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Abstract

Background: Regularized regression methods such as principal component or partial least

squares regression perform well in learning tasks on high dimensional spectral data, but cannot

explicitly eliminate irrelevant features. The random forest classifier with its associated Gini feature

importance, on the other hand, allows for an explicit feature elimination, but may not be optimally

adapted to spectral data due to the topology of its constituent classification trees which are based

on orthogonal splits in feature space.

Results: We propose to combine the best of both approaches, and evaluated the joint use of a

feature selection based on a recursive feature elimination using the Gini importance of random

forests' together with regularized classification methods on spectral data sets from medical

diagnostics, chemotaxonomy, biomedical analytics, food science, and synthetically modified spectral

data. Here, a feature selection using the Gini feature importance with a regularized classification by

discriminant partial least squares regression performed as well as or better than a filtering

according to different univariate statistical tests, or using regression coefficients in a backward

feature elimination. It outperformed the direct application of the random forest classifier, or the

direct application of the regularized classifiers on the full set of features.

Conclusion: The Gini importance of the random forest provided superior means for measuring

feature relevance on spectral data, but – on an optimal subset of features – the regularized

classifiers might be preferable over the random forest classifier, in spite of their limitation to model

linear dependencies only. A feature selection based on Gini importance, however, may precede a

regularized linear classification to identify this optimal subset of features, and to earn a double

benefit of both dimensionality reduction and the elimination of noise from the classification task.
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Background
The high dimensionality of the feature space is a charac-
teristic of learning problems involving spectral data. In
many applications with a biological or biomedical back-
ground addressed by, for example, nuclear magnetic reso-
nance or infrared spectroscopy, also the number of
available samples N is lower than the number of features
in the spectral vector P. The intrinsic dimensionality Pintr

of spectral data, however, is often much lower than the
nominal dimensionality P – sometimes even below N.

Dimension reduction and feature selection in the 

classification of spectral data

Most methods popular in chemometrics exploit this rela-
tion Pintr < P and aim at regularizing the learning problem
by implicitly restricting its free dimensionality to Pintr.

(Here, and in the following we will adhere to the algorith-
mic classification of feature selection approaches from
[1], referring to regularization approaches which explicitly
calculate a subset of input features – in a preprocessing,
for example – as explicit feature selection methods, and to
approaches performing a feature selection or dimension
reduction without calculating these subsets as implicit fea-
ture selection methods.) Popular methods in chemomet-
rics, such as principal component regression (PCR) or
partial least squares regression (PLS) directly seek for solu-
tions in a space spanned by ~Pintr principal components
(PCR) – assumed to approximate the intrinsic subspace of
the learning problem – or by biasing projections of least
squares solutions towards this subspace [2,3], down-
weighting irrelevant features in a constrained regression
(PLS). It is observed, however, that although both PCR
and PLS are capable learning methods on spectral data –
used for example for in [4] – they still have a need to elim-
inate useless predictors [5,6]. Thus, often an additional
explicit feature selection is pursued in a preceding step to
eliminate spectral regions which do not provide any rele-
vant signal at all, showing resonances or absorption bands
that can clearly be linked to artefacts, or features which are
unrelated to the learning task. Discarding irrelevant fea-
ture dimensions, though, raises the question of how to
choose such an appropriate subset of features [6-8].

Different univariate and multivariate importance meas-
ures can be used to rank features and to select them
accordingly [1]. Univariate tests marginalize over all but
one feature and rank them in accordance to their discrim-
inative power [9,10]. In contrast, multivariate approaches
consider several or all features simultaneously, evaluating
the joint distribution of some or all features and estimat-
ing their relevance to the overall learning task. Multivari-
ate tests are often used in wrapper schemes in
combination with a subsequent classifier (e.g. a global
optimization of feature subset and classifier coefficients

[11]), or by statistical tests on the outcome of a learning
algorithm (e.g. an iterative regression with test for robust-
ness [12,13]). While univariate approaches are sometimes
deemed too simplistic, the other group of multivariate
feature selection methods often comes at unacceptably
high computational costs.

Gini feature importance

A feature selection based on the random forest classifier
[14] has been found to provide multivariate feature
importance scores which are relatively cheap to obtain,
and which have been successfully applied to high dimen-
sional data, arising from microarrays [15-20], time series
[21], even on spectra [22,23]. Random forest is an ensem-
ble learner based on randomized decision trees (see [24]
for a review of random forests in chemometrics, [14] for
the original publication, and [25-28] for methodological
aspects), and provides different feature important meas-
ures. One measure is motivated from statistical permuta-
tion tests, the other is derived from the training of the
random forest classifier. Both measures have been found
to correlate reasonably well [28]. While the majority of
the prior studies focused on the first, we will focus on the
second in the following.

As a classifier, random forest performs an implicit feature
selection, using a small subset of "strong variables" for the
classification only [27], leading to its superior perform-
ance on high dimensional data. The outcome of this
implicit feature selection of the random forest can be vis-
ualized by the "Gini importance" [14], and can be used as
a general indicator of feature relevance. This feature
importance score provides a relative ranking of the spec-
tral features, and is – technically – a by-product in the
training of the random forest classifier: At each node τ
within the binary trees T of the random forest, the optimal
split is sought using the Gini impurity i(τ) – a computa-
tionally efficient approximation to the entropy – measur-
ing how well a potential split is separating the samples of
the two classes in this particular node.

With  being the fraction of the nk samples from

class k = {0,1} out of the total of n samples at node τ, the

Gini impurity i(τ) is calculated as

Its decrease Δi that results from splitting and sending the

samples to two sub-nodes τl and τr (with respective sample

fractions  and ) by a threshold tθ on varia-

ble θ is defined as
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In an exhaustive search over all variables θ available at the
node (a property of the random forest is to restrict this
search to a random subset of the available features [14]),
and over all possible thresholds tθ, the pair {θ, tθ} leading
to a maximal Δi is determined. The decrease in Gini impu-
rity resulting from this optimal split Δiθ (τ, T) is recorded
and accumulated for all nodes τ in all trees T in the forest,
individually for all variables θ:

This quantity – the Gini importance IG – finally indicates
how often a particular feature θ was selected for a split,
and how large its overall discriminative value was for the
classification problem under study.

When used as an indicator of feature importance for an
explicit feature selection in a recursive elimination scheme
[1] and combined with the random forest itself as classi-
fier in the final step, the feature importance measures of
the random forest have been found to reduce the amount
of features. Most studies using the Gini importance
[22,29] and the related permutation-based feature impor-
tance of random forests [16,18,20,21,23] together with
random forests in a recursive feature elimination scheme,
also showed an increases in prediction performance.
(Only [17] reports a constant performance, but with
greatly reduced amount of features.) While these experi-
ments indicate the efficiency of the Gini importance in an
explicit feature selection [24] one might raise the question
whether a random forest – the "native" classifier of Gini
importance – with its orthogonal splits of feature space is

optimal also for the classification of spectra with correlated
features and data-specific noise (Fig. 1), or if other classi-
fication models may be a better match with properties of
spectral data.

Objective of this study

Thus, in the present work, we were interested in evaluat-
ing the combination of a feature selection by Gini impor-
tance together with standard chemometric classification
approaches, such as discriminant PCR and PLS classifica-
tion (D-PCR and D-PLS, respectively) which are known to
be well adapted to spectra, and in studying their perform-
ance in dependence of specific characteristics of spectral
data. In a first experiment we evaluated the joint applica-
tion of explicit and implicit dimension reduction, using
uni- and multivariate feature selection strategies in combi-
nation with random forest, D-PLS and D-PCR classifica-
tion in an explicit recursive feature elimination (Table 1).
In a second experiment, we studied the influence of differ-
ent noise processes on random forest and D-PLS classifi-
cation to identify optimal conditions for explicit and
implicit dimension reduction. In both experiments we
were interested in identifying general properties and dif-
ferences of the methods employed in the classification of
spectral data.

Results and discussion
Visualizing feature importance

Measuring feature relevance using the Gini importance is
subject to selection bias on factorial data [30]. Splits are
more often sought on variables with a higher number of
different factors, and a correction of the Gini importance
is necessary in such cases [30-32]. Spectral data, except for
count data, represent continuous signals, with a distribu-
tion of N different values for each spectral channel or fea-
ture. Each feature will allow the same number of distinct

∆i i p i p il l r r( ) ( ) ( ) ( )τ τ τ τ= − −

I TG

T

( ) ( , )θ τθ
τ

= ∑∑ ∆i

Decision trees separating two classes: Classification problem with uncorrelated features (left), and a distorted version resulting from an additive noise process (right)Figure 1
Decision trees separating two classes: Classification problem with uncorrelated features (left), and a distorted 
version resulting from an additive noise process (right). The said process induces correlation by adding a random value 
to both features, thus mimicking the acquisition process of many absorption, reflectance or resonance spectra (see Methods 
section). Growing orthogonal decision trees on such a data set – shown on the right – results in deeply nested trees with com-
plex decision boundaries. (Both trees not grown to full depth for visualization purposes).
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splits in a random forest classification, and, hence, a
measurement of the relevance of spectral regions for a spe-
cific classification problem will be unaffected by this
potential source of bias.

Both univariate tests for significant class differences
returned smooth importance vectors when employed on
the spectral data (Fig. 2, top). The smoothness of the Gini
importance was dependent on the size of the random for-
est (Fig. 2, bottom) – small forests resulted in "noisy"
importance vectors, only converging towards smooth vec-
tors when increasing the overall number of trees in the
forest or the overall number of splits. As such changes
influence the absolute value of this measure, the Gini
importance could not be interpreted in absolute terms –
like the p-values of the univariate tests – but only allowed
for a relative comparison. For such a comparison between
different variables and between different measures, the
features were ranked according to their importance score
(Fig. 3A). Here, univariate importance measures and Gini
importance agreed well in many, although not all, spectral
regions (Fig. 3A, rows 2 and 3). An example of the most
prominent differences between univariate feature impor-
tance and multivariate Gini importance are highlighted in
Fig. 3B. Spectral regions deemed unimportant by the uni-
variate measures – with complete overlap of the marginal
distributions as shown in Fig. 3B – may be attributed high
importance by the multivariate importance measure (Fig.
4), indicating spectral regions with features of higher
order interaction.

Inspecting the Gini feature importance we observed –
similar to [32] – that some spectral regions were selected
as a whole, suggesting that correlated variables were
assigned similar importance. Thus, the importance meas-
ure may be interpreted like a spectrum, where neighbour-
ing channels of similar importance may be considered as
representatives of the same peak, absorbance or resonance

line. This can be used in an exploratory visualization of
feature relevance (Figs. 2 and 3A, top row). As the random
forest prefers splits on correlated variable over splits on
uncorrelated ones [28] it should be noted, however, that
this "importance spectrum" may be somewhat biased
towards overestimating the importance of major peaks
spanning over many spectral channels.

Feature selection and classification

The classification accuracies provided by the first experi-
ment based on the real data allowed for a quantitative
comparison of the methods applied and for testing for sta-
tistically significant differences between results on the full
set of features in comparison to the subselected data sets
(Table 2, "stars"). On one half of the data, the feature
selection hardly changed the classification performance at
all (Tables 2 and 3, tumor and candida data), while on the
other half a feature selection improved the final result sig-
nificantly (Tables 2 and 3, wine and BSE data), almost
independently of the subsequent classifier. In the latter
group optimally subselected data typically comprised
about 1–10% of the initial features (Table 3, Fig. 5). Such
a data dependence in the benefit of a preceding feature
selection is well known (e.g. [33]). Different from [33],
however, we did not see a relation to the apparent degree
of ill-posedness of the classification problem (i.e., a low
ratio N/P of the length of the spectral vector P and the
number of available samples N leading to an underdeter-
mined estimation problem – he BSE and candida data, for
example, are nearly identical in dimensionality – PBSE =
1209, Pcandida = 1500 – and number of training samples –
NBSE = 2 * 96, Ncandida = 2 * 101).

Random forest, the only nonlinear classifier applied, per-
formed slightly better than the linear classifiers on the
unselected data sets (BSE and wine data, Fig. 5), but
improved only moderately in the course of the feature
selection (Fig. 5, Table 3: p-value > 10-3). Given that ran-

Table 1: Recursive feature selection.

1. Calculate feature importance on the training data

a. Gini importance

b. absolute value of regression coefficients (PLS/PCR)

c. p-values from Wilcoxon-test/t-test

2. Rank the features according to the importance measure, remove the p% least important

3. Train the classifier on the training data

A. Random forest

B. D-PLS

C. D-PCR

and apply it to the test data

4. Repeat 1.–4. until no features are remaining

5. Identify the best feature subset according to the test error

Workflow of the recursive feature selection, and combinations of feature importance measures (1.a-1.c) and classifiers (3.A-3.C) tested in this 
study. Compare with results in Table 2 and Fig. 4. Hyper-parameters of PLS/PCR/random forest are optimized both in the feature selection (1.) and 
the classification (3.) step utilizing the training data only. While Gini importance (1.a) and regression coefficients (1.b) have to be calculated within 
each loop (step 1.–4.), the univariate measures (1.c) have only to be calculated once.
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dom forest performs well on the unselected data sets, and
that little or no benefit is incurred by an additional
explicit feature selection (Table 2, Fig. 5), it is apparent
that an implicit feature selection is at work and performs
well when training the random forest classifier. Ulti-
mately, however, the random forest classifier was sur-
passed in performance by any of the regularized linear
methods on all data sets (Table 2: column 9 vs. column 7–
8). This rather weak classification performance of the ran-
dom forest may be seen in line with [20], but contrasts
results of e.g. [10,18] using random forest in the classifi-
cation of microarrays, similar to spectra in their high
dimensionality of their feature vectors. Few differences

could be observed between D-PLS and D-PCR classifica-
tion. Among the different feature selection strategies, the
Wilcoxon-test and the Gini importance performed better
on average than the iterated selection based on the regres-
sion coefficients (Fig. 5, Table 2), with slightly better clas-
sification results for the Gini importance (Table 2).
Overall, while the Gini importance was preferable in fea-
ture selection, the chemometric methods performed bet-
ter than random forest in classification, in spite of their
limitation to model linear dependencies only.

Importance measures on NMR candida dataFigure 2
Importance measures on NMR candida data. in the range from 0.35 to 4 ppm (indicated in the upper figure) for all 1500 
spectral channels (indicated in the lower figure). Top: p-values of a t-test (black) and Wilcoxon test (gray). Below: Gini impor-
tance of a random forest with 3000 trees (gray) and 6000 trees (black). Compare t ranked measures in Fig. 3.
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The two linear classifiers of this study generally seek for
subspaces ck maximizing the variance Var of the explana-
tory variables X in the subspace c

in case of PCR or the product of variance and the
(squared) correlation Corr

with the response y in case of PLS [2,3]. Thus, for a better
understanding of D-PCR and D-PLS, both Corr(x, y) and
Var(x) were plotted for individual channels and for indi-
vidual learning tasks in Fig. 6 (with the absolute value of
the coefficients of c encoded by the size of the circles in
Fig. 6). On data sets which did not benefit greatly from the
feature selection, we observed variance and correlation to

c Var c xk
c

Corr c x c x j k
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T
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Comparison of the different feature selection measures applied to the NMR candida 2 data (3A)Figure 3
Comparison of the different feature selection measures applied to the NMR candida 2 data (3A). Multivariate fea-
ture importance measures can select variables that are discarded by univariate measures (3B). Fig. 3A, from top to bottom: 
Gini importance, absolute values; Gini importance, ranked values, p-values from t-test, ranked values. Fig. 3B: Feature impor-
tance scores below (black: Gini importance, gray: t-test). Perhaps surprisingly, regions with complete overlap of the marginal 
distributions (3B bottom, indicated by vertical lines), are assigned importance by the multivariate measure (3B top). This is 
indicative of higher-order interaction effects which can be exploited when used as a feature importance measure with a subse-
quent classifier.
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be maximal in those variables which were finally assigned
the largest coefficients in the regression (indicated by the
size of the black circles in Fig. 6). Conversely, in data sets
where a feature selection was required, features with high
variance but only moderate relevance to the classification
problem (as indicated by a low univariate correlation or
multivariate Gini importance) were frequently present in
the unselected data (Fig. 6, black dots). This might be seen
as a likely reason for the bad performance of D-PCR and
D-PLS when used without preceding feature selection on
the BSE and wine data: Here the selection process allowed
to identify those features where variance coincided with
class-label correlation (Fig. 6, red circles), leading to a
similar situation in the subsequent regression as for those
data sets where a feature selection was not required (Fig.
6, compare subselected features indicated red in the left
and central row with features in the right row).

In summary, observing that the degree of ill-posedness is
not in itself an indicator for a required feature selection
preceding a constrained classification, it might be argued
that non-discriminative variance – hindering the identifi-
cation of the optimal subspace in PCR, and disturbing the
optimal trade-off between correlation and variation in
PLS – may be a reason for the constrained classifiers' fail-

ing on the unselected data and, consequently, a require-
ment for a feature selection in the first place.

Feature selection and noise processes

The first experiment advocated the use of the Gini impor-
tance for a feature selection preceding a constrained
regression for some data sets. Thus, and in the light of the
unexpectedly weak performance of the random forest
classifier, we studied the performance of the D-PLS and
the random forest classifier as a function of noise proc-
esses which can be observed in spectral data (see Methods
section for details) to identify optimal situations for the
joint use of explicit and implicit feature selection.

In this second experiment, random forest proved to be
highly robust against the introduction of "local" noise, i.e.
against noise processes affecting few spectral channels
only, corresponding to spurious peaks or variant spectral
regions which are irrelevant to the classification task (both
on the synthetic bivariate classification problem, Figs. 1
left, 7A; and the modified real data, Fig. 7CE). The ran-
dom forest classifier was, however, unable to cope with
additive global noise: Already random offsets that were
fractions of the amplitude S of the spectra (Fig. 7DF; S =
10-2) resulted in a useless classification by the random for-
est. As global additive noise stretches the data along the

Tukey mean-difference plot of univariate and multivariate feature importance (left) and correlation of the importance measures shown in Fig. 3AFigure 4
Tukey mean-difference plot of univariate and multivariate feature importance (left) and correlation of the 
importance measures shown in Fig. 3A. Horizontal lines in the left Fig. indicate differences of more than two sigma, the 
vertical line in the right Fig. indicates a threshold on the univariate P-value of 0.05 (with relevant features being to the right of 
the vertical line). -. The importances assigned by univariate and multivariate measures are generally highly correlated; many of 
the features marked in red (corresponding to the spectral channels indicated in Fig. 3B), however, are flagged as uninformative 
by a univariate measure and as relevant by a multivariate measure.
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high dimensional equivalent of the bisecting line (Fig. 1),
the topology of its base learners may be a disadvantage for
the random forest in classification problems as shown in
Fig. 1. Single decision trees, which split feature space in a
box-like manner orthogonal to the feature direction are
known to be inferior to single decision trees splitting the
feature space by oblique splits [34] (although they have a
considerable computational advantage). Random offsets
often occur in spectral data, for example resulting from
broad underlying peaks or baselines, or from the normal-
ization to spectral regions that turn out to be irrelevant to
the classification problem. Thus, one might argue that the
"natural" presence of a small amount of such noise may

lead to the rather weak overall performance of the random
forest observed in the first experiment (Table 2, Fig. 5).

Partial least squares performed slightly better than ran-
dom forests on all three data sets at the outset (Fig. 7). In
contrast to the random forest, PLS was highly robust
against global additive noise: On the synthetic classifica-
tion problem – being symmetric around the bisecting line
– the random offsets did not influence the classification
performance at all (Fig. 7B). On the real data – with more
complex classification tasks – the D-PLS classification still
showed to be more robust against random offsets than the
random forest classifier (Fig. 7DF). Conversely, local
noise degraded the performance of the D-PLS classifica-

Table 2: Average cross-validated prediction accuracy.

no selection Univariate selection Multivariate selection (Gini importance) multivariate selection (PLS/PC)

PLS PC RF PLS PC RF PLS PC RF PLS PC RF

MIR BSE orig 66.8 62.9 74.9 80.7 80.7 76.7 84.1 83.2 77.4 68 63.5 75.5

- - - *** *** * *** *** ** **

binned 72.7 73.4 75.3 80.4 80.7 76.6 86.8 85.8 77.3 85 82.1 75.6

- - - *** *** ** *** *** ** *** ***

MIR wine French 69.5 69.3 79.3 83.7 83.5 82.2 82.4 81 81.2 66.9 70.0 79.8

- - - *** ** *** ** *

grape 77 71.4 90.2 98.1 98.7 90.3 98.4 98.4 94.2 91.7 88.5 90.4

- - - *** *** *** *** ** *** ***

NMR tumor all 88.8 89 89 89.3 89.3 90.5 90.0 89.6 89.6 89.3 89.2 89.1

- - - * *** ** *

center 71.6 72.3 73.1 73.9 72.7 73.9 72.6 72.0 74.3 71.8 72.7 73.3

- - - ** *

NMR candida 1 94.9 94.6 90.3 95.1 94.9 90.6 95.6 95.3 90.3 95.3 95.2 90.7

- - -

2 95.6 95.2 93.2 95.8 95.7 93.7 95.6 95.5 93.5 96.0 95.9 94.1

- - - *

3 93.7 93.8 89.7 93.7 93.8 89.9 94.2 93.8 89.9 94.0 94.0 90.2

- - - * * *

4 86.9 87.3 83.9 87.8 87.3 84.0 88.2 87.6 84.3 87.7 87.6 84.1

- - - *

5 92.7 92.6 89.2 92.7 92.6 89.9 92.5 92.5 90.3 92.8 92.6 90.0

- - -

The best classification results on each data set are underlined. Approaches which do not differ significantly from the optimal result (at a 0.05 
significance level) are set in bold type (see methods section). Significant differences in the performance of a method as compared to the same 
classifier without feature selection are marked with asterisks (* p-value < 0.05, ** p-value < 0.01, *** p-value < .001). The MIR data of this table 
benefit significantly from a feature selection, whereas the NMR data do so only to a minor extent. Overall, a feature selection by means of Gini 
importance in conjunction with a PLS classifier was successful in all cases and superior to the "native" classifier of Gini importance, the random 
forest, in all but one cases.
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Classification accuracy (left column) and standard error (right column) during the course of recursive feature elimination for PLS regression (black), PC regression (dark gray) and random forest (light gray), in combination with different feature selection criteria: univariate (dotted), PLS/PC regression (dashed) and Gini importance (solid)Figure 5
Classification accuracy (left column) and standard error (right column) during the course of recursive feature 
elimination for PLS regression (black), PC regression (dark gray) and random forest (light gray), in combina-
tion with different feature selection criteria: univariate (dotted), PLS/PC regression (dashed) and Gini impor-
tance (solid).
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tion (Fig. 6ACE, although for rather large values of S
only). The D-PLS classifier seemed to be perfectly adapted
to additive noise – splitting classes at arbitrary oblique
directions – but its performance was degraded by a large
contribution of non-discriminatory variance to the classi-
fication problem (Figs. 6 &7ACE).

In the presence of increasing additive noise, both univari-
ate and multivariate (i.e., the Gini importance) feature
importance measures lost their power to discriminate
between relevant and random variables at the end (Fig.
8DF), with the Gini importance retaining discriminative
power somewhat longer finally converging to a similar
value for all three variables correlating well with a random
classification and an (equally) random assignment of fea-
ture importance (Fig. 8D). When introducing a source of
local random noise and normalizing the data accordingly,
the univariate tests degraded to random output (Fig. 8E),
while the Gini importance measure (Fig. 8CE) virtually

ignored the presence and upscaling of the non-discrimi-
natory variable (as did the random forest classifier in Fig.
7ACE).

Feature selection using the Gini importance

Overall, we observed that the random forest classifier –
with the non-oblique splits of its base learner – may not
be the optimal choice in the classification of spectral data.
For feature selection, however, its Gini importance
allowed to rank non-discriminatory features low and to
remove them early on in a recursive feature elimination.
This desirable property is due to the Gini importance
being based on a rank order measure which is invariant to
the scaling of individual variables and unaffected by non-
discriminatory variance that does disturb D-PCR and D-
PLS. Thus, for a constrained classifier requiring a feature
selection due to the specificities of the classification prob-
lem (Table 2, Fig. 5), the Gini feature importance might
be a preferable ranking criterion: as a multivariate feature

Table 3: Benefit from feature selection.

univariate selection multivariate selection (Gini importance) multivariate selection (PLS/PC)

PLS PC RF PLS PC RF PLS PC RF

MIR BSE orig 10.0 (6) 10.0 (4) 1.5 (7) 10.0 (6) 10.0 (6) 2.0
(6)

3.0 (13) 0.9 (80) 0.5 (51)

binned 6.0
(5)

7.0
(5)

2.2 (9) 10.0 (9) 10.0 (6) 3.0
(9)

10.0 (5) 9.0
(4)

0.4 (51)

MIR wine French 4.0
(3)

3.0
(2)

0.7 (64) 5.0
(3)

3.0
(1)

3.0 (26) 0.0 (100) 0.6 (33) 0.0 (64)

grape 8.0
(2)

8.0 (21) 0.6 (64) 10.0 (4) 10.0 (5) 2.0 (11) 4.0
(1)

6.0
(1)

0.0 (64)

NMR tumor all 1.0 (80) 0.5 (11) 4.0 (6) 4.0 (51) 0.0 (100) 2.0
(6)

0.8 (11) 0.0 (100) 0.3 (80)

center 2.0
(7)

0.4
(6)

0.8 (86) 2.0 (26) 0.2 (64) 0.7 (41) 0.0 (100) 0.7 (13) 0.3 (80)

NMR candida 1 0.5 (80) 0.0 (80) 0.8 (80) 0.0 (100) 0.0 (100) 0.8 (41) 0.4 (64) 0.0 (100) 0.4 (9)

2 0.4 (80) 0.9 (64) 0.0 (80) 2.0 (64) 0.4 (26) 0.0 (100) 2.0 (21) 1.0 (21) 0.4 (41)

3 0.0 (100) 0.0 (100) 0.0 (80) 2.0 (80) 0.6 (80) 2.0 (26) 2.0 (80) 0.0 (100) 0.7 (41)

4 0.8 (80) 0.0 (100) 0.0 (80) 2.0 (80) 1.0 (80) 2.0 (64) 0.7 (33) 0.0 (100) 0.3 (32)

5 0.0 (100) 0.0 (100) 0.7 (80) 0.0 (100) 0.4 (80) 1.0 (64) 0.7 (64) 0.7 (80) 0.4 (21)

Significance of accuracy improvement with feature selection as compared to using the full set of features; and percentage of original features used in 
a classification that has maximum accuracy (in parentheses). The significance is specified by -log10(p), where p is the p-value of a paired Wilcoxon 
test on the 100 hold-outs of the cross-validation (see text). For comparison, -log(0.05) = 1.3 and -log(0.001) = 3; the value of 6.0 reported for MIR 
BSE binned in the second row of the first column corresponds to a highly significant improvement in classification accuracy, corresponding to a p-
value of 10-6.
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importance, it is considering conditional higher-order
interactions between the variables when measuring the
importance of certain spectral regions, providing a better
ranking criterion than a univariate measure used here and
in similar tasks elsewhere [9,10].

A comparison of the computing times of the different fea-
ture selection and classification approaches (Table 4)
shows that the computational costs for using the Gini
importance is comparable to the cost of using the other
multivariate feature selection criterion tested in this study.
On average the computing time was no more than twice
as long as for the more basic univariate importance meas-
ures.

Conclusion
In the joint application of the feature selection and classi-
fication methods on spectral data neither the random for-
ests classifier using the Gini importance in a recursive
feature selection, nor a constrained regression without
feature selection were the optimal choice for classifica-
tion. Random forest showed to be robust against single
noisy features with a large amount of non-discriminatory
variance. Unfortunately it also showed to be highly sensi-
ble to random offsets in the feature vector, a common
artefact in spectral data. D-PLS was capable of dealing

with such offsets, although it failed in the presence of
non-discriminatory variance in single, highly variable fea-
tures. The removal of such irrelevant – or even misleading
– predictors was crucial in the application of the con-
strained classifiers tested in this study. Overall, the com-
bined application of Gini importance in a recursive

Channel-wise variance of each feature (horizontal axis) and its correlation with the dependent variable (vertical axis)Figure 6
Channel-wise variance of each feature (horizontal 
axis) and its correlation with the dependent variable 
(vertical axis). For the data sets of the left and the central 
column, a feature selection was not required for optimal per-
formance, while the data sets shown in the right columns 
benefitted from a feature selection. Circle diameter indicates 
magnitude of the coefficient in the PLS regression. In the 
right column selected features are shown by red circles, 
while (the original values of) eliminated features are indicated 
by black dots. Relevant features show both a high variance 
and correlation with the class labels.

The effect of different noise processes on the performance of a random forest (green triangles) and a PLS classification (red circles)Figure 7
The effect of different noise processes on the per-
formance of a random forest (green triangles) and a 
PLS classification (red circles). In the left column, feature 
vectors are augmented by a random variable, which is subse-
quently rescaled according to a factor S (horizontal axis), 
thus introducing non-discriminatory variance to the classifica-
tion problem. In the right column, a random variable scaled 
by factor S is added as constant offset to the feature vectors, 
increasing the correlation between features (see text for 
details). Shown are results on the basis of the bivariate classi-
fication problem of Fig. 1 (top row), the NMR candida 2 data 
(middle), and the BSE binned data (below).
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feature elimination together with a D-PLS classification
was either the best approach or – in terms of statistical sig-
nificance – comparable to the best in all classification
tasks, and may be recommended for the separation of
binary, linearly separable data.

The results also suggest that when using a constrained
learning method – such as the D-PLS or D-PCR classifier
as in this study – the main purpose of a feature selection
is the removal of few "noisy" features with a large amount
of variance, but little importance to the classification
problem. Then, the feature elimination is a first step in the
regularization of a classification task, removing features
with non-discriminatory variance, and allowing for a bet-
ter regularization and implicit dimension reduction by
the subsequent classifier. Considering the similarity of
PLS, ridge regression and continuum regression [2,3,35] –
all of them trading correlation with class labels, and vari-
ance of the data for a regularization – one might expect
this to be a general feature for these constrained regression
methods.

Only binary classifications tasks were studied here, but
one may expect that results generalize to multi-class prob-
lems as well when using, for example, penalized mixture
models in place of a D-PLS classification. It might be
worthwhile to test whether using a constrained classifier
in the final classification step of a recursive feature selec-
tion is able to increase the classification performance on
other data as well, for example on microarrays where a
recent study [20] reported of a general advantage of sup-
port vector machines with RBF-kernel over the random
forest classifier.

Of course, rather than advocating a hybrid method using
random forest for feature selection and a constrained lin-
ear classifier to predict class membership, it might be
advantageous to adapt the random forest classifier itself to
fit the properties of spectral data in an optimal fashion.
For individual tree-like classifiers, a large body of litera-
ture about trees using such non-orthogonal, linear splits
in their nodes is available [34] and may be used for such
an adaption of the random forest classifier.

Methods
In a first experiment, we systematically evaluated the joint
use of different feature selection and classification meth-
ods, on a number of different spectral data sets. In a sec-
ond, we looked into the behaviour of the random forest
and D-PLS classifier on synthetically modified data, to
understand specific properties of these methods when
applied to spectra.

The effect of different noise processes on the performance of the feature selection methods in the synthetic bivariate classification problem illustrated in Fig. 1Figure 8
The effect of different noise processes on the per-
formance of the feature selection methods in the 
synthetic bivariate classification problem illustrated 
in Fig. 1. In the left column feature vectors are extended by 
a random variable scaled by S, in the right column a random 
offset of size S is added to the feature vectors. Top row: clas-
sification accuracy of the synthetic two-class problem (as in 
Fig. 7, for comparison); second row: multivariate Gini impor-
tance, bottom row: p-values of univariate t-test. The black 
lines correspond to the values of the two features spanning 
the bivariate classification task (Fig. 1), the blue dotted line 
corresponds to the third feature in the synthetic data set, the 
random variable. The performance of the random forest 
remains nearly unchanged even under the presence of a 
strong source of "local" noise for high values of S.
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Experiment 1: Joint feature selection and classification

In general, feature selection is a concern in both regression
(prediction of a continuous response) and in classifica-
tion (prediction of two or more categories). Here, we con-
fined ourselves to binary classification tasks. Our
experiments were based on four different data sets availa-
ble to us from different studies [36-39], providing – with
different preprocessing, labels, or dichotomous sub-prob-
lems – eleven binary classification tasks (Table 2).

Classification and feature selection methods

Three different feature selection approaches were applied
to the data in an explicit recursive feature elimination
(Table 1), together with the three following classifiers: lin-
ear discriminant principal component (D-PCR) and par-
tial least squares (D-PLS) classification (using [40]) and
the nonlinear random forest classifier (RF) (using [41]).
While trees in the random forest allow for a classification
via majority votes and a binary decision, D-PCR and D-
PLS classification were used with a predefined and fixed
threshold, i.e. a score of 0.5 intermediate to the trained
class values 0 and 1, using balanced classes during train-
ing and for the test (see below).

As univariate feature selection measure, the p-values of
channel-wise Wilcoxon-tests for class differences were
used to rank the features and to allow for a filtering of fea-
tures prior to the D-PLS and D-PCR classification. In the
two multivariate feature selection procedures applied, var-
iables were recursively eliminated either according to
smallest PLS or PC regression coefficient (as in [5],
although without stability test), or according to smallest
Gini importance value. In the latter case the actual classi-
fication in the selected subspace was performed not only
by a RF as in [15-18], but also by the linear classifiers. In
total, seven different combinations of feature selection
and classification methods were applied to the data (Table
2). The classification of the data without any feature selec-
tion was tested as well. For the results shown in the last
column of Tables 2 and 3 – i.e. the combination of feature
selection using regression coefficients and a subsequent
classification by RF – PLS was used in feature selection.
For the sake of computational simplicity, all multivariate
feature selection measures were optimized using their
own cost function and not in a joint loop with the subse-
quent classifier (using a cross-validated least-squares-error
for PLS and PCR regression coefficients and the out-of-bag
classification error of the RF for Gini importance, opti-

Table 4: Computing times.

no selection univariate selection Multivariate selection (Gini importance) multivariate selection (PLS/PC)

PLS PC RF PLS PC RF PLS PC RF PLS PC RF

MIR BSE orig 5.7 11.1 9.9 46.4 53.9 46.8 88.8 97.0 91.5 87.9 92.4 88.0

binned 2.8 3.2 3.1 13.6 14.7 15.9 26.1 27.1 29.0 28.7 29.6 31.5

MIR wine French 8.8 7.8 2.4 26.6 21.8 7.7 47.0 45.9 33.5 17.2 14.7 7.4

grape 12.1 10.3 2.5 28.9 22.3 8.0 54.0 47.6 33.5 15.8 13.1 6.5

NMR tumor all 0.3 0.4 0.4 1.4 1.2 2.1 2.9 2.7 3.6 3.6 3.4 4.3

center 0.2 0.2 0.2 1.1 0.8 1.1 2.2 1.9 2.1 2.1 1.8 2.0

NMR candida 1 4.6 8.8 7.7 22.4 41.2 37.1 43.5 62.5 61.1 59.8 78.4 75.4

2 3.7 4.8 3.8 18.0 22.0 19.4 34.5 38.5 37.3 36.3 40.3 37.9

3 3.7 4.7 3.7 17.4 20.1 17.9 33.4 36.0 34.7 34.6 37.8 35.1

4 3.9 5.1 4.8 18.7 23.4 24.3 36.0 40.5 60.5 41.6 46.2 47.0

5 3.5 3.9 2.6 31.9 32.4 27.0 62.6 63.0 60.0 58.3 43.4 38.5

The table reports the runtime for the different feature selection and classification approaches, and the different data sets (on a 2 GHz personal 
computer with 2 GB memory). Values are given in minutes, for a ten-fold cross-validation and with parameterisations as used for the results shown 
in Tables 2 and 3. For all methods, a univariate feature selection takes about five times as long as a classification of the same data set without feature 
selection. Both multivariate feature selection approaches require approximately the same amount of time for a given data set and classifier. Their 
computing time is no more than twice as long as in a recursive feature elimination based on a univariate feature importance measure.
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mized over the same parameter spaces as the respective
classifiers). For both univariate filters and multivariate
wrappers, 20% of the remaining features were removed in
each iteration step. Prior to classification all data was sub-
ject to L1 normalization, i.e. to a normalization of the area
under the spectrum in a predefined spectral region.

Data

Data set one, the BSE data set, originates from a study con-
cerning a conceivable ante-mortem test for bovine spong-
iform encephalopathy (BSE). Mid-infrared spectra of N =
200 dried bovine serum samples (Npos = 95, Nneg = 105)
were recorded in the spectral range of 400–4000 cm-1 with
P = 3629 data points per spectrum. Details of the sample
preparation and of the acquisition of spectra are reported
in Refs. [14,31]. The same spectra were used in a second
binary classification task after a smoothing and downsam-
pling ("binning"), and thus by reducing the number of
data points per spectrum to Pred = 1209.

Data set two, the wine data set, comprised N = 71 mid-
infrared spectra with a length of P = 3445 data points from
the spectral region of 899–7496 cm-1, sampled at a resolu-
tion of approx. 4 cm-1 interpolated to 2 cm-1, originating
from the analysis of 63 different wines using an auto-
mated MIRALAB analyzer with AquaSpec flow cell. In the
preprocessing a polynomial filter (Savitzky-Golay, length
9) of second order was applied to the spectra. Labels
assigned to these data were the type of grape (Nred = 30,
Nwhite = 41) in a first learning task and an indicator of the
geographic origin of the wine (NFrench = 26, NWorld = 45) in
a second.

Data set three, the tumor data set, comprised N = 278 in
vivo 1H-NMR spectra with a length of P = 101 data points
from the spectral region between approximately 1.0 ppm
and 3.5 ppm, originating from 31 magnetic resonance
spectroscopic images of 31 patients, acquired at 1.5 T with
an echo time of 135 ms in the pre-therapeutic and post-
operative diagnostics of (recurrent) brain tumor (Nhealthy =
153, Ntumor border = 72, Ntumor center = 53) [31,32]. Two binary
groupings were tested, either discriminating healthy vs.
both tumor groups (tumor all), or the spectral signature of
the tumor center vs. the remaining spectra (tumor center).

Data set four, the candida data set, comprised N = 581 1H-
NMR spectra of cell suspensions with a length of P = 1500
data points in between 0.35–4 ppm, originating from a
chemotaxonomic classification of yeast species (Candida
albicans, C. glabrata, C. krusei, C. parapsilosis, and C.
tropicalis). A subset of the data was originally published
in [34]. Its five different subgroups of sizes N = {175, 109,
101, 111, 85} allowed to define five different binary sub-
problems ("one-against-all").

Comparison

In the evaluation, 100 training and 100 test sets were sam-
pled from each of the available data sets, in a ten times
repeated ten-fold cross validation [42,43], following the
overall test design in [19]. In order to obtain equal class
priors both in training and testing, the larger of the two
groups of the binary problems was subsampled to the size
of the smaller if necessary. Where dependence between
observations was suspected, e.g. in the tumor data where
more than one spectrum originated for each patient, the
cross-validation was stratified to guarantee that all spectra
of a correlated subset were exclusively assigned to either
the training or the test data [42,43].

The random forest parameters were optimized in logarith-
mic steps around their default values [41] (using 300
trees, and a random subspace with dimensionality equal
to the rounded value of the square of the number of fea-
tures) according to the out-of-bag error of the random for-
est, while the number of latent variables γ in the linear
classifiers was determined by an internal five-fold cross-
validation for each subset, following the 1σ rule for
choosing the γ at the intersection between the least error
(at γopt) plus an interval corresponding to the 1σ standard
deviation at γopt, and the mean accuracy.

The classification accuracy was averaged over all 100 test
results and used as performance measure in the compari-
son of the different methods. While all feature selection
and all optimization steps in the classification were per-
formed utilizing the training data only, test result were
recorded for all feature subsets obtained during the course
of feature selection (Fig. 4). To verify significant differ-
ences between the test results, a paired Cox-Wilcoxon test
was used on the accuracies of the 100 test sets as proposed
in [42,43]. Such paired comparisons were performed for
each classifier between the classification result obtained
for the full set of features, and the best result when applied
in conjunction with a selection method (i.e. the results
with highest classification accuracy in the course of feature
selection). Feature selection approaches leading to a sig-
nificant increase in classification performance were indi-
cated accordingly (Table 2, indicated by stars). Once the
best feature selection and classification approach had
been identified for a data set (as defined by the highest
classification accuracy in a row in Table 2), it was com-
pared against all other results on the same data set. Results
which were indistinguishable from this best approach (no
statistical difference at a 5% level) were indicated as well
(Table 2, indicated by bold values).

Experiment 2: PLS and RF classification as a function of 

specific data properties

D-PLS reportedly benefits from an explicit feature selec-
tion on some data sets [33]. Random forest reportedly
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performed well in classification tasks with many features
and few samples [15-18], but was outperformed by stand-
ard chemometrical learning algorithms when used to clas-
sify spectral data. Thus, to identify reasons for these
differences and to corroborate findings from experiment
one, we decided to study the performance of both meth-
ods in dependence of two noise processes which are spe-
cific to spectral data.

Noise processes

We identified two sources of unwanted variation (noise
processes) which can be observed in spectral data, and
which can jeopardize the performance of a classifier.

First, there are processes affecting few, possibly adjacent,
spectral channels only. Examples for such changes in the
spectral pattern are insufficiently removed peaks and
slight peak shifts (magnetic resonance spectroscopy), the
presence of additional peaks from traces of unremoved
components in the analyte, or from vapour in the light
beam during acquisition (infrared spectroscopy). Identi-
fying and removing spectral channels affected by such
processes is often the purpose of explicit feature selection.
We refer to this kind of noise as "local noise" in the fol-
lowing, where the locality refers to the adjacency of chan-
nels along the spectral axis.

Second, there are processes affecting the spectrum as a
whole. Examples for such noise processes may be the pres-
ence (or absence) of broad baselines, resulting in a ran-
dom additional offset in the spectrum. Variation may also
result from differences in the signal intensities due to
changes in the concentration of the analyte, variation in
reflectance or transmission properties of the sample
(infrared spectroscopy), or the general signal amplitude
from voxel bleeding and partial volume effects (magnetic
resonance spectroscopy), leading to a scaling of the spec-
trum as a whole, and – after normalization – to random
offsets in the spectrum. Such processes increase the nom-
inal correlation between features and are the main reason
for the frequent use of high-pass filters in the preprocess-
ing of spectral data (Savitzky-Golay filter, see above). It
might be noted that this noise does not have to offset the
spectrum as a whole to affect the classification perform-
ance significantly, but may only modify those spectral
regions which turn out to be relevant to the classification
task. Nevertheless, we refer to this kind of noise as "global
noise" here.

Modified and synthetic data sets

For visualization (Fig 1, left), we modelled a synthetic
two-class problem, by drawing 2*400 samples from two
bivariate normal distributions (centred at (0,1) and (1,0),
respectively, with standard deviation 0.5). The two fea-
tures for the two-dimensional classification task were aug-

mented by a third feature comprising only random noise
(normally distributed, centred at 0, standard deviation
0.5), resulting in a data set with N = 800, P = 3 and bal-
anced classes. To mimic local noise, we rescaled the third,
random feature by a factor S, for S = 2{0,1,...,20}. In real spec-
tra one might expect S – the ratio between the amplitude
of a variable that is relevant to the classification problem,
and a larger variable introducing non-discriminatory var-
iance only – to be of several orders of magnitude. Here,
changing S gradually increased the variance of the third
feature and the amount of non-discriminatory variance in
the classification problem. To mimic global noise, we
added a constant offset (normally distributed, centred at
0, standard deviation 0.5), also scaled by S = 2{0,1,...,20}, to
the features of every sample as an offset. This increased the
correlation between the features and, along S, gradually
stretched the data along the bisecting line (Fig. 1, right).

In addition to the synthetic two-class problem of Fig. 1,
we modified two exemplary real data sets (candida 2 and
BSE binned) by these procedures in the same way, here
using S = 10{-6,-4,...,16}, using the largest amplitude of a
spectrum as reference for a shift by S = 1, or a rescaling of
the random feature (N(0,.5)).

Comparison

Gini importance and univariate importance (t-test) were
calculated along S for the features of the synthetic data set.
PLS and random forest classification were applied to all
data sets, for all values of S, after a L2-normalization of the
feature vector. (Which may be a closer match with the
noise statistic than the L1 normalization used in the real
data in the first experiment.) Classification accuracy was
determined according to the procedure described above
(Experiment 1).
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