
 Open access  Proceedings Article  DOI:10.1145/2063518.2063522

A comparison of RDB-to-RDF mapping languages — Source link 

Matthias Hert, Gerald Reif, Harald C. Gall

Institutions: University of Zurich

Published on: 07 Sep 2011 - International Conference on Semantic Systems

Topics: Web mapping, Data mapping, SPARQL, RDF and Semantic Web Stack

Related papers:

 A Survey of Current Approaches for Mapping of Relational Databases to RDF

 Triplify: light-weight linked data publication from relational databases

 RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data

 On directly mapping relational databases to RDF and OWL

 Bringing relational databases into the semantic web: a survey

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-
4tq2fwzfyf

https://typeset.io/
https://www.doi.org/10.1145/2063518.2063522
https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-4tq2fwzfyf
https://typeset.io/authors/matthias-hert-4bz5uw6p4w
https://typeset.io/authors/gerald-reif-2e8phsxhio
https://typeset.io/authors/harald-c-gall-35lv7iz84j
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/conferences/international-conference-on-semantic-systems-3vg2hj31
https://typeset.io/topics/web-mapping-yr08418o
https://typeset.io/topics/data-mapping-2fqhzamc
https://typeset.io/topics/sparql-37hc26ux
https://typeset.io/topics/rdf-39fy9mhe
https://typeset.io/topics/semantic-web-stack-3odwom9s
https://typeset.io/papers/a-survey-of-current-approaches-for-mapping-of-relational-184s7js57g
https://typeset.io/papers/triplify-light-weight-linked-data-publication-from-50slo4khed
https://typeset.io/papers/rml-a-generic-language-for-integrated-rdf-mappings-of-2t1lwzl5m0
https://typeset.io/papers/on-directly-mapping-relational-databases-to-rdf-and-owl-2gmt0unibk
https://typeset.io/papers/bringing-relational-databases-into-the-semantic-web-a-survey-5e17m8ifzl
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-4tq2fwzfyf
https://twitter.com/intent/tweet?text=A%20comparison%20of%20RDB-to-RDF%20mapping%20languages&url=https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-4tq2fwzfyf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-4tq2fwzfyf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-4tq2fwzfyf
https://typeset.io/papers/a-comparison-of-rdb-to-rdf-mapping-languages-4tq2fwzfyf


Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2011

A Comparison of RDB-to-RDF Mapping Languages

Hert, Matthias ; Reif, Gerald ; Gall, Harald C

Abstract: Mapping Relational Databases (RDB) to RDF is an active field of research. The majority of
data on the current Web is stored in RDBs. Therefore, bridging the conceptual gap between the relational
model and RDF is needed to make the data available on the Semantic Web. In addition, recent research
has shown that Semantic Web technologies are useful beyond the Web, especially if data from different
sources has to be exchanged or integrated. Many mapping languages and approaches were explored
leading to the ongoing standardization effort of the World Wide Web Consortium (W3C) carried out in
the RDB2RDF Working Group (WG). The goal and contribution of this paper is to provide a feature-
based comparison of the state-of-the-art RDB-to-RDF mapping languages. It should act as a guide in
selecting a RDB-to-RDF mapping language for a given application scenario and its requirements w.r.t.
mapping features. Our comparison framework is based on use cases and requirements for mapping RDBs
to RDF as identified by the RDB2RDF WG. We apply this comparison framework to the state-of-the-art
RDB-to-RDF mapping languages and report the findings in this paper. As a result, our classification
proposes four categories of mapping languages: direct mapping, read-only general-purpose mapping, read-
write general-purpose mapping, and special-purpose mapping. We further provide recommendations for
selecting a mapping language.

DOI: https://doi.org/10.1145/2063518.2063522

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-53354
Conference or Workshop Item
Published Version

Originally published at:
Hert, Matthias; Reif, Gerald; Gall, Harald C (2011). A Comparison of RDB-to-RDF Mapping Languages.
In: Proceedings of the 7th International Conference on Semantic Systems (I-Semantics), Graz, Austria,
7 September 2011 - 9 September 2011.
DOI: https://doi.org/10.1145/2063518.2063522



A Comparison of RDB-to-RDF Mapping Languages

Matthias Hert
Department of Informatics

University of Zurich
hert@ifi.uzh.ch

Gerald Reif
innovation process technology

gerald.reif@ipt.ch

Harald C. Gall
Department of Informatics

University of Zurich
gall@ifi.uzh.ch

ABSTRACT

Mapping Relational Databases (RDB) to RDF is an active
field of research. The majority of data on the current Web
is stored in RDBs. Therefore, bridging the conceptual gap
between the relational model and RDF is needed to make
the data available on the Semantic Web. In addition, re-
cent research has shown that Semantic Web technologies
are useful beyond the Web, especially if data from different
sources has to be exchanged or integrated. Many mapping
languages and approaches were explored leading to the on-
going standardization effort of the World Wide Web Consor-
tium (W3C) carried out in the RDB2RDF Working Group
(WG). The goal and contribution of this paper is to provide
a feature-based comparison of the state-of-the-art RDB-to-
RDF mapping languages. It should act as a guide in select-
ing a RDB-to-RDF mapping language for a given applica-
tion scenario and its requirements w.r.t. mapping features.
Our comparison framework is based on use cases and re-
quirements for mapping RDBs to RDF as identified by the
RDB2RDF WG. We apply this comparison framework to
the state-of-the-art RDB-to-RDF mapping languages and
report the findings in this paper. As a result, our clas-
sification proposes four categories of mapping languages:
direct mapping, read-only general-purpose mapping, read-
write general-purpose mapping, and special-purpose map-
ping. We further provide recommendations for selecting a
mapping language.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
H.1 [Models and Principles]: Miscellaneous

General Terms

Documentation, Languages

Keywords

RDB-to-RDF mapping, feature-based comparison

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
I-SEMANTICS 2011, 7th Int. Conf. on Semantic Systems, Sept. 7-9, 2011,

Graz, Austria

Copyright 2011 ACM 978-1-4503-0621-8 ...$10.00.

1. INTRODUCTION
Mapping Relational Databases (RDB) to RDF is an active

field of research. As reported in [14], the majority of data
on the current Web is stored in RDBs. Therefore, bridging
the conceptual gap between the relational model and RDF is
needed to make the data available on the Semantic Web. In
addition, recent research has shown that Semantic Web tech-
nologies are useful beyond the Web, especially if data from
different sources has to be exchanged or integrated (e.g., [31,
28, 27]).

Many approaches were explored to make relational data
available to Semantic Web-enabled applications. Depend-
ing on the requirements, these approaches introduced map-
ping languages that range from simple and pragmatic to
highly specific or general-purpose. This lead to the ongo-
ing standardization effort of the World Wide Web Consor-
tium (W3C) carried out in the RDB2RDF Working Group1

(WG). The mission of the RDB2RDF WG as defined in their
charter [20] is to standardize a language for mapping rela-
tional data and relational database schemas into RDF and
OWL. Although a standard mapping language is under de-
velopment, we argue in this paper that alternative languages
still have a right to exist as they may provide features or
simplicity required in certain use cases that the standard
mapping language cannot provide or explicitly excludes.

The goal and contribution of this paper is to provide a
feature-based comparison of the state-of-the-art RDB-to-
RDF mapping languages. It should act as a guide in select-
ing a RDB-to-RDF mapping language for a given applica-
tion scenario and its requirements w.r.t. mapping features.
Our comparison framework is based on use cases and re-
quirements for mapping RDBs to RDF as identified by the
RDB2RDF WG. We apply this comparison framework to the
state-of-the-art RDB-to-RDF mapping languages and report
the findings in this paper. As a result, our classification pro-
poses four categories of mapping languages: direct mapping,
read-only general-purpose mapping, read-write general-pur-
pose mapping, and special-purpose mapping. We further
provide recommendations for selecting a mapping language.

The remainder of this paper is structured as follows. Sec-
tion 2 presents existing surveys related to RDB-to-RDF map-
ping and Section 3 introduces the mapping languages cov-
ered in this comparison. The framework we use for compar-
ing the mapping languages is defined in Section 4. Features
are extracted from the document Use Cases and Require-
ments for Mapping Relational Databases to RDF [32] pro-
duced by the RDB2RDF WG. Additional features which

1http://www.w3.org/2001/sw/rdb2rdf/



recently gained attention in the research community [23, 7,
11] complement the comparison framework. In Section 5,
we apply the comparison framework to the presented map-
ping languages and we discuss the results on a feature-by-
feature basis. Section 6 classifies the mapping languages into
four categories and provides recommendations for selecting
a mapping language.

2. RELATED WORK
The W3C RDB2RDF Incubator Group2 (XG) produced

A Survey of Current Approaches for Mapping of Relational
Databases to RDF [34] as part of their mission. It surveys
current techniques, tools, and applications for mapping be-
tween RDBs and RDF. A survey reference framework is de-
fined that covers aspects such as mapping creation, repre-
sentation and accessibility, application domain, support for
data integration as well as the implementation of the map-
ping, i.e., static Extract Transform Load (ETL) versus dy-
namic query translation. Compared to this paper the survey
of the RDB2RDF XG has a different scope. While we focus
on the individual features of the mapping languages, the
RDB2RDF XG survey is focused on the overall approach
and implementation of the mappings. The mapping lan-
guages are only briefly addressed on a higher level and are
not compared on a feature-by-feature basis.

The W3C Semantic Web Advanced Development for Eu-
rope3 (SWAD-Europe) dedicates two brief sections of their
Deliverable 10.2 [5] to RDB-to-RDF mapping. It contains
general remarks on RDB-to-RDF mapping and refers to two
implemented mapping tools. Due to the early publication of
this report in 2003, it could not include many of the mapping
languages covered in this paper because they were developed
and/or published after the release of the SWAD-Europe de-
liverable.

3. MAPPING LANGUAGES
In this section, we briefly introduce the mapping lan-

guages covered by this comparison. To be included, a map-
ping language needs to a) have a clear focus on mapping
RDBs (i.e., other tabular data such as spreadsheets are not
covered) and b) be general applicable (i.e., not a domain-
specific solution).

Direct Mapping: In [6], a direct approach for mapping
RDBs to the Semantic Web is proposed. It maps re-
lational tables to classes in an RDF vocabulary and
the attributes of the tables to properties in the vocab-
ulary. The goal is to expose a RDB on the (Semantic)
Web to make extra statements about it. The URIs of
the instances as well as those of the vocabulary classes
are generated automatically based on the RDB schema
and data.

The focus of [25] is on the automatic discovery of map-
pings and not on their representation. The result is
a simple table-to-class and attribute-to-property map-
ping extended with heuristics to find implicit subclass
relationships in the RDB schema.

SquirrelRDF [37] is another implementation of the di-
rect mapping as proposed in [6]. Its mapping is raw,

2http://www.w3.org/2005/Incubator/rdb2rdf/
3http://www.w3.org/2001/sw/Europe/

i.e., the classes and properties of the target RDF vo-
cabulary are generated from the names in the RDB
schema. Mapping to a domain ontology is postponed
to a later stage and is performed by RDF-based tools.

All three mappings use a similar direct approach for
RDB-to-RDF mapping. We therefore summarize them
under the term Direct Mapping.

eD2R: The case study described in [3] uses eD2R for the
RDB-to-RDF mapping. eD2R is an extension of D2R
MAP [9] with the goal of covering mapping situations
involving databases that are lightly structured or not
in first normal form [18]. The mappings are based on
SQL queries that extract records from the RDB and
transformation functions that can be applied to the
extracted values. Existing vocabularies can be reused.
eD2R extends the XML-based syntax of D2R MAP to
represent the mappings.

R2O: R2O [4] is an extensible and fully declarative lan-
guage to describe mappings between RDB schemata
and ontologies implemented in RDFS or OWL. It is
assumed that the RDB and ontology models are pre-
existing. R2O is aimed at situations where the sim-
ilarity between the ontology and the RDB model is
low. It has been conceived to be expressive enough to
cope with complex mapping cases where one model is
richer, more generic/specific, or better structured than
the other. Mappings are expressed in a XML-based
syntax.

Relational.OWL: In [16], a OWL-based representation for-
mat for relational data and schema components, called
Relational.OWL, is introduced. It defines a OWL Full
ontology to describe the schema and data of a RDB.
The target application of this mapping is data ex-
change in peer-to-peer databases.

Virtuoso RDF Views: The Virtuoso Universal Server by
Openlink Software features RDF Views [17, 36] to ex-
pose relational data on the Semantic Web. It consists
of a declarative Meta Schema Language for defining
the mapping of SQL data to preexisting RDF vocab-
ularies. At the most basic level, Virtuoso RDF Views
transform the result set of a SQL SELECT query into
a set of triples. The Meta Schema Language resembles
SQL DDL from a syntax point of view.

D2RQ: D2RQ [12, 10] is a mapping language and plat-
form for treating non-RDF relational databases as vir-
tual RDF graphs. Its aim is to expose RDBs on the
Semantic Web to provide access via SPARQL queries
and Linked Data. Existing RDF vocabularies can be
reused. The mappings are expressed in RDF and for-
mally defined by an RDFS schema. It is the successor
to the XML-based D2R MAP [9].

Triplify: Triplify [1] is a light-weight approach to publish
Linked Data from RDBs. It is based on mapping
HTTP-URI requests onto RDB queries and translating
the resulting relations into RDF statements. The main
motivation of Triplify is that the majority of informa-
tion on the Web is already stored in structured form
(i.e., as data in RDBs) but published as HTML by
Web applications (e.g., CMS, Wiki, Blog). Mapping



the RDB schemata of such popular Web applications
results in a boost of Semantic Web adoption as these
Web applications are deployed many times. Triplify
mappings are implemented as PHP scripts.

R2RML: R2RML [15] is the mapping language of the on-
going work by the W3C RDB2RDF WG to standard-
ize RDB-to-RDF mappings. The goal is to define a
vendor-independent mapping language for read-only
data access.

R3M: R3M [24] is the mapping language of the OntoAc-

cess
4 mediation platform [22]. As an update-aware

mapping language it enables bidirectional RDF-based
access to the RDB, i.e., read and write access is sup-
ported. R3M employs a RDF-based syntax that con-
tains the mappings of tables to classes and attributes
to properties as well as information about integrity
constraints.

4. COMPARISON FRAMEWORK
In this section, we introduce the framework used for com-

paring the RDB-to-RDF mapping languages presented above.
It is based on the document Use Cases and Requirements
for Mapping Relational Databases to RDF [32] of the W3C
RDB2RDF Working Group5 (WG). Extensions are made in
the area of RDF-based write access, a feature not addressed
by the W3C RDB2RDF WG that lately gained attention
from the research community [23, 7, 11].

A direct approach for mapping RDBs to the Semantic Web
was proposed in [6]. It maps (physical) relational tables to
classes in an RDF vocabulary and relational attributes to
properties in that vocabulary. We consider this to be the
most basic mapping and we require that a mapping language
supports at least this kind of mapping to be included in the
comparison. Therefore, these two features are not explicitly
represented in the comparison framework but are assumed
to hold implicitly.

We now enumerate the features that define the framework
our comparison of RDB-to-RDF mapping languages is based
on.

F1 Logical Table to Class: A logical table is defined as
a SQL view already stored in the RDB system or the
result of an ad-hoc SQL query, both resulting in a table
that is not necessarily stored physically in the RDB.
Feature F1 enables the mapping of such a logical table
to a class in the RDF vocabulary.

F2 M:N Relationships: RDBs require a special construct
called link (or join) tables to represent M:N relation-
ships among concepts. RDF, however, does not require
such helper constructs. Therefore, link tables should
be mapped to RDF properties instead of classes. Fea-
ture F2 enables the mapping of link tables to properties
in the RDF vocabulary.

F3 Project Attributes: Tables in a RDB may contain at-
tributes that should not be part of the RDF represen-
tation (e.g., irrelevant or sensitive attributes such as
passwords). A mapping should project only the re-
quired attributes to the RDF representation. Feature

4http://ontoaccess.org/
5http://www.w3.org/2001/sw/rdb2rdf/

F3 enables projecting a subset of the attributes in the
mapping.

F4 Select Conditions: RDB tables may contain records
that should not be part of the RDF representation
(e.g., outdated data). A mapping should support the
definition of a condition that is evaluated for each
record to decide about its inclusion in the RDF rep-
resentation. Feature F4 enables the definition of such
select conditions in the mapping.

F5 User-defined Instance URIs: Records in the RDB
are converted to RDF instances identified by an URI.
These instance URIs can be automatically generated
based on the RDB schema and data or the user of the
RDB-to-RDF mapping may be able to define the (syn-
tactic) form of the generated URIs. Feature F5 enables
user-defined instance URIs.

F6 Literal to URI: URIs as a datatype are typically not
supported in a RDB system. Therefore, values rep-
resenting URIs are stored as character literals (e.g.,
email addresses). Such literal values should be con-
verted to valid URIs in the RDF representation. Fea-
ture F6 enables the generation of URIs from literal
values.

F7 Vocabulary Reuse: The vocabulary terms that a RDB
schema is mapped to can be generated automatically
(based on the names of tables and attributes in the
RDB schema) or existing RDF vocabularies can be
reused. Feature F7 enables the mapping to existing
RDF vocabulary terms.

F8 Transformation Functions: Literal values may require
a different (syntactic) representation in RDF (e.g., tem-
perature in Centigrade vs. Fahrenheit). Transforma-
tion functions may be defined to provide the conversion
of values between the RDB and RDF representations.
Feature F8 enables support for such transformation
functions.

F9 Datatypes: Datatypes of literal values are an impor-
tant feature in RDB systems and RDF. Although there
exist mappings [26] of common SQL datatypes to the
XML datatypes [8] used in RDF, the information about
datatypes might be of value. Feature F9 enables the
explicit representation of datatype information in the
mapping.

F10 Named Graphs: RDF data sets may consists of mul-
tiple named graphs. A mapping may therefore assign
certain parts of a RDB to a specific named graph. Fea-
ture F10 enables the support of named graphs in the
RDB-to-RDF mapping.

F11 Blank Nodes: Blank nodes are used in RDF to repre-
sent instances that have no RDF URI reference identi-
fier but are distinct in an RDF graph [29], i.e., they are
a form of existential quantification [21]. One common
usage of blank nodes is in structured property values
(e.g., structuring an address consisting of street, postal
code, and city). In the case of RDB-to-RDF mapping
they may also be used to represent RDB records with-
out a primary key. Feature F11 enables support for
generating blank nodes.



F12 Integrity Constraints: Integrity constraints provide
a basic mechanism of semantics in RDBs. We distin-
guish between key constraints (primary key, foreign
key) and other constraints (not null, unique, check).
Feature F12 enables the explicit description of con-
straints in a mapping language.

F13 Static Metadata: Static metadata may be added to
the RDF representation that has no direct counterpart
in the RDB (e.g., provenance or licensing information).
Schema-level triples such as rdf:type triples and triples
originating from the target RDF vocabulary are, how-
ever, not in the scope of this feature. Feature F13
enables the definition of static metadata.

F14 One Table to n Classes: Mapping a single table to
multiple classes in the RDF vocabulary may be nec-
essary if the RDB schema is a) not normalized or b)
concept specialization is encoded as an attribute of the
table. This results in two mapping cases: a) the table
is mapped multiple times, each time with a subset of
the attributes and b) records of the table are mapped
to a different class depending on the value of a spe-
cific discriminator attribute. Feature F14 enables the
mapping of one table to n classes.

F15 Write Support: RDF data, including mapped RDBs,
are often accessed in a read-only manner (e.g., via
SPARQL queries or Linked Data). However, support
for write access is required in certain use cases which
lately gained attention from the research community [23,
7, 11]. The requirements of write access should be ex-
plicitly addressed in a mapping language. Feature F15
enables explicit support for RDF-based write access to
relational data.

Based on this set of fifteen features we compare the map-
ping languages presented in Section 3 and discuss important
differences in feature support and the resulting consequences
for RDB-to-RDF mapping systems.

5. DISCUSSION
In this section, we discuss the RDB-to-RDF mapping lan-

guages presented in Section 3. The discussion is structured
according to the features of the comparison framework in-
troduced in Section 4. We mostly limit the discussion to the
mapping language that either support a feature partially or
not at all. If a mapping language is not mentioned in the dis-
cussion of a feature, the reader may assume that it supports
the feature. See also Table 1 for a summary.

F1 Logical Table to Class: Mapping logical tables to on-
tology classes is supported in one form by all of the
mapping languages. This is the case in the mapping
of existing views as they can be treated like a physical
table. The Direct Mapping does not support map-
ping the results of an ad hoc query to a class. Re-
lational.OWL does not mention the mapping of log-
ical tables due to its focus on representing the core
database schema and data. R3M does not support
mapping the results of a query. Mapping of existing
views is not prohibited, although this may interfere
with R3M’s main motivation of bidirectional data ac-
cess (cf. the view update problem [2]).

F2 M:N Relationships: R3M is the only mapping lan-
guage to provide explicit support for M:N relation-
ships. The Direct Mapping, R2O, and Relational.OWL
do not mention any special support for mapping link
tables to ontology properties. The other mapping lan-
guages provide implicit support due to their use of SQL
(or fragments thereof) as an essential part of the map-
ping language.

F3 Project Attributes: The Direct Mapping automatically
maps every attribute to properties, projecting only a
subset of attributes is not intended. Virtuoso, Triplify
as well as R2RML delegate the projection of attributes
to the SQL queries used for the mapping.

F4 Select Conditions: The Direct Mapping does not pro-
vide the selection of rows via a condition. Also Re-
lational.OWL does not allow this. Virtuoso, Triplify,
and R2RML again use SQL with its powerful support
for conditions to implement this feature. R3M pro-
vides limited support for the feature as solely condi-
tions with equality are allowed to preserve the support
for bidirectional data access.

F5 User-defined Instance URIs: Instance URIs are gen-
erated automatically in the Direct Mapping, hence cus-
tomization by the user is not supported. Likewise,
Relational.OWL with its focus on data exchange does
not intend user-defined instance URIs, in fact, blank
nodes are used for all instances. Triplify relies on the
string concatenation feature of SQL to define custom
instance URIs.

F6 Literal to URI: No support for this feature is provided
by the Direct Mapping as well as Relational.OWL. All
other mapping languages support it either with ex-
plicit language constructs or in the case of Triplify and
R2RML via the SQL-based mapping.

F7 Vocabulary Reuse: The Direct Mapping itself does not
support the reuse of existing vocabulary terms. Prop-
erties are generated based on the attribute names in
the database schema. Existing classes can only be used
by adding corresponding rdf:type statements in an ad-
ditional step. Relational.OWL does also not provide
support for vocabulary reuse.

F8 Transformation Functions: Transformation functions
are not in the scope of the Direct Mapping and Re-
lational.OWL. Triplify and R2RML use functions in
SQL to transform object values. R3M requires the
functions to be defined bidirectionally to retain read
and write data access.

F9 Datatypes: The Direct Mapping is the only mapping
language that does not describe the explicit represen-
tation or the mapping of datatypes.

F10 Named Graphs: Many of the mapping languages (Di-
rect Mapping, eD2R, R2O, and D2RQ) predate the
introduction of named graphs and therefore provide
no support for this feature. Others (Relational.OWL,
Triplify, and R3M) explicitly choose not to support
named graphs for various reasons.



Table 1: Summary table of RDB-to-RDF mapping language comparison

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Direct Mapping (✔) ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔

eD2R ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ (✔) ✘ ✔ ✘

R2O ✔ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ (✔) ✘ (✔) ✘

Relational.OWL (✔) ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✔ (✔) ✘ ✘ ✔

Virtuoso ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ (✔) ✘ ✔ ✘

D2RQ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ (✔) ✔ ✔ ✘

Triplify ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ (✔) ✘ ✔ ✘

R2RML ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ (✔) ✔ ✔ ✘

R3M (✔) ✔ ✔ (✔) ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✔ ✔

✔ = full support (✔) = partial support ✘ = no support

F11 Blank Nodes: Instance URIs in the Direct Mapping
are generated automatically for each database record
and therefore blank nodes are not supported. In Re-
lational.OWL, all instances are represented as blank
nodes because individual URIs are not needed for its
main application scenario as a data exchange format.
Support for blank nodes is not described in Triplify
and R3M.

F12 Integrity Constraints: No support for integrity con-
straints is available in the Direct Mapping. R3M pro-
vides rich support for key and the other constraints.
All other mapping languages are limited to key con-
straints.

F13 Static Metadata: Generating triples on the schema
level (e.g., rdf:type triples) is supported by many of
the mapping languages but is not in the scope of this
feature as explained in Section 4. Support for static,
non-schema-level triples (e.g., provenance or licensing
information) is only available in D2RQ and R2RML.

F14 One Table to n Classes: The Direct Mapping as well
as Relational.OWL do not allow the mapping of a sin-
gle table to multiple classes. R2O provides partial sup-
port as mapping a table multiple times with a subset of
the attributes is possible while mapping a table mul-
tiple times based on the value of a discriminator at-
tribute is not. Virtuoso, D2RQ, Triplify, and R2RML
again rely on the power of a SQL-based mapping to
support this feature. R3M allows the mapping of one
table to n classes in a restricted form. To preserve bidi-
rectional data access, the constraints defined on a table
must not be violated in a mapping. For example, if a
table contains an attribute with a not null constraint,
this attribute must be mapped to each class because
it must be set for each record. Otherwise, it is not
possible to insert any instances of this class.

F15 Write Support: Support for RDF-based write access
to the RDB is influenced by multiple of the other fea-
tures, but some mapping languages address write sup-
port explicitly while others choose a feature set that
renders write support impractical. The Direct Map-
ping could support write access as it represents the
RDB schema directly in RDF. However, none of the

existing approaches that apply the Direct Mapping
consider write access explicitly in their feature set.
Relational.OWL with its data exchange background
obviously provides write support. R3M as a bidirec-
tional approach does so as well. The other mapping
languages were all designed with read-only use cases
in mind. Attempts were made to add write support to
some of the read-only languages (e.g., D2RQ/Update6

for D2RQ or [19] for R2RML), but it was also shown
that this requires restrictions to the mapping languages
resulting in existing mapping definitions to be no longer
valid in the restricted approaches.

6. CONCLUSION
In this paper, we presented a feature-based comparison of

the state-of-the-art RDB-to-RDF mapping languages.
Based on feature support, the mapping languages are clas-

sified into four categories: direct mapping, read-only general-
purpose mapping, read-write general-purpose mapping, and
special-purpose mapping.

Direct Mapping: The direct mapping, as its name im-
plies, is a direct approach for RDB-to-RDF mapping.
Aimed at providing simple means to map RDBs to
RDF it does not fully support any of the additional fea-
tures used in this comparison. Therefore, peculiarities
of the relational model such as link tables remain in the
RDF representation, although RDF does note require
such helper constructs as it provides direct means to
model these relationships. The advantage of this map-
ping is its simplicity to understand and implement the
language. It is therefore recommended in application
scenarios where a direct representation of the relational
schema is acceptable and simplicity is of higher value.

Read-only General-purpose Mapping: Read-only gen-
eral-purpose mapping languages (Virtuoso, D2RQ, and
R2RML) are very similar w.r.t. the features they sup-
port. The differences are in features not directly re-
lated to the expressiveness of the mappings, namely
support for named graphs (F10) and static metadata
(F13). Virtuoso provides support for named graphs

6http://d2rqupdate.cs.technion.ac.il/



(F10) but not for static metadata (F13). The oppo-
site is the case in D2RQ, no support for named graphs
(F10) is provided, but static metadata (F13) can be
specified. R2RML supports both features.

These mapping languages enable a highly expressive
bridging of the conceptual gap between RDF and the
relational model. However, this higher expressiveness
also implies an increased complexity that results in
an unidirectional mapping, i.e., bidirectional read and
write access to the data is impractical. Understanding
and implementing the mapping languages may also re-
quire a higher learning effort. Due to their high ex-
pressiveness, mapping languages of this category can
be recommended for various application scenarios as
long as the usage is limited to read-only data access.

In choosing a specific mapping language of this cate-
gory, aspects not related to feature support may in-
fluence the decision such as implementation maturity,
standards compliance, or licensing terms.

Read-Write General-purpose Mapping: R3M can be
classified as a general-purpose mapping language as
well, but it has the additional goal of providing bidi-
rectional (i.e., read and write) data access to the RDB.
This explains most of the differences in feature sup-
port compared to the read-only general-purpose map-
ping languages. The most important difference is that
in R3M the mapping of logical tables (F1) can not
be allowed arbitrarily due to the view update prob-
lem [2]. The definition of select conditions (F4) that
decide about the inclusion of a record in the RDF rep-
resentation must also be restricted to preserve write ac-
cess. Conditions based on inequalities (e.g., less than
<) result in ambiguities if new data should be inserted.
For example, imagine a mapping where a table person
that represents people of all ages should be (partially)
mapped to a concept Adult that represents people of
the age 18 or older. For this, a select condition must
be defined on the attribute year of birth of the per-
son table, namely that its value is less than 1993. If
now a new instance of the concept Adult should be in-
serted into the RDB that does not explicitly contain
a value for year of birth, it remains ambiguous what
value should be set for this attribute as any value less
than 1993 satisfies the select condition. Therefore, se-
lect conditions have to be restricted to equality (=)
conditions. Furthermore, support for integrity con-
straints (F12) is extended to other constraints such as
not null, unique, and check to enable the detection of
invalid write requests, e.g.,, detecting missing data for
a not null attribute.

In summary, the mapping language of this category
provides a more expressive bridging of the conceptual
gap between the relational model and RDF than the
mapping approaches of the direct mapping. Peculiari-
ties of the relational model such as link tables are not
transferred to the RDF representation. This mapping
language is, however, less expressive than the read-
only general-purpose mapping languages, but this is
required to guarantee support for write access. R3M
as the sole mapping language of this category is rec-
ommended for application scenarios where RDF-based
read and write access to the relational data is needed.

Special-purpose Mapping: Mapping languages such as
eD2R, R2O, and Triplify were developed for specific
use cases and are obviously influenced by those use
cases in the features they support. This does not
necessarily result in a loss of expressiveness or appli-
cability compared to the general-purpose languages.
The differences are mostly limited to a few features
such as support for named graphs (F10), blank nodes
(F11), or static metadata (F13). None of the mapping
languages in this category provide support for named
graphs (F10) or static metadata (F13). Blank nodes
(F11) are supported by eD2R and R2O but not by
Triplify. The use case of Relational.OWL, however,
is highly specialized and does therefore neither imple-
ment nor require many of the described features.

The mapping languages of this category were devel-
oped for their specific application scenarios and are
therefore recommended for application in closely re-
lated scenarios where the general-purpose mapping lan-
guages are not applicable or too complex.

Virtuoso, Triplify, R2RML, and to some extent D2RQ are
mapping languages that rely heavily on SQL to implement
the mapping. While on the one hand this yields certain ad-
vantages, it also entails serious drawbacks. The key benefit
is that it allows one to reuse the power of the SQL language
in defining views over the relational data. This pushes the
main mapping work to the database system and therefore
reduces implementation effort. On the other hand, there
are two major drawbacks. First of all, in using SQL as the
mapping language the semantics of the mapping is hidden
in SQL strings and is therefore not easily accessible, i.e., not
without parsing the SQL strings. Second, mappings based
on SQL views suffer from the same problem w.r.t. write ac-
cess as standard SQL views, namely the view update prob-
lem [2]. History showed that trying to add write access to
a mapping or a view definition language is in general im-
practical (cf. discussion of F15 Write Support in Section 5).
Existing mapping or view definition languages would have to
be restricted to a subset of the original language to provide
general support for write access to the data (e.g., [13]). This
renders existing mapping/view definitions incompatible with
the restricted languages. As a result, existing mapping/view
definitions need to be rewritten, invalidating one of the top
argument for reusing existing mappings. In certain mapping
cases it might not even be possible to adapt the mapping be-
cause it uses some of the features that render the mapping
language read-only.

The situation in the current read-only mapping languages
resembles the introduction of SQL views where write access
was also not addressed from the beginning. Even the ongo-
ing standardization work by the W3C RDB2RDF WG ex-
plicitly defines write access to the data as out of scope [20].
This trend leads to a situation where RDB-to-RDF data
sets are not on par with native RDF data sets, but lim-
ited to read-only application scenarios. Currently, there
is no high demand for write access to RDF data as the
present SPARQL 1.0 [33] recommendation is limited to read-
only queries and no standard data manipulation approach
for RDF exists. However, the upcoming SPARQL 1.1 rec-
ommendation includes the update language for RDF called
SPARQL 1.1 Update [35] and the SPARQL 1.1 Graph Store
HTTP Protocol [30], which will increase the demand for



write access. Write access should be possible irrespective of
the source of the data being a native RDF triple store or a
mediated RDB. Approaches such as R3M exist that address
this problem.

In summary, we showed that based on feature support
the state-of-the-art RDB-to-RDF mapping languages can be
classified into four categories: direct mappings that provide
simple means to represent RDB schemata and data in RDF;
general-purpose mapping languages that provide highly ex-
pressive RDB-to-RDF mappings, but are limited to read-
only data access; general-purpose mapping languages that
are less expressive but enable a bidirectional (i.e., read and
write) data access; and special-purpose mapping languages
with a feature set tailored to specific application scenarios.
We further provided recommendations for selecting a map-
ping language.

7. ACKNOWLEDGMENTS
Partial support provided by Swiss National Science Foun-

dation award number PDAMP2-122957.

8. REFERENCES

[1] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and
D. Aumueller. Triplify – Light-Weight Linked Data
Publication from Relational Databases. In Proceedings
of the 18th International World Wide Web
Conference, 2009.

[2] F. Bancilhon and N. Spyratos. Update Semantics of
Relational Views. In ACM Transactions on Database
Systems, 1981.

[3] J. Barrasa, O. Corcho, and A. Gómez-Pérez. Fund
Finder: A Case Study of Database-to-Ontology
Mapping. In Proceedings of the Semantic Integration
Workshop, 2003.

[4] J. Barrasa, O. Corcho, and A. Gómez-Pérez. R2O, an
Extensible and Semantically Based
Database-to-Ontology Mapping Language. In
Proceedings of the 2nd Workshop on Semantic Web
and Databases, 2004.

[5] D. Beckett and J. Grant. SWAD-Europe Deliverable
10.2: Mapping Semantic Web Data with RDBMSes.
http://www.w3.org/2001/sw/Europe/reports/

scalable_rdbms_mapping_report/, January 2003.
Last visited July 2011.

[6] T. Berners-Lee. Relational Databases on the Semantic
Web.
http://www.w3.org/DesignIssues/RDB-RDF.html,
2009. Last visited July 2011.

[7] T. Berners-Lee, R. Cyganiak, M. Hausenblas,
J. Presbrey, O. Seneviratne, and O.-E. Ureche.
Realising a Read-Write Web of Data.
http://web.mit.edu/presbrey/Public/rw-wod.pdf,
June 2009. Last visited July 2011.

[8] P. V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes Second Edition. W3C Recommendation.
http:

//www.w3.org/TR/2004/REC-xmlschema-2-20041028/,
October 2004.

[9] C. Bizer. D2R MAP – A Database to RDF Mapping
Language. In Proceedings of the 12th International
World Wide Web Conference, 2003.

[10] C. Bizer, R. Cyganiak, J. Garbers, O. Maresch, and
C. Becker. The D2RQ Platform v0.7 - Treating
Non-RDF Relational Databases as Virtual RDF
Graphs - User Manual and Language Specification.
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

spec/20090810/, August 2009.

[11] C. Bizer, T. Heath, T. Berners-Lee, and
M. Hausenblas. Linked Data on the Web - Topics of
Interest. http://events.linkeddata.org/ldow2011/,
2011. Last visited July 2011.

[12] C. Bizer and A. Seaborne. D2RQ – Treating Non-RDF
Databases as Virtual RDF Graphs. In Proceedings of
the 3rd International Semantic Web Conference, 2004.

[13] A. Bohannon, B. C. Pierce, and J. A. Vaughan.
Relational Lenses: A Language for Updatable Views.
In Proceedings of the 25th ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems, 2006.

[14] K. C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang.
Structured Databases on the Web: Observations and
Implications. SIGMOD Record, 2004.

[15] S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB
to RDF Mapping Language. W3C Working Draft.
http://www.w3.org/TR/2010/WD-r2rml-20101028/,
October 2010.

[16] C. P. de Laborda and S. Conrad. Relational.OWL – A
Data and Schema Representation Format Based on
OWL. In Proceedings of the 2nd Asia-Pacific
Conference on Conceptual Modelling, 2005.

[17] O. Erling and I. Mikhailov. RDF Support in the
Virtuoso DBMS. In Proceedings of the SABRE
Conference on Social Semantic Web, 2007.

[18] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall
Press, 2008.

[19] A. Garrote and M. N. M. Garcia. RESTful Writable
APIs for the Web of Linked Data Using Relational
Storage Solutions. In Proceedings of the WWW2011
Workshop on Linked Data on the Web, 2011.

[20] H. Halpin and I. Herman. RDB2RDF Working Group
Charter.
http://www.w3.org/2009/08/rdb2rdf-charter. Last
visited July 2011.

[21] P. Hayes. RDF Semantics. W3C Recommendation.
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/,
February 2004.

[22] M. Hert. Relational Databases as Semantic Web
Endpoints. In Proceedings of the 6th European
Semantic Web Conference, 2009.

[23] M. Hert, G. Reif, and H. C. Gall. ’Semantic Web 2.0’ -
Write-enabling the Web of Data. In Proceedings of the
6th Workshop on Semantic Web Applications and
Perspectives, 2010.

[24] M. Hert, G. Reif, and H. C. Gall. Updating Relational
Data via SPARQL/Update. In EDBT Workshop
Proceedings, 2010.

[25] W. Hu and Y. Qu. Discovering Simple Mappings
Between Relational Database Schemas and Ontologies.
In Proceedings of the 6th International and 2nd Asian
Semantic Web Conference, 2007.

[26] ISO/IEC. ISO/IEC 9075 Part 14: XML-Related
Specifications (SQL/XML).



[27] A. Langegger, W. Wöss, and M. Blöchl. A Semantic
Web Middleware for Virtual Data Integration on the
Web. In Proceedings of the 5th European Semantic
Web Conference, 2008.

[28] L. Ma, X. Sun, F. Cao, C. Wang, and X. Wang.
Semantic Enhancement for Enterprise Data
Management. In Proceedings of the 8th International
Semantic Web Conference, 2009.

[29] F. Manola and E. Miller. RDF Primer. W3C
Recommendation. http:
//www.w3.org/TR/2004/REC-rdf-primer-20040210/,
February 2004.

[30] C. Ogbuji. SPARQL 1.1 Graph Store HTTP Protocol.
http://www.w3.org/TR/2011/

WD-sparql11-http-rdf-update-20110512/, May
2011.

[31] C. Patel, S. Khan, and K. Gomadam. TrialX: Using
Semantic Technologies to Match Patients to Relevant
Clinical Trials Based on Their Personal Health
Records. In Proceedings of the 8th International
Semantic Web Conference, 2009.

[32] E. Prud’hommeaux and M. Hausenblas. Use Cases
and Requirements for Mapping Relational Databases
to RDF. W3C Working Draft. http:
//www.w3.org/TR/2010/WD-rdb2rdf-ucr-20100608/,

June 2010.

[33] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation.
http://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/, January 2008.

[34] S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. T.
Jr, S. Auer, J. Sequeda, and A. Ezzat. A Survey of
Current Approaches for Mapping of Relational
Databases to RDF. http://www.w3.org/2005/
Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf,
2009. Last visited July 2011.

[35] S. Schenk, P. Gearon, and A. Passant. SPARQL 1.1
Update. W3C Working Draft. http://www.w3.org/
TR/2010/WD-sparql11-update-20101014/, October
2010.

[36] O. Software. Mapping Relational Data to RDF with
Virtuoso’s RDF Views.
http://virtuoso.openlinksw.com/whitepapers/

relational%20rdf%20views%20mapping.html. Last
visited July 2011.

[37] SquirrelRDF.
http://jena.sourceforge.net/SquirrelRDF/. Last
visited July 2011.




