A Comparison of Programming Platforms for
Interactive Visualization in Web Browser Based Applications

Tim Lammarsch, Wolfgang Aigner, Alessio Bertone, Silvia Miksch, Thomas Turic
Department of Information and Knowledge Engineering, Danube University Krems

www.donau—-uni.ac.at/ike

Abstract

Recently, web browser based applications have
become very popular in many domains. However,
the specific requirements of interactive Informa-
tion Visualization (InfoVis) applications in terms
of graphics performance and interactivity have not
yet been investigated systematically in this con-
text. In order to assess browser-based application
platforms, we provide a systematic comparison of
server-based rendering, Java applets, Flash, and
Silverlight from several points of view. We aim to
aid InfoVis developers in choosing the appropriate
technology for their needs.

1 Introduction

Running the client side of distributed applications in-
side a web browser brings a great deal of platform indepen-
dence and inherent connectibility. It also lowers the barrier
for its introduction. Among others, these facts have led
to an increasing popularity of browser-based applications.
Most of them use classical user interfaces (Uls) consisting
of controls, like buttons, textfields, and scrollbars. In In-
foVis, there are several powerful and versatile applications
that are well known among experts, but designed to run
natively in operating systems (OSs) only.

The goal of this paper is the comparison of a selection of
programming platforms for developing browser-based In-
foVis applications. Firstly, we identify the most important
requirements needed for InfoVis with a focus on interactive
visualizations. Secondly, we evaluate selected platforms
by (1) implementing and running an example technique,
(2) performing benchmark tests regarding drawing speed,
and (3) making a feature assessment. Our aim is to provide
a thorough assessment of currently available programming
platforms that enables InfoVis developers to choose the one
most suitable according to their needs.

2 Related Work

Much information about browser-based programming
technologies has been published on conventional websites

Johannes Gértner
XIMES GmbH

WWW.Ximes.com

or blogs. A particular example is the article by Garrett
[4] who describes the combined use of asynchronous load-
ing of web pages using ECMAScript' and introduces the
term “Ajax” for this. In a comparison of Java and Flash,
Burnette [2] claims that stability and the size of the client
plugin are the main reasons for Flash having become more
important for browser-based applications than Java. A fea-
ture comparison of Flash and Ajax is done by Pasztory [7]
discussing applications at which Ajax is superior. A fea-
ture comparison of Flash and Silverlight is done by Ezell
[3] who points out that Silverlight has solutions for all the
problems of Flash, but does not mention the OSs issues.
A speed benchmark of algorithms in different implementa-
tions of ECMAScript, Java and Flash is done by Lyda [6].
The results show that while ECMAScript implementations
are similar in speed among browsers, Java is much faster.
Flash version 9 is somewhere in between.

Wohlfart [9] points out that scientific papers which com-
pare tools and techniques are focused either on the creation
of taxonomies for describing InfoVis tools or the empiri-
cal testing of them. We will focus on the latter in order
to give an overview of what is necessary in an interac-
tive InfoVis application. Kobsa [5] compares Eureka, Info-
Zoom, and Spotfire. Wohlfart [9] evaluates Tableau, Spot-
fire DXP, Xmdv Tool, ILOG Discovery, and CViz. Wohl-
fart also describes the development and visualization tools
OpenDX, AVS/Express, GeoVista Studio, IRIS Explorer,
DeVise, RefViz, and IN-SPIRE. However, none of the sys-
tems or tools is a browser-based application and the graph-
ics libraries, while being adequate for developing this kind
of applications, are not tested under this point of view. In
order to fill this gap, we present a systematic review of the
use of browser-based application platforms.

3 Technologies and Comparison Design

The main distinction of browser-based applications is
the difference between code running on the client and on
the server. We analyzed:

IThroughout this paper, we will use the term ECMAScript for what is usually called JavaScript (the name of its implementation in Netscape, Mozilla,
and FireFox) because other implementations with different names work the same way.

Server-Based Rendering’: Many technologies are avail-
able and our benchmark includes tests for server-
based .NET and Java.

Java Applets’: Developed by Sun, executed using the
Java Virtual Machine (VM) and written in the Java
language; many free libraries are available for Java
and the VM is widespread.

Flash?: Developed by Macromedia and now owned by
Adobe, executed using the Flash browser plugin and
written in a language called ActionScript; the plugin
is very widespread.

Silverlight?: Developed by Microsoft, executed using the
Silverlight plugin which is a smaller version of the
.NET framework and written in various languages
supported by .NET, particularly C# and Visual Ba-
sic; the .NET framework is very powerful and has
spread in the commercial area very quickly.

We analyzed the listed technologies based on the fol-
lowing criteria. We did not define priorities among them
because the priority depends strongly on the tasks of de-
velopers and users.

Run Capability: Multi-platform development means that
no definite assumptions about the client system can
be made. Therefore, the visualization has to be de-
veloped so that it can be shown on any supported
client system. We describe the software require-
ments on the clients for each platform and our opin-
ion on how easily these needs can be fulfilled.

Rendering Graphics Primitives: It should be possible to
render any type of graphics primitive. This is the
main reason for (X)HTML approaches requiring
server-side rendering. Other platforms have this
ability, but there are different design philosophies.

Animation: Animation enables the use of time as vi-
sual variable.> An important improvement towards
timeline-based animation is user-controlled anima-
tion with frame selection.

Interactivity: If possible, user interaction should happen
in real-time. To be sensed as an immediate response,
the time between cause and effect of a user action
should not exceed 50-150 ms [8].

Communication with a Server: The basic idea of a web-
based application is that a webserver provides the
sites and the user data is stored on the server-side.
To make this work, the data has to be transferred to
the client. Many advantages of interactivity also re-
quire that new data can be loaded at runtime.

Stability: Stability is an important factor for all applica-

tions. It is especially worth mentioning as the tri-
partite construct of any web browser, any plugin
and code increases the possibility of instability, even
more so if the used technology is very new.

Guaranteed Future: The dependency on browsers and in
most cases plugins also leads to the importance of
checking if there is a future for the technology.

Development Experiences: While developing is still pos-
sible with a text editor, integrated development en-
vironments (IDEs) can improve the process signifi-
cantly. The availability of libraries also helps much
in the development process. A good documentation
and help on the web are also important for software
development. While we can list what is available
for each platform, our evaluation of the development
experience has to remain subjective.

The analyzing process consisted of three parts. (1)
We developed an interactive visualization using each plat-
form. This application shows an interactive mass-spring-
based model of a social network (Figure 1) similar to the
GraphView demo by Heer from the Prefuse gallery.* We
implemented the spring-based model in a .NET desktop
application using the GDI+ renderer as a reference, in Java,
Flash, and Silverlight. Here, we excluded server-based ren-
dering because the application would basically be written
in ECMAScript and executed on the client, giving no new
insights about server-based rendering. Table 1 shows how
many nodes could be rendered with reasonable speed.

(2) We wrote a benchmarking application, which con-
sists of three parts, shown in Figure 2. (2.1) Polygons are
drawn with 3 to 66 vertizes with line widths of 1 to 16 for
a total of 1024 polygons. (2.2) Filled rectangles are drawn
with 32 different sizes and also line widths of 1 to 16 for a
total of 512 rectangles. (2.3) Line arcs are drawn with 20

SN Micholas \\\1\\\%”%\\\\ \\\\\\ SI\E\.””E, Hfh\ﬂade\ynf CCCCC
Richard Lm Dominick
Nﬁgs Crysxal hen \ Makenna, MIChAndrea D, Nﬂ'ﬁ"maymn
///E/.?mi trendan /
Kennec‘i)/ Yy

Madehng\Ed ar ﬁnunney Taf/\or

Amber Piper
{\ME"ELB'DDkJ‘y""R‘ \\\\ \\C\EarManue\ i //
iy Dillon Va\ene a‘”mhnn ana S
Aary Sky\ar‘\ﬂ:ramk s 2NN \\“\\ l“ iy B am
" Bl P

S AN ik / Landen
\
= N\cu\e\Maan 03 /La\\a Zane%
e \\&t\ =M /T yParker KEEeEm
~Riley ==

/ Ba\\ey» M :
‘\E}amyn —— Hi& = E"y;‘

Anriela ==— 3 Kelse - Rubenn—EFE"dﬂ—Km‘ Ing
= Jorg n—\\—‘[
Tanner

mn S Sy,

z An elica=—
/Rmardu = Bethan < Johna(hem

Hamsnn Kaitlyr unans

i JDSE hine A\emnura rw;_‘
Mm ra = A\ama / \ &\
Hudson = %
Kar %, T
Tc; = Jerem éAdE” /L”"ﬁ)'dﬁenn \\\\\x
Kyl \ee rloteomial DE‘WS // ME:E\DS\\\\ \< Christin .
T Chase/// // / wl g E"ﬁf‘v\\Kﬁ‘”E” e,

Esmeralds \
Figure 1: Reference Application
Node movement in this interactive visualization results from simulated

spring forces but the user can also manually drag nodes.

2NET: http://www.microsoft.com/net; Java: http://java.sun.com; Flash: http://www.adobe.com/products/flash; Silverlight:
http://www.microsoft.com/silverlight (all accessed on April 24th, 2008)

3Visual Variables are a specified set of modifications that can be applied to objects in order to encode information (from http: //www.infovis—wiki.
net/index.php?title=Visual_Variables, accessed on April 24th, 2008). The term was introduced by Bertin [1].

“http://www.prefuse.org/gallery (accessed on April 24th, 2008)

Figure 2: Graphics Benchmark
Consisting of polygons (left), rectangles (middle) and arcs (right).

different combinations of size and start/end angle and also
line widths of 1 to 16 for a total of 320 arcs. Because of
different rendering philosophies among the platforms, de-
velopment and comparability were difficult. We decided to
measure the time needed for executing the programming
commands to draw objects as the basis for our benchmark.
An overview of the times we measured is given in Table 2.
(3) We analyzed available information and made a theoret-
ical examination of the platform with consideration of the
presented criteria. We did all this using the four platforms.

4 Results

To compare the performance of the interactive InfoVis
application, we counted the number of nodes that could
be used with the implementation still running at a frame
rate at which separate frames could not be distinguished
from each other with the naked eye. The Java applet could
handle even more nodes than the reference application, Sil-
verlight and especially Flash were considerably slower (Ta-
ble 1). When judging these results, you have to keep in
mind that the Silverlight plugin was an alpha version while
for other VMs and plugins a final one could be used. Be-
cause of the bad performance in drawing polygons, we also
tried to improve the speed of the Flash version by disabling
the drawing of the links, but there was only a minor, hardly
judgeable improvement.

Implementation Nodes

Java 1,000
NET Reference 700
Silverlight 350
Flash 150

Table 1: Maximum Number of Nodes
The number of nodes which allowed a sufficient frame rate for different

technologies.

The results of the benchmarking application are shown
in Table 2. Any type of platform can be used for server-
based rendering. We present rendering into memory done
in .NET/GDI+ and Java as examples. Using fast anti-
aliasing is not significantly slower than disabled anti-
aliasing in GDI+. However, if you also use transparency,
there is not much difference in also using good anti-
aliasing. Using Java for rendering into memory is not

too different from GDI+. However, using transparency
or good anti-aliasing is more costly. Surprisingly, when
drawing polygons or arcs in an applet, anti-aliasing opti-
mized for quality is faster than disabled or optimized for
speed. When drawing a huge number of rectangles, switch-
ing off anti-aliasing makes sense in combination with dis-
abling transparency. The benchmarking results for Flash
are partly below the measurable limit, but only the drawing
times for rectangles and arcs were really faster than visible.
For polygons, while the code finished very fast, we had
to wait approximately nine seconds (29 with transparency)
for the visualization to be actually shown. Silverlight is
slightly slower than Flash, but the times are more realistic,
as all visualizations were immediately shown, a fact which
is very impressive for the polygon part. Combining the
benchmark results with the ones from the application, Java
seems to outperform other client-based technologies when
much calculation beyond the pure graphics has to be done.
Otherwise, Silverlight and Flash are faster.

Implementation Alpha AA Polygons Rectangles Arcs
(ms) (ms) (ms)

NET Reference No None 22,403 8 4557
Fast 22,364 8 4541

Good 46,426 888 9467

Yes None 46,883 980 9446

Fast 47,163 993 9485

Good 50,492 1,002 10,277

NET server-side No None 445 53 152
Fast 451 53 153

Good 1,694 151 437

Yes None 972 220 275

Fast 988 222 274

Good 1,819 227 447

Java server-side No None 329 32 94
Fast 312 32 94

Good 3,766 188 1,001

Yes None 2,953 234 656

Fast 2,968 234 656

Good 4,016 172 1,047

Java Applet No None 8,766 16 2,687
Fast 8,876 31 1,922

Good 7,860 484 1,828

Yes None 46,737 656 14,251

Fast 51,003 563 13,393

Good 8,281 485 2,063

Flash No Good 141° 0 0
Yes Good 110° 0 0

Silverlight No Good 182 78 422
Yes Good 182 78 422

Table 2: Benchmark of Drawing Speed

NET reference rendered on the Windows desktop, .NET server-side ren-
dered into memory, Java applet rendered into the browser window, Java
server-side rendered into memory, Flash rendered into the browser win-
dow, Silverlight rendered into the browser window; Alpha channel for
transparency used or not used; anti-aliasing (AA) modes are disabled
(none), optimized for speed (fast) and optimized for quality (good); tim-
ings are given in milliseconds.

As a popularity measure which is important for people
who wish to develop InfoVis applications in a scientific
environment, we counted search results on SourceForge’

3 As test system, we used a Pentium D CPU running at 3.0 GHz under Windows XP SP 2. The system was equipped with a Radeon X1300 GPU and
2.0 GB RAM. It had installed the Java Virtual Machine version 1.6.0_04 and Silverlight 1.1.20926. For tests inside of a browser window, Internet Explorer

7.0.5730.11 was used. The Flash plugin used was version 9.0.45.0.
6 Additional waiting after the code had finished: 9000/29000 ms

Thttp://www.sourceforge.net (accessed on April 24th, 2008) SourceForge is the world’s largest Open Source software development web site.

for some search terms. The number of Java projects is
vast compared to the others. We have searched for “Ajax”
to assess the support for interactivity because there are
no projects dedicated especially to server-based rendering
(Table 3).

Term Results Term Results

Java 15,694 Java AND Visualization 76
Ajax 1,284 Ajax AND Visualization 0
Flash 839 Flash AND Visualization 3
Silverlight 350 Silverlight AND Visualization 0
SVG 258 SVG AND Visualization 10
ActiveX 121 ActiveX AND Visualization 0
VRML 50 VRML AND Visualization 2
X3D 28 X3D AND Visualization 2

Table 3: Searching Terms at SourceForge

4.1 Feature Assessment and Comparison

An overview of the platforms is given in Table 4. Only
server-based rendering can be expected to run on any
client, all other plaform require a VM or plugin to be in-
stalled. This is usually an easy task, but some policies
might prevent it in corporate environments. Animation
is difficult to achieve using server-based rendering. All
frames need to be rendered before the animation starts or
lags in the animation are possible because the speed of net-
work connections depend on many unpredictable factors.
If the code runs on the client, no network connection has
to be considered. It is save to render new frames while the
animation is shown if the rendering process is fast enough.
User interaction is very difficult with server-based render-
ing because modifications usually have to be transferred to
the client (see section 4.2). It is far easier with client-based
rendering. Modifications result in a new image which is
immediately drawn directly on the client. The dynamic
loading of content is restricted to already rendered images
and the dynamic overlaying of text with server-based ren-
dering. Client-based platforms can load any data dynam-
ically. ECMAScript only supports http as protocoll, other
languages are more powerful and all protocols can be im-
plemented. Java, Flash, and Silverlight come with huge
programming libraries. The one for Java seems to be the
biggest, but only a small part is helpful for visualization.
We will now present more detailed results on server-based
rendering, Java, Flash, and Silverlight.
4.2 Server-Based Rendering

This technique provides complete independence of the
client system. To provide interactivity, ECMAScript and
the official W3C Document Object Model (DOM) need to
be supported. This is the case for all major browsers.® Sev-
eral browsers have their own scripting dialects, but as they
are all based on the ECMAScript standard, one can avoid
problems by sticking to it. For rendering graphics prim-
itives into raster images and saving them in formats, like

GIF, JPG, or PNG, numerous tools are available, targeting
virtually any platform. The only format well-supported by
web browsers for showing animations consisting of one file
is GIF. An alternative is using a JPG or PNG file for each
frame. The files can be preloaded for a smooth animation
using ECMAScript. Frame selection by the user is not pos-
sible with animated GIF but relatively easy using the EC-
MAScript approach. User interaction is the main weak-
ness of server-based rendering. All graphic primitives that
might be modified by the user have to be preloaded or only
very simple effects need to be chosen (like drawing a box).
Depending on the complexity of the effect, a considerable
amount of ECMAScript is necessary which modifies the
DOM of the page. Recently, libraries like Ext JS® and con-
verters from other platforms like AjaxSwing!® have been
developed that simplify the ECMAScript development but
are mainly focused on standard UI controls. Modern web
browsers are much more stable than back in the 1990s.
Therefore, server-based rendering without additional plu-
gins can be seen as reference for the stability of a possible
environment. Of course, the code of the visualization ap-
plication also has to be stable and browser-specific lacks
of standard-compliance have to be accounted for. It will
always be possible to render images on the server, but the
format being used to transfer the images might no longer be
supported by the browsers. For GIF, JPG, and PNG, this is
not likely because they are all well established with open
communities as well as Microsoft. On the scripting side,
ECMAScript and DOM are standardized by Ecma Interna-
tional and the the W3C respectively, and also used by open
communities as well as Microsoft, making them as future-
proof as the mentioned raster image formats. The EC-
MAScript documentations from the W3C are fairly usable,
but the total amount of documentation is limited, making it
difficult to learn the language.

4.3 Java Applets

Java requires the application to do the rendering on its
own, targeting the client area in pixels. However, among
the free libraries available for Java, several renderers exist
which free the developer of this work. Some renderer li-
braries for Java provide features supporting animation, like
timeline objects that keep track of animation automatically.
When providing user frame selection, it is possible to fire
a manual drawing event, but caching the frames is also an
option. Java on its own has reached a very stable state.
However, the installed version of the VM differs among
clients. Incompatible versions can prevent the Java applet
from running. There are also problems embedding applets
in some operating system or browser configurations. The

8As “major browsers” we consider Internet Explorer, Firefox, Safari, and Opera.

9nttp://extis.com (accessed on April 24th, 2008)

Onttp://www.creamtec.com/products/ajaxswing (accessed on April 24th, 2008)

Run Capability

Server-based Rendering
Everywhere

Java
VM; wide availability

Rendering Render manually or use one Render manually or use one
of many libraries of many libraries

Animation Difficult; animated GIF or Easy; render frames using
ECMAScript tricks timer events or some library

Interactivity Very difficult Easy

Communication Rendered images, labels; http ~ Any data; any protocol

Stability Very High Varies

Graphics Speed Varies (http connection) Average

Overall Speed N/A Fast

Future Very good Good

Development Difficult learning; documen- Easy learning; good docu-

tation cluttered; no real IDE

Table 4: Overview of Technologies. Explanation in sections 4.1-4.5.

mentation, good IDEs

Flash

Plugin; wide availability
Draw manually; rendering by
plugin

Easy; draw frames using
timer events or timeline

Easy

Any data; any protocol

High

Fast

Slow

Good

Average learning; documen-
tation cluttered; good IDEs

Silverlight

Plugin; limited availability
Define graphics primitives;
rendering by plugin

Easy; modify objects accord-
ing to timeline

Easy

Any data; any protocol
Average

Average

Average

Average

Easy learning; documenation
cluttered; very good IDE

use of Java applets has declined during the last years with
the increasing flexibility of Flash. Still, it has many sup-
porters and a lot of software is written in Java. The amount
of work which has been put into Java libraries (Table 3)
will presumably keep the platform alive for many years.
For Java, several sophisticated IDEs like Netbeans'! and
Eclipse!? are available. A good documentation is available
as well as countless other information sources, making it
fairly easy to learn the language.

4.4 Flash

While the Flash drawing functions are similar to those
of Java, they do not actually perform the drawing directly.
In fact, they cache the graphics primitives and the draw-
ing is performed in a renderer thread independent of the
user code. Flash not only supports timer events but also
has timeline support already built in the platform. One has
to keep in mind, though, that calculating a frame is inde-
pendent of the frame being drawn by the renderer task. As
the output of the renderer cannot be cached, user frame se-
lection has to fire manual draw events. Because Flash was
developed to integrate into a web site in the first place, it
is very stable inside the browser. There are still many dif-
ferent versions installed among clients. Flash checks the
version, but if the installed plugin is too old, the applica-
tion will not run either. In the web of 2008, Flash can be
found on more sites than any other technology that requires
a plugin. Therefore, it is most likely to prevail installed on
client systems for the next years. For Flash there are also
development environments comparable to those for Java,
but debugging is more complicated because the compila-
tion does only run in the plugin and a special debugging
plugin is needed. ActionScript is a language based on the
ECMAScript specification but greatly improved so coding
is much easier. However, the ECMAScript compatibility
causes several weaknesses, like poor type safety. The pro-
vided library of Flash seems to have more predeveloped

http://www.netbeans.org (accessed on April 24th, 2008)
2http://www.eclipse.org (accessed on April 24th, 2008)

solutions, like classical types of charts than the ones pro-
vided by Java or Silverlight. Unfortunately, those are not
flexible enough to facilitate complex interactive visualiza-
tions. Flash is currently third regarding free libraries (Table
3) and has a lot of documentation, but it is severely clut-
tered. This might be a result of recent design changes done
by Adobe. The fact is also visible by the large amount of
information available for ActionScript 2.0 whilst not many
resources are available for the current version 3.0 up to
now. This also complicates learning ActionScript.

4.5 Silverlight

The Silverlight plugin is only available for comput-
ers running Windows or MacOS. A free alternative plu-
gin named Moonlight is being developed by the Mono
project', but as of April 2008, a simple way of installing
is not provided. Silverlight takes the approach of Flash
even further: Graphics primitives are defined in a descrip-
tion language. They can also be modified or complemented
with additional graphics primitives using code. In Sil-
verlight, there are no timer events but timeline support.
Drawing separate frames is possible as in Java and Flash,
but you can also modify existing objects instead of draw-
ing new ones. The renderer will show the modifications in
its next cycle. Like in Flash, caching the renderer output is
not possible, so user frame selection requires firing a man-
ual draw event. Silverlight is a much newer technology
than its competitors. Version 1.0 has quite limited func-
tionality and version 2.0 is still in alpha state. This alpha
version has crashed and jammed the Internet Explorer sev-
eral times during our test development phase, but the clean
code structures of the .NET environment are enforced for
Silverlight, so it is likely that the final version will be quite
stable for such a new technology. While most analysts
grant Silverlight a comparison to Flash on the same level,
a quick research with Google reveals that for each site that
requires Silverlight, there are thousands of sites requiring

Bhttp://www.mono-project . com/Moonlight (accessed on April 24th, 2008)

Flash. This is due to the fact that it is very difficult to intro-
duce a new technology into an established medium, espe-
cially, if something has to be installed that normally is not
part of the environment. Still, it is possible that Silverlight
will gain ground soon as more people start using it. In
summary, the future of Silverlight is very hard to predict at
the moment. Silverlight can be developed in Visual Studio
which in our opinion is superior to all other IDEs currently
available. Debugging also needs to connect to a browser,
but it can be done with the regular plugin. The provided
library for Silverlight has powerful functions to deal with
graphics primitives, but some of them are more difficult to
use than their counterparts in Java or Flash. Although be-
ing very new, there are very interesting free libraries cur-
rently in development for Silverlight. The documentation
for Silverlight is still work in progress and it is difficult
to find in-depth information. However, the class library
is similar to the Windows Presentation Foundation (WPF)
and can be accessed in languages like C# and Visual Basic,
reducing the learning effort.

S Conclusion and Future Work

No technology is superior to all others in all situa-
tions. Developers need to consider the environment and
user group they address as well as their requirements.
These prerequisites define the priorities. Therefore, even
the platform-independence of web applications is limited.
Server-based rendering will work in conjunction with al-
most any client, but because of the availability of Flash
and Java they can be seen as equal for most targets. In
some company cultures, however, the chances for getting
Silverlight installed on the clients might be better. If de-
velopers are worried about the data transfer infrastructure,
especially on the server side, server-based rendering is the
easiest solution. However, this is a tradeoff with severe
response time problems. With regards to stability, the ex-
pertise of the developer seems to be more important than
the platform used—however, the use of a beta product, like
Silverlight, always entails many uncertainties. In centrally
administrated environments, keeping a platform functional
over a longer period of time is less problematic. Other-
wise, only server-based rendering, Flash and Java seem to
be safe bets.

We have focused on the facet of interactive visualiza-
tion. Other aspects might be important if movies and/or
audio have to be included. There is also the possibility
of using not the common consoles but other Uls. For de-
veloping further benchmarks, the Bubblemark Animation
Test'* could be a good starting point. While our survey
encompasses a broad range of the market, we have not in-
vestigated niche products or technologies specialized for

Y4http://www.bubblemark . com (accessed on April 24th, 2008)

3D-graphics, like X3D. We did not include scalable vec-
tor graphics (SVG) dynamically created on the client using
ECMAScript, because ECMAScript is the least powerful
language of the field, making it very time-consuming to
develop a complete InfoVis application. New technologies
like the canvas tag which implements graphics rendering
directly in HTML are emerging, but it is difficult to decide
at which time a technology is ready for use in an applica-
tion without a large team to keep pace with development
changes. We also have focused on clients that are run-
ning in the browser. There are also intermediate solutions
with local applications being installed on-demand by web
sources, e.g., Java Web Start and Adobe AIR. So the range
of compared products might need broadening. At the mo-
ment we are taking a look at the next level of development,
comparing different graphics libraries.

Acknowledgements This work was supported by the
program “FIT-IT Visual Computing” of the Federal Min-
istry of Transport, Innovation and Technology, Austria.
Project number: 813388.

References
All web references have been accessed on April 24th, 2008.

[1] J. Bertin. Semiology of Graphics. University of Wisconsin
Press, 1983.

[2] E. Burnette. Is Flash better than Java?, April 2007. URL
http://blogs.zdnet.com/Burnette/?p=286.

[3] J. Ezell. Silverlight vs. Flash: The Developer
Story, May 2007. URL http://weblogs.
asp.net/jezell/archive/2007/05/03/
silverlight-vs—-flash-the-developer-story.
aspx.

[4] JJ. Garrett. Ajax: A New Approach to Web Applications,
February 2005. URL http://www.adaptivepath.com/
ideas/essays/archives/000385.php.

[5S] A. Kobsa. An empirical comparison of three commercial
information visualization systems. Proc. of IEEE Symp. on
Info. Vis. 2001 (INFOVIS 2001), pages 123-130, 2001.

[6] M. Lyda. Flash ActionScript Performance vs. JavaScript,
November 2006. URL http://www.oddhammer.com/
actionscriptperformance/set4.

[7]1 A.Pasztory. Flash vs. Ajax. URL http://www.pasz.com/
articles/FlashVsAjax.html.

[8] B. Shneiderman and C. Plaisant. Designing the User Inter-
face: Strategies for Effective Human-Computer Interaction
(4th Edition). Pearson Addison Wesley, 2004.

[9] E.M. Wohlfart. A Detailed Comparison of Informa-
tion Visualization Tools Using a Reference Data Set.
Thesis, Vienna University of Technology, Institute of
Software Technology and Interactive Systems, Novem-
ber 2007. URL http://ieg.ifs.tuwien.ac.at/
projects/infovis-compare.

