
Multimedia Systems 6: 334–348 (1998) Multimedia Systems
c© Springer-Verlag 1998

A comparison of reliable multicast protocols?

Brian Neil Levine, J.J. Garcia-Luna-Aceves

Computer Engineering Department, School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064 USA;
e-mail:{brian,jj}@cse.ucsc.edu

Abstract. We analyze the maximum throughput that known
classes of reliable multicast transport protocols can attain.
A new taxonomy of reliable multicast transport protocols is
introduced based on the premise that the mechanisms used
to release data at the source after correct delivery should be
decoupled from the mechanisms used to pace the transmis-
sion of data and to effect error recovery. Receiver-initiated
protocols, which are based entirely on negative acknowl-
edgments (naks) sent from the receivers to the sender, have
been proposed to avoid the implosion of acknowledgements
(acks) to the source. However, these protocols are shown
to require infinite buffers in order to prevent deadlocks. Two
other solutions to theack-implosion problem are tree-based
protocols and ring-based protocols. The first organize the
receivers in a tree and sendacks along the tree; the latter
sendacks to the sender along a ring of receivers. These
two classes of protocols are shown to operate correctly with
finite buffers. It is shown that tree-based protocols consti-
tute the most scalable class of all reliable multicast protocols
proposed to date.

Key words: Reliable multicast – Multicast transport proto-
cols –ack implosion – Tree-based protocols

1 Introduction

The increasing popularity of real-time applications support-
ing either group collaboration or the reliable dissemination
of multimedia information over the Internet is making the
provision of reliable and unreliable end-to-end multicast ser-
vices an integral part of its architecture. Minimally, an end-
to-end multicast service ensures that all packets from each
source are delivered to each receiver in the session within a
finite amount of time and free of errors and that packets are
safely deleted within a finite time. Additionally, the service
may ensure that each packet is delivered only once and in the

? Supported in part by the Office of Naval Research under Grant N00014-
94-1-0688, and by the Defense Advanced Research Projects Agency
(DARPA) under grant F19628-96-C-0038
Correspondence to: B.N. Levine

order sent by the source. Although reliable broadcast proto-
cols have existed for quite some time [3], viable approaches
on the provision of end-to-end reliable multicasting over the
Internet are just emerging. The end-to-end reliable multicast
problem facing the future Internet is compounded by its cur-
rent size and continuing growth, which makes the handling
of acknowledgements a major challenge commonly referred
to as theacknowledgement (ack) implosion problem.

The two most popular approaches to end-to-end reli-
able multicasting proposed to date are calledsender-initiated
and receiver-initiated. In the sender-initiated approach, the
sender maintains the state of all the receivers to whom it
has to send information and from whom it has to receive
acknowledgments (acks). Each sender’s transmission or re-
transmission is multicast to all receivers; for each packet
that each receiver obtains correctly, it sends a unicastack
to the sender. In contrast, in the receiver-initiated approach,
each receiver informs the sender of the information that is
in error or missing; the sender multicasts all packets, giving
priority to retransmissions, and a receiver sends a negative
acknowledgement (nak) when it detects an error or a lost
packet.

The first comparative analysis of ideal sender-initiated
and receiver-initiated reliable multicast protocols was pre-
sented by Pingali et al. [17, 18]. This analysis showed
that receiver-initiated protocols are far more scalable than
sender-initiated protocols, because the maximum through-
put of sender-initiated protocols is dependent on the number
of receivers, while the maximum throughput of receiver-
initiated protocols becomes independent of the number of
receivers as the probability of packet loss becomes negligi-
ble. However, as this paper demonstrates, the ideal receiver-
initiated protocols cannot prevent deadlocks when they oper-
ate with finite memory, i.e., when the applications using the
protocol services cannot retransmit any data themselves, and
existing implementations of receiver-initiated protocols have
inherent scaling limitations that stem from the use of mes-
sages multicast to all group members and used to set timers
needed fornak avoidance, the need to multicastnaks to
all hosts in a session, and to a lesser extent, the need to store
all messages sent in a session.

335

This paper addresses the question of whether a reliable
multicast transport protocol (reliable multicast protocol, for
short) can be designed that enjoys all the scaling proper-
ties of the ideal receiver-initiated protocols, while still being
able to operate correctly with finite memory. To address this
question, the previous analysis by Pingali et al. [17, 18, 22]
is extended to consider the maximum throughput of generic
ring-based protocols, which organize receivers into a ring,
and two classes of tree-based protocols, which organize re-
ceivers intoack trees. These classes are the other three
known approaches that can be used to solve theack implo-
sion problem. Our analysis shows that tree- and ring-based
protocols can work correctly with finite memory, and that
tree-based protocols are the best choice in terms of process-
ing and memory requirements.

The results presented in this paper are theoretical in
nature and apply to generic protocols, rather than to spe-
cific implementations; however, we believe that they provide
valuable architectural insight for the design of future reliable
multicast protocols. Section 2 presents a new taxonomy of
reliable multicast protocols that organizes known approaches
into four protocol classes and discusses how many key pa-
pers in the literature fit within this taxonomy. This taxonomy
is based on the premise that the analysis of the mechanisms
used to release data from memory after their correct recep-
tion by all receivers can be decoupled from the study of the
mechanisms used to pace the transmission of data within
the session and the detection of transmission errors. Using
this taxonomy, we argue that all reliable unicast and mul-
ticast protocols proposed to date that usenaks and work
correctly with finite memory (i.e., without requiring the ap-
plication level to store all data sent in a session) useacks to
release memory andnaks to improve throughput. Section 3
addresses the correctness of the various classes of reliable
multicast protocols introduced in our taxonomy. Section 4
extends the analysis by Pingali et al. [17, 18, 22] by ana-
lyzing the maximum throughput of three protocol classes:
tree-based, tree-based with localnak avoidance and pe-
riodic polling (tree-NAPP), and ring-based protocols. Sec-
tion 5 provides numerical results on the performance of the
protocol classes under different scenarios, and discusses the
implications of our results in light of recent work on reliable
multicasting. Section 6 provides concluding remarks.

2 A new taxonomy of reliable multicast protocols

We now describe the four generic approaches known to date
for reliable multicasting. Well-known protocols (for unicast
and multicast purposes) are mapped into each class. Our
taxonomy differs from prior work [8, 17, 18, 22] addressing
receiver-initiated strategies for reliable multicasting in that
we decouple the definition of the mechanisms needed for
pacing of data transmission from the mechanisms needed for
the allocation of memory at the source. Using this approach,
the protocol can be thought as using two windows: a con-
gestion window (cw) that advances based on feedback from
receivers regarding the pacing of transmissions and detec-
tion of errors, and a memory allocation window (mw) that
advances based on feedback from receivers as to whether
the sender can erase data from memory. In practice, proto-

��

����

��
��
��
��

����

��

�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Ack

Source Receiver
Set

Nak

Fig. 1. A basic diagram of a sender-initiated protocol

cols may use a single window for pacing and memory (e.g.,
TCP [10]) or separate windows (e.g., NETBLT [4]).

Each reliable protocol assumes the existence of multi-
cast routing trees provided by underlying multicast routing
protocols. In the Internet, these trees will be built using such
protocols as DVMRP [6], Core-Based Trees (CBT) [1], Or-
dered Core-Based Trees (OCBT) [20], Protocol-Independent
Multicast (PIM) [7], or the Multicast Internet Protocol (MIP)
[14].

2.1 Sender-initiated protocols

In the past [17, 18], sender-initiated protocols have been
characterized as placing the responsibility of reliable deliv-
ery at the sender. However, this characterization is overly
restrictive and does not reflect the way in which several re-
liable multicast protocols that rely on positive acknowledge-
ments from the receivers to the source have been designed.
In our taxonomy, a sender-initiated reliable multicast proto-
col is one that requires the source to receiveacks from all
the receivers, before it is allowed to release memory for the
data associated with theacks. Receivers are not restricted
from directly contacting the source. It is clear that the source
is required to know the constituency of the receiver set, and
that the scheme suffers from theack implosion problem.
However, this characterization leaves unspecified the mech-
anism used for pacing of transmissions and for the detection
of transmission errors. Either the source or the receivers can
be in charge of the retransmission timeouts!

The traditional approach to pacing and transmission error
detection (e.g., TCP in the context of reliable unicasting) is
for the source to be in charge of the retransmission timeout.
However, as suggested by the results reported by Floyd et
al. [8], a better approach for pacing a multicast session is
for each receiver to set its own timeout. A receiver sends
acks to the source at a rate that it can accept, and sends a
nak to the source after not receiving a correct packet from
the source for an amount of time that exceeds its retrans-
mission timeout. Anack can refer to a specific packet or a
window of packets, depending on the specific retransmission
strategy. A simple illustration of a sender-initiated protocol
is presented in Fig. 1.

Notice that, regardless of whether a sender-driven or
receiver-driven retransmission strategy is used, the source is
still in charge of deallocating memory after receiving all the
acks for a given packet or set of packets. The source keeps

336

packets in memory until every receiver node has positively
acknowledged receipt of the data. For a sender-initiated pro-
tocol, if a sender-driven retransmission strategy is used, the
sender “polls” the receivers foracks by retransmitting af-
ter a timeout. If a receiver-driven retransmission strategy is
used, the receivers “poll” the source (with anack) after
they time out.1

It is important to note that, just because a reliable multi-
cast protocol usesnaks, it does not mean that it is receiver-
initiated, i.e., thatnaks can be the basis for the source to
ascertain when it can release data from memory. The com-
bination ofacks andnaks has been used extensively in the
past for reliable unicast and multicast protocols. For exam-
ple, NETBLT is a unicast protocol that uses anak scheme
for retransmission, but only on small partitions of the data
(i.e., itscw). In between the partitions, called “buffers”, are
acks for all the data in the buffer (i.e., themw). Only upon
receipt of thisack does the source release data from mem-
ory; therefore, NETBLT is really sender-initiated. In fact,
naks are unnecessary in NETBLT for its correctness, i.e.,
a buffer can be considered one large packet that eventually
must beacked, and are important only as a mechanism to
improve throughput by allowing the source to know sooner
when it should retransmit some data.

A protocol similar to NETBLT is the “Negative Ac-
knowledgments with Periodic Polling” (NAPP) protocol [19].
This protocol is a broadcast protocol for local area networks
(LANs). Like NETBLT, NAPP groups together large par-
titions of the data that are periodicallyacked, while lost
packets within the partition arenaked. NAPP advances the
cw by naks and periodically advances themw by acks.
Because the use ofnaks can cause anak implosionat the
source, NAPP uses anak avoidancescheme. As in NET-
BLT, naks increase NAPP’s throughput, but are not neces-
sary for its correct operation, albeit slow. The use of periodic
polling limits NAPP to LANs, because the source can still
suffer from anack implosion problem even ifacks occur
less often.

Other sender-initiated protocols, like the Xpress Transfer
Protocol (XTP) [21], were created for use on an internet, but
still suffer from theack implosion problem.

The main limitation of sender-initiated protocols is not
thatacks are used, but the need for the source to process all
of the acks and to know the receiver set. The two known
methods that address this limitation are: (a) usingnaks in-
stead ofacks, and (b) delegating retransmission responsi-
bility to members of the receiver set by organizing the re-
ceivers into a ring or a tree. We discuss both approaches
subsequently.

2.2 Receiver-initiated protocols

Previous work [17, 18] characterizes receiver-initiated proto-
cols as placing the responsibility for ensuring reliable packet
delivery at each receiver. The critical aspect of these pro-
tocols for our taxonomy is that noacks are used. The re-
ceivers sendnaks back to the source when a retransmission

1 Of course, the source still needs a timer to ascertain when its connection
with a receiver has failed.

��

��
��
��
��

�
�
�
�

����

�
�
�
�

��
��
��
��

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

Nak

Source Receiver
Set

Fig. 2. A basic diagram of a receiver-initiated protocol

is needed, detected by either an error, a skip in the sequence
numbers used, or a timeout. Receivers are not restricted from
directly contacting the source. Because the source receives
feedback from receivers only when packets are lost and not
when they are delivered, the source is unable to ascertain
when it can safely release data from memory. There is no
explicit mechanism in a receiver-initiated protocol for the
source to release data from memory (i.e., advance themw),
even though its pacing and retransmission mechanisms are
scalable and efficient (i.e., advancing thecw). Figure 2 is a
simple illustration of a receiver-initiated protocol.

Because receivers communicatenaks back to the source,
receiver-initiated protocols have the possibility of experienc-
ing anak implosion problem at the source if many receivers
detect transmission errors. To remedy this problem, previous
work on receiver-initiated protocols [8, 17, 18] adopts the
nak avoidance scheme first proposed for NAPP, which is a
sender-initiated protocol. Receiver-initiated withnak avoid-
ance (RINA) protocols have been shown [17, 18, 22] to have
better performance than the basic receiver-initiated protocol.
The resulting generic RINA protocol is as follows [17, 18].
The sender multicasts all packets and state information, giv-
ing priority to retransmissions. Whenever a receiver detects
a packet loss, it waits for a random time period and then mul-
ticasts anak to the sender and all other receivers. When a
receiver obtains anak for a packet that it has not received
and for which it has started a timer to send anak, the re-
ceiver sets a timer and behaves as if it had sent anak.
The expiration of a timer without the reception of the cor-
responding packet is the signal used to detect a lost packet.
With this scheme, it is hoped that only onenak is sent back
to the source for a lost transmission for an entire receiver
set. Nodes farther away from the source might not even get
a chance to request a retransmission. The generic protocol
does not describe how timers are set accurately.

The generic RINA protocol we have just described con-
stitutes the basis for the operation of the Scalable Reliable
Multicasting (SRM) algorithm [8]. SRM has been embedded
into an internet collaborative whiteboard application called
wb. SRM sets timers based on low-rate, periodic “session
messages” multicast by every member of the group. The
messages specify a time stamp used by the receivers to es-
timate the delay from the source, and the highest sequence
number generated by the node as a source.2 The average

2 Multiple sources are supported in SRM, we focus on the single-source
case for simplicity.

337

bandwidth consumed by session messages is kept small (e.g.,
by keeping the frequency of session messages low). SRM’s
implementation requires that every node stores all packets,
or that the application layer store all relevant data.

We note thatnaks from receivers are used to advance the
cw, which is controlled by the receivers, and the sequence
number in each multicast session message is used to “poll”
the receiver set, i.e., to ensure that each receiver is aware
of missing packets. Although session messages implement
a “polling” function [19], they cannot be used to advance
the mw, as in a sender-initiated protocol, because a sender
specifies its highest sequence number as a source, not the
highest sequence number heard from the source.3

In practice, the persistence of session messages forces the
source to process the same number of messages that would
be needed for the source to know the receiver set over time
(one periodic message from every receiver). Accordingly,
as defined, the basic dissemination of session messages in
SRM does not scale, because it defeats one of the goals of
the receiver-initiated paradigm, i.e., to keep the receiver set
anonymous from the source for scaling purposes.

There are other issues that limit the use of RINA proto-
cols for reliable multicasting. First, as we show in the next
section, a RINA protocol requires that data needed for re-
transmission be rebuilt from the application. This approach
is reasonable only for applications in which the immediate
state of the data is exclusively desired, which is the case of
a distributed whiteboard. However, the approach does not
apply for multimedia applications that have no current state,
but only a stream of transition states.

Second,naks and retransmissions must be multicast to
the entire multicast group to allow suppression ofnaks. The
nak avoidance scheme was designed for a limited scope,
such as a LAN, or a small number of Internet nodes (as it
is used in tree-NAPP protocols, described in the next sec-
tion). This is because the basicnak avoidance algorithm
requires that timers be set based on updates multicast by ev-
ery node. As the number of nodes increases, each node must
do increasing amount of work! Furthermore, nodes that are
on congested links, LANs or regions may constantly bother
the rest of the multicast group by multicastingnaks. Ap-
proaches to limit the scope ofnaks and retransmission are
still evolving [8]. However, current proposals still rely on
session messages that reach all group members.

Another example of a receiver-initiated protocol is the
“log-based receiver-reliable multicast” (LBRM) [9], which
uses a hierarchy of log servers that store information in-
definitely and receivers recover by contacting a log server.
Using log servers is feasible only for applications that can
afford the servers and leaves many issues unresolved. If a
single server is used, performance can degrade due to the
load at the server; if multiple servers are used, mechanisms
must still be implemented to ensure that such servers have
consistent information.

The ideal receiver-initiated protocol has three main ad-
vantages over sender-initiated protocols, namely: (a) the
source does not know the receiver set, (b) the source does

3 Our prior description of SRM [11, 12] incorrectly assumed that session
messages contained the highest sequence number heard from the source.
We thank Steve McCanne for pointing this out.

not have to processacks from each receiver, and (c) the
receivers pace the source. The limitation of this protocol is
that it has no mechanism for the source to know when it
can safely release data from memory. Furthermore, as we
have argued, the practical implementations of the receiver-
initiated approach fail to provide advantages (a) and (b). The
following two protocol classes organize the receiver set in
ways that permit the strengths of receiver-initiated proto-
cols to be applied on a local scale, while providing explicit
mechanisms for the source to release memory safely (i.e.,
efficient management of themw).

2.3 Tree-based protocols

Tree-based protocols are characterized by dividing the re-
ceiver set into groups, distributing retransmission responsi-
bility over an acknowledgement tree (ack tree) structure
built from the set of groups, with the source as the root of
the tree. A simple illustration of a tree-based protocol is pre-
sented in Fig. 3. Theack tree structure prevents receivers
from directly contacting the source, in order to maintain
scalability with a large receiver set.

The ack tree consists of the receivers and the source
organized intolocal groups, with each such group having a
group leader in charge of retransmissions within the local
group. The source is the group leader in charge of retrans-
missions to its own local group. Each group leader other than
the source communicates with another local group (to either
a child or the group leader) closer to the source to request
retransmissions of packets that are not received correctly.
Group leaders may be children of another local group, or
minimally, may just be in contact with another local group.
Each local group may have more than one group leader to
handle multiple sources. Group leaders could also be cho-
sen dynamically, e.g., through token passing within the local
group.

Hosts that are only children are at the bottom of the
ack tree, and are termedleaves. Obviously, anack tree
consisting of the source as the only leader and leaf nodes
corresponds to the sender-initiated scheme.

Acknowledgments from children in a group, including
the source’s own group, are sent only to the group leader.
The children of a group send their acknowledgements to
the group leader as soon as they receive correct packets,
advancing thecw; we refer to such acknowledgements as
local acks or local naks, i.e., retransmissions are triggered
by local acks and localnaks unicast to group leaders by
their children. Similar to sender-initiated schemes, the use
of local naks is unnecessary for correct operation of the
protocol.

Tree-based protocols can also delegate to leaders of sub-
trees the decision of when to delete packets from memory
(i.e., advance themw), which is conditional upon receipt of
aggregateacks from the children of the group. Aggregate
acks start from the leaves of theack tree, and propagate
toward the source, one local group at a time. A group leader
cannot send an aggregateack until all its children have
sent an aggregateack. Using aggregateacks is necessary
to ensure that the protocol operates correctly even if group
leaders fail, or if theack tree is partitioned for long periods

338

Group
Leader

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Leaf

Local Ack

Source

Fig. 3. A basic diagram of a tree-based protocol

of time [12]. If aggregateacks are not used, i.e., if a group
leader only waits for all its children to send localacks be-
fore advancing themw, then correct operation after group
leaders fail can only be guaranteed by not allowing nodes
to delete packets; this is the approach used in all tree-based
protocols [13, 16, 24] other than Lorax [12]. The Lorax pro-
tocol [12] is the first tree-based protocol to build a single
sharedack tree for use by multiple sources in a single ses-
sion, and to use aggregateacks to ensure correct operation
after hosts in theack tree fail.

The use of localacks and localnaks for requesting
retransmissions is important for throughput. If the source
scheduled retransmissions based on aggregateacks, it would
have to be paced based on the slowest path in theack tree.
Instead, retransmissions are scheduled independently in each
local group.

Tree-based protocols eliminate theack-implosion prob-
lem, free the source from having to know the receiver set,
and operate solely on messages exchanged in local groups
(between a group leader and its children in theack tree).
Furthermore, if aggregateacks are used, a tree-based pro-
tocol can work correctly with finite memory even in the
presence of receiver failures and network partitions.

To simplify our analysis and description of this protocol,
we assume that the group leaders control the retransmission
timeouts; however, such timeouts can be controlled by the
children of the source and group leaders. Accordingly, when
the source sends a packet, it sets a timer, and each group
leader sets a timer as it becomes aware of a new packet. If
there is a timeout before all localacks have been received,
the packet is assumed to be lost and is retransmitted by the
source or group leader to its children.

The first application of tree-based protocols to reliable
multicasting over an internet was reported by Paul et al. [15],
who compared three basic schemes for reliable point-to-
multipoint multicasting using hierarchical structures. Their
results have been fully developed as the reliable multicast
transport protocol (RMTP) [13, 16]. While our generic pro-
tocol sends a localack for every packet sent by the source,
RMTP sends localacks only periodically, so as to conserve
bandwidth and to reduce processing at each group leader, in-
creasing attainable throughput.

We define a tree-NAPP protocol as a tree-based protocol
that usesnak avoidance and periodic polling [19] in the
local groups.Naks alone are not sufficient to guarantee
reliability with finite memory, so receivers send a periodic
positive localack to their parents to advance thecw. Note
that messages sent for the setting of timers needed fornak

��
��
��

��
��
��

Receiver Set

T
Source

Nak

Ack

Fig. 4. A basic diagram of a ring-based protocol

avoidance are limited to the local group, which is scalable.
The tree-based multicast transport protocol (TMTP) [24] is
an example of a tree-NAPP protocol.

2.4 Ring-based protocols

Ring-based protocols for reliable multicast were originally
developed to provide support for applications that require an
atomic and total ordering of transmissions at all receivers.
One of the first proposals for reliable multicasting is the
token ring protocol (TRP) [3]; its aim was to combine the
throughput advantages ofnaks with the reliability ofacks.
The Reliable Multicast Protocol (RMP) [23] discussed an
updated WAN version of TRP. Although multiple rings are
used in a naming hierarchy, the same class of protocol is
used for the actual rings. Therefore, RMP has the same
throughput bounds as TRP.

We base our description of generic ring-based protocols
on the LAN protocol TRP and the WAN protocol RMP. A
simple illustration of a ring-based protocol is presented in
Fig. 4. The basic premise is to have only one token site re-
sponsible foracking packets back to the source. The source
times out and retransmits packets if it does not receive an
ack from the token site within a timeout period. Theack
also serves to timestamp packets, so that all receiver nodes
have a global ordering of the packets for delivery to the
application layer. The protocol does not allow receivers to
deliver packets until the token site has multicast itsack.

Receivers sendnaks to the token site for selective re-
peat of lost packets that were originally multicast from the
source. Theack sent back to the source also serves as a to-
ken passing mechanism. If no transmissions from the source
are available to piggyback the token, then a separate unicast
message is sent. Since we are interested in the maximum
throughput, we will not consider the latter case in this pa-
per. The token is not passed to the next member of the
ring of receivers until the new site has correctly received all
packets that the former site has received. Once the token is
passed, a site may clear packets from memory; accordingly,
the final deletion of packets from the collective memory of
the receiver set is decided by the token site, and is condi-
tional on passing the token. The source deletes packets only
when anack/token is received. Note that both TRP and
RMP specify that retransmissions are sent unicast from the
token site. Because our analysis focuses on maximum at-
tainable throughput of protocol classes, we will assume that
the token is passed exactly once per message.

339

3 Protocol correctness

A protocol is consideredcorrect if it is shown to be both
safe and live [2]. Given the minimum definition of reliable
service we have assumed, for any reliable multicast protocol
to be live, no deadlock should occur at any receiver or at the
source. For the protocol to be safe, all data sent by the source
must be delivered to a higher layer within a finite time. To
address the correctness of protocol classes, we assume that
nodes never fail during the duration of a reliable multicast
session and that a multicast session is established correctly
and is permanent. Therefore, our analysis of correctness fo-
cuses only on the ability of the protocol classes to sustain
packet losses or errors. We assume that there exists some
non-zero probability that a packet is received error-free, and
that all senders and receivers havefinite memory.

The proof of correctness for ring-based protocols is
given by Chang and Maxemchuk [3]. The proof that sender-
initiated unicast protocols are safe and live is available from
many sources (e.g., Bertsekas and Gallager [2]). The proof
does not change significantly for the sender-initiated class
of reliable multicast protocols and is omitted for brevity.
The liveness property at each receiver is not violated, be-
cause each node can store a counter of the sequence number
of the next packet to be delivered to a higher layer. The
safety property proof is also essentially the same, because
the source waits foracks from all members in the receiver
set before sliding thecw andmw forward. Theorems 1 and 2
below demonstrate that the generic tree-based reliable multi-
cast protocol (TRMP for short) is correct, and that receiver-
initiated reliable multicast protocols are not live.

Theorem 1: TRMP is safe and live.

Proof. Let R be the set of all the nodes that belong to the re-
liable multicast session, including a sources. The receivers
in the set are organized into aB-ary tree of heighth. The
proof proceeds by induction onh.

For the case in whichh = 1, TRMP reduces to a non-
hierarchical sender-initiated scheme ofR = B + 1 nodes,
with each of theB receivers practicing a given retransmis-
sion strategy with the source. Therefore, the proof follows
from the correctness proof of unicast retransmission proto-
cols presented by Bertsekas and Gallager [2].

For h > 1, assume the theorem holds for anyt such that
(1 ≤ t < h). We must prove the theorem holds for some
t = h.

Liveness.We must prove that each member of a tree of
height t is live. Consider a subset of the tree that starts at
the source and includes all nodes of the tree up to a height
of (t − 1); the leaves of this subtree are also group leaders
in the larger tree, i.e., group leaders of the nodes at the
bottom of the larger tree. By the inductive hypothesis, the
liveness property is true in this subtree. We must only show
that TRMP is live for a second subset of nodes consisting
of leaves of the larger tree and their group leader parents.
Each group in this second subset follows the same protocol,
and it suffices to prove that an arbitrary group are live.

The arbitrary group in the second subset of the tree con-
stitutes a case of sender-initiated reliable multicast, with the
only difference that the original transmission is sent from the
source (external to the group), not the group leader. Since

leaves can only contact the group leader, we must prove this
relationship is live. The inductive hypothesis guarantees that
the group leader and its parent is live.

Assume the source transmits a packeti at time c1, and
that it is received correctly and delivered at all leaves of
the arbitrary group at timec2. Let c3 be the time at which
the group leader deletes the packet and advances themw.
The protocol is live and will not enter into deadlock if
c1 < c2 < c3, andc3 is finite. The rest of the proof follows
from the proof by Bertsekas and Gallager [2] for unicast
ARQ protocols, where the group leader takes the place of
the source. Therefore, TRMP is live.

Safety.The safety of TRMP follows directly, because
our proof of liveness shows that any arbitrary packeti is
delivered at each receiver within a finite time. QED

Theorem 2.A receiver-initiated reliable protocol is not live.

Proof. The proof is by example focusing on the sender and
an arbitrary member of the receiver setR (whereR ≥ 1).

– Sender node,X, has enough memory to store up toM
packets.

– Each packet takes 1 unit of time to reach a receiver node
Y . Naks take a finite amount of time to reach the sender.

– Let pi denote theith packet,i beginning from zero.p0
is sent at start time 0, but it is lost in the network.

– X sends the next (M − 1) packets toY successfully.
– Y sends anak stating thatp0 was not received. The

nak is either lost or reaches the sender after time M
when the sender decides to send out packetpM .

– SinceX can only store up toM packets, and it has not
received anynaks for p0 by time M , it must clearp0,
assuming that it has been received correctly.

– X then receives thenak for p0 at time M + ε and be-
comes deadlocked, unable to retransmitp0. QED

The above indicates that the ideal receiver-initiated pro-
tocol requires an infinite memory to work correctly. In prac-
tice, this requirement implies that the source must keep in
memory every packet that it sends during the lifetime of a
session.

Theorem 1 assumes that no node failures or network
traffic occur. However, node failures do happen in practice,
which changes the operational requirements of practical tree-
based protocols. For tree-based protocols, it can be shown
that deleting packets from memory after a node receives lo-
cal acks from its children is not live. Aggregateacks are
necessary to ensure correct operation of tree-based protocols
in the presence of failures. Lorax [12] is the only tree-based
protocol that uses aggregateacks and can operate with fi-
nite memory in the presence of node failures or network
partitions.

4 Maximum throughput analysis

4.1 Assumptions

To analyze the maximum throughput that each of the generic
reliable multicast protocols introduced in Sect. 2 can achieve,
we use the same model as Pingali et al. [17, 18], which

340

focuses on the processing requirements of generic reliable
multicast protocols, rather than the communication band-
width requirements. Accordingly, the maximum throughput
of a generic protocol is a function of the per-packet process-
ing rate at the sender and receivers, and the analysis focuses
on obtaining the processing times per packet at a given node.

We assume a single sender,X, multicasting toR iden-
tical receivers. The probability of packet loss isp for any
node. Figure 5 summarizes all the notation used in this sec-
tion. For clarity, we assume a singleack tree rooted at a
single source in the analysis of tree-based protocols. A selec-
tive repeat retransmission strategy is assumed in all the pro-
tocol classes since it is well known to be the retransmission
strategy with the highest throughput [2], and its requirement
of keeping buffers at the receivers is a non-issue given the
small cost of memory. Assumptions specific to each proto-
col are listed in Sect. 2, and are in the interest of modeling
maximum throughput.

We make two additional assumptions: (1) no acknowl-
edgements are ever lost, and (2) all loss events at any node
in the multicast of a packet are mutually independent.

Such multicast routing protocols as CBT, OCBT, PIM,
MIP, and DVMRP [1, 5, 7, 14, 20] organize routers into
trees, which means that there is a correlation between packet
loss at each receiver. Our first assumption benefits all classes,
but especially favors protocols that multicast acknowledge-
ments. In fact, this assumption is essential for RINA proto-
cols, in order to analyze their maximum attainable through-
put, becausenak avoidance is most effective if all receivers
are guaranteed to receive the firstnak multicast to the re-
ceiver set. As the number of nodes involved innak avoid-
ance increases, the task of successful delivery of anak to all
receivers becomes less probable. Both RINA and tree-NAPP
protocols are favored by the assumption, but RINA protocols
much more so, because the probability of deliveringnaks
successfully to all receivers is exaggerated.

Our second assumption is equivalent to a scenario in
which there is no correlation among packet losses at re-
ceivers and the location of those receivers in the underly-
ing multicast routing tree of the source. Protocols that can
take advantage of the relative position of receivers in the
multicast routing tree for the transmission ofacks, naks,
or retransmissions would possibly attain higher throughput
than predicted by this model. However, no class is given
any relative advantage with this assumption.

Table 1 summarizes the bounds on maximum throughput
for all the known classes of reliable multicast protocols. Our
results clearly show that tree-NAPP protocols constitute the
most scalable alternative.

4.2 Sender- and receiver-initiated protocols

Following the notation introduced by Pingali et al. [17, 18],
we place a superscriptA on any variable related to the
sender-initiated protocol, andN1 andN2 on variables re-
lated to the receiver-initiated and RINA protocols, respec-
tively. The maximum throughput of the protocols for a con-
stant stream of packets toR receivers is [17, 18]

1/ΛA ∈ O

(
R(1 +

p ln R

1 − p
)

)
, (1)

Table 1. Analytical bounds

Protocol Processor requirements
p as a
con-
stant

p → 0

Sender-initiated
[17, 18]

O
(
R(1 + p ln R

1−p
)
)

O(R ln R) O(R)

Receiver-
initiated nak
avoidance
[17, 18]

O
(

1 + p ln R
1−p

)
O(ln R) O(1)

Ring-based (uni-
cast retrans.)

O
(

1 + (R−1)p
1−p

)
O(R) O(1)

Tree-based O(B(1 − p) + pB ln B) O(1) O(1)

Tree-NAPP O
(

1 + 1−p+p ln B+p2(1−4p)
1−p

)
O(1) O(1)

1/ΛN1 ∈ O

(
1 +

pR

1 − p

)
, (2)

1/ΛN2 ∈ O

(
1 +

p ln R

1 − p

)
. (3)

Even as the probability of packet loss goes to zero, the
throughput of the sender-initiated protocol is inversely de-
pendent onR, the size of the receiver set, because anack
must be sent by every receiver to the source once a trans-
mission is correctly received. In contrast, asp goes to zero,
the throughput of receiver-initiated protocols becomes inde-
pendent of the number of receivers. Notice, however, that
the throughput of a receiver-initiated protocol is inversely
dependent withR, the number of receivers, or with lnR,
when the probability of error is not negligible. We note that
this result assumesperfect setting of the timers used in a
RINA protocol without cost and that a singlenak reaches
the source, because we are only interested in the maximum
attainable throughput of protocols.

4.3 Tree-based protocols

We denote this class of protocols simply byH1, and use
that superscript in all variables related to the protocol class.
In the following, we derive and bound the expected cost
at each type of node and then consider the overall system
throughput. To make use of symmetry, we assume, without
loss of generality, that there are enough receivers to form a
full tree at each level.

Without loss of generality, we assume that each local
group in theack tree consists ofB children and a group
leader. This allows us to make use of symmetry in our
throughput calculations. We also assume that localacks
advance themw rather than aggregateacks, because by as-
sumption no receiver fails in the system. We assumeperfect
setting of timers without cost and that a singlenak reaches
the source, because we are only interested in the maximum
attainable throughput of protocols.

4.3.1 Source node

We consider firstXH1, the processing costs required by the
source to successfully multicast an arbitrarily chosen packet

341

B – Branching factor of a tree, the group size.
R – Size of the receiver set.
Xf – Time to feed in a new packet from the higher protocol layer.
Xp – Time to process the transmission of a packet.
Xa, Xn, Xh – Times to process transmission of anack, nak, or localack, respectively.
Xt, Yt – Time to process a timeout at a sender or receiver node, respectively.
Yp – Time to process a newly received packet.
Yf – Time to deliver a correctly received packet to a higher layer.
Ya, Yn, Yh – Times to process and transmit anack, nak, or localack, respectively.
Yp – Probability of loss at a receiver; losses at different receivers are assumed to be independent events.
LH1

r – Number of local acks sent by receiverr per packet using a tree-based protocol.
LU

r – Number ofacks sent by a receiverr per packet using aunicastprotocol.
LH1 – Total number of localacks received from all receivers per packet.
Mr – Number of transmissions necessary for receiverr to successfully receive a packet.
M – Number of transmissions for all receivers to receive the packet correctly (for protocolsA, N1 andN2); M = maxr{Mr}
MH1, MH2 – Number of transmissions for all receivers to receive the packet correctly for protocolsH1 andH2.
Xw, Y w – Processing time per packet at sender and receiver, respectively, in protocolw ∈ {A, N1, N2, H1, H2, R}.
HH1, HH2 – Processing time per packet at a group leader in tree-based and tree- NAPP protocols, respectively.
T R – Processing time per packet at the token-site in ring-based protocols.
Λw

x – Throughput for protocolw ∈ {A, N1, N2, H1, H2, R} wherex is one of the sources, receiver (leaf)r, group leaderh,
or token-sitet. No subscript denotes overall system throughput.

XΦ, YΦ – Times to process the reception and transmission, respectively, of a periodic localack.

Fig. 5. Notation

to all receivers using theH1 protocol. The processing re-
quirement for an arbitrary packet can be expressed as a sum
of costs:

XH1 = (initial transmission) + (retransmissions)

+(receivingacks)

XH1 = Xf + Xp(1) +
MH1∑
m=2

(Xt(m) + Xp(m))

+
LH1∑
i=1

Xh(i), (4)

whereXf is the time to get a packet from a higher layer,
Xp(m) is the time taken on attemptm at successful transmis-
sion of the packet,Xt(m) is the time to process a timeout
interrupt for transmission attemptm, Xh(i) is the time to
process localack i, MH1 is the number of transmissions
that the source will have to make for this packet using the
H1 protocol, andLH1 is the number of localacks received
using theH1 protocol. Taking expectations, we have

E[XH1] = E[Xf] + E[MH1]E[Xp]

+ (E[MH1] − 1)E[Xt]

+ E[LH1]E[Xh]. (5)

What we have derived so far is extremely similar to Eqs. 1
and 2 in the analysis by Pingali et al. [17, 18]. In fact, we
can use all of their analysis, with the understanding thatB is
the size of the receiver subset from which the source collects
local acks. Therefore, the expected number of localacks
received at the sender is

E[LH1] = E[MH1](B)(1 − p). (6)

Substituting Eq. 6 into Eq. 5, we can rewrite the expected
cost at the source node as

E[XH1] = E[Xf] + E[MH1]E[Xp]

+ (E[MH1] − 1)E[Xt]

+ E[MH1]B(1 − p)E[Xh]. (7)

Pingali et al. [17, 18] have shown that the expected number
of transmissions per packet inA, N1, andN2 equals

E[M] =
∞∑

m=1

(
1 − (

1 − p(m−1)
)R

)
. (8)

Because inH1 the number of receiversR = B, the expected
number of transmissions per packet in theH1 protocol is

E[MH1] =
∞∑

m=1

(
1 − (

1 − p(m−1)
)B

)
, (9)

which can be simplified to [17, 18, 19]

E[MH1] =
B∑
i=1

(
B
i

)
(−1)i+1 1

(1 − pi)
. (10)

Pingali et al. [17, 18] provide a bound of E[M] that we
apply to E[MH1] with R = B to obtain

E[MH1] ∈ O

(
1 +

p

1 − p
ln B

)
. (11)

Using Eq. 11, we can bound Eq. 7 as follows

E[XH1] ∈ O

(
B(1 +

p ln B

1 − p
)(1 − p)

)

∈ O(B(1 − p) + Bp ln B). (12)

It then follows that, whenp is a constant, E[XH1] ∈
O(B ln B).

4.3.2 Leaf nodes

Let Y H1 denote the requirement on nodes that do not have to
forward packets (leaves). Notice that leaf nodes in theH1
protocol will process fewer retransmissions and thus send
fewer acknowledgements than receivers in theA protocol.
We can again use an analysis similar to the one by Pingali
et al. [17, 18] for receivers using a sender-initiated protocol.

342

Y H1 = (receiving transmissions)

+ (sending localacks)

Y H1 =
LH1

h∑
i=1

(
Yp(i) + Yh(i)

)
+ Yf , (13)

whereYp(i) is the time it takes to process (re)transmissioni,
Yh(i) is the time it takes to send localack i, Yf is the time
to deliver a packet to a higher layer, andLH1

h is the number
of local acks generated by this nodeh (i.e., the number of
transmissions correctly received). Since each receiver is sent
MH1 transmissions with probabilityp that a packet will be
lost, we obtain

E[LH1
r] = E[MH1](1 − p). (14)

Taking expectations of Eq. 13 and substituting Eq. 14, we
have

E[Y H1] = E[LH1
r](E[Yp] + E[Yh]) + E[Yf]

= E[MH1](1 − p)
(
E[Yp] + E[Yh]

)
+ E[Yf]. (15)

Again, noting the bound of E[MH1] given in Eq. 11,

E[Y H1] ∈ O(1 − p + p ln B). (16)

Whenp is treated as a constant, E[Y H1] ∈ O(ln B).

4.3.3 Group leaders

To evaluate the processing requirement at a group leader,h,
we note that a node caught between the source and a node
with no children has a two jobs: to receive and to retransmit
packets. Because it is convenient, and because a group leader
is both a sender and receiver, we will express the costs in
terms ofX andY . Our sum of costs is

HH1 = (receiving transmissions)

+ (sending localacks)

+ (collecting localacks)

+ (retransmissions)

HH1 =
LH1

h∑
i=1

(
Yp(i) + Yh(i)

)
+ Yf +

LH1∑
k=1

Xh(k)

+
MH1∑
m=2

(
Xt(m) + Xp(m)

)
. (17)

Just as in the case for the source node,LH1 is the expected
number of localacks received from nodeh’s children for
this packet, andLH1

h is the number of localacks generated
by nodeh.

E[HH1] = E[LH1
h](E[Yp] + E[Yh]) + E[Yf]

+ (E[MH1] − 1)(E[Xp] + E[Xt])

+ E[LH1]E[Xh]. (18)

We can substitute Eqs. 6 and 14 into Eq. 18 to obtain

E[HH1] = E[MH1](1 − p)(E[Yp] + E[Yh]) + E[Yf]

+ (E[MH1] − 1)(E[Xp] + E[Xt])

+ BE[MH1](1 − p)E[Xh]. (19)

The first two terms are equivalent to the processing require-
ments of a leaf node. The last two are almost the cost for
a source node. Substituting and subtracting the difference
yields

E[HH1] = E[Y H1] + E[XH1] − E[Xf] − E[Xp]. (20)

In other words, the cost on a group leader is the same as
a source and a leaf, without the cost of receiving the data
from higher layers and one less transmission (the original
one). Substituting Eqs. 12 and 16 into Eq. 20, we have

E[HH1] ∈ O(1−p + p ln B) ∪ O(B(1−p) + Bp ln B)

∈ O(B(1 − p) + Bp ln B). (21)

When p is a constant, E[HH1] ∈ O(B ln B), which is the
dominant term in the throughput analysis of the overall sys-
tem.

4.3.4 Overall system analysis

Let the throughput at the senderΛH1
s be 1/E[XH1], at the

group leadersΛH1
h be 1/E[HH1], at the leaf nodesΛH1

r be
1/E[Y H1]. The throughput of the overall system is

ΛH1 = min{ΛH1
s , ΛH1

h , ΛH1
r }. (22)

From Eqs. 12, 16, and 21 it follows that

1/ΛH1 ∈ O(B(1 − p) + Bp ln B). (23)

If p is a constant and ifp → 0, we obtain

1/ΛH1 ∈ O(B ln B) = O(1) ; p constant, (24)

1/ΛH1 ∈ O(B) = O(1) ; p → 0. (25)

Therefore, the maximum throughput of this protocol, as well
as the throughput with non-negligible packet loss, is inde-
pendent of the number of receivers. This is the only class
of reliable multicast protocols that exhibits such degree of
scalability with respect to the number of receivers.

4.4 Tree-based protocols with localnak avoidance
and periodic polling

To bound the overall system throughput in the generic Tree-
NAPP protocol, we repeat the method used for the tree-based
class; we first derive and bound the expected cost at the
source, group leaders, and leaves. As we did for the case
of tree-based protocols, we assume that there are enough
receivers to form a full tree at each level. We place a super-
scriptH2 on any variables relating to the generic Tree-NAPP
protocol.

4.4.1 Source node

We consider firstXH2, the processing costs required by the
source to successfully multicast an arbitrarily chosen packet
to all receivers using theH2 protocol. The processing re-
quirement for an arbitrary packet can be expressed as a sum
of costs:

343

XH2 = (initial transmission) + (retransmissions)

+(receiving localnaks)

+(receiving periodic localacks)

XH2 = Xf +
MH2∑
i=1

Xp(i) +
MH2∑
m=2

Xn(m) + BXφ, (26)

whereXf is the time to get a packet from a higher layer,
Xp(i) is the time for (re)transmission attempti, Xn(m) is
the time for receiving localnak m from the receiver set,
Xφ is the amortized time to process the periodic localack
associated with the current congestion window, andMH2 is
the number of transmission attempts the source will have to
make for this packet. Taking expectations, where

E[MH2] = E[MH1], (27)

we have

E[XH2] = E[Xf] + E[MH1]E[Xp]

+ (E[MH1] − 1)E[Xn] + BE[Xφ]. (28)

Using Eq. 11, the bound of E[MH1], we can bound Eq. 28
as follows

E[XH2] ∈ O(1 + 1 +
p

1 − p
ln B)

∈ O(1 +
p

1 − p
ln B). (29)

It then follows that, whenp is a constant, E[XH2] ∈ O(1).

4.4.2 Leaf nodes

Let Y H2 denote the processing requirement on nodes that
do not have to forward packets (leaves). The sum of cost
can be expressed as

Y H2 = (receiving transmissions)

+ (sending periodic localacks)

+ (sending localnaks)

+ (receiving localnaks)

Y H2 =
MH1∑
i=1

(1 − p)Yp(i) + Yf + Yφ

+
MH1∑
j=2

(
Yn(j)

B
+ (B − 1)

Xn(j)
B

)

+Prob{Mr > 2}
Mr−1∑

k=2

Yt(i). (30)

Let Yp(i) be the time it takes to process the (re)transmission
i, Mr be the number of transmissions required for the packet
to be received by receiverr, Yn(j) be the time it takes to
send localnak j, Xn(j) be the time it takes to receiver
local nak j (from another receiver),Yt(k) be the time to
set timerk, Yf be the time to deliver a packet to a higher
layer, andYφ be the amortized cost of sending a periodic
local ack for a group of packets of which this packet is a
member. Taking expectations of Eq. 30,

E[Y H2] = E[MH1](1 − p)E[Yp] + E[Yf] + E[Yφ]

+ (E[MH1]−1)

(
E[Yn]

B
+ (B−1)

E[Xn]
B

)

+ Prob{Mr >2}(E[Mr|Mr >2]−2)E[Yt].

(31)

It follows from the distribution ofMr that [17, 18]

E[Mr|Mr > 2] =
3 − 2p

1 − p
. (32)

Therefore, noting Eq. 32 and that Prob{Mr > 2} = p2, we
derive from Eq. 31 the expected cost as

E[Y H2] = E[MH1](1 − p)E[Yp] + E[Yf] + E[Yφ]

+ (E[MH1]−1)

(
E[Yn]

B
+ (B−1)

E[Xn]
B

)

+ p2

(
3 − 2p

1 − p
− 2

)
E[Yt]. (33)

Again, using the bound of E[MH1] given in Eq. 11, we can
bound Eq. 33 by

E[Y H2] ∈ O

(
1 +

1 − p + p ln B + p2(1 − 4p)
1 − p

)
. (34)

Whenp is treated as a constant, E[Y H2] ∈ O(1).

4.4.3 Group leaders

The sum of costs for group leaders, which have the job of
both sender and receiver, is

HH2 = (receiving transmissions)

+ (sending periodic localacks)

+ (receiving periodic localacks)

+ (receiving localnaks)

+ (sending localnaks)

+ (retransmissions to children)

HH2 = (1 − p)
MH1∑
i=1

Yp(i) + Yφ + BXφ + Yf

+
MH1∑
j=2

(
Yn(j)

B
+ (B − 1)

Xn(j)
B

)

+ Prob{Mr > 2}
Mr−1∑

k=2

Yt(k)

+
MH1∑
m=2

(Xn(m) + Xp(m)). (35)

Taking expectations and substituting Eq. 32, we obtain

E[HH2] = (1 − p)E[MH1]E[Yp] + E[Yφ] + BE[Xφ]

+ E[Yf]

+ (E[MH1]−1)

(
E[Yn]

B
+ (B−1)

E[Xn]
B

)

344

+ p2

(
3 − 2p

1 − p
− 2

)
E[Yt]

+ (E[MH1] − 1)(E[Xn] + E[Xp]). (36)

Similar to group leaders in theH1 protocol, the processing
cost at a group leader is the same as a source and a leaf,
without the cost of receiving the data from a higher layer
and one less transmission. Substituting Eq. 28 and Eq. 33
into Eq. 36 and subtracting the difference, the expected cost
can be expressed as

E[HH2] = E[Y H2] + E[XH2] − E[Xf] − E[Xp]. (37)

Therefore, Eq. 36 can be bounded by

E[HH2] ∈ O(E[Y H2]) ∪ O(E[XH2])

∈ O

(
1 +

1 − p + p ln B + p2(1 − 4p)
1 − p

)
. (38)

Whenp is a constant, E[HH2] ∈ O(1). Therefore, all nodes
in the Tree-NAPP protocol have a constant amount of work
to do with regard to the number of receivers.

4.4.4 Overall system analysis

The overall system throughput for theH2 protocol is the
minimum throughput attainable at each type of node in the
tree, that is,

ΛH2 = min{ΛH2
s , ΛH2

h , ΛH2
r }. (39)

From Eqs. 29, 34, and 38, it follows that

1/ΛH2 ∈ O
(

1 +
1 − p + p ln B + p2(1 − 4p)

1 − p

)
. (40)

Accordingly, if eitherp is constant orp → 0, we obtain
from Eq. 40 that

1/ΛH2 ∈ O(1). (41)

Therefore, the maximum throughput of the Tree-NAPP pro-
tocol, as well as the throughput with non-negligible packet
loss, is independent of the number of receivers.

4.5 Ring-based protocols

In this section, we analyze the throughput of ring-based pro-
tocols, which we denote by a superscriptR, using the same
assumptions as in Sects. 4.3 and 4.4. Because we are in-
terested in the maximum attainable throughput, we are as-
suming a constant stream of packets, which means we can
ignore the overhead that occurs when there are noacks on
which to piggyback token-passing messages.

4.5.1 Source

Source nodes practice a special form of unicast with a roam-
ing token site. The sum of costs incurred is

XR = (initial transmission) + (processingacks)

+(retransmissions)

XR = Xf + Xp(1) +
LU

r∑
i=1

Xa(i)

+
Mr∑
m=1

(
Xt(m) + Xp(m)

)
, (42)

whereMr is the number of transmissions required for the
packet to be received by the token site, and has a mean of
E[Mr] = 1/(1−p); and letLU

r be the number ofacks from
a receiverr (in this case the token site) sentunicast, i.e.,
the number of packets correctly received atr. This number
is always 1, accordingly:

LU
r = E[Mr](1 − p) = 1. (43)

Taking expectations of Eq. 42, we obtain

E[XR] = E[Xf] + E[Mr]E[Xp] + (E[Mr] − 1)E[Xt]

+ E[LU
r]E[Xa]

= E[Xf] +
1

1 − p
E[Xp] +

p

1 − p
E[Xt]

+ E[Xa]. (44)

If we again assume constant costs for all operations, it can
be shown that

E[XR] ∈ O

(
1

1 − p

)
, (45)

which, whenp is a constant, isO(1) with regard to the size
of the receiver set.

4.5.2 Token site

The current token site has the following costs: (note both
TRP and RMP specify that retransmissions are sent unicast
to otherR − 1 receivers.)

TR = (receiving transmission)

+ (multicastingack/token)

+ (processingnaks)

+ (unicasting retransmissions)

TR = Yf +
LU

r∑
i=1

(
Yp(i)+Ya(i)

)
+

LR∑
j=1

Xn(j)

+ (R − 1)Prob{Mr >1}
Mr∑
m=1

Xp(m), (46)

whereLR is the number ofnaks received at the token site
when using a ring protocol. To deriveLR, considerMr, the
number of transmissions necessary for receiverr to success-
fully receive a packet.Mr has an expected value of 1/(1−p),
and the last transmission is notnaked. Because there are
(R − 1) other receivers sendingnaks to the token site, we
obtain

E[LR] = (R − 1)(E[Mr] − 1) =
(R − 1)p

1 − p
. (47)

345

Therefore, the mean processing time at the token site is

E[TR] = E[Yf] + E[Yp] + E[Ya] + E[LR]E[Xn]

+ (R − 1)pE[Mr]E[Xp]

= E[Yf] + E[Yp] + E[Ya]

+
(R − 1)p

1 − p

(
E[Xn] + E[Xp]

)
. (48)

The expected cost at the token site can be bounded by

E[TR] ∈ O

(
1 +

(R − 1)p
1 − p

)
, (49)

with regard to the number of receivers. Whenp is a constant,
E[TR] ∈ O(R).

4.5.3 Receivers

Receivers practice a receiver-initiated protocol with the cur-
rent token site. We assume there is only one packet for the
ack, token, and time stamp multicast from the token site
per data packet. The cost associated with an arbitrary packet
are therefore

Y R = (receivingack/token/time stamp)

+ (receiving first transmission)

+ (sendingnaks)

+ (receiving retransmissions)

Y R = Ya + Prob{Mr = 1}Yp(1) + Yf

+ Prob{Mr > 1}
LU

r∑
i=1

Yp(i)

+ Prob{Mr > 1}
Mr∑
m=2

Yn(m)

+ Prob{Mr > 2}
Mr∑
n=3

Yt(n). (50)

The first term in the above equation is the cost of receiving
the ack/token/time stamp packet from the token site; the
second is the cost of receiving the first transmission sent
from the sender, assuming it is received error free; the third
is the cost of delivering an error-free transmission to a higher
layer; the fourth is the cost of receiving the retransmissions
from the token site, assuming that the first failed; and the
last two terms consider that anak is sent only if the first
transmission attempt fails and that an interrupt occurs only
if a nak was sent. Taking expectations, we obtain

E[YR] = E[Ya] + (1 − p)E[Yp] + E[Yf]

+ pE[LU
r]E[Yp]

+ p(E[Mr|Mr > 1] − 1)E[Yn]

+ p2(E[Mr|Mr > 2] − 2)E[Yt]. (51)

As shown previously [17, 18],

E[Mr|Mr > 1] =
2 − p

1 − p
. (52)

Substituting Eqs. 43, 52, and 32 into Eq. 51, we have

E[Y R] = E[Xa] + (1 − p)E[Yp] + E[Yf] + pE[Yp]

+
p

1 − p

(
E[Yn] + pE[Yt]

)
. (53)

Assuming all operations have constant costs, it can be shown
that

E[Y R] ∈ O

(
1 + p2

1 − p

)
, (54)

with regard to the size of the receiver set. If we considerp
as a constant, then E[Y R] ∈ O(1).

4.5.4 Overall system analysis

The overall system throughput ofR, the generic token ring
protocol, is equal to the minimum attainable throughput at
each of its parts:

ΛR = min{ΛR
s , ΛR

t , ΛR
r }. (55)

From Eqs. 45, 49 and 54 it follows that, ifp is a constant
and forp → 0, we obtain

1/ΛR ∈ O

(
1 +

(R − 1)p
1 − p

)
; p constant, (56)

1/ΛR ∈ O(1) ; p → 0. (57)

5 Numerical results

To compare the relative performance of the various classes
of protocols, all mean processing times are set equal to 1,
except for the periodic costsXφ and Yφ which are set to
0.1. Figure 6 compares the relative throughputs of the pro-
tocols A, N1, N2, H1, H2, andR as defined in Sect. 2.
The graph represents the inverse of Eqs. 19, 36, and 48, re-
spectively, which are the throughputs for the tree-based, tree-
NAPP, and ring-based protocols, as well as the inverse of the
throughput equations derived previously [17, 18] for sender-
and receiver-initiated protocols. The top, middle and bottom
graphs correspond to increasing probabilities of packet loss,
1%, 10%, and 25%, respectively. Exact values of E[MH1]
were calculated using a finite version of Eq. 9; Exact values
of E[M] were similarly calculated [22].

The performance ofnak avoidance protocols, especially
tree-NAPP protocols, is clearly superior. However, our as-
sumptions place these two subclasses at an advantage over
their base classes. First, we assume that no acknowledge-
ments are lost or are received in error. The effectiveness
of nak avoidance is dependent on the probability ofnaks
reaching all receivers, and thus, without our assumption, the
effectiveness ofnak avoidance decreases as the number of
receivers involved increases. Accordingly, tree-NAPP pro-
tocols have an advantage that is limited by the branching
factor of theack tree, while RINA protocols have an ad-
vantage that increases with the size of the entire receiver
set. Second, we assume that the timers used fornak avoid-
ance are set perfectly. In reality, the messages used to set
timers would be subject to end-to-end delays that exhibit no
regularity and can become arbitrarily large.

346

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

T
hr

ou
gh

pu
t H2

N2
H1
N1
R
A

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

Number ofReceivers

p=0.01

p=0.10

p=0.25

Fig. 6. The throughput graph from the exact equations for each protocol.
The probability of packet loss is 1%, 10%, and 25%, respectively. The
branching factor for trees is set at 10

We conjecture that the relative performance ofnak avoi-
dance subclasses would actually lie closer to their respec-
tive base classes, depending on the effectiveness of thenak
avoidance scheme; in other words, the curves shown are
upper boundsof nak avoidance performance. Our results
show that, when considering only the base classes (since
not one has an advantage over another), the tree-based class
performs better than all the other classes. When consider-
ing only the subclasses that usenak avoidance, tree-NAPP
protocols perform better than RINA protocols, even though
our model provides an unfair advantage to RINA protocols.

It is the hierarchical structure organization of the receiver
set in tree-based protocols that guarantees scalability and im-
proves performance over other protocols. Usingnak avoid-
ance on a small scale increases performance even further.
In addition, if nak avoidance failed for a tree-NAPP proto-
col (e.g., due to incorrect setting of timers), the performance
would still be independent of the size of the receiver set.
RINA protocols do not have this property. Failure of the
nak avoidance for RINA protocols would result in unscal-
able performance like that of a receiver-initiated protocol,
which degrades quickly with increasing packet loss.

Any increase in processor speed, or a smaller branching
factor would also increase throughput for all tree-based pro-
tocols. However, for the same number of receivers, a smaller
branching factor implies that some retransmissions must tra-
verse a larger number of tree-hops towards receivers expect-
ing them further down the tree. For example, if a packet is
lost immediately at the source, the retransmission is multi-
cast only to its children and all other nodes in the tree must
wait until the retransmission trickles down the tree struc-
ture. This poses a latency problem that can be addressed
by taking advantage of the dependencies in the underlying
multicast routing tree. Retransmissions could be multicast
only toward all receivers attached to routers on the subtree
of the router attached to the receiver which has requested
the missing data. The number of tree-hops from the receiver
to the source is also a factor in how quickly the source can
release data from memory in the presence of node failures,
as discussed by Levine et al. [12].

10
−1

10
0

10
1

10
2

10
3

10
4

0

5000

10000
p=0.01

10
−1

10
0

10
1

10
2

10
3

10
4

0

5000

10000
p=0.10

S
up

po
rt

ab
le

 r
ec

ei
ve

rs

H2
N2
H1
N1
R
A

10
−1

10
0

10
1

10
2

10
3

10
4

0

5000

10000

Processor Speed

p=0.25

Fig. 7. Number of supportable receivers for each protocol. The probability
of packet loss is 1%, 10%, and 25%, respectively. The branching factor for
trees is set at 10

Figure 7 shows the number of supportable receivers by
each of the different classes, relative to processor speed
requirements. This number is obtained by normalizing all
classes to a baseline processor, as described by Pingali et
al. [17, 18]. The baseline uses protocolA and can support ex-
actly one receiver; ifµω[R], ω ∈ {A, N1, N2, H1, H2, R}
is the speed of the processor that can support at mostR
receivers under protocolω, we setµA[1] = 1. The baseline
cost is equal to [17, 18]

E[XA]

∣∣∣∣
R=1

=
1

µA[1]
3 − p

1 − p
=

3 − p

1 − p
. (58)

Using Eqs. 18, 36, 48, and 58, we can derive the follow-
ing µs for tree-based, tree-NAPP, and ring-based protocols,
respectively:

µH1[R] =
1

E[XA]
E[HH1]

=
1

E[XA]
(E[MH1](1 − p)(2) + 1

+ (E[MH1] − 1)(2) +BE[MH1](1 − p))

=
1

E[XA]
(E[MH1](4+B−(2 + B)p)−1) , (59)

µH2[R] =
1

E[XA]
E[HH2]

=
1

E[XA]
((4 − p)E[MH1] − 1.9 + 0.1B

+ p2

(
3 − 2p

1 − p
− 2

)
, (60)

µR[R] =
1

E[XA]
E[TR]

=
1

E[XA]

(
1 + 1 + 1 +

(R − 1)p
(1 − p)

(1 + 1)

)

=
1

E[XA]

(
3 +

2(R − 1)p
(1 − p)

)
. (61)

The number of supportable receivers derived for sender- and
receiver-initiated protocols are shown to be [17, 18]

347

µA[R] =
1

E[XA]
E[M](2 + R(1 − p)) , (62)

µN1[R] =
1

E[XA]
(1 + E[M] + Rp/(1 − p)) , (63)

µN2[R] =
1

E[XA]
(2E[M]) . (64)

From Fig. 6 and 7, it is clear that tree-based protocols
can support any number of receivers for the same processor
speed bound at each node, and that tree-NAPP protocols at-
tain the highest maximum throughput. It is also important to
note that the maximum throughput that RINA protocols can
attain becomes more and more insensitive to the size of the
receiver set as the probability of error decreases. Because
we have assumed that a singlenak reaches the source, that
naks are never lost, and that session messages incur no pro-
cessing load, we implicitly assume the optimum behavior of
RINA protocols. The simulation results reported for SRM
by Floyd et al. [8] agree with our model and result from
assuming nonak losses and a single packet loss in the ex-
periments. Figure 7 shows that tree-NAPP protocols can be
made to perform better than the best possible RINA protocol
by limiting the size of the local groups.

Because of the unicast nature of retransmissions in ring-
based protocols, these protocols approach sender-initiated
protocols; this indicates that allowing only multicast retrans-
missions would improve performance greatly.

6 Conclusions

We have compared and analyzed the four known classes of
reliable multicast protocols. Of course, our model constitutes
only a crude approximation of the actual behavior of reli-
able multicast protocols. In the Internet, anack or a nak
is simply another packet, and the probability of anack or
nak being lost or received in error is much the same as
the error probability of a data packet. This assumption gives
protocols that usenak avoidance an advantage over other
classes. Therefore, it is more reasonable to compare them
separately: our results show that tree-based protocols without
nak avoidance perform better than other classes that do not
usenak avoidance, and that tree-NAPP protocols perform
better than RINA protocols, even though RINA protocols
have an artificial advantage over every other class. We con-
jecture that, once the effects ofack or nak failure, and the
correlation of failures along the underlying multicast rout-
ing trees are accounted for, the same relative performance
of protocols will be observed.

The results are summarized in Table 1. It is already
known that sender-initiated protocols are not scalable be-
cause the source must account for every receiver listening.
Receiver-initiated protocols are far more scalable, unless
nak avoidance schemes are used to avoid overloading the
source with retransmission requests. However, because of
the unbounded-memory requirement, this protocol class can
only be used efficiently with application-layer support, and
only for a limited set of applications. Furthermore, to set the
timers needed fornak avoidance, existing instantiations of
RINA protocols require all group members to transmit ses-
sion messages periodically, which makes them unscalable.

Ring-based protocols were designed for atomic and total or-
dering of packets. TRP and RMP limit their throughput by
requiring retransmissions to be unicast. It would be possi-
ble to reduce the cost bound toO(ln R), assumingp to be
a constant, if thenak avoidance techniques presented by
Ramakrishnan and Jain [19] were used.

Our analysis shows thatack trees are a good answer
to the scalability problem for reliable multicasting. Prac-
tical implementations of tree-based protocols maintain the
anonymity of the receiver set, and only the tree-based and
tree-NAPP classes have throughputs that are constant with
respect to the number of receivers, even when the prob-
ability of packet loss is not negligible (which would pre-
clude accurate setting ofnak avoidance timers). Because
tree-based protocols delegate responsibility for retransmis-
sion to receivers and because they employ techniques appli-
cable to either sender- or receiver-initiated protocols within
local groups (i.e., a node and its children in the tree) of the
ack tree only, any mechanism that can be used with all the
receivers of a session in a receiver-initiated protocol can be
adopted in a tree-based protocol, with the added benefit that
the throughput and number of supportable receivers is com-
pletely independent of the size of the receiver set, regardless
of the likelihood with which packets,acks, andnaks are
received correctly.

On the other hand, while the scope ofnaks and retrans-
missions can be reduced without establishing a structure in
the receiver set [8], limiting the scope of the session mes-
sages needed to setnak avoidance timers and to contain the
scope ofnaks and retransmissions require the aggregation
of these messages. This leads to organizing receivers into
local groups that must aggregate sessions messages sent to
the source (and local groups). Doing this efficiently, how-
ever, leads to a hierarchical structure of local groups much
like what tree-based protocols require. Hence, it appears that
organizing the receivers hierarchically (inack trees or oth-
erwise) is a necessity for the scaling of a reliable multicast
protocol.

References

1. Ballardie A, Francis P, Crowcroft J (1993) Core based trees (CBT):
An architecture for scalable inter-domain multicast routing. In: Proc.
ACM SIGCOMM’93 (October 1993), pp 85–95. San Francisco, CA,
USA, 13–17 September 1993

2. Bertsekas D, Gallager R (1992) Data Networks, second ed. Prentice
Hall, Englewood cliffs, New Jersey

3. Chang J-M, Maxemchuk NF (1984) Reliable broadcast protocols. ACM
Trans Comput Syst 2(3): 251–273

4. Clark DD, Lambert ML, Zhang L (1987) NETBLT: A high-throughput
transport protocol. In: Proc ACM SIGCOMM’93 (August 1987),
pp 353–359. San Francisco, CA, USA, 13–17 September 1993

5. Deering S (1991) Multicast routing in a datagram internetwork. PhD
thesis, Stanford University, Palo Alto, Calif.

6. Deering S, Cheriton D (1990) Multicast routing in datagram inter-
networks and extended lans. ACM Trans Comput Syst 8(2): 85–110

7. Deering S, et al. (1994) An architecture for wide-area multicast routing.
In: Proc. ACM SIGCOMM’94, pp 126–135, London, UK, 31 August–2
September 1994

8. Floyd S, et al. (1995) A reliable multicast framework for light-weight
sessions and application level framing. In: Proc. ACM SIGCOMM’95,
pp 342–356. Cambridge, MA, USA, 28 August–1 September 1995

9. Holbrook H, Singhal S, Cheriton D (1995) Log-based receiver-
reliable multicast for distributed interactive simulation. In: ACM SIG-

348

COMM’95, pp 328–341. Cambridge, MA, USA, 28 August–1 Septem-
ber 1995

10. Postel JB (ed) (1981) Transmission control protocol. Request for Com-
ments 793

11. Levine BN, Garcia-Luna-Aceves JJ (1996) A comparison of known
classes of reliable multicast protocols. In: Proc. IEEE International
Conference on Network Protocols (October 1996). Columbus, OH,
USA, 29 October–1 November 1996. Ural H (ed) Los Alamitos, CA,
USA. IEEE Comput Soc Press, pp 112–121

12. Levine BN, Lavo D, Garcia-Luna-Aceves JJ (1996) The case for re-
liable concurrent multicasting using shared ack trees. In: Proc. ACM
Multimedia, pp 365–376, 18–22 November 1996. Boston, MA, USA

13. Lin J, Paul S (1996) RMTP: A reliable multicast transport protocol.
In: Proc. IEEE Infocom, pp 1414–1425. San Francisco, CA, USA, 24–
28 March 1996. Los Alamitos, CA, USA. IEEE Comput Soc Press 3:
1414–1424

14. Parsa M, Garcia-Luna-Aceves JJ (1997) A protocol for scalable loop-
free multicast routing. IEEE J Sel Areas Commun 15(3): 316–331

15. Paul S, Sabnani K, Kristol D (1994) Multicast transport protocols for
high-speed networks. In: International Conference on Network Proto-
cols, pp 4–14. Boston, MA, USA, 25–28 October 1994. Los Alamitos,
CA, USA. IEEE Comput Soc Press

16. Paul S, Sabnani KK, Lin JC, Bhattacharyya S (1997) Reliable multicast
transport protocol (RMTP). IEEE J Sel Areas Commun 15(3): 407–421

17. Pingali S (1994) Protocol and Real-Time Scheduling Issues for Multi-
media Applications. PhD thesis, University of Massachusetts, Amherst,
Mass.

18. Pingali S, Towsley D, Kurose J (1994) A comparison of sender-initiated
and receiver-initiated reliable multicast protocols. Perform Evaluation
Rev 22: 221–230

19. Ramakrishnan S, Jain BN (1987) A negative acknowledgement with
periodic polling protocol for multicast over lan. In: Proc. IEEE Info-
com, pp 502–511. San Francisco, CA, USA, 31 March–2 April 1997.
Washington, DC, USA. IEEE Comput Soc Press

20. Shields C, Garcia-Luna-Aceves JJ (1997) The ordered core-based tree
protocol. In: IEEE Infocom’97, pp 884–891

21. Strayer T, Dempsey B, Weaver A (1992) XTP: The Xpress Transfer
Protocol. Addison-Wesley, Reading, Mass.

22. Towsley D, Kurose J, Pingal S (1997) A comparison of sender-initiated
and receiver-initiated reliable multicast protocols IEEE J Sel Areas
Commun 15(3): 398–406

23. Whetten B, Kaplan S, Montgomery T (1994) A high-performance,
totally ordered multicast protocol. In: Theory and Practice in Dis-
tributed Systems, International Workshop, LNCS 938 (September
1994). Dagstuhl Castle, Germany, 5–9 September 1994. Birman KP,
Mattern F, Schiper A (eds) Berlin, Springer 1995, pp 33–57

24. Yavatkar R, Griffioen J, Sudan M (1995) A reliable dissemination pro-
tocol for interactive collaborative applications. In: Proc. ACM Multi-
media, pp 333-344. San Francisco, CA, November 5–9

Brian Neil Levine is a PhD can-
didate in Computer Engineering at the
University of California, Santa Cruz
(UCSC). In 1994, he received his B.S.
in Applied Mathematics and Computer
Science from the State University of
New York at Albany. In 1996, he re-
ceived his M.S. in Computer Engineer-
ing from the University of California at
Santa Cruz. His current research inter-
ests include multicast routing and reli-
able multicast protocols.

J.J. Garcia-Luna-Aceves was born
in Mexico City, Mexico on October 20,
1955. He received the B.S. degree in
electrical engineering from the Universi-
dad Iberoamericana, Mexico City, Mex-
ico, in 1977, and the M.S. and Ph.D.
degrees in electrical engineering from
the University of Hawaii, Honolulu, HI,
in 1980 and 1983, respectively. He is
Professor of Computer Engineering at
the University of California, Santa Cruz
(UCSC). Prior to joining UCSC in 1993
as an Associate Professor, he was a Cen-
ter Director at SRI International (SRI) in
Menlo Park, California. He first joined
SRI as an SRI International Fellow in

1982. His current research interest is the analysis and design of algorithms
and protocols for computer communication. At UCSC, he leads a num-
ber of research projects sponsored by DARPA and industry that focus on
wireless networks and internetworking. Dr. Garcia-Luna-Aceves has coau-
thored the book Multimedia Communications: Protocols and Applications
(Prentice-Hall), and has published more than 120 referred papers on com-
puter communication in journals and conferences. He is on the editorial
boards of the IEEE/ACM Transactions on Networking, the ACM Multi-
media Systems Journals, and the Journal of High Speed Networks. Dr.
Garcia-Luna-Aceves has been Chair of the ACM special interest group on
multimedia, General Chair of the first ACM conference on multimedia:
ACM MULTIMEDIA ’93, Program Chair of the IEEE MULTIMEDIA ’92
Workshop, General Chair of the ACM SIGCOMM ’88 Symposium, and
Program Chair of the ACM SIGCOMM ’87 Workshop and the ACM SIG-
COMM ’86 Symposium. He has also been program committee member for
numerous IFIP 6.5, ACM, IEEE, and SPIE conferences on computer com-
munication. He received the SRI International Exceptional-Achievement
Award in 1985 for his work on multimedia communications, and again in
1989 for his work on adaptive routing algorithms. He is a member of the
ACM and the IEEE.

