, i.e. the use of PC in regression has

been around for quite some time in the field of statistics

[27,28]. For application in genomic prediction, first con-

sider the general model to predict breeding values based

on marker genotypes:

y ¼ 1μþ Xbþ e;

where values in e are iid ∼N 0; Iσ2e
� �

; y is a vector of

phenotypic records, 1 is a vector of ones, μ is the overall

mean, X is a matrix (centred and possibly scaled) con-

taining SNP genotypes, b is a vector of additive effects

of all SNPs, e is a vector of residual effects, I is the iden-

tity matrix and σ
2
e is the residual variance. The initial

step for a PCR model is to perform PCA on the geno-

type matrix X (n × p). For this purpose, we used SVD via

the function “prcomp” in R [29], which works as follows.

Consider the SVD of X, X =UΣV′, where U and V are the

left and right singular vectors of X, V′ is the transpose of

V and Σ is a diagonal matrix containing the singular

Table 1 Descriptive statistics of pre-adjusted average

daily data of the milk yield traits

Trait Mean SD SE Min Max n

Milk yield (kg) 23.84 4.44 0.111 0.99 38.98 1609

Fat yield (kg) 0.93 0.18 0.004 0.12 1.79 1609

Protein yield (kg) 0.72 0.13 0.003 0.04 1.34 1609

Table 2 Number of cows with phenotype records and

genotypes from Ireland, the Netherlands, Sweden and

two divergent selection lines from UK

Population Number of animals

UK_1 206

UK_2 210

Sweden 181

Ireland 394

The Netherlands 618

Total 1609
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values. The matrix T (n × k) of PC scores is then calculated

as:

T ¼ XV ¼ UΣV′V ¼ UΣ;

where k < r, where r is the rank of X, and V (p × k) is the

loading matrix derived from the SVD of X, which de-

fines weights to the original X variables in each PC.

PCA based on the reference dataset

Principal component analysis was initially performed

only on the SNP matrix of the reference dataset, where

the T matrix of PC was calculated as Tr = XrV, where r

denotes the reference dataset. The V matrix that was ex-

tracted from the reference dataset was also used to con-

struct the T matrix for the test dataset as Tt = XtV,

where Xt contains the genotypes of the test dataset.

Following from the above, the PCR model that was ap-

plied is:

y ¼ 1μþ Tgþ e;

where T is the matrix of PC, and g is a vector with re-

gression coefficients for each PC in T. In this case, the

derived transformed SNP effects (i.e. the values in g) are

treated as fixed effects in contrast to what is commonly

used in genomic prediction models that perform simul-

taneous regression on SNP genotypes treating SNP

effects as random [30].

PCA based on all animals

In a second approach, PCA was performed on the matrix

with all SNP genotypes, where genotypes of all reference

and test datasets were included. For application in the

PCR model, the T matrix was split in parts relating to the

reference and test datasets (Tr and Tt, respectively), using

methods that are briefly described in Additional file 1:

Figure S1. In this approach, hereinafter referred to as

semi-supervised PCR (SSPCR), the genotypic information

of the individuals to be predicted is partly included in the

training dataset of the prediction model. This is because

the axes of variation, i.e. the singular vectors and the sin-

gular values of the SVD were extracted using all genomic

information available in the dataset. This concept of semi-

supervised PCA was borrowed from computer science

and face recognition analysis [31,32].

Selection of PC for inclusion in the PCR models

Two methods were tested to select sets of PC to be used in

the subsequent PCR models. In the first method, PC were

ranked based on decreasing eigenvalues (variation in the

explanatory variables, i.e. the genotypes), which will be re-

ferred to as PCR_eigen. In the second method, the PC were

ranked based on their contribution to the sum of squares

(ss) of the regression (variation in the response variable),

referred to as PCR_ss. These contributions were obtained

from a PCR model for which only phenotypes and geno-

types of the animals of the reference dataset were included.

Selection of the optimal model in PCR

Once the order in which the PC should be added to the

model is established, the question is how many PC

should be used in the subsequent PCR model used for

genomic prediction. There is no general consensus on

which strategy should be followed for this. Inspecting

plots of eigenvalues (via the so-called “scree plots” that

plot the PC ranked based on decreasing eigenvalues) or

keeping the number of PC that capture a given percent-

age of the original variation are two among a variety of

methods (see [33] for a detailed review). In our analyses,

a cross-validation (CV) approach within the reference

dataset (as in [33]) was chosen in order to obtain the

“optimum” number of PC to include in the PCR, which

will be further used in the section on prediction of the

test dataset. For CV, the reference dataset was either

split by country (and line in the case of UK), which will

be referred to as stratified CV hereafter, or split ran-

domly in a 5-fold CV. In both these CV approaches, all

PC were added in the PCR model one by one and the

minimum mean squared error (MSE) of the predictions

within the reference dataset was used as the target function

to be optimized, which is briefly described in Additional

file 2: Figure S2. Both CV approaches were performed

using the R package “plsdof” [34], with the appropriate

modification for the semi-supervised PCA.

GREML model

For the GREML model, the following individual animal

model with a genomic relationship matrix was fitted in

ASReml-R [35]:

y ¼ 1μþWuþ e;

where u is a vector of additive genetic effects for any of

the considered traits and W is the design matrix that links

u to the phenotypic records in y. For additive genetic and

residual effects, the following normal distributions were

assumed: u∼N 0;Gσ2u
� �

and e∼N 0; Iσ2e
� �

: Note that this is

a genomic BLUP model but with estimation of variances

σ
2
u and σ

2
e together with estimation of the breeding values

using restricted maximum likelihood (REML). Therefore,

this model is more appropriately referred to as genomic

REML (GREML) [36]. The genomic relationship matrix

was calculated following VanRaden [23] as:

GVR ¼
ZZ

0

2
X

pi 1‐pið Þ
;

where pi is the frequency at SNP i for which the homozy-

gous genotype is coded 2, calculated across all genotyped
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animals, and Z is derived from genotypes of animals in the

reference dataset by subtracting 2pi from a matrix X that

specifies the marker genotypes for each individual as 0, 1

or 2. Following Yang et al. [37], GVR was regressed back

towards A (the pedigree relationship matrix) to account

for errors in the estimation of GVR, resulting in the com-

putation of the genomic relationship matrix G as:

G¼ b� GVR þ 1−bð Þ � A;

where b is estimated according to Yang et al. [37]. The

value of b̂ ranged from 0.975 to 0.997 across different

bins of pedigree-based relationships. So, although in the-

ory this adjustment of GVR improves the properties of

the G matrix [37], in our case the adjusted G matrix was

very close to the original matrix and is therefore ex-

pected to yield very similar predictions.

Results
Characterization of the data

PCA was performed on all SNP genotypes to investigate

differences in genotypes between the Holstein popula-

tions included in this study. Based on the plot of the 1st

against the 2nd PC (Figure 1), one of the selection lines

of the UK population could be distinguished from the

rest with the first PC. However, it should be noted that

the 1st and 2nd PC captured only 1.5% and 1.4% of the

total original variability of the SNP data, respectively

(Table 3). Comparison of relationships based either on

pedigree or genomic relationships also confirmed that

the UK_1 population had the weakest average relation-

ship with the other populations (Table 4). In nearly all

cases, standard deviations of the genomic relationships

were higher than those of pedigree-based relationships,

which indicates that the use of SNP information explains

more variation in relationships than pedigree informa-

tion. Averages and standard deviations of relationships

were always higher within populations than between

populations. This confirms that relationships among the

five populations were low and that genomic predictions

in these data indeed were “across populations”, in the

sense that the reference data always included data only

from other populations and not from the predicted

population itself.

GREML versus optimal PCR and SSPCR

Accuracies of genomic predictions obtained using GREML,

PCR and SSPCR models, after determining the optimal

number of PC based on the reference data, are in

Table 5. On average, across test datasets and traits,

GREML outperformed the PCR and SSPCR models.

Across the test datasets, the performance of the PCR

and SSPCR models was closest to that of GREML for

milk with PCR_eigen and 5-fold CV (0.15 vs. 0.14), and

Figure 1 Scatterplot of the first two principal components (PC1 vs. PC2). Principal component analysis performed on the whole dataset,
with data from Ireland (IRL), the Netherlands (NLD), Sweden (SWE) and two divergent selection lines from United Kingdom (UK_1 and UK_2).
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for fat with SSPCR_ss and 5-fold CV (0.07 for both

models). For protein, the maximum accuracy obtained

with PCR and SSPCR was 0.02 achieved in four cases

(PCR_eigen and 5-fold CV, PCR_ss and stratified CV,

SSPCR_ss and 5-fold CV, and SSPCR_ss and stratified

CV) versus 0.05 for GREML.

Comparison between optimal PCR and SSPCR

Accuracies of genomic prediction differed between the

PCR and SSPCR models and also based on the two CV

approaches that were used to obtain the optimum PCR

(or SSPCR) model (Table 5). Interestingly, in some cases

the stratified CV resulted in a null model, i.e. a model

where only the intercept was included. In such cases, all

predicted individuals had the same GEBV which was the

mean of the reference dataset. This occurred only when

predicting UK_1 and was independent of the method

used (PCR or SSPCR), the approach of sorting the PC

(eigen vs. ss), and trait. A closer look on the number of

PC used in the various PCR and SSPCR models and in

the CV methods (Table 5) showed that, in general, a

stratified approach reduced the number of PC but also

resulted in lower accuracy, on average, compared to

using 5-fold random CV. Moreover, for all except the

UK_1 fat predictions, SSPCR_eigen used fewer PC than

PCR_eigen. In contrast, quite a large number of PC was

included in the SSPCR_ss models for all traits and both

CV approaches.

GREML versus “best case scenario” of PCR and SSPCR

In the present study, a CV approach was used to select

the PCR (or SSPCR) model that was used for genomic

prediction. An additional objective was to investigate the

full potential of PCR (or SSPCR) and the ability of CV

to achieve this. To investigate this, the pattern of the ac-

curacies when adding PC one by one in the model, was

evaluated to identify the model with the highest accuracy

(“best case scenario”). It should be noted that this is not

possible in practical genomic prediction applications, be-

cause it involves the use of phenotypic information of

the test dataset. Those best case scenarios PCR (or

SSPCR) models always outperformed GREML (Table 6)

and the optimal PCR and SSPCR models based on

cross-validation (Table 5).

PCR in the “best case scenario”

For the common PCR case, where PCA was applied on

the genotypic data from the reference dataset, the pat-

tern of accuracies was evaluated for an increasing num-

ber of PC that were included in the model based on

decreasing eigenvalues (Figure 2). Several interesting ob-

servations can be made from these results. The PCR_

eigen method generally resulted in higher accuracies

than the PCR_ss method (Figure 2; Table 6). Accuracies

using PCR_ss were slightly higher in only three cases.

The pattern of the accuracies, when an increasing num-

ber of PC was included in the models, differed between

traits and populations. In many cases, using very few PC

(usually less than 50) gave accuracies very close to the

maximum obtained across the whole range of number of

PC included (Figure 2).

SSPCR in the “best case scenario”

For this model, the whole SNP dataset, i.e. both the ref-

erence and testing data, was included in the PCA, while

only phenotypes of the reference subset were used to es-

timate the regression coefficients in PCR. In this ap-

proach, genomic information on the test dataset, such as

LD, is incorporated in the weights on the SNPs applied

in each eigenvector. In some cases, this SSPCR_eigen

Table 3 Cumulative proportion of the original variability

captured by principal components (PC)

Number of PC Cumulative proportion (%)

1 1.5

2 2.9

37 20

138 40

326 60

668 80

967 90

Principal component analysis was performed on the whole dataset.

Table 4 Average (Av) and SD of pedigree and genomic relationships within and between countries (and selection lines)

UK_1 UK_2 Sweden Ireland NL

Av Within1 Pedigree 0.0612 0.0763 0.0534 0.0556 0.0792

Genomic 0.0560 0.0226 0.0268 0.0182 0.0096

Between1 Pedigree 0.0295 0.0490 0.0385 0.0424 0.0499

Genomic −0.0088 −0.0026 −0.0024 −0.0038 −0.0028

SD Within Pedigree 0.0894 0.0819 0.0919 0.0767 0.0645

Genomic 0.0958 0.0860 0.0953 0.0788 0.0654

Between Pedigree 0.0220 0.0322 0.0284 0.0305 0.0332

Genomic 0.0265 0.0331 0.0283 0.0311 0.0342
1Averages (Av) and SD are computed for relationships within each population (Within) and for relationships between each population and all other populations (Between).
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method resulted in a slight increase in accuracies and in a

reduction in the number of PC needed to achieve the high-

est accuracies compared to PCR_eigen (Table 6, Figure 3).

Interestingly, for the UK_1 population, accuracies of 0.45,

0.18 and 0.28 for milk, fat and protein yields were obtained

with only the first six, one and seven PC, respectively. On

average, SSPCR resulted in slightly higher accuracies than

PCR when the genotypes of the test dataset were excluded

from the PCA step.

Discussion
Principal component regression enables data reduction

in the regression model and solves problems of depend-

encies among variables (multicollinearity). The main ad-

vantage of PCR derives from the ability of PCA to

capture a large proportion of the original variability of

the dataset (e.g. >90%) in a small set of uncorrelated PC.

As a result, generally a limited number of PC can re-

place the original variables with little loss of information.

Based on this, we tested whether PCA and its regression

(PCR) can provide a useful alternative method for gen-

omic prediction. Our results showed that, on average,

PCR yielded lower accuracies than the more commonly

used GREML model, although it has the potential to

yield considerably higher prediction accuracies than the

GREML model. It should be noted that this potential

was realized in the “best case scenario” that used both

genotypic and phenotypic information from the test

dataset animals to derive the optimal number of PC in-

cluded in the model, which is not possible in practice.

Nevertheless, the results of this scenario can be regarded

as an upper limit of the achievable prediction accuracy,

provided that the most appropriate PC can be selected

in a practical application. Optimization (i.e. selection of

PC) using the reference data by two different CV ap-

proaches (stratified vs. 5-fold random), proved to be un-

able to capitalize on the full potential of PCR, but still

achieved levels of prediction accuracy close to those ob-

tained with GREML. Although prediction accuracies ap-

peared to be quite low for all models, it should be noted

Table 5 Accuracies1 obtained for the PCR2 and GREML3 models

Test Trait GREML PCR_eigen PCR_ss SSPCR_eigen SSPCR_ss

5-fold stratified 5-fold stratified 5-fold stratified 5-fold stratified

UK_1 Milk 0.26* 0.21 (249) 0.16 (204) 0.17 (142) NA4 (0) 0.10 (71) NA (0) 0.13 (821) 0.22 (537)

Fat 0.07 −0.08 (35) −0.01 (103) 0.02 (95) 0.11 (1) −0.03 (40) NA (0) 0.07 (859) 0.12 (614)

Protein −0.01 −0.05 (121) −0.09 (69) −0.02 (91) NA (0) −0.13 (91) NA (0) 0.03 (910) 0.05 (570)

UK_2 Milk 0.10 0.12 (233) 0.12 (217) 0.05 (342) 0.14 (13) 0.12 (89) 0.13 (10) 0.04 (941) 0.03 (527)

Fat −0.02 −0.13 (96) −0.12 (37) −0.11 (35) −0.09 (28) −0.08 (33) −0.08 (27) 0.03 (909) 0.05 (523)

Protein 0.01 −0.03 (89) −0.06 (46) −0.11 (91) 0.06 (7) 0.04 (83) 0.02 (10) −0.06 (780) −0.01 (505)

SWE Milk 0.16 0.15 (181) 0.14 (187) 0.12 (184) 0.04 (19) 0.03 (64) 0.04 (15) 0.09 (895) 0.07 (529)

Fat 0.09 0.10 (162) 0.10 (146) 0.04 (101) 0.07 (713) 0.07 (57) −0.02 (1) 0.16 (859) 0.04 (680)

Protein 0.06 0.00 (92) −0.04 (48) 0.01 (82) −0.06 (29) −0.10 (17) −0.10 (16) 0.10 (1025) 0.10 (574)

IRL Milk 0.06 0.05 (277) −0.10 (48) −0.03 (207) −0.08 (37) −0.04 (35) −0.13 (8) 0.14 (717) 0.13 (389)

Fat 0.08 0.06 (121) 0.04 (51) 0.02 (100) 0.08 (52) 0.07 (37) 0.02 (14) 0.07 (712) 0.06 (315)

Protein 0.04 0.05 (127) 0.04 (145) 0.00 (35) −0.04 (173) −0.05 (37) −0.12 (12) 0.12 (759) 0.11 (421)

NLD Milk 0.16 0.18 (50) 0.19 (28) 0.09 (55) 0.10 (7) 0.18 (25) 0.13 (2) 0.11 (95) 0.11 (95)

Fat 0.15 0.11 (47) 0.10 (99) 0.05 (75) 0.06 (7) 0.07 (39) 0.07 (7) 0.10 (197) 0.11 (196)

Protein 0.13 0.14 (31) 0.13 (34) 0.07 (42) 0.13 (7) 0.12 (28) 0.16 (2) 0.11 (48) 0.11 (48)

Average Milk 0.15 0.14 (198) 0.10 (137) 0.08 (186) 0.05 (15) 0.08 (57) 0.04 (7) 0.09 (694) 0.02 (415)

Fat 0.07 0.01 (92) 0.02 (87) 0.00 (81) 0.05 (160) 0.02 (41) 0.00 (10) 0.07 (707) 0.04 (466)

Protein 0.05 0.02 (92) 0.00 (68) −0.01 (68) 0.02 (43) −0.02 (51) −0.01 (8) 0.02 (704) 0.02 (424)

SD Milk 0.08 0.06 (90) 0.12 (91) 0.08 (105) 0.10 (14) 0.08 (26) 0.12 (6) 0.04 (345) 0.07 (189)

Fat 0.06 0.11 (53) 0.09 (44) 0.07 (28) 0.08 (310) 0.07 (9) 0.06 (11) 0.05 (295) 0.04 (204)

Protein 0.05 0.08 (38) 0.09 (45) 0.07 (27) 0.09 (73) 0.10 (34) 0.13 (7) 0.08 (382) 0.05 (219)

For the PCR models, the PC included (numbers are presented in brackets) were selected based on cross-validation in the reference population data, either in a

5-fold random or stratified split to select the optimum PCR model in respect to minimum mean squared error. Analyses were performed for three traits and five

test populations.
1Accuracies were calculated as Pearson correlations between the predicted genomic breeding values and the adjusted phenotypes; 2selection of PCs was based

either on the eigenvalues (eigen) or the regression sum of squares (ss); two different methods of applying principal component analysis, either separately for

reference and test parts (PCR) or on the whole dataset (SSPCR), were compared; 3a REML based model with a genomic relationship matrix; 4all animals received

the same prediction; *in italics the highest accuracies for each population and trait.
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that the reported accuracies are Pearson correlations be-

tween observed phenotypes and predicted GEBV. Trans-

forming those values to the accuracy of GEBV, which is

defined as the correlation between true and predicted

GEBV, involves division by the square root of the heritabil-

ity of the trait. Since, for instance, the heritabilities of the

adjusted phenotypes for milk yield used in our study

ranged from 0.13 to 0.59 (results not shown) across coun-

tries, accuracies of GEBV for milk yield are predicted to be

1.3 to 2.8 times higher than the reported correlations.

Genomic relationships between reference and test data-

sets have been shown to have an important effect on pre-

diction accuracy [38,39]. The average squared relationship

between reference and test datasets has been shown to be

a better predictor of accuracy of genomic prediction than

the average relationship between reference and test data-

sets [38]. Since the variance of relationships is closely re-

lated to the average squared relationship, we compared

the standard deviation of relationships and the average re-

lationships between populations (Table 4). The on average

low relationships between the populations in our data and,

in particular, the lower variance of relationships between

populations compared to within populations, predicted

that accuracies of genomic predictions would be low,

which was indeed the case. Although we focussed on com-

monly measured milk yield traits, our results can be ex-

tended to other traits such as feed intake, for which,

pooling existing research herd data is the only option to

enable genomic prediction [40]. In fact, pooling of such

data has become possible by using genotypes, because

models based on genomic relationships can overcome is-

sues caused by low connectedness based on pedigree [41].

Optimization of PCR and SSPCR models through

cross-validation

An important question is how to select the optimal set

of PC for the PCR model, using information from the

reference data, such that the accuracy achieved is at least

similar to the accuracy achieved with GREML. We used

CV on the reference data to optimize the order and

number of included PC. As a first observation, the “best”

PCR model, i.e. the model obtained in the “best case sce-

nario”, was never proposed with the CV approach. In

our analyses, optimization of the CV was based on mini-

mising the MSE. However, since the accuracy of EBV is

important for animal breeding and affects response to

Table 6 Highest accuracies1 obtained for PCR models2 versus those obtained with the GREML model3

Test Trait GREML PCR_eigen PCR_ss SSPCR_eigen SSPCR_ss

UK_1 Milk 0.26 0.44 (14) 0.36 (2) 0.45 (6) 0.23 (458)

Fat 0.07 0.16 (776) 0.13 (3) 0.18 (1) 0.21 (219)

Protein −0.01 0.25 (14) 0.16 (1) 0.28 (7) 0.09 (1)

UK_2 Milk 0.10 0.16 (3) 0.15 (11) 0.19 (144) 0.15 (46)

Fat −0.02 0.08 (1061) 0.07 (751) 0.12 (593) 0.09 (1370)

Protein 0.01 0.07 (1) 0.08 (2) 0.10 (151) 0.08 (233)

SWE Milk 0.16 0.18 (1112) 0.16 (1060) 0.21 (365) 0.17 (344)

Fat 0.09 0.22 (46) 0.10 (991) 0.16 (1425) 0.18 (871)

Protein 0.06 0.11 (265) 0.08 (790) 0.25 (1424) 0.20 (1419)

IRL Milk 0.06 0.15 (967) 0.12 (758) 0.14 (92) 0.19 (288)

Fat 0.08 0.12 (954) 0.14 (572) 0.16 (790) 0.12 (965)

Protein 0.04 0.12 (749) 0.09 (245) 0.16 (94) 0.13 (273)

NLD Milk 0.16 0.21 (20) 0.17 (4) 0.19 (24) 0.17 (16)

Fat 0.15 0.17 (794) 0.19 (400) 0.17 (585) 0.18 (78)

Protein 0.13 0.17 (7) 0.16 (8) 0.17 (5) 0.17 (4)

Average Milk 0.15 0.23 (423) 0.19 (367) 0.24 (126) 0.18 (230)

Fat 0.07 0.15 (726) 0.13 (543) 0.16 (679) 0.16 (701)

Protein 0.05 0.14 (207) 0.11 (209) 0.19 (336) 0.13 (386)

SD Milk 0.08 0.12 (565) 0.10 (506) 0.12 (144) 0.03 (192)

Fat 0.06 0.05 (398) 0.05 (373) 0.02 (511) 0.05 (540)

Protein 0.05 0.07 (323) 0.04 (341) 0.07 (611) 0.05 (591)

Analyses were performed for three traits and five test populations.
1Accuracies were calculated as Pearson correlations between predicted genomic breeding values and adjusted phenotypes; 2selection of PC was based either on

the eigenvalues (eigen) or the regression sum of squares (ss); two different methods of applying principal component analysis, either separately for reference and

test parts (PCR) or on the whole dataset (SSPCR), were compared; 3a REML based model with a genomic relationship matrix.
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selection, an alternative scenario could be to select the

“best” PCR model after CV in the reference data based

on maximum accuracy instead of minimum MSE.

The main advantage of PCR was that it reduced the di-

mension of the data by at least 96%. Despite the gener-

ally high reduction in data dimension, the highest

accuracies after CV were achieved for a wide range of

numbers of PC included in the PCR model, from only

one to more than 1000 (Tables 5 and 6). This is a wider

range than that reported in previous studies based on

simulated data, in which the highest accuracies were

achieved when the number of PC ranged from 250 to

350 [19,20]. However, it should be noted that for

PCR_eigen, which is the most commonly used approach

in the literature, the number of PC in the model was be-

tween 28 and 249 after CV and between 1 and 1112 for

the “best case scenario”. By adding PC one by one in the

model, it was shown that most PC affected the accuracy

of predictions either positively or negatively and thus the

trajectory of the accuracies was not stable but fluctuated

(Figures 2 and 3). Moreover, in some cases the first few

PC resulted in the highest accuracies. As a result, using

empirical thresholds to select PC for inclusion in the

model (e.g. PC that together explain more than 90% of

the original variability in the SNP genotypes based on ei-

genvalues) simply does not result in the highest accur-

acies that can be achieved in PCR. Thus, the number

and selection of PC for inclusion in the PCR model

should be derived empirically for each dataset.

The semi-supervised PCR model also used genotypic

information from the test dataset. Despite our expect-

ation that this would improve accuracy of predictions,

because the model would be forced to define PC that ex-

plain variation in the genotypes of the test dataset, this

model on average performed less well than the PCR

model (Table 5). However, for the best case scenario,

when accuracies were evaluated across different num-

bers of PC based on the phenotypes of the test dataset,

the semi-supervised approach did yield slightly higher

accuracies than the PCR model (Table 6). This indicates

that the semi-supervised PCR has the potential to per-

form at least equally well as PCR, although it appears

that identifying the optimal set of PC for the semi-

supervised PCR model is even more difficult than for

the PCR model. In the context of genomic prediction,

the semi-supervised PCR may be more relevant when

large differences exist between the genotypes of the refer-

ence and the test datasets. The most obvious application

is across-breed or -line genomic prediction, where one

breed or line is used to predict another. In that case, the

semi-supervised PCR model may be able to better target

the variance of the predicted line or breed. It should be

noted that including animals of the predicted breed in the

reference data, e.g. [42,43], may yield a similar result, re-

gardless of the model used.

Investigating the importance of the principal components

in regression

In other studies that used PCA for genomic prediction

[18-21], the PC used only accounted for the variability

captured in the original matrix X (SNPs) and not for the

proportion of explained phenotypic variance in the refer-

ence population (as used here with PCR_ss in the com-

mon and semi-supervised approaches). However, it has

been shown in statistical literature that the first principal

components (accounting for most variation in X) can to-

tally fail as predictors in PCR (in terms of accounting for

variation in the response variable) and that even compo-

nents that explain little variance in X can be important

for prediction [28,44-46]. For instance, using Hald’s data,

Hadi and Ling [47] showed that while the first three (out

of four) PC accounted for 99.96% of the variability in X,

they contributed nothing (zero sum of squares) to the fit

of the regression model; instead, the last PC alone con-

tributed everything. Thus, these authors proposed that

the selection of PC should be based not only on the vari-

ance decomposition of the co-variables but also on the

contribution of each PC to the regression sum of squares.

However, despite the expectation that PCR_ss would yield

at least equally accurate estimates as PCR_eigen, we ob-

served the opposite in our analyses. It should be noted

that PCR_ss selected PC based on associations with

phenotype in the reference data. In that regard, PCR_ss is

very similar to partial least squares regression [21,48].

Thus, our results suggest that the PC that show the stron-

gest associations with phenotypes in the reference data do

not necessarily have the strongest associations with the

phenotypes in the testing data.

GREML versus “best case scenario” for PCR and SSPCR

By investigating the pattern of the accuracies of the PCR

models (Figures 2 and 3), we observed that some specific

combinations of PC resulted in relatively high prediction

accuracies, considering the limited size of the reference

dataset, and also compared to GREML. In our analyses,

the highest accuracies from the PCR models across the

(See figure on previous page.)
Figure 2 Pattern of accuracies for principal component regression models with increasing numbers of principal components (PC).

PCA was performed in the reference dataset. Selection of PC was based on eigenvalues (left panel) or on the sum of square contributions
(right panel). Traits analysed were average daily milk, fat and protein yields for test populations from Ireland (IRL), the Netherlands (NLD), Sweden
(SWE) and two divergent selection lines from United Kingdom (UK_1 and UK_2).
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numbers of PC included outperformed those from the

GREML models in all cases. The data reduction achieved

by PCR solves the “small n large p” issue and thereby en-

ables the use of fixed regression, as done in our study, ra-

ther than the random regressions commonly used in

genomic prediction models. An important question is why

PCR_eigen and SSPCR_eigen in the “best case scenario”

achieved a higher accuracy than GREML, while it uses a

linear transformation of the SNP data used in GREML.

The most likely explanation is the fact that by using fixed

regression, the model is able to put as much or as little

emphasis on any PC, without shrinking the effects, follow-

ing the associations with phenotypic data. Other genomic

prediction models such as GREML assume equal contri-

butions of each SNP to the total variability, and generally

include shrinkage of effects of individual SNP effects by

modelling them as random effects. Although the variance

explained by SNPs in a shrinkage model can still depart

substantially from the prior assumptions based on evi-

dence from the data, especially if the reference population

is large [30], estimated effects will still be affected by those

prior assumptions. In this respect, PCR can be regarded as

a variable selection method, albeit at the level of PC rather

than individual SNPs. This implies that the accuracies re-

ported for the “best case scenarios” provide an upper limit

for the accuracy that could be achieved with variable selec-

tion models applied to PC rather than to SNPs.

Further improvement of PCR

One of the underlying assumptions of PCA is linearity,

such that the feature space is a linear transformation of

the original data. In order to overcome the problem of

linearity, Schölkopf et al. [49] considered nonlinear com-

ponent analysis as a “kernel eigenvalue problem” and in-

troduced the term “kernel PCA”. The use of kernels has

already been introduced in genomic prediction models

[50]. In addition, since Bayesian models are often used

in genomic prediction, the use of probabilistic PCA [51],

where maximum likelihood is used to extract PC, could

also be proposed for future research in genomic prediction.

Concerning the selection of SNPs the target function

in our study was to minimize the prediction MSE. As

suggested above, an alternative could be to select PC in

the CV procedure based on maximum prediction accur-

acy. In addition, more sophisticated techniques such as

the combination of statistical methods like PCA, neural

networks and genetic algorithms could be applied, as

has already been tested in other fields [52]. However, a

balance between benefits (e.g. higher prediction accur-

acies) and costs (e.g. computation time) should be taken

into account.

PCA in genetic studies

In general, PCA and multivariate analysis techniques

have proven to be useful tools to extract information

from markers. In addition, as an exploratory method,

analyses with PCA can be performed without strong as-

sumptions on the data (e.g. Hardy-Weinberg equilib-

rium, LD) [53]. A disadvantage of PCA is that it does

not take the response variable into account. However, in

our study, this did not affect accuracies negatively (com-

paring PCR_eigen and PCR_ss in the common and

semi-supervised approach). Nevertheless, it remains ne-

cessary to be very careful when applying multivariate

analysis to genomic data, especially when interpreting

the results. Jombart et al. [53] provided a nice overview

of a multivariate analysis application with genetic data

and examined the incorrect use of multivariate analysis

in different genetic datasets, as well as fallacies when

interpreting the results. For instance, one assumption of

PCA is that PC with large eigenvalues represent struc-

ture in the data, while those with low eigenvalues cap-

ture noise. This might not always be true and PC with

small eigenvalues could contain predictive information,

or perhaps reflect genotypes at a single SNP. Thus, PC

should not be excluded from the analysis on the basis of

their small contribution to the total variance in SNP ge-

notypes. Our results confirmed that the optimum num-

ber of PC to be included in the PCR model can vary

considerably across datasets and traits.

Conclusions
Our results show that PCR results in genomic prediction

accuracies that are generally slightly lower than those

obtained with a GREML model. In general, selecting PC

based on their eigenvalues resulted in higher accuracies

than selecting PC on decreasing correlations to the re-

sponse variable in the reference dataset. Inclusion of

genotypic information of the test animals when extract-

ing the PC, i.e. the semi-supervised approach, unexpect-

edly decreased the accuracy when PC were selected

based on the reference dataset after cross-validation.

The semi-supervised approach did, however, slightly in-

crease the potential of the model, i.e. the highest accur-

acies that can be achieved, provided that it is possible to

select the optimal set of included PC. While the pattern

(See figure on previous page.)
Figure 3 Pattern of accuracies for semi-supervised principal component regression models with increasing numbers of principal

components (PC). PCA was performed on the whole dataset. Selection of PC was based on eigenvalues (left panel) or on the sum of square
contributions (right panel). Traits analysed were average daily milk, fat and protein yields for test populations from Ireland (IRL), the Netherlands
(NLD), Sweden (SWE) and two divergent selection lines from United Kingdom (UK_1 and UK_2).
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of prediction accuracies across included PC showed that

PCR had a higher potential than GREML, the model

that was selected by CV within the reference data could

not capitalize on this potential. On average, 5-fold ran-

dom CV for PCR outperformed stratified CV. However,

to capitalize on the full potential of PCR in practical ap-

plications, it is still unclear what the best way to select

PC to be included in the model is.

Additional files

Additional file 1: Figure S1. Schematic overview of computation of PC
in PCR and SSPCR models. PC were computed using either only genotypes
of the reference data (PCR) or using genotypes of both the reference and
test dataset (SSPCR).

Additional file 2: Figure S2. Schematic overview of stratified and 5-fold
cross-validation (CV) approaches, used to select PC in the model based on
minimum mean squared error of the predictions within the reference
dataset. The CV was performed by splitting the reference dataset by country
(stratified CV), or by splitting it randomly in a 5-fold CV.
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