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Abstract 

Conventional reflector antennas are typically designed for up to S O  beamwidths scan. In 

this paper we try to stretch this scan range to some +300 beamwidths. We compare six 

single and dual reflector antennas. It is found that a symmetrical parabolic reflector with 

f/D=2 and a single circular waveguide feed has the minimum scan loss (only 0.6 dB at 

80=8", or a 114 beamwidths scan). The scan is achieved by tilting the parabolic refletor by 

an angle equal to the half-scan angle. The f/D may be shortened if a cluster 7 to 19 

elements instead of one element is used for the feed. The cluster excitation is adjusted for 

each new beam scan direction to compensate for the imperfect field distribution over the 

reflector aperture. The antenna can be folded into a Cassegrain configuration except that, 

due to spillover and blockage considerations, the amount of folding achievable is small. 

*Portions of this material were presented at the NASA Technology Workshop for Earth Science 
Geostationary Platforms, September 2 1-22, 1988 at NASA Langley Research Center, Hampton, Virginia. 



I. Introduction 

Traditionally, reflector antennas are designed for limited scan. A symmetrical 

parabolic reflector with f D 4 . 4  can only scan d5 beamwidths (BW) with less than 2 dB 

loss [ 13. If the reflector diameter is 1,0oO h, the f5 BW scan corresponds to only &OS0, 

which is a very narrow field of view. 

In some future applications, the antenna requirements will be quite different from 

what they presently are. One example is the NASA Earth Science Geostationary Pla$orm 

Project. The preliminary antenna specifications are as follows: 

Frequency range 20 GHz - 200 GHz 

Antenna diameter 15 m (1,000 h - 10,0oO h) 

Scan range 1 

Scan range 2 

So (k33 BW - +330 BW) 

+ 8 O  (k133 BW - 51,333 BW) 

Note that the scan requirement has been significantly increased from the traditional value of 

25 BW. Usually a phased array design is used to satisfy specifications such as these. 

A phased array antenna design is an order of magnitude more complicated than a 

reflector design. This is due to the large number of array elements and the beam-forming 

network contained in the design. Reflector antennas have the additional advantage of being 

less expensive and lighter in weight than phased arrays. Therefore it is desirable to use a 

reflector antenna design if at all possible. The question then is can a reflector antenna be 

designed that is capable of meeting these specifications? 

This paper examines and compares six different reflector designs. We intend to 

show how far the reflector performance can be streched. The object is to achieve a wide- 

angle scan that will satisfy requirements such as those listed above. The first three designs, 

P l y  P2, and P3, are parabolic single reflector designs. These three designs are considered 

in Section TI. The first design is a center-fed, single-element feed design with fD=2 (Fig. 

la). Scanning is accomplished by mechanically tilting the reflector. The second design has 
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f/O=l and uses a 19 element cluster feed but otherwise is similar to the first design (Fig. 

1 b). The third design is an off-set reflector with f/D=2 and an electronically scanned 

cluster feed (Fig. IC). 

The last three designs, C1, C2, and C3, are dual reflector Cassegrain designs. 

They are considered in Section m. The three designs all use the same reflector geometry. 

The first design scans by mechanically tilting the main reflector (Fig. 2a). The second 

design scans by mechanically tilting the subreflector (Fig. 2b). The last design scans by 

tilting both the main reflector and the subreflector (Fig. 2c). 

Data on extremely wide-angle scans of reflector antennas are scarce in the literature. 

Hung and Mittra [2] in 1986 did analyze a center-fed symmetrical parabolic reflector with a 

cluster feed, and calculate patterns up to a hundred beamwidth scan. We have verified our 

single reflector computer code by comparing with their results. 
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11. Single Reflector Antennas 

P1: Symmetric Parabolic Reflector with fD=2 

Two contributing factors to poor scanning ability are (i) short focal length and (ii) 

high off-set. For these reasons, the first design considered is a symmetrical parabolic 

reflector with an unusually long focal length. Design P1 has a diameter D=1,000 h and a 

focal length f=2,000 h, thus giving f/D=2. The feed is a long circular open-ended 

waveguide with radius a=3 h. A study was done of the directivities and beam efficiencies 

corresponding to various feed radii. The results are shown in Figure 3, with directivities 

converted to antenna efficiency. Antenna efficiency is defined as the fraction of the 

nominal direcitivity that the given directivity is, namely, 

q ,,=(Di.rectivi ty)/(xD/h)2. (1) 

In this case, the nominal directivity (xD/h)2 is 69.9 dB. The radius value chosen was that 

which maximized beam efficiency. The antenna has a half-power beamwidth 

HPBW=0.07'. Beam efficiency is calculated as the fraction of power hitting the reflector 

that is contained in the beam defined as being 2.5 times as large as the HPBW. In this 

case, the beam has a half angle of approximately 0.09". Note that this definition of beam 

efficiency does not take into account spillover loss. The chosen radius value of 3 h 

produces the highest beam efficiency, q4.91. Scanning is accomplished by tilting the 

main reflector. Tilting the main reflector by a degrees results in a scan angle 0=2a. The 

main advantage of tilting the reflector instead of moving the feed element is that the scan 

angle is twice the angle of tilt. If the feed were moved then the angle of scan would be 

equal to the angle that the feed was moved through. This is referred to as the mirror effect. 

Since for any reflector design, the scan loss increases as the feed moves away from the 

reflector's focal point, a significant reduction in scan loss is gained by tilting the reflector 

instead of shifting the feed. 
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Features of reflector P1 are: 

1. Virtually no feed blockage due to the small size of the single element 

feed. 

2. Depending on the exact arrangement, there is a lossy transmission 

distance between the feed and the receiver/transmitter. To avoid 

excessive transmission loss at high frequency applications (60 GHz or 

more), it may be necessary to connect the feed and the 

receiver/transmitter via a beam waveguide. 

3. Because of the mirror effect, the scan range is twice as far as the 

conventional shifted feed design. 

The radiation pattern for the on-axis beam is shown in Figure 5. The radiation 

pattern is calculated by a standard physical optics reflector code [3]. The directivity is 66.7 

dB which includes the following losses: 

Nominal directivity (zD/A)* 69.9 dB 

Feed spillover loss - 0.6 dB 

.. Amplitude taper over reflector surface 2.6 dB 

Directivity 66.7dB 

The above directivity, as usual, does not include the loss due to the feed transmission line. 

The 3 h radius feed produces a pattern that has a null before the edge of the reflector (Fig. 

4). This pattern results in a sidelobe level of -3 1 dB. It is a commonly used rule-of-thumb 

that to maximize beam efficiency, the first feed pattern null should lie on the reflector edge, 

which is at 8max=14.250. The first null lay on the reflector edge for feed radius a=2.3 h. 

This value produces close to a maximum in beam efficiency (see Fig. 1). 

This reflector has extremely good scan characteristics becuase of the long f/D and 

the mirror effect. The scan loss is only 0.6 dB at 80=8O (Fig. 6), corresponding to a 114 

beamwidth scan. The sidelobe level does increase from -31 dB to -13 dB as expected. At 
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a larger scan angle 80=20° (286 beamwidth scan), the scan loss is 5.1 dB and the pattern is 

badly distorted with a high shoulder (Fig. 7). 

P2: Svmmetric Parabolic Reflector with f/D=l 

A drawback of P1 is its excessively long focal length (2,000 h). Now let us reduce 

it by one half, giving a f/o=1. Then wide-angle scan is possible only if a cluster feed is 

used. A brief explanation of the cluster feed concept is in order at this point. The feed 

cluster consists of N identical elements with complex excitations 

I= 111 12 - ,IN] (2) 

We wish to determine I so that, when the beam position is at 80, a prescribed antenna 

parameter such as directivity, beam efficiency, or sidelobe level is optimized. To this end, 

let us introduce an element secondary pattern vector E such that 

where E2(80) , for example, is the co-polarization secondary pattern in direction 80 when 

element 2 is excited with 

I,= 1 

L = O  , fo ra l lm+2  (4) 

There exist three methods for determining I in literature. 

(i) onjugate Field Matching [4-111. The cluster excitation is simply set equal to 

the complex conjugate of E&), i.e., 

I=[E((30>1* (5)  

Strictly speaking, such a choice of cluster excitation does not optimize any 

particular antenna parameter. For practical purposes, however, it does lead to 

nearly optimum directivity in most cases. 
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(ii) ODtimum Directivity [12]. For a feed cluster with prescribed primary 

patterns and element locations, the directivity in direction 00 is optimized by 

choosing 

- 
where A is a N x N square matrix with elements 

1 4R 
A, = lo (E, E,.,) d R (7) 

where C is a normalization constant, and the integrationis over 4n - radiation 

sphere. When the element spacing of the cluster is large (a few wavelengths), 

matrix A is nearly an identity matrix. Then the solution in (6) reduces to that in 

(5 ) .  

(iii) Sidelobe Control [13,14]. The element secondary pattern vector E in (3) is 

normally calculated in a transmitting approach. By reciprocity, it can be 

equally calculated in a receiving approach when the reflector is illuminated by 

an incident plane wave from direction 80. In the receiving approach, there is 

an additional advantage that the amplitude of the plane wave can be tapered. It 

is found that the amount of taper controls the sidelobe level of the final 

secondary pattern when the whole cluster is turned on. 

Return now to P2 in Figure 1. A 19-element cluster feed is used. The individual 

elements are circular feeds with radius a=l.2 h. This value is chosen to maximize 

directivity for a single feed scanned on-axis. This radius feed also produces a relatively 

good beam efficiency with qd.88. The maximum beam efficiency was q4.89, which is 

recorded for a feed with radius a=1.3 h. Sidelobes for the a=1.2 h feed were -23 dB. 

This was not nearly the best possible sidelobes value, as a feed with radius a=1.5 h had 

sidelobes that were -32 dB, along with q=0.87. The primary pattern of the a=l.2 h 

circular waveguide feed was approximated by a cos% pattern with q=9.5. This value of q 



gave good sidelobe matching but the main lobe was 0.6 dB higher, with a maximum 

direcitivity of 68.9 dB. Spillover loss for the cos48 feed pattern was 0.4 dB for a=1.2 h. 

The cluster feed is used to help compensate for the higher scan losses that result from the 

lower f/D. At small scan angles only the center feed element has a relatively strong 

excitation (Fig. 8a). For an 8' scan (i.e. the reflector is tilted 4') only two of the outer ring 

elements have significant excitations (Fig. 8b). This indicates that for scans under go, a 7- 

element cluster feed would probably work almost as well as a 19-element feed. When the 

reflector is tilted 10' for a scan angle of 20°, nearly all of the elements are excited (Fig. 8c). 

At 80=8', the scan loss is 3.7 dB (Fig. 9, 10) and at 80=20', the scan loss is 7.4 dB (Fig. 

11). Very similar scan loss results were obtained with a=1.5 h feed. This is not as good 

as the results for P1, but it is only a few dB worse. The advantage of P2 over P1 is that 

the focal length has been cut in half. The disadvantage is that a 19 element feed is much 

more complicated than a single element feed. For both of these center-fed designs the feed 

blockage is negligable. 

Though design P2 has a higher scan loss at 0o=2Oo than P1, the beam is less 

distorted (see Fig.7 and Fig. 11). This is because at scan angles of this size, the cluster 

feed is able to f o m  a much better beam pattern than a single element feed. For angles 

below 80=8', there is no benefit to design P1 from using a cluster feed. However, scan 

loss could be reduced for large scan angles by using a cluster feed. 

P3: Off-set Parabolic Reflector 

Design P3 is an off-set parabolic reflector. Off-set height must be kept as small as 

possible to avoid intolerably high scan loss. Unfortunately, small offset leads to serious 

feed blockage. A possible way out of this dilemma is to use two identical reflector antenna: 

one for scanning up and one for scanning down as sketched in Fig. 1. The focal length is 

2,000 h and the reflector diameter is 1,OOO h, for a f/D=2. The off-set height is zero. In 

contrast to P1 and P2, this design utilizes electronic scanning. This means that a large feed 
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array is used. Up to 19 elements are excited at any time. In order to cover a scan range 

from 80=Oo to 80=8", a semicircular array with a radius of 283 h must be used. The 

individual feed elements have a radius a=l.O65 h, meaning that roughly 0.13 million feeds 

elements are needed for the entire device. This feed size is chosen so that if the excited 

element is turned off and an adjacent element is turned on, then the beam is scanned 1 BW. 

This antenna has a on-axis directivity of 66.2 dB when a single element is turned on. The 

spillover loss is 3.5 dB. This is quite high since the feed element is so small. Note that 

this antenna has roughly the same 8,,=14.3' as P1, which uses a feed that is three times 

larger in radius. 

The advantage of electronic scan is well-known: it is fast and inertialess. However, 

electronic scanning forces the use of a feed array that has half the diameter of one of the 

reflectors used. Therefore this design uses about a fourth as many elements as a phased 

array with the same aperture size. The savings in complexity are almost lost. In addition 

the overall volume occupied by this antenna is much larger than that needed by the previous 

designs. For the on-axis beam, only the center element of the 19 element cluster is 

significantly excited (Fig. 12,13), with a directivity of 67.3 dB. This is slightly higher 

than that excited by a single element feed (66.2 dB). Although excited with small 

excitations, the surrounding elements do help to reduce the spillover (Fig. 15). 

Another problem is that the design puts a physical limitation on the maximum 

scanning angle. This is because the feed elements don't move. The previous designs 

could have been scanned farther than 20" if it had been desired. This design has a 

directivity of 67.3 dB, with BW=0.06' and sidelobes at -18 dB. Patterns were computed at 

scan angles 80=Oo and 80=8'. The feed excitations used to get these results are shown in 

Figure 12. At 80=8", scan loss is already 6.3 dB (Fig. 13,14). The advantages of 

electronic scanning are that it is quicker than mechanical scanning and that it will not upset 

the equilibrium of the spacecraft since there is no physical motion. Some of the drawbacks 

listed above could be avoided by mechanically moving a 19 element feed cluster instead of 
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electronically scanning. However, this design has much more scan loss at 8 0 = 8 O  than 

designs P1 and P2. 
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111. Dual Reflector Antennas 

C1: Cassemain Reflector with Tilted Main Reflector 

Design C1 is dud-reflector Cassegrain antenna. The main reflector is parabolic 

with a focal length of 2,000 h and a diameter of 1,000 h for a f/D=2. A Cassegrain 

antenna may be considered as a folded version of a parabolic reflector. In many 

applications, it is desirable to reduce the length of the antenna and to place the feed directly 

behind the vertex of the main reflector. These are the reasons for folding the antenna. 

With f/D=2 for the present case, it is not possible to fold the feed close to the vertex 

without either excessive spillover loss or an excessively large subreflector or even both. In 

the present design (Fig. 2), the hyperbolic subreflector has a diameter of 115 h and is 

located 1,650 h from the the main reflector vertex. The circular feed has a radius a=1.5 h 

and is located 1,300 h from the main reflector vertex. This feed size is chosen to produce 

10 dJ3 edge taper on the subreflector. Directivity for this design is 67.1 dJ3, with 

BW4.06" and a -18 dB sidelobe level. Scanning is accomplished by tilting the main 

reflector. The scan angle 00=2a1, where a1 is the angle that the main reflector is tilted. 

There is a discontinuity in the scan loss at about 0 = 14O, the point where the main reflector 

is tilted so far that some of the energy from the subreflector begins to m i s s  the main 

reflector. The performance of C1, shown in Figures 15 and 16, is similar to that of P1, the 

unfolded version of C1. The use of the subrefletor does change the aperture taper. 

Consequently, the sidelobes of C1 and P 1 are different. 

C2: Casseg-ain Reflector with Tilted Subreflector 

Design C2 has the same geometry as C1. Scanning is accomplished by tilting the 

subreflector instead of the main reflector. Due to the substantial difference in size, tilting 

the subreflector is much easier mechanically than tilting the main reflector. Elecmcally, 

however, tilting the subreflector for wide-angle scan is not feasible because 
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(i) The subreflector must be tilted by a much larger angle a2 in order for the beam 

to scan . The approximate relation between the two angles is 

eO=az/M 

where M=Drndsub=  magnification factor. 

(ii) When the subreflector is tilted by a large angle, there is an excessive spillover 

loss. 

In this case M=8.7. The scan loss is quite high. At 80=1.7S0, the scan loss is 6.6 dB 

(Fig. 18). At 80=3.32', the scan loss is 36.3 dB. This would seem to indicate that tilting 

the subreflector is not a viable option for wide-angle scan. 

C3: Cassemin Reflector with Both Reflectors Tilted 

Design C3 has the same geometry as C1 and C2. Scanning is accomplished by 

tilting both the subreflector and the main reflector. The idea is to use the main reflector for 

coarse scanning, and to use subreflector tilting for local scanning within a small angular 

region. The scan angle 80=2(al+ a m .  Given a1 and a2, the scan loss can be 

obtained by looking at the results for C1 and C2. 
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IV. Conclusions 

We have studied the wide-angle scan ability of the six reflector antennas shown in 

Figures 1 and 2. All reflectors have a circular diameter of 1,OOO h and f/D=2, except that 

P2 has a shorter focal length f/D=l. The scan loss is summarized in Figure 19. 

Conclusions are listed below. 

(i) For mechanical scan by tilting reflectors, the best system is P1. The scan loss 

at 80=8" (1 14 beamwidth) is only 0.6 dB (Fig. 5,6). The sidelobe level for the 

80=8" position is increased considerably (from -31 dB to -13 dB). This 

problem may be alleviated by using the cluster compensation method 

[10,12,14], and needs to be studied. 

(E) The folded version of P1 is the Casegrain antenna C1. In the present study, 

the feed is taken to be a single open-ended circular waveguide with a=3 h. As 

a consequence, the mount of folding achieved is small (the length reduction is 

from 2,000 h to 1,650 A). If more folding is desired, a much larger feed 

should be used. 

(iii) To shorten the f/D from 2 to 1, reflector P2 must rely on a cluster feed to 

reduce its scan loss. The excitation of the cluster varies as the beam scans. 

The scan performance of P2 is still not as good as that of P1, indicating that a 

19element cluster cannot totally compensate the reduction in f/D. 

(iv) Tilting the subreflector of a Cassegrain antenna can only achieve a small scan 

(about +15 BW). It can be used in conjunction with the electrically more 

effective but mechanically more costly main reflector tilting to achieve a small 

local scan. 

(v) Among the six antennas, only the off-set parabolic reflector P3 scans the beam 

electronically. The price is steep since (a) there are two identical antennas, one 

to scan up and one to scan down, (b) the feed has 0.13 million elements, and 
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(c) with a 19-element feed cluster, the scan loss at 8O=So is 6.3 dB. Without 

the cluster, the loss is 15.4 dE3. This is much worse than the 0.6 dF3 loss for 

P1. 
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A. PI: Tilting Parabolic Reflector 

I 

16 
I 

B. P2: Same as PI Except f /D= l  and Cluster Feed 

7or  19 Element 
Hexagonal Cluster Feed 

C. P3: Off-set Parabolic Reflecfor With Electronic Scan 

tooox 

I 
T 

IOOOX 

1. 

:0.13 Million 
Elements Total 

2 a  =2.13X 
Cluster Feed With 
1,7, or 19 Elements 
"0n)'at Any Time. 

Figure 1. Single Reflector Antenna System 



A. CI: Tilting Main Reflector 

C 2: Tilting Subref lector 

C. C3: Tilting Both Reflectors 
a, 

f /D= 2 

Figure 2. Cassegrain Dual Reflector Antenna Systems 

17 



Beam vs. Antenna Efficiency 
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Figure 3. Beam efficiency and antenna efficiency for P1 symmetrical parabolic reflector as 

a function of feed radius. The feed is an open-ended circular waveguide. 
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Figure 4. Primary feed pattern for P1 symmetrical parabolic reflector. The feed is an 

open-ended circular waveguide. 



Sym. Parabolic Reflector Untilted 
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Figure 5. P1 symmetric parabolic reflector far-field pattern for 0" scan. 

Sym. Parabolic Reflector Tilted 4 deg 

7.50 7.75 8.00 8.25 8.50 

Theta (deg) 

Figure 6. P1 symmetrical parabolic reflector far-field pattern for 8O scan (1 14 beamwidth 

scan). 
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Sym. Parabolic Reflector Tilted 10 deg 

19.50 19.75 20.00 20.25 20.50 

Theta (deg) 

Figure 7. P1 symmetrical parabolic reflector far-field pattern for 20° scan (286 beamwidth 

scan). 
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a. 

b. 

C. 

c. tiltcd 10" 
b. Liltcd 4" [ {a. untilled 

1 .O > Magnitude > 0.8 

0.8 > Magnitude > 0.6 

0.6 > Magnitude > 0.4 

0.4 > Magnitude > 0.2 

0.2 > Magnitude > 0.0 

Figure 8. Relative excitations for the 19-element feed cluster in P2 symmetrical parabolic 

reflector: (a) beam scanned Oo, (b) beam scanned 8 O ,  and (c) beam scanned 

200- 
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f/D=l Sym. Para. Reflector Untilted 
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Figure 9. P2 symmetric parabolic reflector far-field pattern for 0" scan. 

f/D=l Sym. Para. Reflector Tilted 4 deg 

7.50 7.75 8.00 8.25 8.50 

Theta (deg) 

Figure 10. P2 symmetric parabolic reflector far-field pattern for 8" scan. 



f/D=l Sym. Para. Reflector Tilted 10 deg 

19.50 19.75 20.00 20.25 20.50 

Theta (deg) 

Figure 11. P2 symmetric parabolic reflector far-field pattern for 20' scan. 
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b. a. 

* a. unscanned 

m 1 .O > Mzgnitude > 0.8 

0.8 > Mzgnhde > 0.6 

0.6 > Magnitude > 0.4 

0.4 > Magnitude > 0.2 

0.2 > Magnitude > 0.0 I] 
b. scanned 8' 

Figure 12. Relative feed excitations for the P3 off-set parabolic reflector. 

a. Beam unscanned. b. Beam scanned 8'. 



Off-set Para. Reflector with 19 El. Feed 

-0.50 -0.25 0.00 0.25 0.50 

Theta (deg) 

Figure 13. P3 off-set parabolic reflector far-field pattern for 0' scan. 

Off-set Para. Reflector with 19 El. Feed 
70 I Dir!=61.0 dB 

7.50 7.75 8.00 8.25 8.50 

Theta (deg) 

Figure 14. P3 off-set parabolic reflector far-field pattern for 8' scan. 
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Off-set Para. Reflector wi th  Cluster Feed 

0 2 4 6 8 1 0  

Scan Theta (deg) 

Figure 15. Directivity vs. scan for the off-set parabolic reflector. Note that as the number 

of cluster elements increases, so does the directivity. 
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Figure 16. Symmetrical cassegrain reflector far-field pattern for unscanned beam. C1, 

C2, and C3 have identical patterns for this case. 
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Figure 17. C1 symmetrical cassegrain reflector far-feild pattern with main reflector tilted 

to produce 9.96O scan. 
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Figure 18. C2 symmetric cassegrain reflector far-field pattern with subreflector tilted to 

produce 1.75' scan. 
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Figure 19. Scan loss of the six reflector antennas shown in Figures 1 and 2. 
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