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Abstract. We compared principal components derived from sets of real data with dimensions of 
120 x 7, 120 x 4, 150 x 11, 150 x 8, 150 x 5, 454 x 12, 454 x 8, and 454 x 5, to those from sets 
of randomly generated data of corresponding size. Principal components from subsets of 25, 50, 75, 
and 100 observations from the 120- and 150-observation data sets and those from subsets of 25, 50, 
75, 100, 150, 200, 300, and 400 observations from the 454-observation data sets were compared. 
Percent variance associated with components from real data was relatively constant over all sample 
sizes; percent variance decreased with larger samples of random data. A bootstrap method was used 
to develop standard error estimates on percent variance and percent of remaining variance associated 
with components from real data. Percent of remaining variance associated with the first four com- 
ponents from real data was significantly higher than analogous components from random data. 

Key words: bootstrap; confidence intervals; principal components analysis; random data; signifi- 
cance tests; standard error estimates. 

INTRODUCTION 

Multivariate statistical techniques have been used 
more commonly in recent years with the advent of 
easily applied computer packages. Indeed, a sympo- 
sium has been devoted to the use of multivariate tech- 
niques in wildlife studies (Capen 1981). Principal com- 
ponents analysis (PCA) is one of the multivariate 
methods commonly used to investigate relationships 
in ecological studies (e.g., Fuju 1969, James 1971, Con- 
ner and Adkisson 1977, Smith 1977, Whitmore 1977, 
McCrimmon 1978, Rotenberry and Wiens 1980, Col- 
lins et al. 1982, Nudds 1983). 

PCA usually is used to reduce a data set with a rel- 
atively large number (p) of correlated variables to a 
data set with fewer (m < p), uncorrelated variables 
(components) that retain most of the information con- 
tent of the original data. These components are linear 
combinations of the original variables, usually derived 
by eigen analysis of a correlation matrix of the vari- 
ables. The correlation matrix is used throughout this 
paper. The first component derived represents a certain 
portion of the generalized variance present in the orig- 
inal data set; successive components account for de- 
creasing proportions of the variance while remaining 
uncorrelated with previous components (Rummel 

I Manuscript received 3 January 1984; revised 3 December 
1984; accepted 16 January 1985. 

1970). The criteria for deciding the "best" number of 
components to consider in an analysis are varied 
(Rummel 1970, Krzanowski 1983), but usually com- 
ponents associated with <(l/p) x 100% of the total 
variance are not considered because they represent less 
information than expressed in a single variable. 

Despite the attractiveness of PCA for reducing mul- 
tidimensional data, some concerns regarding its use 
have been raised. Karr and Martin (1981) presented 
information indicating that the percent variance at- 
tributed to principal components derived from real 
data may not be substantially greater than percent vari- 
ance for principal components from random data sets 
of the same dimensions as the real data. In particular, 
percent variance of the second and third components 
derived from random data often was higher than that 
for the corresponding real data. They also found that 
the percent variance was related negatively to sample 
size; as data set size increased, percent variance of each 
component decreased. 

Our objectives for this paper are to investigate fur- 
ther the relationship between principal components de- 
rived from real and random data sets. Specifically, we 
evaluate PCA results in relationship to sample size; we 
apply the bootstrap method (Efron 1979) to develop 
estimates of standard error and confidence limits for 
variance associated with principal components; and we 
demonstrate an approach to testing the significance of 
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TABLE 1. Percent variance (% var.) and cumulative percent variance (Cum. %) accounted for by principal components 
extracted from real and random data sets of various dimensions. 

Component 
Data set 1 2 3 4 

dimensions 
and type % var. Cum. % % var. Cum. % % var. Cum. % % var. Cum. % 

120 x 7 
Real 62.9 62.9 14.6 77.5 9.8 87.3 7.9 95.2 
Random 18.2 18.2 17.5 35.7 15.6 51.3 13.6 64.9 

120 x 4 
Real 71.7 71.7 21.5 93.2 6.4 99.6 0.4 100.0 
Random 29.0 29.0 26.7 55.7 23.6 79.3 20.7 100.0 

150 x 11 
Real 34.9 34.9 25.8 60.7 15.1 75.8 8.3 84.1 
Random 13.6 13.6 12.0 25.6 10.9 36.5 10.5 47.0 

150 x 8 
Real 40.9 40.9 25.4 66.3 13.2 79.5 8.9 88.4 
Random 16.8 16.8 15.8 32.6 14.2 46.8 12.4 59.2 

150 x 5 
Real 41.5 41.5 26.0 67.5 15.0 82.5 10.6 93.1 
Random 23.4 23.4 22.5 45.9 21.2 67.1 17.5 86.4 

454 x 12 
Real 38.2 38.2 19.9 58.1 8.7 66.8 7.8 74.6 
Random 10.3 10.3 10.0 20.3 9.8 30.1 9.3 39.4 

454 x 8 
Real 50.3 50.3 15.4 65.7 12.5 78.2 7.6 85.8 
Random 15.2 15.2 14.4 29.6 13.6 43.2 13.4 56.6 

454 x 5 
Real 54.6 54.6 24.6 79.2 11.9 91.1 6.8 97.9 
Random 23.7 23.7 21.7 45.4 19.7 65.1 18.1 83.2 

principal components from real data in relation to ran- 
dom data. 

METHODS 

We used real data from three data sets. The first 
consisted of 120 observations of seven habitat vari- 
ables (percent of surrounding area in deciduous cover 
or open, percent tree and ground cover, canopy height, 
and number of trees [> 7 cm dbh] and small stems [ < 7 
cm dbh]) recorded at 0.01-ha circular plots randomly 
located in mixed-shrub habitats in southeastern Idaho 
(Stauffer 1983). We also analyzed a subset of this data 
set containing four variables (percent open, deciduous, 
and ground cover, and canopy height). The second data 
set constituted 150 observations of 11 variables (per- 
cent of surrounding area in coniferous or deciduous 
cover or open, percent tree and ground cover, canopy 
height, and number of small stems, all trees, coniferous 
trees, small aspen [Populus tremuloides] [7-23 cm dbh], 
and large aspen [ > 23 cm dbh]) recorded at 1 50 circular 
plots located randomly in aspen stands in southeastern 
Idaho (Stauffer 1983). Subsets of these data with eight 
variables (percent of area in deciduous cover or open, 
tree canopy cover, canopy height, and number of small 
stems, all trees, deciduous trees, and coniferous trees) 
and five variables (tree canopy cover, canopy height, 

and number of small stems, deciduous trees, and co- 
niferous trees) were also analyzed. The third data set 
was composed of 454 observations with 12 variables 
from sampling points along transects in southeastern 
Idaho (Stauffer and Peterson 1985). Variables were tree, 
shrub, and sapling density, mean tree dbh, mean shrub 
height and crown diameter, and the coefficient of vari- 
ation (cv) of these six variables. We also analyzed sub- 
sets of eight (tree, sapling, and shrub density, mean tree 
dbh and shrub height, and CV of tree, sapling and shrub 
density) and five (tree, sapling, and shrub density, and 
mean tree dbh and shrub height) variables. We thus 
analyzed eight sets of real data with dimensions of 
454 x 12, 454 x 8, 454 x 5, 150 x 11, 150 x 8, 
150 x 5, 120 x 7, and 120 x 4. 

Prior to analysis, percentage data were subjected to 
an arcsine-square root transformation, and count data 
to a square root transformation (Zar 1974). 

We generated eight matrices of random data with 
dimensions corresponding to those of the real data for 
comparison. PCA was conducted on the correlation 
matrices of the complete real and random data sets. In 
addition, five random subsets of real and random data 
at sample sizes of 25, 50, 75, and 100 for the data sets 
with 120 and 150 observations and at sample sizes of 
25, 50, 75, 100, 150, 200, 300, and 400 for the data 
sets with 454 observations were selected. PCA was 
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REAL DATA RANDOM DATA 

120 x 7 120 x 7 
70 

60 PCI 

50 

40 

30- 

L'J 20 at s 0 PC II ~ ~ ~ PCI 

< 10 - PcI_ 

Z 80 120 x 4 120x 4 
C) 
cr 70 PC I 
Uj 
C- 60 - 

50 

40- 

30 - PC I 
PC ]I 

20 - PCII _ PC]E[ 

10 PC= 

25 50 75 100 120 25 50 75 100 120 

SAMPLE SIZE 

FIG. 1. Percent variance associated with the first three 
principal components from real and random data sets (N = 

120, p = 7, 4) in relation to sample size. Vertical bars repre- 
sent a 95% confidence interval on the mean value based upon 
five analyses at each sample size. 

conducted on correlation matrices for each data subset. 
The mean and 95% confidence interval associated with 
each component at each sample size was calculated. 

The standard error (SE) for each component's (from 
the 150 x 11 data sets) variance was calculated by 
means of a bootstrapping procedure (Efron 1979). 
Bootstrapping is a relatively simple, computer-inten- 
sive technique that can be used to assign accuracy to 
some quantity of interest. The procedure followed to 
derive variance estimates for variance associated with 
principal components was (from Efron 1979): 

1) Let Fbe the empirical distribution of the n = 150 
observations in the original data set. 

2) Use a random number generator to draw n new 
observations independently and with replace- 
ment from F, so that each new observation is an 
independent random selection of one of the orig- 
inal n observations. Each of the original obser- 
vations could appear 0 to n times in the bootstrap 
sample. 

3) Compute the item of interest for the bootstrap 
sample, in this case, percent variance associated 
with the m components. 

4) Repeat steps (2) and (3) a large number of times 
(N), each time using an independent set of new 
random numbers to generate the new bootstrap 
sample. This process yields N values of the m 

percent variances. (Vmsa= 1th bootstrap estimate 
of variance for the mth component [Vm]. i = 1, 
... . N; m = 1, . . ., number of components.) 

5) Order the values of percent variance for each 
component from low to high (e.g., for compo- 
nent 1: 

VI 1, V1*2. VI*,, V1*N). 

6) Let [a*,b*] be the central 68% interval for the 
Vmin values, i.e., 

{number of Vmi' < a*}/N = 0.16, 

{number of Vmid < b*}/N = 0.84. 

The bootstrap estimate for the standard error, say 
&m for the variance associated with component m, is: 

am = (b* - a*)/2. 

Once an estimate for &m is derived, a confidence in- 
terval on any component's variance can be found as: 

Vm ? ZY/2(&am) 

RESULTS AND DISCUSSION 

Components of real and random data 

Percent variance associated with the first two prin- 
cipal components was substantially higher for real data 
than random data in most cases (Table 1). For the data 
set with 120 observations, only the first component 
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FIG. 2. AsinFig. 1, butwithN= 150,p = 11, 8, 5. 
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FIG. 3. As in Fig. 1, but with N = 454, p = 12, 8, 5. 

had a percent variance greater than that for random 
data. Percent variance of the third component was ap- 
parently comparable between real and random data for 
the data sets with 150 and 454 observations. In all 
cases, percent variance of the fourth component was 
less for real data. Since the theoretical eigenvalues of 
the correlation matrix from the random data are all 
the same, one expects the observed percent variance 
to be relatively uniform as seen (Table 1). Because the 
percent variances decline more markedly from the first 
to the fourth component for real data than for the 
random data, a real structure among the variables is 
implied. 

The percent variance associated with the first three 
components from real data did not vary substantially 
over the sample sizes evaluated (Figs. 1, 2, 3). In con- 
trast, as the sample size increased, variance associated 
with the first three components for random data de- 
clined (Fig. 2). This decline was most pronounced for 
the first two components and was least evident in the 
smallest (120 x 4) data set. That percent variance for 
components from real data changed little with sample 
size variation indicates a structure within the real data 
set that can be represented by subsets of the total data. 
For the random data, however, as the sample size was 
increased, the percent variance decreased toward the 
theoretically expected values of (1/p) x 100. In this 
study, the percent variances for random data with a 
sample size of 25 were misleadingly high. 

Variance associated with the lesser components was 
less for real data than for random data (Table 1). This 
trend might be taken to mean that these lesser com- 
ponents contribute little, if any, information and should 
not be considered in analysis results. However, the 
percent variance associated with these lesser compo- 
nents is derived from the variance remaining after some 
portion has been captured by previous components. 
For example, although the second component from real 
data (120 x 7) accounted for 14.6% of the total vari- 
ance (Table 1), 62.9% of the total variance had already 
been accounted for by the first component; the second 
component actually represented 39.4% of the variance 
remaining after the first component. Percent of re- 
maining variance for the second and third components 
is substantially higher for real than random data (Table 
2) (see also Karr and Martin 1981). 

That percent of remaining variance was higher for 
real than random data can be interpreted to mean that 
the minor components contain more information than 
random data. For many studies, once major, obvious 
patterns are removed by the first few components, sub- 
tle, less obvious but ecologically meaningful patterns 
that are important to the organisms under study may 
be found (Johnson 1981). Based upon percent of re- 
maining variance, these minor components should be 
considered as potentially more important than com- 
ponents of random data. However, Gauch (1982) has 
suggested that ordination axes associated with inter- 
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TABLE 2. Percent of remaining variance accounted for by 
principal components extracted from real (VRA) and ran- 
dom (VRB) data sets of various dimensions. 

Data set Component 
dimensions 

and type 1 2 3 4 

Percent remaining variance 
120 x 7 

Real 62.9 39.4 43.3 62.3 
Random 18.2 21.4 24.3 28.0 

120 x 4 
Real 71.7 76.0 94.8 100.0 
Random 29.0 37.6 53.3 100.0 

150 x 11 
Real 34.9 39.6 38.4 34.3 
Random 13.6 13.9 14.7 16.5 

150 x 8 
Real 40.9 43.1 39.3 43.7 
Random 16.8 19.0 21.2 23.2 

150 x 5 
Real 41.5 44.4 46.0 60.5 
Random 23.4 29.4 39.2 53.2 

454 x 12 
Real 38.2 32.3 20.9 23.6 
Random 10.3 11.1 12.3 13.2 

454 x 8 
Real 50.3 31.0 36.5 34.9 
Random 15.2 17.0 19.2 23.5 

454 x 5 
Real 54.6 54.2 57.5 77.2 
Random 23.7 28.5 36.1 51.5 

mediate eigenvalues may represent spurious polyno- 
mial relationships. Scatter plots of data points from 
lower order axes against higher axes can be inspected 
for nonlinear relationships, which, if found, should be 
interpreted with caution. Polynomial relationships most 
likely will occur in the higher axes when the primary 
gradient for a data set is 2-3 times longer than a 
secondary gradient (Gauch 1982). Careful screening of 
variables prior to analysis should minimize potential 
problems with nonlinear relationships. 

Variance estimates and hypothesis testing 

Given that there is a difference between components 
from the real data with a nontrivial correlation struc- 
ture, and random data, it is desirable to evaluate the 
significance of the observed differences. The first step 
towards evaluating the significance is to derive an es- 
timate of variance on the parameter of interest, in this 
case, percent variance (or percent remaining variance) 
associated with each component. 

To illustrate this procedure we calculated estimates 
of the standard error (SE) for percent variance and per- 
cent of remaining variance, and the associated 95% 
confidence intervals, from 600 bootstrap replications 
on the 150 x 11 real data set (Table 3). Since an es- 

timate of the SE of a component can be calculated, 
hypotheses concerning the components can be tested. 

We tested hypotheses concerning the principal com- 
ponents of real data based on the percent of remaining 
variance. The percent of remaining variance associated 
with a particular component from real data was con- 
sidered a point estimate and the SE (aR,fl) of that esti- 
mate was estimated by bootstrapping (Table 3). A Z 
test was then conducted for each of the first four com- 
ponents to test the null hypothesis that the percent of 
remaining variance from real data was not greater than 
the percent remaining variance from random data of 
a corresponding size data set. The percent of remaining 
variance values for the random data components were 
the mean of analyses of three hundred 150 x 11 data 
sets of random data. 

In all cases, the percent of residual variance asso- 
ciated with each of the first four principal components 
from real data was significantly higher than that as- 
sociated with the respective component from random 
data (Table 4). These results indicate that for the set 
of real data used here, there exist significant differences 
between principal components derived from real and 
random data. The bootstrap method used to derive the 
SE estimates is easily programmed on a computer, and 
its application to data such as these is straightforward. 
Morrison (1976:294) also presents a means to calculate 
confidence intervals on the characteristic roots of cor- 
relation matrices. 

Hence, any researcher using principal components 
who may desire to evaluate his/her data in relation to 
random data of the same dimensions can do so easily. 
We suggest that for comparison the mean percent vari- 
ance (or percent of remaining variance) be calculated 
from several sets of random data, because if only one 
set of random data is used, a significant result may be 
more likely to occur by chance alone. Because of the 
relatively low variability found in the principal com- 
ponents from random data sets (coefficient of variation 
ranged from 3.2 to 5.9% for the means of the first four 
components from n = 300 sets of 150 x 11 random 
data), a sample from 20 or more random data sets of 
the same dimensions should provide an adequate es- 
timate of the percent variance associated with com- 
ponents from random data. 

TABLE 3. Bootstrap estimates of SE (&,) and 95% confidence 
intervals for percent variance and percent remaining vari- 
ance accounted for by the first four principal components.* 

Percent remaining 

Compo- Percent variance variance 

nent &,n 95% ci &Rm 95% ci 

1 2.06 30.9-38.9 2.06 30.9-38.9 
2 1.12 23.6-28.0 1.60 36.4-42.8 
3 1.13 12.9-17.3 2.02 34.4-42.4 
4 0.66 7.0-9.6 2.70 29.0-39.6 

* Derived from a 150 x 11 matrix of real data based on 
N = 600 bootstrap trials. 
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TABLE 4. Results of the hypothesis test that the remaining 
percent of variance accounted for by a principal component 
from real data (VRA) is not more than that attributable to 
a corresponding component from random data (VRB).* 

Coin- 
po- 
nent VRA TRnt VR.Bt Z? P 

1 34.9 2.06 13.3 10.48 <.0001 
2 39.6 1.60 13.9 16.06 <.000 1 
3 38.4 2.02 14.8 11.68 <.0001 
4 34.3 2.70 16.2 6.70 <.000 1 

* For data sets of dimensions 150 x 1 1. Ho: VRA ? VR,. 

t &R, is based upon a bootstrap sample of 600 observations 
derived from the set of real data. 

: Represents the mean percent remaining variance based 
upon PCA analyses of 300 random sets of data of dimensions 
150 x 11. 

=( 
A - V B)/ 

That the percent variance associated with compo- 
nents of random data was highest at small sample sizes 
(Fig. 1, see also Karr and Martin 1981) should caution 
workers against conducting principal components 
analyses on small data sets. At times, the correlation 
matrix for PCA is derived from mean vectors of the 
variables (e.g., James 1971). In using this approach, 
information about variation within each group being 
considered is lost, and the dimensions of the original 
data matrix are considerably reduced. Wherever pos- 
sible, all observations in the data matrix should be used 
to preserve information on variation of subgroups of 
interest within the data. 
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