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SUMMARY 

This paper compares the minimum divergence estimator of Basu, Harris, Hjort and Jones 

(1998) to a competing minimum divergence estimator which turns out to be equivalent to 

a method proposed from a different perspective by Windham (1995). Both methods can 

be applied for any parametric model, contain maximum likelihood as a special case, and 

can be extended to the context of regression situations. Theoretical calculations are given 

to compare efficiencies under model conditions, and robustness properties are studied and 

compared. Overall the two methods are found to perform quite similarly. Some relatively 

small advantages of the former method over the latter are identified. 

Some key words: asymptotic relative efficiency; divergences; influence functions; M-esti­

mation; maximum likelihood; robustness 
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1. INTRODUCTION 

In Basu, Harris, Hjort & Jones (1998) (henceforth BHHJ), we introduced a new class of 

minimum divergence parameter estimators. This class, based on 'density power divergences' 

indexed by a ~ 0, includes maximum likelihood estimation as the limiting case as a---+ 0. 

As a increases the members of the class exhibit reduced efficiency and increased robustness. 

Remarkably, quite small values of a were found to afford considerable robustness while 

retaining very high efficiency relative to maximum likelihood. As their name suggests, 

these estimators involve divergences between data and model densities (or probability mass 

functions in the case of discrete random variables) rather than distribution functions. The 

divergences are estimated without doing any smoothing of the data. The difficult problem of 

selecting the smoothing parameter, the bane of earlier attempts at density-based minimum 

divergence estimation, is thus avoided. The methodology is described in §2.1. 

In this paper we introduce a natural alternative class of density-based minimum diver­

gence estimators and compare it with the class of estimators introduced in BHHJ. The 

alternative estimators are essentially the same as those of Windham (1995) who suggested 

a new approach to robust model fitting. Windham considered weighting the data using 

weights 'proportional to a power of the density'. In the spirit of method-of-moments esti­

mation, Windham proposed solving for the unknown parameter by equating sample and 

theoretical moments based on the weighted data. The related class of estimators introduced 

in the present paper is equivalent to those of Windham when utilising the likelihood score 

function in place of more arbitrary moment choices. We will show in §2.2 how this class 

can also be interpreted in minimum divergence terms. This introduction of the divergence 

function and the interpretation of Windham's method as an optimisation procedure (one 

that minimises the above divergence) is one of the principal contributions of this paper. 

Having the divergence then allows one to judge different solutions to Windham's equations. 

It, too, covers maximum likelihood as a special limiting case and is otherwise more robust 

but less efficient (at the model). In fact, we will see that the new class of estimators and the 

one proposed in BHHJ are closely related, yet different (in general). The two divergence 

families which generate these estimators are shown to be special cases of a larger family of 

divergences, suggesting in particular that the tuning parameter for the Windham method, 

say {3, can be interpreted as being equivalent to the tuning parameter a for the BHHJ 

method. 

A comparison of the two estimator classes is made in §3. For a given value of a, 

the BHHJ estimator is seen to be at least as efficient as the Windham estimator. The 

picture is less clear in terms of robustness. The BHHJ estimator usually is better in 

terms of breakdown and influence, but typically worse when compared to Windham's using 
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say mean squared error under a contaminated model. The differences tend to be small. 

Implementation of the two methods is also very similar. In the case of the exponential 

distribution (discussed in §3.2.3) we recommend the BHHJ estimator, in the other cases 

we have seen there seems little reason to prefer one over the other. 

We indicate in §4 how the estimation methods can be extended from the i.i.d. setting 

to general regression models. Discussion and some concluding remarks are offered in §5. 

2. DENSITY POWER DIVERGENCES AND CORRESPONDING ESTIMATORS 

2·1. The BHHJ approach 

Consider a parametric family of models {Ft}, indexed by the unknown finite-dimensional 

parameter t in an open connected subset n of a suitable Euclidean space, possessing densi­

ties {ft} with respect to a common dominating measure which we for notational convenience 

take to be Lebesgue measure. Let G be the distribution underlying the data, having density 

g with respect to the same measure. BHHJ define the density power divergence between g 

and ft to be 

(2.1) 

and 

do(g, ft) = lima-+0 da(g, ft) =I g log(gj ft) dz. (2.2) 

Here and in many integral expressions in this paper we omit the variable of integration 

for convenience. Note that d0 (g, ft) is the Kullback-Leibler divergence. The version of the 

parameter which gives the best fit in terms of the density power divergence will be denoted 

Ba, assumed to exist and be unique, and given by da(g, foe.) =mintEr! da(g, ft)· 

Both (2.1) and (2.2) involve g through only (i) a terming alone which can be dropped 

because it does not affect minimisation over t, and (ii) a further term which is a linear 

functional of g, i.e. of the form J a(z)g(z) dz for known a. Such a linear functional can be 

estimated via the empirical distribution of the data, as a sample average f a(z) dG(z) = 

n-1 I:i=1 a(Xi), where G is the empirical distribution function. (Indeed, existing theory, see 

e.g. Silverman & Young, 1987 and de Angelis & Young, 1992, shows little or no advantage 

in introducing smoothing for such functionals, except perhaps for particular a functions 

and for small n.) The resulting sample minimum density power divergence estimators are 

those values Ba generated by minimising (1/a times) 

a I ft1+a dz- (1 + a)n-1 tJt(Xi) 
i=1 

(2.3) 
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with respect tot, when a > 0, and the negative log-likelihood -n-1 I:f=1log ft(Xi) when 

a = 0. Differentiating with respect to t, ()a can also be defined by the robustified score 

equation 

n-1 tfta(Xi)ut(Xi)- J ftl+autdz = 0 
t=1 

(2.4) 

when a> 0, or the ordinary score equation when a= 0. Here, Ut(z) = olog !t(z)jot is the 

likelihood score function. 

It is interesting to note that (2.1) is an example of a so-called Bregman divergence, 

discussed in Havrda and Charvat (1967), Burbea and Rao (1982), Jones and Trutzer (1989), 

Jones and Byrne (1990) and Csiszar (1991). From Csiszar (1991), a Bregman divergence 

is one taking the form 

jlH(g(z))- H(f(z))- {g(z)- f(z)}H'(f(z))] dz, 

where His a convex function. Taking H(f) = p+a gives a times (2.1). It is also interesting 

to note that no smoothing is needed to implement an estimation strategy based on any 

Bregman divergence. One can, however, make the following argument to suggest that 

the only statistically interesting case is given by (2.1 ). A Taylor series expansion of the 

Bregman integrand, for f close to g, gives ~(! - g) 2 H"(f). If we want the divergence 

to behave like the usual kind of weighted mean integrated squared error which includes 

Kullback-Leibler and 12 divergences, with the latter case corresponding to a= 1 in (2.1), 

then we need H"(f) ex fa- 1 , for some a~ 0. Thus H(f) ex Ja+l, leading to the divergence 

given by (2.1). 

2· 2. The alternative approach 

Windham's (1995) approach is essentially to choose the estimator, say Oho), to solve the 

following equation in t: 

l::f=1 Jf(Xi)ut(Xi) f ftl+f3ut dz 

I:f=1 Jf (xi) - J !tl+f3 dz . 
(2.5) 

The indexing parameter (3 equals c in Windham's notation, and we will see later that it is 

reasonable to take (3 as being equal to a. This is essentially equation (3) of Windham (1995) 

except that Windham allows the choice of functional, which we take to be the expectation 

of the score function, to be an arbitrary expected value. It can be argued quite generally 

that if one wishes to relate a general parameter estimation method to likelihood estimation, 

one should incorporate the likelihood score function in some appropriate way, while if one 

concentrates on generalised method-of-moments estimation, which is what Windham does, 

the likelihood score is replaced by an appropriate power of z. Of course, for many important 
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models the two approaches coincide. In (2.5), (3 = 0 corresponds immediately to maximum 

likelihood estimation. Equation (2.5) may also be written 

j J/+/3 dz n-1 :t ff(Xi)ut(Xi)- j ftl+/3Ut dz n-1 :t ff(Xi) = 0. (2.6) 
i=1 i=1 

Clearly, both (2.4) and (2.6) are unbiased estimating equations when g =ft. 
If ft is a location family, then (2.4) and (2.6) both reduce to 

n 

2: f?(Xi)ut(Xi) = 0, (2.7) 
i=1 

where 1 is a or (3, and thus for this special case both approaches are identical. Equation 

(2. 7) displays an interesting density power downweighting (and hence robustification) of 

the usual likelihood estimating equation. In general, however, (2.6) does not reduce to 

(2.4). 

We recognise equation (2.6) as being the estimating equation resulting from maximising 

{n-1 :t ff(Xi)} H/3 j (j J/+!3 dz ) 13 

i=1 

(2.8) 

with respect to t. A further informative version of this is that §ho) minimises 

(3log (j ftl+/3 dz) - (1 + (3) log{ n - 1 :t jP(Xi) }. 
i=1 

(2.9) 

This is a direct analogue of (2.3). What is more, (2.8) is the natural estimator of 

(2.10) 

Thus, as Ba. minimises a J Jl+a. dz- (1 +a) J fta.gdz, so the Windham method's best­

fitting parameter e1o) maximises (2.10) or equivalently minimises (3log(J ftl+/3 dz) - (1 + 
(3) log(J ff g dz ). 

It is not difficult to convert the objective function (2.10) into a genuine discrepancy. 

One version of this is given by 

~ {J g'+Pdz- (J Jfgdz)l+P}. 
(3 (J ftl+/3 dz ) 13 

(2.11) 

That (2.11) has the required properties of being positive for all (3 > 0 with equality if and 

only if ft = g follows as a special case of Holder's inequality. Indeed, alternative versions 

of this discrepancy also yield the exact same ()1°). For instance, one might prefer 

~ {1- pp(g ft)} = ~ {1- J ffgdz } 
(3 ' (3 (Jgl+/3dz) 11(H!3)(Jfl+!3dz)/3/(H/3) ' 

(2.12) 
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where the Pf3 measure has a 'correlation' nature, with maximal value 1 only if ft agrees 

fully with g. A further form of the divergence which is similar to (2.1) is 

4°)(g, ft) =log(/ Jl+f3 dz) - (1 +~)log(/ gff dz) +~log(/ gl+f3 dz). (2.13) 

In addition to the above arguments, one may derive both (2.1) and (2.13) from a more 

general family of divergences, given by 

(2.14) 

That (2.14) is a divergence can be shown via the Holder inequality and some additional 

analysis; see the University of Oslo technical report version of this paper by the same 

authors. Selecting <P = 1 immediately gives (2.1) (with"/ playing the role of a in (2.1)). To 

obtain (2.13) (with (3 the same as"!), take the limit as <P goes to zero, and do some simple 

algebraic manipulations. Since both divergences are embedded in the same family, a in 

(2.1) and (3 in (2.13) may be treated as the same parameter. Thus comparisons between 

(2.1) and (2.13) really represent comparisons between <P = 1 and <P = 0 in (2.14). The 

remark at the end of this section suggests that these two values of <P are the statistically 

most useful ones. 

The calibration a = (3 and the choice <P = 0 or 1 are also supported by the following 

asymptotic argument. It can readily be shown that for ft close tog, both (2.1) and (2.11) 

are close to, for fixed "/ = a = (3, 

This is not true for fixed <P -::j:. 0 or 1 in (2.14), for which an extra term is present. Ad­

ditionally, for fixed ft, it can be shown that for "/ --+ 0, both (2.1) and (2.11) take the 

form 

where KL(g, ft) is the Kullback-Leibler divergence from g to ft· The approximations in 

this paragraph hold provided the integrals are finite. 

There are further correspondences between the two approaches in this paper. Windham 

(1995) considers the weighted density 

ff(x) 
dGf3t(x)= f3 dG(x) 

' Ea{ft(x)} 
(2.15) 
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and takes Oho) to satisfy T((Fo){3,o) = T(Gf3,o). With T the expectation ofthe score function, 

this yields (2.5). If instead we use 

ff(x) 
dGa,t(x) = Ept{fta(x)} dG(x) (2.16) 

with T the expectation of the score function, then T((Fo)a,o) T((G)a,o) yields (2.4) 

(although we note that the right-hand side of (2.16) is not a density). Windham (1995) 

uses a fixed point algorithm motivated by (2.15), and shows that the convergence rate at 

the model and for large n is (3/(1 + (3). In the same way, using (2.16) we can define a fixed 

point algorithm for the BHHJ estimator which has convergence rate a/(1 +ex). 

Both (2.4) and (2.6) are special cases of M-estimation methodology, with estimating 

equations of the form I::i=1 '1/J(X;, 0) = 0 for appropriate functions '1/J. This observation does 

not diminish the novelty and attractiveness of these minimum distance-based estimation 

procedures, but it does make some of the theory in the next section flow more or less 

directly from existing general M-estimation theory; see for example Hampel, Ronchetti, 

Rousseeuw & Stahel (1986). 

In summary, in the same sense that BHHJ suggested a class of smoothing-free minimum 

density-based divergence estimators based on (2.1) by minimising (2.3), so, by the minimi­

sation of (2.8) or equivalently (2.9), does (2.11) (or (2.12) or (2.13)) yield an alternative 

class of smoothing-free minimum density-based divergence estimators. In reference to the 

superfamily of divergences (2.14), we will refer to the BHHJ divergence (2.1) as type 1 

(since¢> = 1) and the Windham-derived divergence (2.13) as type 0 (since ¢> = 0). The 

corresponding estimators obtained from minimising these will then be type 1 and type 0 

estimators. 

REMARK. One may turn the divergence (2.14) into an estimation method for any 

nonnegative value ¢>, by selecting () to minimise 

(j ftl+-r dz t -( 1 + 1 / /') { n - 1 t ft'Y (X;)} <P. 
i=1 

Taking the derivative with respect to the parameter and simplifying gives the estimating 

equation 

{n- 1 tJ?(X;)}<P-1{n- 1 tJ?(X;)ut(X;)} = (j ft1+-rdzt-1 j ftl+-rutdz. 
i=1 i=1 

One sees that (2.4) and (2.5) are indeed the special cases when ¢>is equal to 1 and 0. For 

other values of¢> the above estimating equation is not unbiased for finite n, but is so for 

the asymptotic case. We have focussed on the two cases 1 and 0 only, however. For other 
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values the method can not be represented as an M-estimation method, but consistency 

and asymptotic normality can be established under mild regularity conditions. See the 

appendix for the necessary tools. 

3. COMPARING THE TWO METHODS 

3·1. Asymptotic efficiencies 

The two classes of estimators considered in this paper are the BHHJ method 0 a (type 1) 

and Windham's method ~o) (type 0). Let Oa = Ta(G) and ()~ 0 ) = TJ0 )(G) be the minimum 

disparity functionals obtained by minimising the divergence between the true density g and 

ft for the two methods; g may not necessarily belong to the model family. Under regularity 

conditions, it can be shown that the Oa and ~o) are consistent for ()a and ()~ 0 ), respectively, 

and are asymptotically normal as n grows. In fact, for both methods, n 112 times estimator 

minus estimand is asymptotically a zero-mean multivariate normal with variance matrix of 

the form J;;1 Kal;; 1 for type 1 and (Jh0))-1 Kh0)(Jh0))-1 for type 0. Formulae for these are 

given below. These results hold even if the data distribution G is not equal to Ft for any t. 

3·1·1. Formulae for variances 

Introduce 

Li,"' =I gi f 0 "~ dz, Mi,"' =I gi f 0 "~uo dz and Ni,"' =I gi f 0 "~uou~ dz 

for j = 0, 1 and positive 1, evaluated at () = ()a when type 1 is being discussed and at 

() = ()~ 0 ) when type 0 is discussed. Under model conditions, L0 ,1+"1 = L 1m and so on. 

For the type 1 estimator, Ka and la are given in BHHJ and may be expressed as 

Ka = N1 2a - M1 aM1t ~ and 
' ' 7'-" 

la =I f0(g- fo)(io- cwou~) dz + No,1+a, 

where it( X) = -8{ Ut( X)} I ot is the (positive definite) information function of the model. 

Under model conditions, these matrices reduce to la = No,l+a and Ka = No,1+2a -

Mo,l+aM6,1+a" 

To analyse behaviour of the type 0 estimator one may appeal to general M-estimation 

methodology In the present case it is perhaps as easy and illuminating to derive the nec­

essary result, along with expressions for the limiting variance matrix, directly. Such ar­

guments are presented in the Appendix, and makes it easier to check, for any parametric 

model at hand, whether there is sufficient regularity to secure the validity of the separate 

steps in the approximation arguments. Write e13 for the vector M1,13 j L1,13 , which is identical 

to Mo,Hf3f Lo,Hf3; cf. eq. (2.5). One finds that 

Kho) = L; I gfi13 ( Uo - ef3 )( uo - ef3 )t dz, 
1,{3 
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which may also be expressed as (1/ Li,f3)(N1,2f3- ff3Mt 2 f3 - M1,2f3f~ + ff3f~L1,2f3)· Under 

model conditions, 

Secondly, 

No,Hf3 _ Mo,Hf3 ( Mo,l+f3) t + f3 ( No,l+f3 _ N1,(3) 

Lo,l+f3 Lo,H(3 Lo,H(3 Lo,H(3 L1,(3 

+ (1/ L1,(3) j gffio dz- (1/ Lo,H(3) j Jt+f3io dz. 

Under model conditions this reduces to Jh0
) = No,H(3/ Lo,H(3 - ff3f~. 

Note that as o: = f3 -t 0, writing K for I(:.. or Kho) and J for la or Jh0), 

K -t N1,o = j guou~ dz, J -t No,l + j (gio- foio) dz = j gio dz, 

in agreement with traditional results about the limiting behaviour of maximum likelihood 

methods outside model conditions. 

Statistical inference can be carried out in the form of tests, confidence statements, 

and so on as long as there is a consistent estimator of the variance matrix of the limiting 

distribution. Such can be arrived at in various ways. Model-robust estimates emerge for 

Jho) and Kho) when one replaces Lo,"! and L1,"1 in the formulae above with J f~o) dz and 
(3 

n-1 I:i=1 fi{o) (Xi), respectively, and similarly with the other M- and N-quantities. The 
(3 

resulting variance matrix estimator may also be written 

These L variables have separate interpretation as influences of the data points, and may 

be used for model-checking purposes. Yet other options exist for estimating the variance 

matrix, including bootstrapping and jackknifing. 

3·1· 2. Comparisons for smal/1 

In this subsection we investigate the large-sample variance matrices for 1 _ o: = f3 small, 

for general models. We work under model conditions, so that g = fo, say. 

For a general model for which the integrals below exist, consider 

A"~= j Jt+"~ dz, B"~ = j Jt+"~uo dz, C"~ = j Jt+"~uou~ dz (3.1) 
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for nonnegative "/, in terms of which 

J'Y = c'Y, 

K"~ = C 2 "~ - B"~B~, 

J~ 0 ) = (1/A"~)(C"~- B"~B~jA"~), 

K~o) = (1/A~){C2'Y- t~ 0 )B~'Y- B2'Y(t~o))t + t~ 0 )(t~ 0 ))tA2'Y}, 

where e~o) = Rtf~. For small "/, the quantities in (3.1) may be approximated via 

Jr/ :::::: 1 + "/log J8 + ~"! 2 (log fo )2 , as Taylor expansions to the second order. Thus C"~ :::::: 

J0 + "/ D + ~"/ 2 E for D = I fo log fouou~ dz and E = I fo(log fo ) 2 uou~ dz, where Jo is the 

Fisher information matrix of the model, with similar expansions to second order of A'Y and 

BT There are consequent approximations for the variance matrices of the two limiting 

distributions. Interestingly, after some matrix algebra and analysis work one finds that 

both J:; 1 K'YJ:; 1 (for type 1) and (J~ 0 )t 1 K~ 0 )(J~ 0 )t 1 (for type 0) are equal to 

(3.2) 

(the first order term vanishes). The matrix inside square brackets is always positive definite. 

Equation (3.2) illustrates the relatively small loss of efficiency of both estimation meth­

ods, and also that the methods can be expected to perform very similarly, when their tuning 

parameters are equal and small. The third order terms (for 13 ) differ for the two methods. 

In all the examples we have investigated, the BHHJ method (type 1) has asymptotic vari­

ances smaller than or equal to the Windham method (type 0) for the same value of the 

tuning parameter a = (3, but we have not attempted to prove that this always holds. 

3·1· 3. Comparisons for some simple models 

We next go on to inspect efficiencies for some simple models, again working under model 

conditions. First, for pure location models, recall that the two regimes agree. Results 

applicable to both estimators are therefore given for the normal mean model in §4.1 (a) of 

BHHJ. For the normal standard deviation a, the formula for the asymptotic variance of 

n 112 times (j a is given in §4.1 (b) of BHHJ, and that for &ho) becomes 

(1 + f3?(3{P + 4(3 + 2) 2 

4(1 + 2(3) 512 (]" . 

For the exponential distribution with mean (), the formula for the asymptotic variance of 

if a is given in §4.1 (c) of BHHJ, and that for lf1o) is after lengthy calculations found to be 

(1 + (3) 4 (2(32 + 2(3 + 1) ()2 

(1 + 2(3) 3 . 
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Explicit expressions for the Poisson distribution are not available for either method but 

they can easily be evaluated numerically. Exact formulae can be found for the geometric 

distribution, where fg(x) = (1 - oy-Io for X = 1, 2, .... We omit giving these here, but 

illustrate their use in the table. 

*** Table 1 about here *** 

Numerical versions of the resulting efficiencies are presented in Table 1, given as ratios 

v0 jv, where v0 is the minimum possible limiting variance (that of the maximum likelihood 

procedure) and v is the limiting variance for the estimator in question. It is striking that 

for small values of a, the two methods give almost identical efficiencies, as suggested by 

the (3.2) approximation. For larger a, the two typically diverge and the type 1 estimator 

becomes progressively more efficient than the type 0 estimator, although each is becoming 

very robust at the expense of rather considerable loss of efficiency. 

One may note that there are situations where the limiting variance for 001 does not 

increase everywhere for increasing a. For the geometric distribution, for example, with 

() > ~' the efficiency of the type 1 method first decreases with a and then increases, but 

this is not quite visible from the last rows of Table 1 in that values are only displayed for 

a few a values ~ 1. 

3· 2. Robustness 

3· 2·1. Influence and breakdown 

As described in BHHJ, the influence function of 001 is 

From the manipulations in §3.1, the influence function for the type 0 estimator can be 

expressed as 

IF(O)(G, y) = (Jh0)ti L]jf:~O) (y){uB~O) (y)- e;J}. 

These are typically bounded functions in y, in contrast to the influence function J0 1ue0 (y) 

for the maximum likelihood estimator, which is unbounded for most of the popular models. 

For the normal (0, 0"2) model, somewhat long calculations give Jho) = 2/(1 + (3) 2 , and 

under model conditions. The corresponding influence function for the BHHJ method can 

be shown to take the form 
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Figure 1 displays pairs of influence curves for the BHHJ (full line) and Windham methods 

(dotted line) for estimating 0' in the normal (0, 0'2 ) model, computed under model condi­

tions and for 0' = 1, for tuning parameters a = (3 equal to 0, 0.10, 0.25, 0.50. We note that 

the influence curves for the two methods are nearly identical for a = (3 ::::; 0.25 and not 

very different for bigger tuning parameters either. For such moderate or larger tuning pa­

rameters, the Windham method's influence curve redescends slightly more quickly towards 

zero than does the BHHJ influence curve for values of the argument outside the region of 

values most probable under model conditions. 

*** Figure 1 about here *** 

Fig. 1. Pairs of influence curves for the BHHJ (full line) and Windham methods 

(dotted line) for estimating a in the normal (0, 0'2) model, for tuning parameter 

equal to 0, 0.10, 0.25, 0.50. The curves are computed under model conditions and for 

0'=1. 

BHHJ showed that for the normal case with unknown mean and variance, the breakdown 

point associated with Pa is o:/(1 + a) 312 • Manipulations analogous to those in §3.2 of BHHJ 

show that the breakdown point associated with [1~ 0 ) (in the normal case) is, on the other 

hand, zero. (This was indicated as a possibility by Windham, 1995.) This gives the BHHJ 

method a slight robustness edge over its competitor. 

3·2·2. Mean squared error under contamination 

In this section we simultaneously investigate efficiency and robustness by examining the 

mean squared error of each estimator under given contaminated models. Consider the 

mixture distribution g(z) = (1- c)fe(z) + ch(z), where h(z) is some contaminating dis­

tribution. There is an asymptotic bias and an asymptotic variance for each of the type 0 

and type 1 estimators under this true distribution if we fit the model family {ft} and () is 

the target parameter. Alternatively, one can numerically calculate the mean squared error 

of each estimator in finite samples using a Monte Carlo approach. This can be done for 

various different choices of(), contaminating distribution h, proportion of contamination c 

and choice of I· The purpose is to compare the two types of estimators at the same 1 value 

and to compare different 1 values for each estimator in an attempt to suggest which type 

of estimator to use and possibly which 1 to pick. 

We investigated three families; geometric, exponential and Poisson. For each family we 

considered two types of contamination, a point mass at a large value, and a contamination 

by the same type of distribution (i.e. Poisson with Poisson, geometric with geometric etc.), 

with a substantially larger mean. We typically used c around 0.1 and small sample sizes of 

about 20. 
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The results were mixed. For most of the simulations the optimal value of 1 = a = {3 

occurred around 0.5, although in one case (an exponential) the optimal value was about 

0.95. Also in most cases the type 0 estimator tended to slightly outperform the type 1 

estimator, although the difference was typically small, about 5 percent. Only in one case 

was the difference very large, again the exponential, where for 1 near 1 the type 1 estimator 

produced mean squared errors almost 30 percent smaller than the type 0 mean squared 

error. 

These results do not give very precise advice as to which 1 value to use for any of the 

methods, unless one to some extent can assess the degree of contamination of one's data 

relative to the chosen model. The main points are (i) that the two methods again are seen 

to perform rather similarly, for the same value of the tuning parameter, and (ii) that there 

seems to be a reasonable range of close-to-optimal values of the tuning parameter where 

the results vary little. 

3· 2· 3. The exponential distribution 

On rare occasions the type 0 estimator may exhibit unexpected behaviour, when the para­

metric family used gives increased probability for data landing in a 'corner' of the sample 

space, and there are one or more data points- 'small outliers'- extremely close to this 

corner. Thus the method may be robust for large outliers but not always for small outliers. 

We illustrate this phenomenon for the case of the exponential distribution. 

Suppose that X 1 , ... , Xn are to be fitted by the (1/0) exp( -x/0) family. The estimator 

O~O) is the one minimising (2.9). It aims at and converges for growing n to the parameter 

value ()~o) which minimises Q( 0) = {3log(J Jt+f3 dz) - (1 + {3) log(J f~ dG), where G is the 

real mechanism generating data. Suppose that G has a point mass p at a small value Xo 

with the remaining 1 - p part being a unit exponential. The Windham type estimator then 

aims at minimising 

Q(O) = {3log(j Jt+f3 dz)- (1 + {3) log{pf~(xo) + (1- p) j f~(z) exp( -z) dz }. 

In the present situation this simplifies to minimising 

{31ogB- (1 + {3)log{pexp(-x0{3/0) + (1- p)0/({3 + 0)}. 

It is now easy to study this curve in () for some combinations of p and {3 for a fixed small 

x 0 = 0.001, say. For {3 reasonably small there are no problems, and there is only one global 

minimiser, not far from px0 + 1-p, the mean of the true G (which would be the limit value 

of the maximum likelihood estimator). However, if the tuning parameter {3 as well as the 

contamination parameter pare a little larger than zero, problems may occur. For example, 
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when (3 = 0.5 and p = 0.15 there is a global 'silly' minimum at 0(3 = 0.0016, and a more 

sensible local minimum at 0 = 0.645. 

This behaviour translates to some rare categories of problematic finite-sample situations. 

If (3 = 0.5, say, and a significant proportion of the data values are very small, then Qn( 0) 

may have two local minima, with the global one being unreasonably close to zero. We 

observed this in about 1 of 250 random samples of size n = 20, for example, with a single 

extremely small data value. With increasing n the problem goes away, unless a fixed 

proportion of data values remain very small. 

What we learn is that in some cases the criterion function (2.9) may have two local 

minima, one extremely small, the other moderate. This may also happen in models other 

than the exponential. Interestingly, the type 1 estimator of BHHJ appears to be free of 

such problems, and could be preferred on this ground. 

3· 3. Limitations when integrals are infinite 

Both estimation methods under consideration involve the quantity I 1:+'1 dz, cf. the cri­

terion functions (2.3) and (2.9). For some parametric models this and related integrals 

are infinite for a region of parameter values 0, depending on the value of '"'!· This may 

in particular happen when the density fe( x) is unbounded in x, as for certain parameter 

combinations in the gamma, beta and Weibull families, for example. 

To illustrate the point, consider the simple family fe( x) = OxB-l on the unit interval, 

where 0 is positive and unknown. Here I J:+"' dz is finite only when 0 > 1/(1 + '"'!)· When 

0 > 1 there are no problems, and both methods are consistent and behave according to 

results discussed above. For smaller 0, the methods work only when 1 < 0/(1- 0), and 

will err otherwise. 

Calculations for this example illustrate that both methods may lose rather a lot in 

efficiency to the maximum likelihood method, and that the BHHJ method loses significantly 

less than the Windham one, when 0 < 1, unless 1 is quite small compared to 0/ ( 1 - 0). 

When the model holds for 0 = 0.25, for example, then the two methods have a chance of 

behaving reasonably only for 1 values below 1/3, and the efficiencies are already as low as 

48.6 and 46.1 percent, respectively, when 1 = 0.10, and as unacceptably low as 6. 7 and 5.3 

percent, respectively, when 1 = 0.15. 

3·4. Examples 

The first example is the Newcomb light speed data, analysed by Brown and Hwang 

(1993) and BHHJ. The normal density N(J.L, a-2 ) is fitted to the data. Table 2 gives the 

estimates ila, &a and j1~ 0 ), &b0) for'"'(= a= (3 = 0, 0.02, 0.05, 0.1, 0.25, 0.5, 1. As one can see 

from the table the methods appear virtually identical for small'"'(. For larger 1, between say 
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0.5 and 1, there is some discrepancy, but typically one would not want to use this large a 1 

as the efficiency loss becomes serious. The most important aspect here is that the estimate 

of f7 quickly goes down in size as 1 2: 0.05. 

*** Table 2 about here *** 
The second example is also considered in BHHJ and is an analysis of data on fruit flies 

presented by Simpson (1987). Male flies are exposed to different doses of a chemical and are 

then mated with unexposed females. For each male the number of daughter flies carrying 

a recessive lethal mutation on the X chromosome is noted. One such experiment with 34 

males resulted in 23, 7, 3 and 1 males having 0, 1, 2 and 91 such daughters, respectively. 

In Simpson (1987) and BHHJ, Poisson models with mean >. were fitted to the data. 

Table 3 gives the results of fitting the Poisson (>.) model to these data, both with and 

without the outlier. Again for 1 < 0.5 there is virtually no difference between :\a and 

X~o). The most important aspect of both methods is that for tuning parameter as small as 

0.02, the estimates are drastically shifted away from the maximum likelihood result, and 

actually making them quickly similar to results obtained when the outlier is removed. This 

reflects the methods' effective robustness towards outliers. For comparison, the minimum 

Hellinger distance estimate of>. is 0.364 (Simpson, 1987). 

We might add that our treatment of this example is primarily meant to illustrate the 

use of our estimation methods; in the particular situation at hand the single prolific male 

fly might well be of real significance for some aspects of the analysis, and the simple Poisson 

model might be too naive. 

*** Table 3 about here *** 
The third example is based on an analysis of telephone line fault data presented in Welch 

(1987), also analysed by Simpson (1989). The data represent the difference of inverse fault 

rates between the test and the control in 14 matched pairs. The observations are -988, 

-135, -78, 3, 59, 83, 93, 110, 189, 197, 204, 229, 269, 310, in values test minus control, 

multiplied by 105 . Here we carry out a parametric test under the N (,u, r72 ) model of the 

hypothesis ,u = 0 versus ,u > 0, where f7 is unspecified. We perform the analogue of a 

one-sided Wald test, comparing 

12 3/4 

W, = n 112p,j(1 + ) &, 
1 + 21 

to the N (0, 1) distribution. The underlying fact used here is that n 112([1- ,u) has a limiting 

N(O, 7 2) distribution, where 7 2 = {1 + 1 2 /(1 + 21)}3/ 2r7 2 , for both estimation methods; see 

the BHHJ paper. 

Table 4 presents the parameter estimates, Wald statistics and p-values using both the 

type 0 and type 1 estimators for several values of 1. Again, for small values of 1, the 
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two sets of estimates as well as p-values are very similar. The most important aspect of 

the example is to illustrate that the ordinary maximum likelihood-based method can be 

'fooled' by outliers making the (]" estimates too big; with the effective robust methods of 

this paper the message comes through that there is a significant difference between the test 

and control objects. 

*** Table 4 about here *** 
In these examples we used a fixed point algorithm for the two-parameter problems, and 

a bisection method for the one-parameter problem. 

4. ROBUST REGRESSION 

A parametric estimation method is much more valuable if it can be used not only in settings 

with independent and identically distributed data but also in general regression models. 

How the type 1 methodology can be extended to regression contexts was briefly indicated 

in §3.5 of the BHHJ paper. The following brief arguments show how the type 0 estimation 

method can also be extended to regression cases. 

Consider a situation with a model fe (y I x) for some true density g(y I x). Look at the 

x-conditional distance 

1 [(/ f3 )1/(1+/3) df3[g(·lx),fe(·lx)] = j3 gl+ (ylx)dy 

-(j g(ylx)fff(ylx)dy)j(j JJ+f3(ylx)dyt/(l+f3)], (4.1) 

and consider making an estimation method for () that aims at minimising 

dp[g(-1·), fe(·l·)] = j d;3[g(·l x), fe(-1 x)] R(dx) 

where R is the distribution of covariates. Expression ( 4.1) is a version of yet another 

discrepancy measure associated with the Windham method, akin to (2.11) and (2.12). 

This version results in the maximisation of Ex,Y{fff(Y I X)/v%/(l+f3)(X)} where ve(x) = 

f JJ+f3 (y I x) dy, where the expectation is with respect to the simultaneous distribution of 

(xi, li) pairs. This leads to the following proposal: let 0 = 0~ 0 ) maximise 

-1 ~ Jff(li I Xi) 

n ~ vf3/(l+f3)(x·). 
•=1 B ' 

This succeeds in the sense ofgiving an estimator that is consistent for the ()!3 minimising 

the overall d;3 distance above. One might also derive a n 112(0- 0;3) limit result, and so on. 

Under model conditions, ()!3 is the value of the true parameter. 
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This procedure amounts to a robust generalisation of the maximum likelihood method 

(which emerges when f3 ~ 0), and has very little efficiency loss under model conditions if 

f3::::;; 0.10, say. It can easily be used to robustify linear, Poisson and gamma regression, and 

so on. In the absence of covariates, the method reduces to that of Windham. 

One may also develop robust model choice criteria in the style of Akaike's information 

criterion (or use cross validation). These methods can help making a flexible robust esti­

mation and inference package for practical statistics in a wide range of regression contexts. 

5. DISCUSSION 

This paper has shown how the estimator of Windham (1995) can be recast as a minimum 

divergence estimator closely related to the estimator introduced by Basu, Harris, Hjort 

and Jones (1998). It is shown that both divergences are members of a larger family of 

divergences, and furthermore that these two appear to be the most interesting ones from 

a statistical viewpoint. Both minimum divergence estimators include maximum likelihood 

as a special limiting case and both are examples of M -estimators. We also stress that the 

methods work in any sample space, for example when the data are vectors. In particular, 

minimising the appropriate versions of (2.3) and (2.9) will provide robust estimation of 

mean vector and variance matrix for the multinormal model. 

We have no universal way of selecting the tuning parameters a for type 1 or f3 for type 

0 estimators although a student of the first author is working on this problem for BHHJ. 

These parameters fine-tune the underlying discrepancy measures and act to balance loss 

of efficiency under model conditions (compared to maximum likelihood methods) versus 

increased robustness. See the parallel discussion of this point in BHHJ. 

Taken as a whole the examples and calculations suggest there is little difference between 

the BHHJ and Windham methods in practical circumstances, at least for the simple models 

we have investigated. For a given 1 = a = f3 the type 1 estimator is slightly more efficient 

than the type 0 estimator. Implementation of the two procedures is quite similar. The 

situation with regards to robustness is a little more mixed. The type 0 estimator tended to 

slightly outperform the type 1 estimator in terms of mean squared error in many cases. The 

breakdown in the N(f-1, a 2 ) problem is zero for the type 0 estimator, which is a disadvantage, 

but one that may not be too worrisome; Maguluri and Singh (1997) give other examples 

of robust estimators with zero breakdown. The type 0 method of Windham may also 

have occasional problems with very small observations for some life-time distributions, as 

indicated in §3.3, problems apparently not encountered for the BHHJ method. 

Both estimation methods dealt with here have extensions to general regression models, 

and may be supplemented further with robust model choice criteria. All in all they make up 

valuable versatile robust and nearly efficient alternatives to traditional statistical inference 
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in all parametric models. 
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APPENDIX 

Some rather technical matters have been placed here, in order not to interrupt the natural 

flow of discussion in the main part of our paper. 

Al. The two-parameter divergence family 

We prove here that (2.14) defines a divergence (being nonnegative for all densities f and g 

with equality only when they are equal). The starting point is that of inequalities 

1 1 
--x-"1 + --x > 1 for all--y> 0, x > 0, (A.1) 
1+--y 1+--y -

and 

for all--y> 0. (A.2) 

The first of these is proved using basic calculus, while the second follows from the Holder 

inequality. Now raise both sides of (A.2) to the power of 1 + --y, and rearrange a little, to 

get 

This implies 

1 (I gl+"~)¢; 1 (I p+'Y)¢; 1 (I f'Yg )"'¢ 1 (I p+"!)¢; 

1 + 1 I f"~ g + 1 + 1 I f"~ g 2: 1 + 1 I fl+'Y + 1 + 1 I f"~ g 

for each positive¢. Applying (A.1) shows that the right hand side is at least 1, which upon 

a little further transport of symbols gives that 

(j gl+'Yt + 1(/ fl+'Yt 2: (1 + --y)(/ f"~g)¢;. 

This leads to the required conclusion. 

A2. Large-sample behaviour of type 0 estimators 

The following provides a direct derivation of the limiting distribution result for type 0 esti­

mators, rather than deducing it as a consequence of more general results forM-estimation. 

The advantage is simplicity and the possibility of checking regularity conditions for each 

step in the argument, for the parametric model at hand. Also, similar arguments become 

necessary for handling estimators of the type considered in the remark ending Section 2, 

for values of ¢ outside 0 and 1. 

The type 0 estimator solves 

-1 '\"n + ( ·)/3 ( ·) I .rl+/3 U: (B) = n L...i=1 J(} Y~ uo Y~ _ Jo uo 

n n-1 Li=1 fo(Yi)/3 I flJ+f3 

_An_( B_) _ Mo,H/3 = O. 

En( 0) Lo,1+f3 
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The least false parameter is also the solution to u( 0) = 0, where u is the limit in probability 

of Un; that is, 

ef3 = M1,13 = Mo,Hf3. 

L1,f3 Lo,Hf3 

To prove the limit theorem, we use 

n 112(B1°)- 0) - { -U~(O)} - 1 n 112Un(O) 

- {-U~(e)}- 1 L1 [n112{An(O)- M1,f3}- ~ 1 ' 13 n 1 1 2 {Bn(O)- L1,13}] 
1,{3 1,{3 

--+d (Jho))-1N(O,Kho)) = N(O,(Jho)t1Kho)(Jho)t1). 

Here U~(O) is the p X p matrix derivative of the p-vector Un(O), and the notation Cn = Dn 

is used to indicate that their difference tends to zero in probability. 

Take K~o) first. We have 

This can also be expressed as (1/ Li,13 )( N1,2f3- ef3M{,213 - M1,2f3e~ + ef3e~L1,2f3)· Under model 

conditions, 

Next let us work with Jh0), the limit in probability of -U~(O). One finds A~( B) --+p f3N1,f3-

J gfffio dy and B~(O) --+p f3M1,f3· Some further manipulations lead to 

J (O) -
f3 -

No,l+f3 _ Mo,Hf3 (Mo,1+(3r + f3(No,1+(3 _ N1,f3) 

Lo,Hf3 Lo,Hf3 Lo,Hf3 Lo,Hf3 L1,f3 

+ (1/ L1,f3) j gfffio dy- (1/ Lo,Hf3) j Jt+13 io dy. 

Under model conditions this reduces to Jho) = No,Hf3f Lo,Hf3 - ef3e~. 
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A3. Variance formulae for the geometric family 

Study fe(x) = (1- ())()x for x = 1, 2, ... , which has score function uo(x) = (x- 1)/()-

1/(1- e). From G0 (a) = 2:::~= 1 ax= 1/(1- a) it is elementary to deduce 

00 

G1(a) = L xax = a/(1- a)2, 
x=1 

00 

G2(a) = L x2ax =(a+ a 2)/(1- a?. 
x=1 

With definitions as per equation (3.1), one finds 

A-r = ()1+-rGo((1-())1+-r), 

B-r = ()1+-r{~G 0 ((1- ())1+-r)- 1 ~ ()G1((1- ())1+-r)}, 

C-r = eH-r{;2Go((1- ())1+-r)- ()(1 ~ ()) G1((1- ())1+-r) + (1 ~ ())2G2((1- ())1+-r) }. 

These are then sufficient to lead to explicit (and programmable) formulae for limiting 

variances for the two estimation methods, as per equations following (3.1 ). 
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Table 1: Asymptotic relative efficiencies of the minimum divergence estimators, given as 

ratios of limiting variances, in percent, for various values of a = (3. 

Model Estimator I 0.00 0.02 0.05 0.10 0.25 0.50 1.00 

Normal f-l both 100 99.9 99.7 98.8 94.1 83.8 65.0 

Normal CT type 1 100 99.9 99.3 97.6 88.8 73.1 54.1 

type 0 100 99.9 99.3 97.5 88.5 70.6 43.3 

Exponential type 1 100 99.8 99.1 96.8 85.8 68.4 50.9 

type 0 100 99.8 99.1 96.7 85.1 63.2 33.8 

Poisson (A = 3) type 1 100 99.9 99.7 98.8 94.4 85.0 67.9 

type 0 100 99.9 99.7 98.8 94.2 84.2 65.3 

Poisson (.X = 10) type 1 100 99.9 99.7 98.8 94.1 84.0 65.6 

type 0 100 99.9 99.7 98.8 94.0 83.8 64.9 

Geometric ( e = 0.1) type 1 100 99.8 99.1 96.8 85.9 68.4 51.1 

type 0 100 99.8 99.1 96.7 85.1 63.3 33.9 

Geometric ( e = 0.9) type 1 100 99.9 99.4 98.0 92.0 84.1 82.2 

type 0 100 99.9 99.4 98.0 91.7 81.7 71.3 

Table 2: Estimated parameters for the Newcomb data under the normal model. 

1 =a= f3 0.00 0.02 0.05 0.10 0.25 0.50 1.00 

f-lex 26.21 26.74 27.44 27.60 27.64 27.52 27.29 
~(o) 

f-l{3 26.21 26.74 . 27.44 27.60 27.64 27.51 27.25 

CTcx 10.66 8.92 5.99 5.39 5.04 4.90 4.67 
~(o) 
(T/3 10.66 8.92 5.99 5.38 5.01 4.82 4.34 
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Table 3: Estimated parameters for the drosophila data under the Poisson model. 

i=a=f3 0.00 0.001 0.01 0.02 0.05 0.10 0.25 0.50 1.00 

~a (all data) 3.059 2.506 0.447 0.394 0.393 0.392 0.386 0.375 0.365 

~~o) (all data) 3.059 2.506 0.447 0.394 0.392 0.390 0.381 0.362 0.330 

A a (outlier deleted) 0.394 0.394 0.394 0.393 0.392 0.390 0.382 0.366 0.350 

~~o) (outlier deleted) 0.394 0.394 0.394 0.393 0.392 0.390 0.381 0.362 0.330 

Table 4: Test statistics and p-values for the Wald type test for the telephone fault data. 

Estimator used i=a=f3 0.01 0.10 0.25 0.50 1.00 

Type 1 f-l 42.8 96.0 124.7 131.1 142.2 

(]' 305.6 209.2 133.4 136.9 139.5 

W statistic 0.52 1.71 3.39 3.28 3.07 

p-value (normal) x 105 29998 4405 35 52 105 

Type 0 ~(o) 

f-l 42.8 96.4 124.9 131.7 144.3 
(7(0) 305.6 207.8 132.0 133.8 132.4 

W statistic 0.52 1.73 3.43 3.37 3.29 

p-value (normal) x 105 29998 4222 30 38 51 
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