
A Comparison of Reinforcement Learning

Techniques for Fuzzy Cloud Auto-Scaling

Hamid Arabnejad∗, Claus Pahl†, Pooyan Jamshidi‡ and Giovani Estrada§

∗IC4, Dublin City University, Dublin, Ireland
†Free University of Bozen-Bolzano, Bolzano, Italy

‡Imperial College London, London, UK
§Intel, Leixlip, Ireland

Abstract—A goal of cloud service management is to design
self-adaptable auto-scaler to react to workload fluctuations and
changing the resources assigned. The key problem is how and
when to add/remove resources in order to meet agreed service-
level agreements. Reducing application cost and guaranteeing
service-level agreements (SLAs) are two critical factors of dy-
namic controller design. In this paper, we compare two dynamic
learning strategies based on a fuzzy logic system, which learns
and modifies fuzzy scaling rules at runtime. A self-adaptive fuzzy
logic controller is combined with two reinforcement learning
(RL) approaches: (i) Fuzzy SARSA learning (FSL) and (ii) Fuzzy
Q-learning (FQL). As an off-policy approach, Q-learning learns
independent of the policy currently followed, whereas SARSA
as an on-policy always incorporates the actual agent’s behavior
and leads to faster learning. Both approaches are implemented
and compared in their advantages and disadvantages, here in
the OpenStack cloud platform. We demonstrate that both auto-
scaling approaches can handle various load traffic situations,
sudden and periodic, and delivering resources on demand while
reducing operating costs and preventing SLA violations. The
experimental results demonstrate that FSL and FQL have accept-
able performance in terms of adjusted number of virtual machine
targeted to optimize SLA compliance and response time.

Keywords-Cloud Computing; Orchestration; Controller; Fuzzy
Logic;Q-Learning; SARSA; OpenStack

I. INTRODUCTION

Automated elasticity and dynamism, as two important

concepts of cloud computing, are beneficial for application

owners. Auto-scaling system is a process that automatically

scales the number of resources and maintains an acceptable

Quality of Service (QoS) [19]. However, from the perspec-

tive of the user, determining when and how to resize the

application makes defining a proper auto-scaling process dif-

ficult. Threshold-based auto-scaling approaches are proposed

for scaling application by monitoring metrics, but setting

the corresponding threshold conditions still rests with the

user. Recently, automatic decision-making approaches, such as

reinforcement learning (RL) [24], have become more popular.

The key advantage of these methods is that prior knowledge

of the application performance model is not required, but they

rather learn it as the application runs.

Our motivation here is to compare two different auto-scaling

services that will automatically and dynamically resize user

application to meet QoS requirements cost-effectively. We

consider extensions of two classic RL algorithms, namely

SARSA and Q-Learning, for the usage with a fuzzy auto-

scaling controller for dynamic resource allocations. RL is

defined as interaction process between a learning agent (the

auto-scaling controller) and its environment (the target could

application). The main difference between SARSA and Q-

learning is that SARSA compares the current state vs. the

actual next state, whereas Q-Learning compares the current

state vs. the best possible next states.

Generally, RL approaches suffer from the size of the table

needed to store state-action values. As a solution, a fuzzy

inference system offers a possible solution to reducing the

state space. A fuzzy set is a mapping of real state to a set

of fuzzy labels. Therefore, many states can be represented by

only a few fuzzy states. Thus, we base our investigation on a

fuzzy controller [17]. The combination of fuzzy logic control

and RL approaches results in a self-adaptive mechanism where

the fuzzy logic control facilitates the reasoning at a higher

level of abstraction, and the RL approaches allow to adjust the

auto-scaling controller. This paper extend previous results [14],

[16] as follows. First, we specifically focus on architecture,

implementation and experimentation aspects in OpenStack.

Then, we utilise SARSA approach as an on-policy learning

algorithm against Q-learning which is an off-policy approach.

The advantage of using SARSA, due to following the action

which is actually being taken in the next step, is the policy

that it follows will be more optimal and learning will be faster.

Furthermore, a comparison between the two strategies will be

provided. The comparison analysis is an important goal to

know the performance and scalability of each RL approaches

under different workload patterns.

The contributions of this paper are:

• a review of cloud auto-scaling approaches;

• integrate RL and fuzzy approaches as an automatic

decision-making in a real cloud controller;

• implementation of Fuzzy RL approaches in OpenStack

(industry-standard IaaS platform);

• extensive experimentation and evaluation of wide range

of workload patterns;

• comparison between two RL approaches, SARSA and Q-

learning in terms of quality of results

We show that the auto-scaling approaches can handle various

load traffic situations, delivering resources on demand while

ar
X

iv
:1

70
5.

07
11

4v
1

 [
cs

.D
C

]
 1

9
M

ay
 2

01
7

reducing infrastructure and management costs alongside the

comparison between both proposed approaches. The experi-

mental results show promising performance in terms of re-

source adjustment to optimize Service Level Agreement (SLA)

compliance and response time while reducing provider costs.

The paper is organized as follows. Section II describes auto-

scaling process briefly, and discusses on related research in

this area, Section III describes the OpenStack architecture

and orchestration, Section IV describes our proposed FSL

approach in details followed by implementation in Section V.

A detailed experiment-based evaluation follows in Section VI.

II. BACKGROUND AND RELATED WORK

The aim of auto-scaling approaches is to acquire and release

resources dynamically while maintaining an acceptable QoS

[19]. The auto-scaling process is usually represented and

implemented by a MAPE-K (Monitor, Analyze, Plan and

Execute phases over a Knowledge base) control loop [12].

An auto-scaler is designed with particular goal, relying on

scaling abilities offered by the cloud providers or focusing on

the structure of the target application. We can classify auto-

scaling approaches based on usage theory and techniques:

A. Threshold-based rules

Threshold-based rules are the most popular approach offered

by many platforms such as Amazon EC21, Microsoft Azure2

or OpenStack3. Conditions and rules in threshold-based ap-

proaches can be defined based on one or more performance

metrics, such as CPU load, average response time or request

rate. Dutreilh et al. [6] investigate horizontal auto-scaling using

threshold-based and reinforcement learning techniques. In [9],

the authors describe a lightweight approach that operates fine-

grained scaling at resource level in addition to the VM-

level scaling in order to improve resource utilization while

reducing cloud provider costs. Hasan et al. [10] extend the

typical two threshold bound values and add two levels of

threshold parameters in making scaling decisions. Chieu et

al. [4] propose a simple strategy for dynamic scalability of

PaaS and SaaS web applications based on the number of

active sessions and scaling the VMs numbers if all instances

have active sessions exceed particular thresholds. The main

advantage of threshold-based auto-scaling approaches is their

simplicity which make them easy to use in cloud providers

and also easy to set-up by clients. However, the performance

depends on the quality of the thresholds.

B. Control theory

Control theory deals with influencing the behaviour of

dynamical systems by monitoring output and comparing it

with reference values. By using the feedback of the input

system (difference between actual and desired output level),

the controller tries to align actual output to the reference.

For auto-scaling, the reference parameter, i.e., an object to be

1http://aws.amazon.com/ec2
2http://azure.microsoft.com
3https://www.openstack.org

controlled, is the targeted SLA value [15]. The system is the

target platform and system output are parameters to evaluate

system performance (response time or CPU load). Zhu and

Agrawal [26] present a framework using Proportional-Integral

(PI) control, combined with a reinforcement learning compo-

nent in order to minimize application cost. Ali-Eldin et al. [2],

[1] propose two adaptive hybrid reactive/proactive controllers

in order to support service elasticity by using the queueing

theory to estimate the future load. Padala et al. [21] propose a

feedback resource control system that automatically adapts to

dynamic workload changes to satisfy service level objectives.

They use an online model estimator to dynamically maintain

the relationship between applications and resources, and a

two-layer multi-input multi-output (MIMO) controller that

allocates resources to applications dynamically. Kalyvianaki et

al. [18] integrate a Kalman filter into feedback controllers that

continuously detects CPU utilization and dynamically adjusts

resource allocation in order to meet QoS objectives.

C. Time series analysis

The aim of time series analysis is to carefully collect

and study the past observations of historical collect data to

generate future value for the series. Some forecasting models

such as Autoregressive (AR), Moving Average (MA) and

Autoregressive Moving Average (ARMA) focus on the direct

prediction of future values, whereas other approach such as

pattern matching and Signal processing techniques first try

to identify patterns and then predict future values. Huang et

al. [11] proposed a prediction model (for CPU and memory

utilization) based on double exponential smoothing to improve

the forecasting accuracy for resource provision. Mi et al. [20]

used Browns quadratic exponential smoothing to predict the

future application workloads alongside of a genetic algorithm

to find a near optimal reconfiguration of virtual machines. By

using ARMA, Roy et al. [23] presented a look-ahead resource

allocation algorithm to minimizing the resource provisioning

costs while guaranteeing the application QoS in the context of

auto-scaling elastic clouds. By combining a sliding window

approach over previous historical data and artificial neural

networks (ANN), Islam et al. [13] proposed adaptive approach

to reduce the risk of SLA violations by initializing VMs

and perform their boot process before resource demands.

Gong et al. [8] used the Fast Fourier Transform to identify

repeating patterns. The Major drawback relies on this category

is the uncertainty of prediction accuracy that highly on target

application, input workload pattern, the selected metric, the

history window and prediction interval, as well as on the

specific technique being used [19].

D. Reinforcement learning (RL)

RL [24] is learning process of an agent to act in order to

maximize its rewards. The standard RL architecture is given

in Figure 1. The agent is defined as an auto-scaler, the action

is scaling up/down, the object is the target application and

the reward is the performance improvement after applying

the action. The goal of RL is how to choose an action in

response to a current state to maximize the reward. There are

several ways to implement the learning process. Generally, RL

approaches learn estimates of the Initialized Q-values Q(s, a),
which maps all system states s to their best action a. We

initialise all Q(s, a) and during learning, choose an action a

for state s based on ǫ-greedy policy and apply it in the target

platform. Then, we observe the new state s′ and reward r and

update the Q-value of the last state-action pair Q(s, a) with

respect to the observed outcome state (s′) and reward (r).

Two well-known RL approaches are SARSA and Q-learning

[24]. Dutreilh et al. [5] use an appropriate initialization of

the Q-values to obtain a good policy from the start as well

as convergence speedups to quicken the learning process

for short convergence times. Tesauro et al. [25] propose a

hybrid learning system by combining queuing network model

and SARSA learning approach to make resource allocation

decisions based on application workload and response time.

�
�
�
��
�
��

�����

�����	�
���

��
�
�
��

�
�
�
�
�

�

�
�

�

Fig. 1. The standard architecture of the RL algorithm

The important feature of RL approaches is learning without

prior knowledge of the target scenario and ability to online

learn and update environmental knowledge by actual obser-

vations. However, there are some drawbacks in this approach

such as taking long time to converge to optimal or near optimal

solution for solving large real world problems and requiring

good initialization of the Q-function.

III. OPENSTACK ORCHESTRATION

OpenStack is an IaaS open-source platform, used for build-

ing public and private clouds. It consists of interrelated compo-

nents that control hardware pools of processing, storage, and

networking resources throughout a data center. Users either

manage it through a web-based dashboard, through command-

line tools, or through a RESTful API. Figure 2 shows a high-

level overview of OpenStack core services.

Neutron

Nova

Cinder

swift

Glance

K
e

y
st

o
n

e

C
e

il
o

m
e

te
r

H
e

a
t

Horizon RESTful API

Virtual Network

Virtual

Machine

Storage

Browser Program

Fig. 2. An OpenStack block diagram

In OpenStack, 1) Neutron is a system for managing net-

works and IP addresses; 2) Nova is the computing engine for

deploying and managing virtual machines; 3) Glance supports

discovery, registration and delivery for disk and server images;

4) Ceilometer provides telemetry services to collect metering

data; 5) Keystone provides user/service/endpoint authentica-

tion and authorization and 6) Heat is a service for orchestrating

the infrastructure needed for cloud applications to run.

OpenStack Orchestration is about managing the infrastruc-

ture required by a cloud application for its entire lifecy-

cle. Orchestration automates processes which provision and

integrate cloud resources such as storage, networking and

instances to deliver a service defined by policies. Heat, as

OpenStack’s main orchestration component, implements an

engine to launch multiple composite applications described in

text-based templates. Heat templates are used to create stacks,

which are collections of resources such as compute instance,

floating IPs, volumes, security groups or users, and the rela-

tionship between these resources. Heat along with Ceilometer

can create an auto-scaling service. By defining a scaling

group (e.g., compute instance) alongside using monitoring

alerts (such as CPU utilization) provided by Ceilometer, Heat

can dynamically adjust the resource allocation, i.e., launching

resources to meet application demand and removing them

when no longer required, see Figure 3. Heat executes Heat

Orchestration Templates (HOT), written in YAML.

Stack

HOT
template

❷
H

ea
t c

re
at

e
st

ac
k

Heat

Ceilometer

❸ create alarms

❹ monitor asg instances

❺ Trigger alarm

❻ apply scale
up/down

❶ send HOT template

AutoScaling
Group (asg)

Fig. 3. Heat + Ceilometer architecture

By sending a HOT template file to the Heat engine, a

new autoscaling group (asg) is created by launching a group

of VM instances. The maximum and minimum number of

instances should be defined in HOT file. Then, Ceilometer

alarms that monitor all of the instances in asg are defined.

Basically, at each Ceilometer interval time, the system checks

the alarm metric and if it passed the defined threshold values,

the scaling up/down policy will be performed based on defined

action in the HOT file. During the life cycle of the application,

all checking, testing and actions are performed automatically.

IV. ON-POLICY AND OFF-POLICY RL AUTO-SCALING

In [14], an elasticity controller based on a fuzzy logic sys-

tem is proposed. The motivation factor for using fuzzy control

systems is the fact that they make it easier to incorporate

human knowledge in the decision-making process in the form

of fuzzy rules, but also reduce the state space.

We extend the fuzzy controller in the form of a SARSA-

based Fuzzy Reinforcement Learning algorithm as an on-

policy learning approach, called FSL, and describe this in more

detail. Then, we related this to a Q-Learning-based off-policy

learning approach, called FQL, by describing the differences.

A. Reinforcement Learning (RL)

Reinforcement learning [24] is learning by trial and error

to map situations to actions, which aims to maximize a

numerical reward signal. The learning process consists of two

components: a) an agent (i.e., the auto-scaler) that executes

actions and observes the results and b) the environment

(i.e., the application) which is the target of the actions. In

this schema, the auto-scaler as an agent interacts with an

environment through applying scaling actions and receiving a

response, i.e., the reward, from the environment. Each action is

taken depending on the current state and other environmental

parameters such as the input workload or performance, which

moves the agent to a different state. According to the reward

from system about the action quality, the auto-scaler will learn

the best scaling action to take through a trial-and-error.

B. Fuzzy Reinforcement Learning (FRL)

We extend fuzzy auto-scaling with two well-known RL

strategies, namely Q-learning and SARSA. We start with a

brief introduction of the fuzzy logic system and then describe

proposed FSL and FQL approaches.

The purpose of the fuzzy logic system is to model a human

knowledge. Fuzzy logic allows us to convert expert knowledge

in the form of rules, apply it in the given situation and

conclude a suitable and optimal action according to the expert

knowledge. Fuzzy rules are collections of IF-THEN rules

that represent human knowledge on how to take decisions

and control a target system. Figure 4 illustrates the main

building blocks of a Fuzzy Reinforcement Learning (FRL)

approach. During the lifecycle of an application, FRL guides

resource provisioning. More precisely, FRL follows the au-

tonomic MAPE-K loop by monitoring continuously different

characteristics of the application (e.g., workload and response

time), verifying the satisfaction of system goals and adapting

the resource allocation in order to maintain goal satisfaction.

The goals (i.e., SLA, cost, response time) are reflected in the

reward function that we define later in this section.

System

SLA

O
p

e
n

st
a

ck
C

lo
u

d
 P

la
tf

ro
m

 (
Ia

a
s)

Scaling

Action

��

� (Workload) , � (response time), �� (virtual machines)

Rules

In
fe

re
n

ce

E
n

g
in

e

D
e

fu
zz

if
ie

r

Fuzzifier

Fuzzy

Logic system
Fuzzy

Reinforcement

Learning Actuator

Fuzzy Controller

Monitoring

Fig. 4. FRL (logical) architecture

The monitoring component collects required metrics such

as the workload (w), response time (rt) and the number of

virtual machines (vm) and feeds both to the controller and

the knowledge learning component. The controller is a fuzzy

logic controller that takes the observed data, calculates the

scaling action based on monitored input data and a set of

rules, and as output returns the scaling action (sa) in terms

of an increment/decrement in the number of virtual machines.

The actuator issues adaptation commands from the controller

at each control interval to the underlying cloud platform.

Generally, the design of a fuzzy controller involves all parts

related to membership functions, fuzzy logic operators and

IF-THEN rules. The first step is to partition the state space of

each input variable into fuzzy sets through membership func-

tions. The membership function, denoted by µ(x), quantifies

the degree of membership of an input signal x to the fuzzy

set y. Similar to [14], the membership functions, depicted in

Figure 5, are triangular and trapezoidal. Three fuzzy sets have

been defined for each input (i.e., workload and response time)

to achieve a reasonable granularity in the input space while

keeping the number of states small.

��������� 	�
�
�

��������

����� ����
�

�������������

Fig. 5. Fuzzy membership functions for auto-scaling variables

For the inference mechanism, the elasticity policies are

defined as rules: "IF (w is high) AND (rt is bad)

THEN (sa+ = 2)", where w and rt are monitoring metrics

stated in the SLA and sa is the change constant value in the

number of deployed nodes, i.e., the VMs numbers.

Once the fuzzy controller is designed, the execution of the

controller is comprised of three steps (cf. middle part of Figure

4): (i) fuzzification of the inputs, (ii) fuzzy reasoning, and (iii)

defuzzification of the output. The fuzzifier projects the crisp

data onto fuzzy information using membership functions. The

fuzzy engine reasons based on information from a set of fuzzy

rules and derives fuzzy actions. The defuzzifier reverts the

results back to crisp mode and activates an adaptation action.

This result is enacted by issuing appropriate commands to the

underlying platform fabric.

Based on this background, we can now combine the fuzzy

logic controller with the two RL approaches.

C. Fuzzy SARSA Learning (FSL)

By using RL approaches instead of relying on static thresh-

old values to increase/decrease the amount of VMs, the per-

formance of target application can be captured after applying

each sa decision. In this paper, we use SARSA and Q-learning

as RL approaches that we combine with the fuzzy controller.

In this schema, a state s is modeled by a triple (w,rt,vm) for

which an RL approach looks for best action a to execute. The

combination of the fuzzy logic controller with SARSA [24]

learning, called FSL, is explained in the following.

1) Initialize the q-values: unlike the threshold policy, the RL

approach captures history information of a target applica-

tion into a value table. Each member of the q-value table is

assigned to a certain rule that describes some state-action

pairs and is updated during the learning process. It can

tell us the performance of taking the action by taking into

account the reward value. In this study, we set all q-values

to 0 as simplest mode.

2) Select an action: to learn from the system environment,

we need to explore the knowledge that has already

been gained. The approach is also known as the ex-

ploration/exploitation strategy. ǫ-greedy is known as a

standard exploration policy [24]. Most of the time (with

probability 1 − ǫ), the action with the best reward will

be selected or a random action will be chosen (with low

probability ǫ) in order to explore non-visited actions. The

purpose of this strategy is to encourage exploration. After

a while, by decreasing ǫ, no further exploration is made.

3) Calculate the control action inferred by fuzzy logic con-

troller: The fuzzy output is a weighted average of the

consequences of the rule, which can be written as:

a =

N
∑

i=1

µi(x)× ai (1)

where N is the number of rules, µi(x) is the firing degree

of the rule i (or the degree of truth) for the input signal x

and ai is the consequent function for the same rule.

4) Approximate the Q-function from the current q-values and

the firing level of the rules: In classical RL, only one state-

action pair (rule) can be executed at once, which is not true

for the condition of fuzziness. In a fuzzy inference system,

more rules can be taken and an action is composed of these

rules [7]. Hence, the Q value of an action a for the current

state s is calculated by:

Q(s, a) =

N
∑

i=1

(

µi(s)× q[i, ai]
)

(2)

The action-value function Q(s, a) tells us how desirable it

is to reach state s by taking action a by allowing to take

the action a many times and observe the return value.

5) Calculate reward value: The controller receives the current

values of vm and rt that correspond to the current state

of the system s. The reward value r is calculated based on

two criteria: (i) the amount of resources acquired, which

directly determine the cost, and (ii) SLO violations.

6) Calculate the value of new state s′: By taking action a and

leave the system from the current state s to the new state

s′, the value of new state denoted V (s′) by is calculated

by:

V (s′) =

N
∑

i=1

µi(s
′).max

k

(q[i, ak]) (3)

where max(q[i, ak]) is the maximum of the q-values ap-

plicable in the state s′.

7) Calculate error signal: As an on-policy approach, SARSA

estimates the value of action a in state s using experience

actually gathered as it follows its policy, i.e., it always in-

corporates the actual agent’s behavior. We mark ∆Q(s, a)
as the error signal given by:

∆QFSL(s, a) = r + γ ×Q(s′, a′)−Q(s, a) (4)

where γ is a discount rate which determines the relative

importance of future rewards. A low value for γ means

that we value rewards that are close to time t, and a higher

discount gives more value to the ones that are further in

the future than those closer in time.

8) Update q-values: at each step, q-values are updated by :

q[i, ai] = q[i, ai] + η.∆Q.µi

(

s(t)
)

(5)

where η is the learning rate and takes a value between 0
and 1. Lower values for η mean that preferring old values

slightly with every update and a higher η gives more impact

on recent rewards.

The FSL solution is sketched in Algorithm 1.

Algorithm 1 Fuzzy SARSA learning(FSL)

Require: discount rate (γ) and learning rate (η)
1: initialize q-values
2: observe the current state s
3: choose partial action ai from state s (ǫ-greedy strategy)
4: compute action a from ai (Eq. 1) and its corresponding

quality Q(s, a) (Eq. 2)
5: repeat
6: apply the action a, observe the new state s′

7: receive the reinforcement signal (reward) r
8: choose partial action a′

i
from state s′

9: compute action a′ from a′
i

(Eq. 1) and its correspond-
ing quality Q(s′, a′) (Eq. 2)

10: compute the error signal ∆QFSL(s, a) (Eq. 4)
11: update q-values (Eq. 5)
12: s← s′ ,a← a′

13: until convergence is achieved

D. Fuzzy Q-Learning (FQL)

As we explained before, the major difference between Q-

learning and the SARSA approach is their strategy to update

q-values, i.e., in Q-learning q-values are updated using the

largest possible reward (or reinforcement signal) from the next

state. In simpler words, Q-learning is an off-policy algorithm

and updates Q-table values independent of the policy the

agent currently follows. In contrast, SARSA as an on-policy

approach always incorporates the actual agent’s behavior.

Thus, the error signal for FQL is given by :

∆QFQL(s, a) = r + γ × V (s′)−Q(s, a) (6)

The FQL is presented in Algorithm 2

As an example, we assume the state space to be finite

(e.g., 9 states as the full combination of 3 × 3 membership

functions for fuzzy variables w (workload) and rt (response

Algorithm 2 Fuzzy Q-Learning (FQL)

Require: discount rate (γ) and learning rate (η)
1: initialize q-values
2: observe the current state s
3: repeat
4: choose partial action ai from state s (ǫ-greedy strategy)
5: compute action a from ai (Eq. 1) and its corresponding

quality Q(s, a) (Eq. 2)
6: apply the action a, observe the new state s′

7: receive the reinforcement signal (reward) r
8: compute the error signal ∆QFQL(s, a) (Eq. 6)
9: Update q-values (Eq. 5)

10: s← s′

11: until convergence is achieved

time). Our controller might have to choose a scaling action

among 5 possible actions {−2,−1, 0,+1,+2}. However, the

design methodology that we demonstrated in this section is

general and can be applied for any possible state and action

spaces. Note, that the convergence is detected when the change

in the consequent functions is negligible in each learning loop.

V. IMPLEMENTATION

We implemented prototypes of the FQL and FSL algorithms

in OpenStack. Orchestration and automation within OpenStack

is handled by the Heat component. The auto-scaling decisions

made by Heat on when to scale application and whether

scale up/down should be applied, are determined based on

collected metering parameters from the platform. Collecting

measurement parameters within OpenStack is handled by

Ceilometer (see Figure 3). The main part of Heat is the stack,

which contains resources such as compute instances, floating

IPs, volumes, security groups or users, and the relationship be-

tween these resources. Auto-scaling in Heat is done using three

main resources: (i) auto-scaling group is used to encapsulate

the resource that we wish to scale, and some properties related

to the scale process; (ii) scaling policy is used to define the

effect a scale process will have on the scaled resource; and

(iii) an alarm is used to define under which conditions the

scaling policy should be triggered.

In our implementation, the environment contains one or

more VM instances that are controlled by a load balancer

and defined as members in autoscaling group resources. Each

instance (VM) includes a simple web server to run inside of it

after launching. Each web server listens to an input port (here

port 80), returns a simple HTML page as the response. User

data is the mechanism by which users can define their own

pre-configuration as a shell script (the code of web server) that

the instance runs on boot.

In Fig. 6, the template used for the web server is shown. For

the VM web-server instance type, we used a minimal Linux

distribution: the cirros4 image was specifically designed for

use as a test image on clouds such as OpenStack [3].

4CirrOS images, https://download.cirros-cloud.net/

The next step is defining the scaling policy, which is used

to define the effect a scaling process will have on the scaled

resource, such as ”add -1 capacity” or ”add +10% capacity”

or ”set 5 capacity”. Figure 7 shows the template used for the

scaling policy.

user_data_format: RAW

user_data: |

#!/bin/sh

...

while true

do

{

echo "HTTP/1.1 200 OK"

echo "Content-Length:$(wc -c /tmp/index.html | cut

-d’ ’ -f1)"→֒

echo

cat /tmp/index.html

} | sudo nc -l -p 80

done

...

Fig. 6. The simple web server

resources:

...

web_server_scaleup_policy:

type: OS::Heat::ScalingPolicy

properties:

auto_scaling_group_id: {get_resource: asg}

adjustment_type: change_in_capacity

scaling_adjustment: 1

...

Fig. 7. The template for scaling policy

The scaling policy resource is defined as a type of

OS::Heat::ScalingPolicy and its properties are as

follows: 1) auto_scaling_group_id is the specific scal-

ing group ID to apply the corresponding scale policy, 2)

adjustment_type is the type of adjustment (absolute or

percentage) and can be set to allowed values such as change

in capacity, exact capacity, percent change in capacity, and

3) scaling_adjustment is the size of the adjustment in

absolute value or percentage.

We used our auto-scaling manager instead of the native

auto-scaling tool in OpenStack, which is designed by setting

alarms based on threshold evaluations for a collection of

metrics from Ceilometer. For this threshold approach, we

can define actions to take if the state of the watched re-

source satisfies specified conditions. However, we replaced

this default component by the FRL approaches, to control

and manage scaling options. In order to control and manage

scaling option by the two FRL approaches (FQL and FSL), we

added an additional VM resource, namely ctrlsrv, which

acts as an auto-scaling server and enacts the scale up/down

decision proposed by either of the two FRL approaches.

For ctrlsrv, due to the impossibility of installing any

additional package in the cirros image, we considered a

VM machine running a Linux Ubuntu precise server. Figure 8

illustrates the implemented system in OpenStack. The created

load balancer distributes client’s HTTP request across a set

of web-servers, i.e., auto-scaling group members, collected

in load balancer pool. The algorithm used to distribute load

between the members of the pool is ROUND_ROBIN.

VM

VM

VM

AutoScaling

Group

(asg)

VM

Load

Balancdr

Cdilomdtdr

Flotino IP
(external Network)

Virtual IP
(from Our Subnet)

customers

Ctrlsrv

VM

Get instance list

Monitor asg

instances

M
o

n
it

o
r

re
q

u
ir

e
d

 m
e

tr
ic

s
:
�

,
�

,
�
�

Apply scaling action ��

Up/Down/no-scale

Fig. 8. Overview of the implemented system

Figure 8 shows the complete process of how the proposed

fuzzy auto-scaling approach works. First, ctrlsrv gathers

information from the load balancer, ceilometer and the current

state of members (web-servers) in an autoscaling group, then

decides which horizontal scaling, i.e., up or down, should be

applied to the target platform. For instance, the scale-up even

will launch a new web-server instance, which may take a few

minutes as the instance needs to be started, and adds it to the

load-balancer pool. The two proposed auto-scaling algorithms,

FQL and FSL, are coded and run inside of the ctrlsrv

machine. We implemented and added a complete fuzzy logic

library. This is functionally similar to the respective matlab

features and implements our FRL approaches.

For some parameters in the proposed algorithm, such as

the current number of VM instances or workload, we need

to call the OpenStack API. For example, the command nova

list shows a list of running instances. The API is a RESTful

interface, which allows us to send URL requests to the service

manager to execute commands. Due to the unavailability of

direct access to the OpenStack API inside of the ctrlsrv

machine, we used the popular command line utility cURL

to interact with a couple of OpenStack APIs. cURL lets us

transmit and receive HTTP requests and responses from the

command line or a shell script, which enabled us to work with

the OpenStack API directly. In order to use an OpenStack

service, we needed authentication. For some OpenStack APIs,

it is necessary to send additional data, like the authentication

key, in a header request. In Figure 9, the process of using

cURL to call OpenStack APIs is shown. The first step is

to send a request authentication token by passing credentials

(username and password) from OpenStack Identity service.

After receiving Auth-Token from the Keystone component,

the user can combine the authentication token and Computing

Service API Endpoint to send an HTTP request and receive

the output. We used this process inside the ctrlsrv machine

to execute OpenStack APIs and collect required outputs.

By combining these settings, we are able to run both FRL

approaches, i.e., FQL and FSL, as the manager and controller

of auto-scaling process in OpenStack.

OpenStack

Keysttne

OpenStack

Services

User

Userssubmitsrequest1

Confirms

Requests

&

Createstoken

2

Tokensvalidationsrequest5

Confirmsauthorizedstoken6

Servicesrequestswiths

keystonestoken

4

executesauthorizedsaction7

returnstokenstosuser3

Fig. 9. cURL process of calling OpenStack API

VI. EXPERIMENTAL COMPARISON

The experimental evaluation aims to show the effectiveness

of two proposed approaches FQL and FSL, but also to look at

differences. Furthermore, the cost improvement by proposed

approaches for cloud provider is demonstrated.

A. Experimental setup and benchmark

In our experiment, the two proposed approaches FQL and

FSL were implemented as full working systems and were

tested in the OpenStack platform. As the required parameters,

the maximum and minimum number of VMs that were allowed

to be available at same time were set to 5 and 1, respectively.

Here, we considered low number of VMs to demonstrate

the effectiveness of our proposed approaches under heavy

load user request traffic. However, larger VM number can

be applied for these parameters. The term workload refers to

the number of concurrent user request arrivals in given time.

Workload is defined as the sequence of users accessing the

target application that needs to be handled by the auto-scaler.

Application workload patterns can be categorized in three

representative patterns [19]: (a) the Predictable Bursting pat-

tern indicates the type of workload that is subject to periodic

peaks and valleys typical for services with seasonality trends or

high performance computing, (b) the Variations pattern reflects

applications such as News&Media, event registration or rapid

fire sales, and (c) the ON&OFF pattern reflects applications

such as analytics, bank/tax agencies and test environments.

In all cases, we considered 10 and 100 as minimum and

maximum number of concurrent users per second.

Additionally, we validated our approaches with real user

request traces of the Wikipedia5 and the FIFA WorldCup6

websites, which are the number of requests/users accessing

these two websites per unit time. We used Siege7, a HTTP

load testing and benchmarking utility, as our performance

measuring tools. It can generate concurrent user requests, and

measure the performance metric such as average response

time. For each concurrent user number N , we generate N

requests per second by Siege for 10 minutes.

For fuzzy controller parameters, the learning rate is set

to a constant value η = 0.1 and the discount factor is set

to γ = 0.8. Here, we considered lower value for η, thus

5Wikipedia Access Traces : http://www.wikibench.eu/?page id=60
6FIFA98 View Statistics : http://ita.ee.lbl.gov/html/contrib/WorldCup.html
7https://www.joedog.org/siege-home/

http://www.wikibench.eu/?page_id=60

0

20

40

60

80
1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

0

20

40

60

80

number of concurrent users

VM#1

VM#5

R
es
p
o
n
se

T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(a) Predictable Bursting pattern

0

20

40

60

80

1
0

3
0

2
0

5
0

3
0

1
0

3
0

5
0

7
0

5
0

3
0

5
0

4
0

3
0

2
0

3
0

6
0

7
0

6
0

5
0

6
0

8
0

9
0

1
0
0

9
0

7
0

6
0

5
0

7
0

6
0

5
0

4
0

5
0

0

20

40

60

80

number of concurrent users

VM#1

VM#5

R
es
p
o
n
se

T
im

e
n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(b) variations pattern

0

20

40

60

80

1
0

1
0

1
0

1
0

6
0

6
0

6
0

6
0

3
0

3
0

3
0

3
0

9
0

9
0

9
0

9
0

1
0

1
0

1
0

1
0

4
0

4
0

4
0

4
0

2
0

2
0

2
0

2
0

5
0

5
0

5
0

5
0

5
0

0

20

40

60

80

number of concurrent users

VM#1

VM#5

R
es
p
o
n
se

T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(c) ON&OFF pattern

Fig. 10. The observed end-to-end response time of FSL

0

20

40

60

80

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

2
5

5
0

7
5

1
0
0

7
5

5
0

2
5

1
0

0

20

40

60

80

number of concurrent users

VM#1

VM#5

R
es
p
o
n
se

T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(a) Predictable Bursting pattern

0

20

40

60

80

1
0

3
0

2
0

5
0

3
0

1
0

3
0

5
0

7
0

5
0

3
0

5
0

4
0

3
0

2
0

3
0

6
0

7
0

6
0

5
0

6
0

8
0

9
0

1
0
0

9
0

7
0

6
0

5
0

7
0

6
0

5
0

4
0

5
0

0

20

40

60

80

number of concurrent users

VM#1

VM#5

R
es
p
o
n
se

T
im

e
n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(b) variations pattern

0

20

40

60

80

1
0

1
0

1
0

1
0

6
0

6
0

6
0

6
0

3
0

3
0

3
0

3
0

9
0

9
0

9
0

9
0

1
0

1
0

1
0

1
0

4
0

4
0

4
0

4
0

2
0

2
0

2
0

2
0

5
0

5
0

5
0

5
0

5
0

0

20

40

60

80

number of concurrent users

VM#1

VM#5

R
es
p
o
n
se

T
im

e

n
o
n
-
e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

e
x
p
e
r
t

k
n
o
w
l
e
d
g
e

(c) ON&OFF pattern

Fig. 11. The observed end-to-end response time of FQL

VM#1

8%
VM#2

12%

VM#3
16%

VM#4

22%

VM#5

42%

(a) Predictable Bursting

pattern

VM#1
48%

VM#2

20%

VM#313%

VM#4

10%

VM#5

9%

(b) variations pattern

VM#1

33%

VM#2

22%
VM#3

16%

VM#4
12%

VM#5

17%

(c) ON&OFF pattern

Fig. 12. Percentage number of VMs used by FSL

VM#1

18%

VM#2
21%

VM#3

20% VM#4

20%

VM#5

21%

(a) Predictable Bursting

pattern

VM#1

25%

VM#2

20%

VM#3

21%

VM#4
20%

VM#5

14%

(b) variations pattern

VM#1

19%

VM#2
20%

VM#3

18% VM#4

23%

VM#5

20%

(c) ON&OFF pattern

Fig. 13. Percentage number of VMs used by FQL

giving more impact on old rewards with every update. After

sufficient epochs of learning, we decrease the exploration rate

(ǫ) until a minimum value is reached, which here is 0.2.

FRL approaches start with an exploration phase and after

the first learning convergence occurs, they enter the balanced

exploration-exploitation phase.

Additionally, we compared the two proposed approaches

with a base-line strategy. The results of comparing with

fixed numbers of VMs equal to a minimum and maximum

permitted value are also shown as based-line (benchmark)

approaches, named VM#1 and VM#5, reflecting under- and

over-provisioning strategies.

Furthermore, in order to investigate the effects of initialized

knowledge, we considered two types of fuzzy inference system

(FIS) as the primary knowledge for fuzzy controller, expert

and not-expert knowledge.

B. Comparison of effectiveness

Figures 10 and 11 show the fluctuation of the observed

end-to-end response time for three type of workload patterns

obtained by two approaches FSL and FQL, respectively. In

order to investigate the behaviour of the auto-scaler, we

considered two types of initialized knowledge (expert and non-

expert) and each algorithm FQL and FSL was executed several

times and represented by a different color in presented figures.

During the test, workloads were dynamically changed. De-

0

50

100

0 1 2 3 4 5 6 7 8

0

50

100

Time[hour]

VM#1

VM#5

R
es
p
on

se
T
im

e

F
u
z
z
y

S
R
A
S
A

(
F
S
L
)

F
u
z
z
y

Q
-
l
e
a
r
n
i
n
g

(
F
Q
L
)

Fig. 14. The observed end-to-end response time for Wikipedia workload

0

50

100

0 1 2 3 4 5 6 7 8

0

50

100

Time[hour]

VM#1

VM#5

R
es
p
on

se
T
im

e

F
u
z
z
y

S
R
A
S
A

(
F
S
L
)

F
u
z
z
y

Q
-
l
e
a
r
n
i
n
g

(
F
Q
L
)

Fig. 15. The observed end-to-end response time for FIFA’98 workload

pending on incoming workload (the concurrent input requests

submitted by individual users) and the number of available

VMs, corresponding response timed varied between upper or

lower bound. Both FQL and FSL algorithms with adaptive

policies continuously monitored these fluctuation of the re-

sponse time and identified workload changes. The scaling

decisions were applied accordingly as recommended by the

proposed algorithms. In our experiment, the up/down scaling

process can be completed in a few seconds, due to simplicity

and fast booting of Cirros image.

We compared FQL and FSL with VM#1 and VM#5
as the base-line approaches, which have a fixed number

of VMs during the test. Figures 10 and 11 show that the

proposed auto-scalers are able to dynamically set the number

of required resources to the current workload, providing only

resource allocations that are needed to meet the user’s QoS

expectations. As seen from Figures 10 and 11, both algorithms

FQL and FSL adapt themself to input workload in order to

meet SLA parameters, which here is the response time.

The difference in the algorithms can be seen from the

quality of the solution, i.e., the scaling value. Both algorithms

represent dynamic resource provisioning to satisfy upcoming

resource demand. However:

1) For the Predictable Burst workload pattern (Figures 10(a)

and 11(a)), FSL finds a significantly better solution com-

pared to FQL. The reason can be explained by the speed

of convergence for each RL approach. Q-learning does not

learn the same policy as it follows which consequences

that it learns slower. This means that although the learning

improves the approximation of the optimal policy, it does

not necessarily improve the policy which is actually being

followed. On the other hand, on-policy learning used in

by FSL learns faster and enters the balanced exploration-

exploitation phase, i.e., completes learning phase quickly

and reaches a minimum exploration rate (ǫ) that avoids

more exploration in the action selection step.

2) As a result of the performance improvement achieved by

SARSA, FSL has a tendency to get more VMs launched

to obtain a good solution which can be realized by com-

paring the percentage number of VMs used by these two

algorithms (Figure 12(a) and Figure 13(a)).

3) For the Variations workload pattern, FQL is superior to the

solution found by FSL approach. Due to faster learning

of the on-policy approach used in FSL alongside high

fluctuation and non-periodic behaviour of this pattern, the

non-explorative policy used after the learning phase is

not optimized for the these workloads. For the ON&OFF

(Figures 10(c) and 11(c)) workload patterns, the value of

the solution is more and less similar.

The effectiveness of having expert (optimal) knowledge can

be figured out by comparison between the two types of initial

knowledge used for the experiment. In all presented cases, the

good initial knowledge significantly improves the quality of

results compared to non-expert (sub-optimal) knowledge.

In addition, to validate the applicability of approaches

against real-life situations, we used two real workloads: the

Wikipedia workload and the FIFA WorldCup Website access

logs. While the Wikipedia workload shows a steady and

predictable trend, the FIFA workload has a bursty and an

unpredictable pattern. For the Wikipedia trace in figure 14,

FSL shows slightly better performance compared to FQL.

For the FIFA results shown in Figure 15, the situation is

different. FSL as an on-policy approach behaves better in

terms of the measured response time, while FQL is still in

exploration/exploitation phase.

C. Comparison of cost-effectiveness of scaling

Figures 12 and 13 show percentage numbers of used VMs

for all workload patterns. The approaches work on the current

workload and relative response time of the system at the

current time, increasing the number of available VMs (scale-

up) and decreasing the number of idle VMs (scale-down). Both

FQL and FSL conduct distributed-case scaling and allocate

suitable numbers of VMs according to the workload.

For different types of workload patterns, the average max-

imum number of VMs used during our experiment by FQL

and FSL algorithms are 18.3% and 22.6%, respectively. This

implies our approaches can meet the QoS requirements using

a smaller amount of resources, which is an improvement on

resource utilisation for applications in terms of hosting VMs.

Thus, the FQL and FSL approaches can perform auto-scaling

of application as well as save cloud provider cost by increasing

resource utilisation.

VII. CONCLUSION

We investigated horizontal scaling of cloud applications.

Many commercial solutions use simple approaches such as

threshold-based ones. However, providing good thresholds

for auto-scaling is challenging. Recently, machine learning

approaches have been used to complement and even replace

expert knowledge to design self-adaptable solutions to capable

to react to unpredictable workload fluctuations.

We proposed a fuzzy rule-based system, based on which

we compared two well-know RL approaches, resulting in

Fuzzy Q-learning (FQL) and Fuzzy SARSA learning (FSL).

Both approaches can efficiently scale up/down cloud resources

to meet the given QoS requirements while reducing cloud

provider costs by improving resource utilisation. However,

differences also emerge. In the SARSA experiment, given the

reward at each time step improves the quality of solutions

for periodic workload pattern. Both algorithms have been

implemented in OpenStack, an open-source IaaS platform, to

demonstrate the practical effectiveness of proposed approach

has been successfully tested and presented and the validity of

the comparison results are established.

In conclusion, this paper identifies the promising auto-

scaling concepts for cloud computing: (i) developing an auto-

nomic and complete auto-scaler for a cloud platform system

by combining of techniques such as a fuzzy logic system and

reinforcement learning to provide optimal resource manage-

ment approach tailored to different types of workload pattern,

and (ii) defining the concept of a complex auto-scaler, that

can replace traditional threshold-based ones, (iii) implement

the proposed auto-scaler in an open-source cloud platform and

presenting results for different type of workloads.

We have demonstrated the overall suitability of the different

types of on-policy and off-policy RL approaches for auto-

scaling, but also differences for specific workload patterns

and converging times. We plan to extend our approach in

a number of ways: (i) extending FQL4KE to perform in

environments which are partially observable, (ii) exploiting

clustering approaches to learn the membership functions of

the antecedents (in this work we assume they do not change

once they specified, for enabling the dynamic change we will

consider incremental clustering approaches) in fuzzy rules and

(iii) look at other resource types such as containers [22].

VIII. ACKNOWLEDGEMENT

This work was partly supported by IC4 (Irish Centre for

Cloud Computing and Commerce), funded by EI and the IDA.

REFERENCES

[1] A. Ali-Eldin, M. Kihl, J. Tordsson, and E. Elmroth. Efficient provision-
ing of bursty scientific workloads on the cloud using adaptive elasticity
control. In Workshop on Scientific Cloud Computing Date, 2012.

[2] A. Ali-Eldin, J. Tordsson, and E. Elmroth. An adaptive hybrid elas-
ticity controller for cloud infrastructures. In Network Operations and

Management Symposium (NOMS), pages 204–212. IEEE, 2012.

[3] H. Arabnejad, P. Jamshidi, G. Estrada, N. El Ioini, and C. Pahl. An
auto-scaling cloud controller using fuzzy q-learning - implementation in
openstack. In European Conf on Service-Oriented and Cloud Computing

ESOCC 2016, pages 152–167, 2016.

[4] T.C. Chieu, A. Mohindra, A.A. Karve, and A. Segal. Dynamic scaling
of web applications in a virtualized cloud computing environment. In
IEEE Intl Conf on e-Business Engineering, pages 281–286, 2009.

[5] X. Dutreilh, S. Kirgizov, O. Melekhova, J. Malenfant, N. Rivierre, and
I. Truck. Using reinforcement learning for autonomic resource allocation
in clouds: towards a fully automated workflow. In International

Conference on Autonomic and Autonomous Systems, pages 67–74, 2011.

[6] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck. From
data center resource allocation to control theory and back. In IEEE 3rd

International Conference on Cloud Computing, pages 410–417, 2010.

[7] D. Fang, X. Liu, I. Romdhani, P. Jamshidi, and C. Pahl. An agility-
oriented and fuzziness-embedded semantic model for collaborative cloud
service search, retrieval and recommendation. Future Generation Com-

puter Systems, 56:11 – 26, 2016.

[8] Z. Gong, X. Gu, and J. Wilkes. Press: Predictive elastic resource scaling
for cloud systems. In Network and Service Management (CNSM), 2010

International Conference on, pages 9–16. IEEE, 2010.

[9] R. Han, L. Guo, M.M. Ghanem, and Y. Guo. Lightweight resource
scaling for cloud applications. In 12th International Symposium on

Cluster, Cloud and Grid Computing (CCGrid), pages 644–651, 2012.

[10] M.Z. Hasan, E. Magana, A. Clemm, L. Tucker, and S.L.D. Gudreddi.
Integrated and autonomic cloud resource scaling. In Network Operations

and Management Symposium (NOMS), pages 1327–1334, 2012.

[11] J. Huang, C. Li, and J. Yu. Resource prediction based on double
exponential smoothing in cloud computing. In Intl Conf on Consumer

Electronics, Communications and Networks, pages 2056–2060, 2012.

[12] M.C. Huebscher and J.A. McCann. A survey of autonomic computing:
Degrees, models, and applications. ACM Comp Surveys, 40(3):7, 2008.

[13] S. Islam, J. Keung, K. Lee, and A. Liu. Empirical prediction for adaptive
resource provisioning in the cloud. Future Generation Computer

Systems, 28(1):155–162, 2012.

[14] P. Jamshidi, A. Ahmad, and C. Pahl. Autonomic resource provisioning
for cloud-based software. In Proceedings of the 9th International

Symposium on Software Engineering for Adaptive and self-Managing

Systems (SEAMS), pages 95–104, 2014.

[15] P. Jamshidi, C. Pahl, and N. C. Mendona. Managing uncertainty in
autonomic cloud elasticity controllers. IEEE Cloud Computing, 3(3):50–
60, 2016.

[16] P. Jamshidi, A. Sharifloo, C. Pahl, H. Arabnejad, A. Metzger, and
G. Estrada. Fuzzy self-learning controllers for elasticity management in
dynamic cloud architectures. In International ACM Sigsoft Conference

on the Quality of Software Architectures (QoSA), 2016.

[17] P. Jamshidi, A.M. Sharifloo, C. Pahl, A. Metzger, and G. Estrada. Self-
learning cloud controllers: Fuzzy q-learning for knowledge evolution.
In International Conference on Cloud and Autonomic Computing, pages
208–211, 2015.

[18] E. Kalyvianaki, TheT.mistoklis Charalambous, and S. Hand. Self-
adaptive and self-configured cpu resource provisioning for virtualized
servers using kalman filters. In Proceedings of the 6th international

conference on Autonomic computing, pages 117–126. ACM, 2009.

[19] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano. A review of
auto-scaling techniques for elastic applications in cloud environments.
Journal of Grid Computing, 12(4):559–592, 2014.

[20] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, and L. Yuan. Online self-
reconfiguration with performance guarantee for energy-efficient large-
scale cloud computing data centers. In Services Computing (SCC), 2010

IEEE International Conference on, pages 514–521. IEEE, 2010.

[21] P. Padala, K.-Y. Hou, K.G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant. Automated control of multiple virtualized resources.
In ACM Europ Conf on Computer systems, pages 13–26, 2009.

[22] C. Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2(3):24–31, 2015.

[23] N. Roy, A. Dubey, and A. Gokhale. Efficient autoscaling in the cloud
using predictive models for workload forecasting. In Intl Conf on Cloud

Computing (CLOUD), pages 500–507, 2011.

[24] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[25] G. Tesauro, N.K. Jong, R. Das, and M.N. Bennani. A hybrid reinforce-
ment learning approach to autonomic resource allocation. In IEEE Intl

Conference on Autonomic Computing, pages 65–73, 2006.

[26] Q. Zhu and G. Agrawal. Resource provisioning with budget constraints
for adaptive applications in cloud environments. In ACM Intl Symp on

High Performance Distributed Computing, pages 304–307, 2010.

	I Introduction
	II Background and Related Work
	II-A Threshold-based rules
	II-B Control theory
	II-C Time series analysis
	II-D Reinforcement learning (RL)

	III OpenStack orchestration
	IV On-Policy and Off-Policy RL Auto-Scaling
	IV-A Reinforcement Learning (RL)
	IV-B Fuzzy Reinforcement Learning (FRL)
	IV-C Fuzzy SARSA Learning (FSL)
	IV-D Fuzzy Q-Learning (FQL)

	V Implementation
	VI Experimental Comparison
	VI-A Experimental setup and benchmark
	VI-B Comparison of effectiveness
	VI-C Comparison of cost-effectiveness of scaling

	VII Conclusion
	VIII Acknowledgement
	References

