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Several alternative methods are available when testing for moderators in mixed-effects meta-regression
models. A simulation study was carried out to compare different methods in terms of their Type I error
and statistical power rates. We included the standard (Wald-type) test, the method proposed by Knapp
and Hartung (2003) in 2 different versions, the Huber–White method, the likelihood ratio test, and the
permutation test in the simulation study. These methods were combined with 7 estimators for the amount
of residual heterogeneity in the effect sizes. Our results show that the standard method, applied in most
meta-analyses up to date, does not control the Type I error rate adequately, sometimes leading to overly
conservative, but usually to inflated, Type I error rates. Of the different methods evaluated, only the
Knapp and Hartung method and the permutation test provide adequate control of the Type I error rate
across all conditions. Due to its computational simplicity, the Knapp and Hartung method is recom-
mended as a suitable option for most meta-analyses.
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A meta-analysis is a form of systematic review using statistical
methods to integrate the results of a set of related studies about a
given topic (Cooper, Hedges, & Valentine, 2009). To accomplish
this objective, studies fulfilling certain inclusion criteria are ob-
tained and an effect size estimate is extracted from each study. An
overall/average effect size combining all of the individual esti-
mates can then be computed. However, in practice, the effect size
estimates are often found to be more variable than would be
expected based on sampling variability alone. This suggests that
there are differences (heterogeneity) in the true effect sizes of the
individual studies. Heterogeneity may be purely random or, at least
in part, a result of systematic differences between the studies (in

terms of design or sample characteristics) that are related to the
size of the effect (Raudenbush, 2009). Therefore, meta-analysts
often examine to what extent the heterogeneity in the effect sizes
can be accounted for based on various study characteristics (mod-
erators).

The process of examining the relationship between study char-
acteristics and the effect sizes is typically called a moderator
analysis. While simple subgrouping of the studies can be used for
that purpose (Borenstein, Hedges, Higgins, & Rothstein, 2009),
meta-analysts increasingly employ so-called meta-regression mod-
els to study one or multiple moderating variables, where the effect
size estimates are used as the dependent and the moderators as the
independent variables. In addition, a random effect is typically
included in such models to account for any residual heterogeneity
that is not accounted for by the moderators included in the model
(Thompson & Sharp, 1999). Since the predictors included in the
model are usually added as fixed effects, this approach then leads
to a mixed-effects meta-regression model.

When fitting such meta-regression models, it is therefore nec-
essary to estimate not only the model coefficients, but also the
amount of residual heterogeneity in the effect sizes. At least seven
methods have been proposed in the literature for estimating this
parameter (e.g., Raudenbush, 2009; Thompson & Sharp, 1999),
including the Hedges, DerSimonian–Laird, Sidik and Jonkman,
maximum likelihood, restricted maximum likelihood, and empir-
ical Bayes estimators (these estimators are described in more detail
below). Once the model has been fitted, the individual model
coefficients can be examined to determine the extent to which the
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moderators are related to the effect sizes. It is also customary in
this context to test the model coefficients for statistical signifi-
cance.

The standard (Wald-type) method for testing the significance of
the model coefficients (e.g., Raudenbush, 2009) does not take into
account the fact that the amount of residual heterogeneity has to be
estimated based on the data at hand (Thompson & Higgins, 2002).
This may lead to either inflated or overly conservative Type I error
rates and possibly incorrect conclusions about the statistical sig-
nificance of the moderator variables. Knapp and Hartung (2003)
suggested an alternative method for testing the model coefficients
that accounts for the imprecision in the estimated amount of
residual heterogeneity and that yields rejection rates closer to the
nominal significance level. Similar results were also found by
Sidik and Jonkman (2005).

Another approach to possibly improve on the standard method
uses a robust (Huber–White) estimate of the variance–covariance
matrix of the model coefficients (Raudenbush, 2009; Sidik &
Jonkman, 2005), which, in principle, should perform acceptably
when the number of studies included in the meta-analysis is large.
However, a simulation study by Sidik and Jonkman (2005) using
log risk ratios as the effect size measure suggested that this method
does not consistently bring the Type I error rate closer to the
nominal significance level. It remains to be determined whether
the method holds any promise for effect size measures more
commonly used in the social and behavioral sciences (in particular,
correlations and standardized mean differences). Moreover, a sim-
ple correction factor may help to improve the accuracy of this
method when the number of studies is low (Hedges, Tipton, &
Johnson, 2010).

In the context of random-effects models (i.e., in models without
moderators), the use of likelihood-based methods has been sug-
gested as an alternative for testing and obtaining confidence inter-
vals (CIs) for the overall/average effect (Hardy & Thompson,
1996). The extension to mixed-effects models is straightforward,
leading to likelihood ratio tests of the model coefficients. Recent
findings suggest that this approach provides slightly better control
of the Type I error rate when compared to standard Wald-type tests
(Huizenga, Visser, & Dolan, 2011).

Finally, Follmann and Proschan (1999) and Higgins and
Thompson (2004) proposed the use of permutation methods for
testing the significance of the overall/average effect size and when
testing moderator variables in meta-regression models. Results
from simulation studies by Follmann and Proschan and Huizenga
et al. (2011) suggest that permutation tests may perform close to
acceptable levels. However, the resampling method examined by
Huizenga et al. for testing moderator variables was based on
permutations of the residuals, a slightly different approach than the
simpler permutation test suggested by Higgins and Thompson. The
performance of the latter has, to our knowledge, never been
examined in a systematic manner.

In summary, various methods have been proposed in the meta-
analytic literature to estimate the amount of residual heterogeneity
and to perform statistical tests of the model coefficients in mixed-
effects meta-regression models. One can easily find examples
where the different methods, applied to the same meta-analytic
data set, lead to different results and even conflicting conclusions.
Therefore, an important objective is to compare their performance
in terms of Type I error rates and statistical power in order to

decide which methods are to be preferred. In the present article, the
various methods described above are compared, using the stan-
dardized mean difference as the effect size measure.

In the next section, the mixed-effects meta-regression model is
outlined, followed by a description of several different residual
heterogeneity variance estimators proposed in the literature and
different methods for conducting significance tests of the model
coefficients. We then describe the methods and results from a
Monte Carlo simulation study comparing the performance of the
different methods. Next, we use an example to illustrate the
various methods, showing how conclusions about the relevance of
a moderator can be affected by the chosen method. The article then
finishes with a discussion of the main results, as well as their
implications for carrying out a meta-analysis.

Mixed-Effects Meta-Regression

In a meta-analysis with k independent studies, let yi denote the
observed effect size estimate in the ith study. The mixed-effects
meta-regression model (e.g., Raudenbush, 2009) is then given by
the expression

yi � �0 � �1xi1 � · · · �pxip � ui � ei, (1)

where xij denotes the value of the jth moderator in the ith study, �j

represents the corresponding model coefficient indicating how the
size of the effect changes as xij increases by one unit, and �0 stands
for the model intercept. Furthermore, ui denotes a random effect
with distribution N(0,�2) and ei the within-study error with distri-
bution N(0,vi). The vi terms denote the within-study sampling
variances of the studies and are assumed to be known. The amount
of residual heterogeneity is denoted by �2, which indicates the
variability in the true effects not accounted for by the moderators
in the model.

In matrix notation, the model can be compactly written as

y � X� � u � e, (2)

where y denotes the (k � 1) column vector with the k effect size
estimates. The first column of the �k � �p � 1�� matrix X contains
a vector of ones, corresponding to the model intercept, while the
remaining columns contain the values of the p moderator variables.
Finally, � is a ��p � 1� � 1� column vector with the regression
coefficients �0, �1, . . . , �p, and u and e are �k � 1� vectors with
the ui and ei values. We assume that the number of moderators p
in the model is limited and that X is of full rank, so that X�X is
invertible. Therefore, any perfect (multi)collinearity among the
moderators must be removed (e.g., by considering a simpler
model) before Equation 2 can be fitted.

A special case of Equation 2 is the random-effects model where
X only contains a column of ones (i.e., a model without modera-
tors). In that case, �0 � � reflects the average true effect and �2 the
total amount of heterogeneity in the effect sizes. Note that under
normality assumptions regarding u and e, Equations 1 and 2 imply
that y � N�X�, �2I � V�, where V is diagonal with elements vi.

The regression coefficients are typically estimated using
weighted least squares, by means of the equation

b � (X�ŴX)�1X�Ŵy, (3)

with Ŵ denoting a (k � k) diagonal weight matrix with elements
wi � 1 ⁄ �vi � �̂2�. Note that �̂2 is an estimate of the unknown value
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�2. Methods for estimating this parameter are detailed in the next
section.

Heterogeneity Estimators in the Mixed-Effects Model

Several alternative methods have been proposed in the literature
for estimating �2 in the random-effects model (López-López,
Marín-Martínez, Sánchez-Meca, Van den Noortgate, & Viecht-
bauer, 2014; Sánchez-Meca & Marín-Martínez, 2008; Viecht-
bauer, 2005). Most of these estimators have also been extended to
the mixed-effects model. In this section, we describe seven esti-
mators for the latter case. Four of these estimators are noniterative,
while three require iterative computations. All the estimators can
be succinctly expressed after defining the matrix

P � W � WX(X�WX)�1X�W, (4)

where W is a diagonal weight matrix whose elements can change
from one estimator to another. For example, for the Hedges esti-
mator, W is defined as the identity matrix. When weights are
included, noniterative estimators (e.g., DerSimonian–Laird estima-
tor) make use of the inverse of the within-study sampling vari-
ances, while for the iterative estimators (e.g., maximum likelihood
estimator) W contains the inverse variances plus an estimate of the
amount of residual heterogeneity. Further details on the elements
of W for each residual heterogeneity estimator are provided below.

Moreover, as will be seen on the basis of the set of equations to
be presented in this section, the underlying logic for all methods is
to estimate the residual heterogeneity based on the difference or
ratio between some estimate of the total variability among the
population effect sizes not accounted for by the explanatory vari-
ables included in the model and the amount of variability expected
from random sampling error alone.

In particular, the total variability not accounted for by the
explanatory variables is expressed as a quadratic form of the effect
size estimates and (a function of) the P matrix. For example, with
the elements of the diagonal weight matrix W set equal to wi �

1 ⁄vi, we obtain the residual heterogeneity statistic QE � y�Py
(Hedges & Olkin, 1985), which is simply equal to the residual
sums of squares under weighted least squares estimation (e.g.,
Christensen, 1996).1 On the other hand, the amount of sampling
variability in the effect size estimates is given by the vi values,
which we can collect in the diagonal matrix V. The value of the
quadratic form, relative to (some function of) V and/or the degrees
of freedom of the model under assessment (i.e., df � k � p � 1), then
provides an estimate of the residual amount of heterogeneity.

Hedges (HE) Estimator

Hedges (1983; see also Hedges & Olkin, 1985) proposed a
method of moments estimator of �2 in the random-effects model
based on ordinary least squares estimation. The estimate is ob-
tained by calculating the difference between an unweighted esti-
mate of the total variance of the effect sizes and an unweighted
estimate of the average within-study variance (Sánchez-Meca &
Marín-Martínez, 2008). When moderators are included in the
model, the extension of the HE estimator (Raudenbush, 2009) can
be written as

�̂HE
2 �

y�Py � tr(PV)

k � p � 1
, (5)

with tr() denoting the trace of the matrix in between the parenthe-
ses and with W equal to a �k � k� identity matrix I for the
calculation of P (in which case Equation 4 simplifies to P �

I � X�X�X��1X�).2 It is possible that �̂HE
2 turns out to be negative,

which is a value outside the parameter space for a variance
component. In this case, the value is truncated to 0.

Hunter and Schmidt (HS) Estimator

Hunter and Schmidt (2004) proposed an estimator of �2 in the
random-effects model, which, in essence, is given by

�̂HS
2 �

� wi(yi � 	̂)2

� wi
�

� wivi

� wi
�

� wi(yi � 	̂)2 � k

� wi
, (6)

where 	̂ � �wiyi ⁄ �wi and wi � 1 ⁄ vi (Viechtbauer, 2005). Note
that Equation 6 can be regarded as the difference between a
weighted estimate of the total variance of the effect sizes and a
weighted average of the within-study variances. Although no ex-
tension has been suggested yet for this estimator when one or more
covariates are included in the model, a logical proposal for com-
puting this estimator in mixed-effects models is given by

�̂HS
2 �

y�Py

tr(W)
�

tr(WV)

tr(W)
�

y�Py � k

tr(W)
, (7)

with P again defined in Equation 4 and the diagonal elements of W
given by wi � 1 ⁄vi (note that y�Py � �wi�yi � b0 � b1xi1 �
. . . � bpxip�2, where b0, b1, . . . , bp are the estimates obtained with
b � �X�WX��1X�Wy and tr�W� � �wi, which shows how
Equation 7 generalizes the HS estimator to mixed-effects models).
When �̂HS

2 turns out negative, it is truncated to 0.

DerSimonian and Laird (DL) Estimator

The estimator proposed by DerSimonian and Laird (1986) for
random-effects models, probably the most widely employed in
meta-analyses up to date, is also based on the method of moments
(DerSimonian & Kacker, 2007) in the context of weighted least
squares estimation. When including covariates in the model, the
estimator is given by

�̂DL
2 �

y�Py � (k � p � 1)

tr(P)
, (8)

1 Note that the QE statistic provides the usual test for residual hetero-
geneity that, under the null hypothesis �2 � 0, follows a chi-square
distribution with degrees of freedom equal to df � k � p � 1.

2 On the basis of the properties of quadratic forms (e.g., Christensen,
1996), it follows from y � N�X�, �2I � V� that E�y�Py� � tr�P��2I �
V�� � �X���P�X��. Since �X���P � 0, the expectation simplifies to tr
�P��2I � V�� � �2tr�P� � tr�PV�. With W � I, tr�P� � tr�I � X
�X�X��1X�� � tr�I� � tr�X�X�X�X��1� � k � p � 1. Therefore, we find
that E�y�Py� � �2�k � p � 1� � tr�PV�. Dropping the expectation and
rearranging the equation then leads to the HE estimator.
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with the diagonal elements of W again given by wi � 1 ⁄vi (Knapp
& Hartung, 2003; Raudenbush, 2009; Sidik & Jonkman, 2005).3 A
negative value of �̂DL

2 is again truncated to 0.

Sidik and Jonkman (SJ) Estimator

Another alternative for estimating the residual variance compo-
nent was proposed by Sidik and Jonkman (2005) and is also based
on weighted least squares estimation. The SJ estimator is obtained
by starting with an initial (rough) estimate of �2, denoted by �̂0

2 and
given by

�̂0
2 �

� (yi � y�)2

k
, (9)

which is then updated with the expression

�̂SJ
2 �

y�Py

k � p � 1
, (10)

with wi � �̂0
2 ⁄ �vi � �̂0

2� for the diagonal elements of W.4 The SJ
estimator always provides a nonnegative value and therefore does
not require truncation (note that �̂SJ

2 � 0 can only happen if all of
the yi values are exactly identical to each other, which theoretically
is not possible, but could happen in practice, for example, if k is
small and yi values are rounded).

Maximum Likelihood (ML) Estimator

For y � N�X�, �2I � V�, the log-likelihood function of the
parameter vector (�, �2) is given by

llML � �
1

2
k ln(2
) �

1

2
ln | �2I � V | �

1

2
(y � X�)�W(y � X�),

(11)

with the diagonal elements of W equal to wi � 1 ⁄ �vi � �2�. The ML
estimator of (�, �2) is that set of values that maximizes llML under
the constraint that �2 � 0. The problem of finding the ML esti-
mates is considerably simplified after realizing that Equation 3
actually corresponds to the ML estimator of � for a given value of
�2. Therefore, we can substitute Equation 3 into Equation 11,
which, after some simplification, yields the profiled log-likelihood

llML � �
1

2
k ln(2
) �

1

2
ln | �2I � V | �

1

2
y�Py. (12)

The problem therefore simplifies to finding that value of �2 that
maximizes Equation 12. We will denote this value by �̂ML

2 .
Since there is no closed-form solution for obtaining �̂ML

2 , itera-
tive computations are required. Various procedures can be used for
this purpose. We suggest here the use of the Fisher scoring
algorithm, which is robust to poor starting values and usually
converges quickly (Harville, 1977; Jennrich & Sampson, 1976).
For this, we start with an initial estimate of �̂2, for example, the
value obtained with any of the other (noniterative) estimators
described above. This initial estimate is then adjusted based on a
factor � (the inverse Fisher information of �2 multiplied by the
first derivative of the profiled log-likelihood with respect to �2),

yielding a new estimate �̂New
2 . This process continues until conver-

gence and can be expressed by

�̂New
2 � �̂Current

2 � �, (13)

where �̂Current
2 is the current estimate of �2. For ML estimation, the

adjustment factor can be shown to be equal to

�ML �
y�PPy � tr(W)

tr(WW)
, (14)

with P defined in Equation 4 and the diagonal elements of W given
by wi � 1 ⁄ �vi � �̂Current

2 �. Therefore, after each step, we first update
W, then P, and finally we can compute �ML to obtain �̂New

2 . The
iterative process terminates when �ML is smaller than some preset
threshold (e.g., when �ML  10�5).

An additional complication arises, because Equation 13 may
yield a negative value for �̂New

2 . This problem can be easily avoided
by using step halving (Jennrich & Sampson, 1976). For this, we
check on each iteration whether �̂Current

2 � �ML  0, and if this is
the case, we continue to multiply �ML by 1/2 (i.e., first by 1/2, then
by 1/4, then by 1/8, and so on) until �ML becomes small enough,
such that �̂New

2 stays nonnegative. This ensures that the final value
obtained for �̂ML

2 is also nonnegative.

Restricted Maximum Likelihood (REML) Estimator

ML estimates of variance components tend to be negatively
biased (Harville, 1977). To correct for this bias, REML estimation
is usually recommended and can be easily adapted for the meta-
analytic mixed-effects model (Raudenbush, 2009). In particular,
the REML estimator of �2 is that value that maximizes the re-
stricted log-likelihood given by

llREML � �
1

2
k ln(2
) �

1

2
ln | X�X | �

1

2
ln | �2I � V |

�
1

2
ln | X�WX | �

1

2
y�Py. (15)

We will denote this value by �̂REML
2 . For REML estimation, the

Fisher scoring algorithm works as described above, with the only
difference that � is now given by

�REML �
y�PPy � tr(P)

tr(PP)
. (16)

Again, step halving can be used to avoid negative estimates.

3 As described in footnote 2, E�y�Py� � �2tr�P� � tr�PV�. For W �
V�1, the tr(PV) term simplifies to tr��W � WX�X�WX��1X�W�V� � tr
�I� � tr�X�WX�X�WX��1� � k � p � 1, so that E�y�Py� � �2tr�P� �
�k � p � 1�. Dropping the expectation and rearranging the equation then
leads to the DL estimator.

4
Equation 2 implies that y � N�X�, �2Ṽ�, where Ṽ � I � 1

�2V, which
corresponds exactly to the form of the linear regression model with weight

matrix Ṽ, where the weights are known up to the proportionality constant

�2 (e.g., Christensen, 1996). Replacing the unknown value of �2 in Ṽ by the
crude estimate �̂0

2, the usual weighted least squares estimate of the propor-
tionality constant �2 is then equal to the SJ estimator.
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Empirical Bayes (EB) Estimator

The last estimator we will consider was first proposed by Morris
(1983) and was later adapted to the meta-analytic context by
Berkey, Hoaglin, Mosteller, and Colditz (1995). This estimator can
be derived based on EB methods (Morris, 1983) and will therefore
be denoted by �̂EB

2 . Again, there is no closed-form solution, so
iterative methods must again be used. It can be shown that �̂EB

2 can
be obtained via the numerical procedure described above, where �
is now given by

�EB �
k ⁄ (k � p � 1)y� Py � k

tr(W)
. (17)

Again, negative values of �̂EB
2 can be avoided by means of step

halving.5

The EB estimator actually shares some noteworthy properties
with the HS and SJ estimators. Note that if the initial estimate of
�2 for the EB estimator is set equal to 0 (i.e., �̂Current

2 � 0) and only
a single iteration is carried out, then the equations for �̂EB

2 and �̂HS
2

would only differ by the scale factor k ⁄ �k � p � 1�. Moreover, if
one continued to iterate the SJ estimator (i.e., by setting �̂0

2 equal to
�̂SJ

2 and then reapplying Equation 10 until convergence), one would
in fact obtain �̂EB

2 . Therefore, both the HS and SJ estimators can be
seen as special cases of the EB estimator based on a single
iteration.

Furthermore, the EB estimator can be shown to be identical to
another estimator, going back to the work of Paule and Mandel
(1982), that was recently described in the meta-analytic context by
DerSimonian and Kacker (2007). In particular, for the mixed-
effects model, the Paule–Mandel (PM) estimator is that value of �2

for which

y�Py � k � p � 1, (18)

with P again defined in Equation 4 and diagonal elements of W
given by wi � 1 ⁄ �vi � �2�. We will denote this value by �̂PM

2 . Since
y�Py is a strictly decreasing function of �2, �̂PM

2 is set to 0 if
y�Py  k � p � 1 for �2 � 0. The equivalence of the EB and PM
estimators leads to some interesting properties to be described
further below.6

Hypothesis Tests for the Model Coefficients

Once an estimate of �2 has been computed, the vector of model
coefficients can be obtained with Equation 3. The next step in a
meta-regression analysis is to determine the precision of these
estimates and to test whether the relationship between moderators
and effect sizes is statistically significant. Six alternative methods
for testing the regression coefficients are presented below.

The first one is a Wald-type test (Raudenbush, 2009), and it is
the one that is most commonly applied in practice. Accordingly,
we will refer to this approach as the standard method. However,
concerns have been raised by findings that this test does not
adequately control the Type I error rate (Knapp & Hartung, 2003;
Sidik & Jonkman, 2005). Recently, Knapp and Hartung (2003)
proposed an improved method that appears to rectify some of the
problems with the standard approach, especially when the number
of studies is low. However, two implementations of this method
can be constructed, corresponding to the second and third alterna-

tive methods we will consider. The fourth method makes use of a
robust estimate of the variance–covariance matrix of the model
coefficients. Another alternative considered here is the likelihood
ratio test. Finally, a permutation test is described. While the latter
is computationally more demanding than the other tests, it is, in
principle, free of distributional assumptions.

Standard (Wald-Type) Method

If we could estimate �2 without error, then the variance–
covariance matrix of the model coefficients computed with Equa-
tion 3 is equal to � � �X�WX��1, with diagonal elements of W
given by wi � 1 ⁄ �vi � �2�. However, since �2 is unknown in
practice, we cannot compute � directly. The standard approach is
to substitute the estimate of �2 for the unknown variance compo-
nent in W, yielding an estimate of � given by the equation

�̂ � (X�ŴX)�1, (19)

where the diagonal elements of Ŵ are equal to wi � 1 ⁄ �vi � �̂2�.
The test statistic for a particular model coefficient can then be
obtained with

zj �
bj

	Var�̂[bj]
, (20)

with bj denoting a particular element of the b vector and

	Var�̂�bj� the square root of the corresponding diagonal element

of the �̂ matrix (i.e., the estimated standard error of bj). The value
obtained by Equation 20 is then compared against the critical
values of a standard normal distribution for a desired significance
level (e.g., �1.96 for � � .05, two-sided). Despite its widespread
use, this method ignores the imprecision in the estimate of �2 when
estimating �. Thus, if �2 is estimated poorly, the actual Type I
error rate of this method may deviate from the nominal signifi-
cance level, leading to either an overly conservative or, usually, a
too liberal rejection rate (Huizenga et al., 2011; Knapp & Hartung,
2003; Sidik & Jonkman, 2005).

Knapp and Hartung Method

The Knapp and Hartung method (2003) is based on an adjusted
estimate of the variance–covariance matrix of the model coeffi-
cients that is expected to improve the Type I error rate compared
to the standard method described above. The adjusted variance–
covariance matrix is given by

�̂KH � s2(X′ŴX)�1, (21)

5 The equation for the EM estimator given by Berkey et al. (1995, p. 398) can

be written as �̂2 � �̂2 �
k ⁄�k � p � 1�y�Py � tr�WV�

tr�W�
� �̂2. We can reformulate

the part after the plus sign into
k ⁄�k � p � 1�y�Py � tr�WV � �̂2W�

tr�W�
. Finally,

after noting that tr�WV � �̂2W� � tr�I� � k, we obtain Equation 17.
6 The equivalence between the EB and PM estimators is apparent after

noting that, upon convergence of the iterative algorithm, �EB � 0, which
implies k ⁄ �k � p � 1�y�Py � k � 0 (cf. Equation 17). The latter is
equivalent to y�Py � k � p � 1, which is the same as Equation 18.
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where

s2 �
y�Py

k � p � 1
, (22)

with P again defined in Equation 4 and diagonal elements of Ŵ
given by wi � 1 ⁄ �vi � �̂2�. The test statistic for a particular model
coefficient is then computed with

tj �
bj

	Var�̂KH
[bj]

, (23)

with bj denoting the respective element of b and 	Var�̂KH
�bj� the

square root of the corresponding diagonal element of �̂KH. The value
obtained by Equation 23 is then compared against the critical
values of a t-distribution with df � k � p � 1 degrees of freedom.

The principle underlying the Knapp and Hartung method is as
follows. If the exact value of �2 were known and used to compute
P with the diagonal elements of W given by wi � 1 ⁄ �vi � �2�, then
y�Py would follow a chi-square distribution with df � k � p �
1 degrees of freedom. This follows directly from the properties
of quadratic forms (e.g., Christensen, 1996) when y � N
�X�, �2I � V�. The s2 statistic then scales y�Py by its degrees of
freedom, so that Equation 23 takes on the form of a t-distributed
random variable under the null hypothesis H0 : �j � 0; that is, tj is
the ratio of a random variable following a standard normal distri-
bution and the square root of a random variable following a
chi-square distribution scaled by its degrees of freedom (e.g., Hogg

& Craig, 1995). When P is computed using Ŵ with elements
wi � 1 ⁄ �vi � �̂2�, this derivation is only approximate, but the use
of the t-distribution still helps to counteract the typically too liberal
Type I error rate of the standard method.

It is worth noting that when using the EB estimator of �2, the
adjustment factor s2 is always automatically equal to 1 for positive
values of �̂EB

2 (Knapp & Hartung, 2003). This result follows im-
mediately from the equivalence of the EB and PM estimators
described earlier (see Equation 18). Therefore, when using the EB
estimator, the adjustment factor s2 is essentially already incorpo-
rated into the estimate of the variance–covariance matrix of the
model coefficients.

Knapp and Hartung Method With Truncation

Knapp and Hartung (2003) originally proposed that the adjust-
ment factor s2 should always be equal to or greater than 1. A value
smaller than 1 is likely to be obtained with Equation 22 in sce-
narios where the effect sizes are very homogeneous, so that the
total variability unaccounted for by the moderators, QE � y�Py, is
even smaller than its expected value (i.e., df � k � p � 1 when
�2 � 0). However, when working with small samples (i.e., small
number of studies, small average number of participants per study,
or both), such counterintuitive results can easily happen, since
meta-analytic estimates are then generally also quite inaccurate
(Hedges, 2009).

Following the recommendations provided by Knapp and Har-
tung (2003), the adjustment factor s2 should be truncated to 1 when
a smaller value is obtained. With this practice, the variance esti-
mate of bj obtained with their method would never be smaller than
the one obtained with the standard method, always leading to more

conservative tests than those obtained with the standard approach.
However, this practice may actually be overly conservative, lead-
ing to a loss of power, thereby increasing the chance that relevant
moderators may be missed. This will be examined in more detail
further below.

Robust (Huber–White) Method

The robust method is based on the work of Huber (1967) and
White (1980) and was first proposed in the meta-analytic literature
by Sidik and Jonkman (2005). In general, the purpose of robust
methods is to account for potential model misspecification. Failing
to account for dependencies in the effect size estimates (e.g., due
to clustering) would be one form of model misspecification (as
addressed by Hedges et al., 2010). Other issues include heterosce-
dastic and/or autocorrelated residuals, which can be handled by
using heteroscedasticity-consistent and/or heteroscedasticity-and-
autocorrelation-consistent estimators, such as the Huber–White or
the Andrews estimator (Andrews, 1991; Huber, 1967; White,
1980). Following Sidik and Jonkman (2005), we regard the issue
here as a problem of incorrectly specifying the exact marginal
variances of the effect size estimates (i.e., the vi � �2 values) due
to the substitution of corresponding estimates. Given that these
marginal variances are heteroscedastic, the Huber–White estimator
could be used to obtain a consistent estimate of the variance–
covariance matrix of the model coefficients.

In particular, for this method, the variance–covariance matrix of
the model coefficients is estimated with

�̂HW � (X�ŴX)�1X�ŴÊ2ŴX(X�ŴX)�1, (24)

where Ê is a diagonal matrix with elements obtained from the
vector ê � y � Xb. The test statistic for a particular model

coefficient is then given by Equation 23, except that 	Var�̂KH
�bj�

is replaced with 	Var�̂HW
�bj�. Again, the test statistic is com-

pared against the critical values of a t-distribution with df �
k � p � 1 degrees of freedom.

In their simulation study, Sidik and Jonkman (2005) found that
the robust method does not consistently improve the performance
of the standard method regarding the control of the Type I error
rate. Hedges et al. (2010) recently proposed that a simple correc-

tion to 	Var�̂HW
�bj� should yield closer to acceptable perfor-

mance levels regarding �. The test statistic is then given by

tj �
bj

	k ⁄ (k � p � 1)Var�̂HW
[bj]

, (25)

which yields a more conservative test, especially when k is small.
However, it remains to be determined how the robust method with
this correction performs in comparison to the other approaches
considered in the present article.

Likelihood Ratio Test

All of the approaches described so far are based on a test
statistic that divides the model coefficient to be tested by some
estimate of its standard error. An alternative approach is based on
likelihood ratio testing (Huizenga et al., 2011), which can be used
in the context of ML estimation. Let llML��̂ML

2 � denote the value of
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the profiled log-likelihood, defined by Equation 12, based on the
ML estimate of �2. Next, let llML��̂ML,�j�0

2 � denote the value of the
log-likelihood under the null hypothesis H0 : �j � 0. Obtaining
this value requires that we reestimate �2 after removing the column
corresponding to �j from the X matrix. The likelihood ratio test
statistic is then obtained with

LRT � �2(llML(�̂ML,�j�0
2 ) � llML(�̂ML

2 )), (26)

which is compared against the critical value of a chi-square dis-
tribution with 1 degree of freedom (i.e., 3.84 for � � .05). On the
basis of Huizenga et al. (2011), we expect the likelihood ratio test
to provide slightly better control of the Type I error rate compared
to the standard method.

Permutation Test

Finally, the use of permutation tests has been suggested as
another alternative in the meta-analytic context (Follmann & Pro-
schan, 1999; Higgins & Thompson, 2004). To carry out the test for
a particular model coefficient, we first obtain zj, the test statistic
based on the standard approach, given by Equation 20. Then, for
each of the k! possible permutations of the rows of the X matrix,
the model is refitted and the value of the test statistic is recomputed
(note that each permutation requires that �2, �, and � are reesti-
mated). Let zj

m denote the value of the test statistic for the mth
permutation. By permuting the rows of the X matrix, any relation-
ship between the effect sizes and the moderator values is now
purely a result of chance, so that the zj

m values reflect the sampling
distribution of the test statistic under the null hypothesis. There-
fore, the (two-sided) p value for the permutation test is equal to 2
times the proportion of cases where the test statistic under the
permuted data is as extreme or more extreme than under the
actually observed data (i.e., 2 ��m�1

k! I�zj
m � zj� ⁄k! when zj is

positive and 2 ��m�1
k! I�zj

m � zj� ⁄k! when zj is negative, where I()
is the indicator function that is equal to 1 if the condition in the
parentheses is true and 0 otherwise).

Note that k must be at least as large as 5 before it is actually
possible to obtain a p value below � � .05 (i.e., for 4! � 24
permutations, the p value can never be smaller than 2 � 1 ⁄24 �
.0833, while for 5! � 120, the p value can be as small as .0167).
On the other hand, as k increases, k! quickly grows so large that it
may not be possible in practice to obtain the full set of permuted
test statistics. In that case, one can approximate the exact
permutation-based p value by going through a certain number of
random permutations of the rows of the X matrix. Using a suffi-
ciently large number of such random permutations ensures that the
resulting p value is stable.

The permutation approach may be especially appropriate when
the data cannot be regarded as a random sample from a given
population (Manly, 1997). In the context of a meta-analysis, the
sample refers to the set of included studies, which are assumed to
be a random selection from a larger (hypothetical) population of
studies (Hedges & Vevea, 1998). This conceptualization is often
questionable in practice, which makes permutation tests especially
appealing for meta-analyses. Moreover, this method is, in princi-
ple, free of distributional assumptions. However, the use of a
nonparametric approach may be less efficient than parametric
methods, potentially resulting in lower power. This is examined in
more detail below.

Simulation Study

In summary, we have described seven estimators of �2 (i.e., the
HE, HS, DL, SJ, ML, REML, and EB estimators) and six methods
for conducting hypothesis tests for the model coefficients in the
context of mixed-effects meta-regression models (i.e., the standard
method, the Knapp and Hartung method once without and once
with truncation, the robust [Huber–White] method, the likelihood
ratio test, and the permutation test). The likelihood ratio test is only
applicable when using ML estimation. Moreover, the permutation
test is computationally very demanding when it is combined with
an iterative estimator of �2 (i.e., the ML, REML, and EB estima-
tors). We will therefore only consider the permutation test when
using one of the four noniterative estimators of �2. Therefore,
combining the various �2 estimators with the various testing meth-
ods yields in principle 33 ways of testing the statistical signifi-
cance of model coefficients in mixed-effects meta-regression mod-
els. To compare the performance of these methods, we conducted
a Monte Carlo simulation study using standardized mean differ-
ences as the effect size measure.

In particular, assume that each study included in a meta-analysis
compared subjects in an experimental (E) group with those in a
control (C) group with respect to some quantitative outcome.
Assuming that the scores of the subjects in the respective groups
are normally distributed with true means �i

E and �i
C and common

standard deviation �i, then

	i �
�i

E � �i
C

�i
(27)

denotes the true standardized mean difference in the ith study and
an unbiased estimate of 	i can be obtained with

yi � 
1 �
3

4�ni
E � ni

C� � 9�di, (28)

where di � �x�i
E � x�i

C� ⁄si, x�i
E and x�i

C denote the observed means of
the ni

E and ni
C subjects in the respective groups, and si the observed

(pooled) standard deviation (Hedges & Olkin, 1985). The sam-
pling variance of yi can then be estimated with

vi �
1

ni
E �

1

ni
C �

yi
2

2�ni
E � ni

C�
. (29)

For the simulation study, we assumed that a single moderator
influences the size of the true effects, such that

	i � �0 � �1xi � ui. (30)

For each iteration of the simulation, the values of the moderator
were randomly generated based on a standard normal distribution
and the ui values from N(0, �2). We considered three values for �2,
namely 0, 0.08, and 0.32, corresponding to the absence, a medium
amount, and a large amount of residual heterogeneity in the true
effects. Without loss of generality, we set �0 equal to 0. For �1,
three conditions were examined, namely �1 � 0, �1 � 0.2, and
�1 � 0.5, the first yielding information on the Type I error rate of
the various tests, the latter providing information about the power
of the tests when the null hypothesis is in fact false. Note that for
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each combination of the three �2 values and the three �1 values, the
model predictive power could be defined as �2 � �1

2 ⁄ ��1
2 � �2�

(see Borenstein et al., 2009; López-López et al., 2014; Rauden-
bush, 1994).7

The conditions manipulated in the present study were intended
to represent scenarios commonly found by meta-analysts and
similar to those used in previous simulation studies (e.g., Huizenga
et al., 2011; Knapp & Hartung, 2003; Sidik & Jonkman, 2005). For
k, we considered five values, namely 5, 10, 20, 40, and 80,
corresponding to a small to large number of studies for the meta-
analysis. After simulating k values of 	i based on Equation 30, we
then generated the corresponding observed effect size estimates

with di � Zi ⁄	Xi ⁄mi, where Zi � N�	i,1 ⁄ni
E � 1 ⁄ni

C�, Xi � �mi

2 ,
and mi � ni

E � ni
C � 2. Unbiased estimates of 	i were then

obtained by applying Equation 28. The corresponding sampling
variances were then computed with Equation 29.

We also manipulated the sample sizes of the individual studies,
assuming ni � ni

E � ni
C and setting ni equal to either (6, 8, 9, 10,

42), (16, 18, 19, 20, 52), or (41, 43, 44, 45, 77), corresponding to
average sample sizes of 30, 50, and 100 subjects for the studies
(these sample size distributions were obtained based on a review of
published meta-analyses; for more details, see Sánchez-Meca &
Marín-Martínez, 1998). For the k � 10, k � 20, k � 40, and k � 80
conditions, the sample size vectors were repeated 2, 4, 8, and 16
times, respectively.

Thus, a total of 5(k) � 3(ni) � 3(�1) � 3(�2) 
 135 conditions
were examined. For each of these conditions, 10,000 meta-
analyses were simulated. After generating the data within a par-
ticular iteration of a particular condition, we fitted the meta-
regression model using the various residual heterogeneity
estimators and then tested the model coefficient �1 for statistical
significance with the various procedures described earlier, using
� � .05 as the nominal significance level. For k � 5, an exact
permutation test was carried out. For larger values of k, obtaining
the exact permutation-based p values was not feasible. Therefore,
we then used 5,000 random permutations for the test. The rejection
rates of the various procedures were recorded for each condition.
The simulation was conducted with R (R Core Team, 2013), using
the metafor package to fit the meta-regression models (Viecht-
bauer, 2010).

Results

In this section, we describe and compare the performance of the
different methods under the simulated conditions. In general, only
the results for the standard method appeared to be influenced to
some extent by the residual heterogeneity estimator used. How-
ever, even for the standard method, the overall trends were similar
regardless of how �2 was estimated. Therefore, for brevity, we only
present the results for the DL and ML estimators (the full set of
results are provided as part of the supplemental materials). We
highlight these findings, since the DL estimator is the most com-
monly used estimator in practice, while the ML estimator allows us
to examine the performance of the likelihood ratio test in compar-
ison to the other methods. This section is divided into two parts,
corresponding to the Type I error rate and the statistical power of
the tests, respectively.

Type I Error

Setting �1 � 0 allowed us to compare the methods in terms of
their Type I error rates. Note that by setting � � .05, values around
.05 for the empirical Type I error rate indicate that the Type I error
rate is adequately controlled. Figure 1 shows our findings for the
different methods when using the DL estimator. Since values for
the Knapp and Hartung method and the permutation test were
essentially indistinguishable, results for both tests were averaged.
Also, no results for the likelihood ratio test are given here, since it
is only applicable when using ML estimation. Finally, since the
average within-study sample size had relatively little influence on
the Type I error rate of the different methods, we averaged the
rates over this factor.

Results were very different depending on the method used to
test the moderator. The rejection rates of the standard method
generally fell above the nominal significance level, except when
�2 � 0, in which case the Type I error rates were slightly conser-
vative. As the number of studies increased, the rejection rates
converged to the nominal significance level, although convergence
appears to be slow when �2 � 0.

On the other hand, both the Knapp and Hartung method and the
permutation test performed very close to the nominal significance
level regardless of the simulated scenario. In contrast, the trun-
cated Knapp and Hartung method provided overly conservative
results, especially when the number of studies was small and when
there was no residual heterogeneity among the true effects. Finally,
the Huber–White method showed empirical rejection rates above
the nominal significance level. Interestingly, the method does not
appear to be sensitive to the amount of residual heterogeneity.
Again, the Type I error rates converged to the nominal significance
level as the number of studies increased.

Figure 2 presents the results for the different statistical tests
when using the ML estimator. Performance of the Huber–White
method was similar to that when using the DL estimator and
therefore was not included in this figure. Also, the permutation test
is not included in these results because, as stated before, this
method is computationally overly demanding when combined with
an iterative estimator of �2.

The general trend in the performance of the methods was similar
when using the DL and the ML estimator. The standard method
showed rejection rates clearly above the nominal significance
level, especially with a small number of studies and a large amount
of residual heterogeneity among the true effects, while the Knapp
and Hartung method adequately controlled the Type I error rate
irrespective of the simulated scenario. On the other hand, the
rejection rate of the truncated Knapp and Hartung method again
fell below the nominal significance level, getting closer to .05 as
the number of studies and the amount of residual heterogeneity

7 With 	i � �1xi � ui, the total amount of heterogeneity in the true effect
sizes is equal to Var�	i� � �1

2Var�xi� � Var�ui� � �1
2 � �2, as xi and ui are

independent and normally distributed with mean 0 and variances 1 and �2,
respectively. The denominator in the formula proposed by Raudenbush
(1994) for the model predictive power is the total heterogeneity, �1

2 � �2,
while the numerator in this equation represents the part of the heterogeneity
explained by the predictor, namely �1

2.
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increased. Finally, results for the likelihood ratio test were similar
to those of the standard method, but slightly closer to the nominal
significance level when �2 � 0.

Statistical Power

Statistical power reflects the probability of a method rejecting
the null hypothesis when it is in fact false (i.e., �1 � 0 in our
simulation study). Generally, power rates equal to or greater than
0.8 are considered satisfactory in the psychological science (Co-
hen, 1988). In order to assess the statistical power of the different
procedures for testing the significance of regression coefficients,
conditions with �1 � 0.2 are considered here.

Figure 3 presents our findings for the various methods when
using the DL estimator. Again, the Knapp and Hartung method and
the permutation test showed very similar results, so that values for
both methods were averaged and are presented jointly. The like-
lihood ratio test is again not applicable here. Also, while the power
of the various methods increased as the average within-study
sample size increased, in general this factor had only a relatively
minor influence on the power rates. We therefore again averaged
the rates over this factor.

Although differences were not very pronounced, the standard
and Huber–White methods systematically showed the highest re-
jection rates, with the truncated Knapp and Hartung method pro-
viding the lowest rates. Note, however, that differences in the Type
I error rates of the various methods obfuscate such direct compar-

isons between the power rates (i.e., the lower or higher power of
a method may in fact just be an artifact of an overly conservative
or inflated Type I error rate to begin with).

The influence of the different conditions manipulated in the
simulation was similar for all of the methods. As expected, the
number of studies showed a strong positive relationship with
the power of the tests. However, at least 40 studies were required
for the different methods to provide power rates close to the
desired value of 0.8, as long as the amount of residual heteroge-
neity was not large. In the presence of substantial amounts of
residual heterogeneity, up to 80 studies would be needed to
achieve power rates close to .80. Therefore, as expected, the
amount of residual heterogeneity showed a negative relationship
with power, with larger residual �2 values corresponding to smaller
rejection rates.

Finally, power rates for the methods when using the ML esti-
mator are presented in Figure 4. Again, results for the Huber–
White method were not included, since the trends for this method
were similar to the ones already described in combination with the
DL estimator.

Figure 4 shows that the highest power rates were obtained with
the standard and likelihood ratio tests, while the truncated Knapp
and Hartung method yielded again the lowest rejection rates.
Similar to the DL estimator, all methods showed higher power
rates as the number of studies increased. Also, power for all
methods decreased as the amount of residual heterogeneity among

Figure 1. Empirical Type I error rates of the methods when using the DerSimonian and Laird estimator
(likelihood ratio test not applicable here).
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the true effects increased, with the rejection rate of the truncated
Knapp and Hartung method gradually converging to that of the
untruncated version of the test.

Results for �1 � 0.5 are not presented here. With such a large
slope value, all methods provided rejection rates close to or over
.80 with 20 or more studies. With smaller values of k, trends for the
different methods were very similar to the ones described above
for �1 � 0.2.

Illustrative Example

We now consider an example to illustrate the various methods.
For this purpose, we use data from a meta-analysis on the effec-
tiveness of school-based writing-to-learn interventions on aca-
demic achievement (Bangert-Drowns, Hurley, & Wilkinson,
2004). In each of the studies included in this meta-analysis, an
experimental group (i.e., a group of students that received instruc-
tion with increased emphasis on writing tasks) was compared
against a control group (i.e., a group of students that received
conventional instruction) with respect to some content-related
measure of academic achievement (e.g., final grade, an exam/quiz/
test score). As in the simulation study above, the effect size
measure used for this meta-analysis was the standardized mean
difference.

The yi and corresponding vi values for 46 studies included in
this meta-analysis are given in Table 1. Positive values for yi

indicate that the students receiving the intervention performed,
on average, better than those in the control group condition.
However, there is quite a bit of variability in the observed
effects, which may be related to differences in how the studies
were conducted. The treatment length (in weeks) is also re-
ported for each study, which may be a potential moderator of
the treatment effectiveness. We will now examine this hypoth-
esis in more detail. The analyses described below were con-
ducted with R, using the metafor package. The corresponding
code to replicate these analyses is provided in the supplemental
materials.

First, we fitted the meta-regression model yi � �0 �

�1lengthi1 � ui � ei to these data, in turn using each of the seven
residual heterogeneity estimators described previously, and then
applied the standard (Wald-type) test of H0 : �1 � 0. The results
are given in Table 2. The estimated values of �2 ranged from
�̂2 � 0.0373 for the HS estimator to �̂2 � 0.0832 for the SJ

estimator. The differences in �̂2 result in different Ŵ matrices that
lead to slightly different estimates of the model coefficient �1 and
more pronounced differences in the corresponding estimated stan-
dard errors of b1. As a result, the null hypothesis is rejected at
� � .05 (two-sided) when using the HS, DL, ML, REML, and EB
estimators, but not when using the HE and SJ estimators. There-
fore, as this example demonstrates, the choice of �2 estimator may
have an impact on the conclusions.

Figure 2. Empirical Type I error rates of the methods when using the maximum likelihood estimator (results
for Huber–White method omitted).
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Instead of using the standard testing method, one could combine
each of the seven estimators of �2 with the Knapp and Hartung
method (without or with truncation), the robust (Huber–White)
method, and the permutation test. When using ML estimation, one
final possibility is to use the likelihood ratio test. Instead of
illustrating all possibilities, we provide the results of the different
testing procedures when combined with ML estimation. As shown
in Table 3, the Knapp and Hartung method leads to a larger
standard error of b1 when compared with the standard method
(hence the adjustment factor s2 must have been larger than 1 and
no distinction can be made between the truncated and untruncated
versions of the method). The resulting p value (which is now
computed based on a t-distribution with 44 degrees of freedom) is
not significant. Similarly, the permutation test (based on 100,000
random permutations) yields a nonsignificant p value. In compar-
ison, the remaining methods lead to the rejection of H0. Again, the
example demonstrates how the choice of method can lead to
conflicting conclusions.

Discussion

Several different methods are available for analyzing the asso-
ciation between one or more covariates and the effect sizes. In this
article, we compared a variety of different methods in the context
of mixed-effects meta-regression models. Specifically, seven re-
sidual heterogeneity variance estimators and six methods for test-
ing the statistical significance of the regression coefficients were

compared in a Monte Carlo simulation study with standardized
mean differences as the effect size measure.

Two comparative criteria were considered for assessing the
adequacy of each method across conditions similar to those typi-
cally found in psychological research. On the one hand, empirical
Type I error rates were examined in order to assess which methods
adequately control the rejection rate when a covariate is unrelated
to the size of the effects. On the other hand, statistical power rates
were obtained, to check which methods are more likely to detect a
real moderator variable. Except for the standard method, the re-
sults were not found to be affected by the residual heterogeneity
estimator used. However, some notable differences were observed
depending on the method employed for testing the regression
coefficients.

Some authors have criticized that the standard method does not
take into account the uncertainty due to the variance estimation
process, which in turn increases the risk of reaching statistically
significant results that might be inappropriate (e.g., Thompson &
Higgins, 2002). When examining the empirical Type I error rates
from our simulation study, results for the standard method were in
fact not satisfactory, with rates clearly above the nominal signifi-
cance level in most situations, especially when some residual
heterogeneity was present in the true effects and the number of
studies was low. The higher statistical power of the standard
method (in comparison with the Knapp and Hartung method and
the permutation test) is therefore an artifact of the method rejecting

Figure 3. Statistical power rates of the methods when using the DerSimonian and Laird estimator (likelihood
ratio test not applicable here).
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the null hypothesis more often than the desired � value when the
null hypothesis is in fact true. However, a test with deficient
control of the Type I error rate should be avoided for routine use.
Therefore, these results lead us to encourage meta-analysts to
consider alternative methods, particularly when the number of
studies in a research synthesis is small.

Due to the problems related to the standard method, some
authors have suggested various alternatives for testing the regres-
sion coefficients. Among those is the Knapp and Hartung method,
which incorporates an adjustment factor into the standard formula
for estimating the variance–covariance matrix of the regression
coefficients and whose statistical test is based on the t instead of
the normal distribution. When this test was first proposed (Knapp
& Hartung, 2003), the authors suggested truncating the adjustment
factor to 1 if a smaller value was obtained. With this practice, the
variance estimates of the regression coefficients would always be
equal to or greater than the ones obtained with the standard
method, so that the test would always yield a more conservative
outcome (note that even when the adjustment factor is 1, due to the
use of the t-distribution, the resulting p value will still be more
conservative than the one obtained by means of the standard
method).

However, the untruncated Knapp and Hartung method pro-
vided adequate control of the Type I error rate, while truncating
this method led to overly conservative results, as seen in Fig-
ures 1 and 2. Moreover, when comparing the methods in terms
of their power in this simulation study, Figures 3 and 4 show

that the truncated Knapp and Hartung method provided system-
atically lower rejection rates than all of the remaining methods
under assessment. Therefore, results of the present study sug-
gest better performance of the Knapp and Hartung method
without the truncation of its adjustment factor. This is of
particular concern, given that some software macros for meta-
analysis (e.g., those that can be found in Stata) have imple-
mented the Knapp and Hartung method only in combination
with the truncation.

The trends described in the last paragraph for both versions of
the Knapp and Hartung method, illustrated in Figures 1–4 for the
DL and ML estimators, were observed as well when combining
these methods with the EB estimator, despite the fact that the
adjustment factor s2 is then always equal to 1 for positive values of
�̂EB

2 , as pointed out before. Our results therefore indicate that the
truncation proposed by Knapp and Hartung (2003) will make a
difference especially in situations where the residual heterogeneity
estimate is likely to require truncation as well (Borenstein et al.,
2009), that is, when the amount of residual heterogeneity is (or is
close to) 0.

The performance of the Huber–White and likelihood ratio tests
was also assessed in the present study. As found in previous Monte
Carlo simulations (Huizenga et al., 2011; Sidik & Jonkman, 2005),
our results showed empirical Type I error rates above the nominal
significance level for both tests (except in the absence of residual
heterogeneity, in which case the likelihood ratio test was slightly

Figure 4. Statistical power rates of the methods when using the maximum likelihood estimator (results for
Huber–White method omitted).
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conservative). Therefore, these methods cannot be recommended
for routine use, at least in their present form.

Finally, the performance of a permutation test was also ana-
lyzed. This method provided results very similar to those of the
(untruncated) Knapp and Hartung method. The Knapp and Har-
tung method is, however, simpler to compute than the permutation
test (the latter requiring intensive computations), so that it seems a
reasonable choice for most situations. Note, however, that the true
effects were generated in our simulation study as if one selects a
random sample of studies from a superpopulation of studies (with

normally distributed true effects). This corresponds to the usual
conceptualization of the random/mixed-effects model in meta-
analysis (Hedges & Vevea, 1998) and therefore also underlies the
Knapp and Hartung method for testing the regression coefficients.
In that sense, the Knapp and Hartung method is a suitable option
as long as the set of studies can be reasonably assumed to be a
random sample from a broader population of studies. On the other
hand, if no random sampling of studies can be assumed, then the
permutation test constitutes a more appropriate method (Manly,
1997).

The statistical power of all methods was lower than .80 when
including 20 studies in the meta-regression analysis and when the
slope parameter only had a small to moderate value (i.e., �1 �
0.2 in our study). Moreover, all methods provided lower power
rates as the residual heterogeneity among effect size parameters
increased. An explanation for this fact is that, all else equal, larger
�2 values will lead to a decrease in the predictive power of a
model.8

In summary, results of our simulation study suggest that out of
the different alternatives considered in the present study, the
Knapp and Hartung method is a suitable option for most situations
due to its satisfactory performance and computational simplicity.
The present simulation study was conducted with standardized
mean differences, but its results can be expected to apply to other
effect size measures with (asymptotically) normal sampling distri-
butions. However, it should be noted that the results of our sim-
ulation study are limited to the manipulated conditions. Although
the values for the parameters and factors were chosen to represent
typical conditions found in practice, additional simulation studies
are needed to assess the performance of the methods under more
adverse conditions, such as nonnormal random errors and/or true
effects, multiple moderators with multicollinearity, categorical
moderators with unbalanced designs, or results affected by publi-
cation bias.

It would have been of interest to examine the empirical coverage
probability of CIs for the model coefficients. However, while the

8 Specifically, for a slope parameter of �1 � 0.2, values of �2 equal to 0,
.08, and .32 correspond to �2 � 1, �2 � .33, and �2 � .11, respectively,
if the model predictive power is computed with the formula proposed by
Raudenbush (1994). On the other hand, for �1 � 0.5, the corresponding
values are �2 � 1, �2 � .76, and �2 � .44. This illustrates how the increase
in �2 will generally lead to a decrease in the power of the statistical tests.

Table 1
Results From 46 Studies on the Effectiveness of
Writing-to-Learn Interventions

Study Ni yi vi Length

1 60 0.65 0.070 15
2 34 �0.75 0.126 10
3 95 �0.21 0.042 2
4 209 �0.04 0.019 9
5 182 0.23 0.022 14
6 462 0.03 0.009 1
7 38 0.26 0.106 4
8 542 0.06 0.007 15
9 99 0.06 0.040 4

10 77 0.12 0.052 9
11 40 0.77 0.107 15
12 190 0.00 0.021 15
13 113 0.52 0.037 8
14 50 0.54 0.083 4
15 47 0.20 0.086 14
16 44 0.20 0.091 15
17 24 �0.16 0.167 4
18 78 0.42 0.052 10
19 46 0.60 0.091 10
20 64 0.51 0.065 3
21 57 0.58 0.073 24
22 68 0.54 0.061 19
23 40 0.09 0.100 4
24 68 0.37 0.060 12
25 48 �0.01 0.083 1
26 107 �0.13 0.037 1
27 58 0.18 0.069 1
28 225 0.27 0.018 1
29 446 �0.02 0.009 14
30 77 0.33 0.053 20
31 243 0.59 0.017 10
32 39 0.84 0.112 7
33 67 �0.32 0.060 11
34 177 �0.12 0.023 1
35 20 �0.44 0.205 6
36 120 �0.07 0.033 15
37 16 0.70 0.265 15
38 105 0.49 0.039 2
39 195 0.20 0.021 4
40 62 0.58 0.067 24
41 289 0.15 0.014 11
42 25 0.63 0.168 15
43 250 0.04 0.016 8
44 51 1.46 0.099 15
45 46 0.04 0.087 15
46 56 0.25 0.072 15

Note. Data originally from Bangert-Drowns et al. (2004). Two studies
with missing information on treatment length omitted. Ni denotes the total
sample size of the study. We assumed ni

E � ni
C � Ni ⁄ 2 for the computation

of vi.

Table 2
Results for the Meta-Regression Model Using the Seven
Estimators of Residual Heterogeneity Combined With the
Standard (Wald-Type) Test of the Model Coefficient b1

Estimator �̂2 b1 SE[b1] b1/SE[b1] p

HE 0.0645 0.016 0.0081 1.949 .051
HS 0.0373 0.015 0.0070 2.092 .036
DL 0.0424 0.015 0.0072 2.065 .039
SJ 0.0832 0.016 0.0087 1.860 .063
ML 0.0393 0.015 0.0071 2.081 .037
REML 0.0441 0.015 0.0073 2.056 .040
EB 0.0541 0.015 0.0077 2.002 .045

Note. HE 
 Hedges; HS 
 Hunter and Schmidt; DL 
 DerSimonian and
Laird; SJ 
 Sidik and Jonkman; ML 
 maximum likelihood; REML 

restricted maximum likelihood; EB 
 empirical Bayes.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

372 VIECHTBAUER ET AL.



standard, Knapp and Hartung, and Huber–White methods are

easily inverted to provide CIs (e.g., bj � 1.96	Var�̂�bj� would
provide an approximate 95% CI for �j based on the standard
method), doing the same for the likelihood ratio and permutation
tests would have required additional iterative methods. Due to
computational constraints, we therefore opted to focus on the Type
I error rate and power of the various tests. Nevertheless, we fully
agree with one of the reviewers that the binary decision of a null
hypothesis significance test (i.e., reject/do not reject) is often of
limited value and that CIs are typically preferred. However, under
H0 : �j � 0, there is a one-to-one correspondence between the
empirical Type I error rate at � � .05 (two-sided) and the empir-
ical coverage of the corresponding 95% CI (i.e., one minus the
Type I error rate is then the coverage rate). Therefore, the simu-
lation study does in fact provide us with information on how the
various procedures compare with respect to their coverage, at least
for the case where the null hypothesis holds (e.g., the standard
method then yields CIs that are typically too narrow, leading to
coverage rates below 95%, while the untruncated Knapp and
Hartung method yields CIs with coverage probability approxi-
mately at the nominal significance level).

Finally, it is worth noting that the way moderators are tested in
meta-analyses is receiving increasing attention in the literature,
and several new methods have recently been developed for ad-
dressing this issue. Huizenga et al. (2011) proposed the use of a
Bartlett-corrected likelihood ratio test that might improve the
performance of the uncorrected likelihood ratio test regarding its
Type I error rates. Guolo (2012) also recently proposed a new
likelihood-based test for meta-regression models. Finally,
Friedrich and Knapp (2013) presented a new method that can
outperform the Knapp and Hartung method in terms of coverage
probability under certain conditions. These proposals were not
considered for the present comparison of methods, although it
should be very interesting to evaluate their performance in future
simulation studies.
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