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Abstract

Background: Examining residuals is a crucial step in statistical analysis to identify the discrepancies between

models and data, and assess the overall model goodness-of-fit. In diagnosing normal linear regression models, both

Pearson and deviance residuals are often used, which are equivalently and approximately standard normally

distributed when the model fits the data adequately. However, when the response vari*able is discrete, these

residuals are distributed far from normality and have nearly parallel curves according to the distinct discrete response

values, imposing great challenges for visual inspection.

Methods: Randomized quantile residuals (RQRs) were proposed in the literature by Dunn and Smyth (1996) to

circumvent the problems in traditional residuals. However, this approach has not gained popularity partly due to the

lack of investigation of its performance for count regression including zero-inflated models through simulation

studies. Therefore, we assessed the normality of the RQRs and compared their performance with traditional residuals

for diagnosing count regression models through a series of simulation studies. A real data analysis in health care

utilization study for modeling the number of repeated emergency department visits was also presented.

Results: Our results of the simulation studies demonstrated that RQRs have low type I error and great statistical

power in comparisons to other residuals for detecting many forms of model misspecification for count regression

models (non-linearity in covariate effect, over-dispersion, and zero inflation). Our real data analysis also showed that

RQRs are effective in detecting misspecified distributional assumptions for count regression models.

Conclusions: Our results for evaluating RQRs in comparison with traditional residuals provide further evidence on its

advantages for diagnosing count regression models.
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Background
Count data consist of non-negative integers that repre-

sent the number of times a discrete event is observed;

for example, number of clinic visits, hospital admissions,

adverse drug events, substance abuse and rates of car-

diac arrest. Poisson regressions or negative binomial (NB)

regressions are often used to model such data; however,

this type of data may contain a large number of zero values

that a Poisson or NB models can not adequately model.

To overcome the issue with excessive zeros, zero inflated

models [1] were proposed in literature to model the exces-

sive number of zeros, which are a mixture of two compo-

nents: a point mass at zero and a count regression model,

such as a Poisson or NB model. Zero inflated models

were widely used in many population and epidemiological

studies [2–7]. Despite the advance in developing counts

regressionmodels, model diagnosis remains understudied

and lacks of clarity on practical issues.

Examining residuals is a primary approach for identi-

fying the overall discrepancies between models and data

(e.g., non-linear effects, over-dispersion, zero-inflation),

and observations that are not accommodated by the mod-

els (e.g., outliers). Residual analyses can also diagnose

the overall goodness-of-fit (GOF) and adequacies of a

model. Pearson and deviance residuals have been often

used for diagnosing generalized linear models (GLMs)

[8, 9]. Pearson residuals are defined as the standardized

distances between the observed and expected responses,

and deviance residuals are defined as the signed square

root of the individual contributions to the model deviance

(i.e., the difference between the log-likelihoods of the

saturated and fitted models). In normal regressions, Pear-

son and deviance residuals are the same and asymptoti-

cally follow a normal distribution under the true model

[8, 9]. In order to assess the model fit, these residu-

als are commonly plotted against the fitted values and

each covariate, as well as compared against the standard

normal distribution. The chi-squared
(
χ2

)
test statistic

is often used to measure the overall GOF of a normal

regression model. The χ2 statistic was proven to have an

asymptotic χ2 distribution with n − p degrees of free-

dom
(
denoted byχ2

n−p

)
[8, 9]. However, in non-normal

regression, specifically in data with the response vari-

able being distributed on a small number of distinct val-

ues, the Pearson and deviance residuals do not typically

follow (marginally and conditionally) a normal distribu-

tion. The plots of their residuals contain nearly parallel

curves, making their assessment difficult to interpret due

to the lack of a unified reference distribution for com-

parison. Furthermore, although the χ2 tests with χ2
n−p

as the null distribution are widely used for quantitatively

measuring the overall GOF in non-normal regression,

the χ2
n−p distribution is often very poor for approximat-

ing the true null sampling distribution of χ2 statistic

[8, 9] except for situations where the response variable

is approximately normally distributed (e.g., Poisson with

large means).

In a short communication paper, Dunn and Smyth

[10] introduced the randomized quantile residual (RQR)

method. The key idea of the RQRs is to introduce random-

izations between the discontinuity gap of the cumulative

distribution function (CDF) and then invert the fitted dis-

tribution function for each response value and finding the

equivalent standard normal quantile. Dunn and Smyth

[10] showed that the RQRs are approximately normally

distributed under a correctly specified model. Klar and

Meintanis (2012) [11] proposed the standardized RQRs

for performing goodness-of-fit tests in generalized lin-

ear models, which was shown to be approximately stan-

dard normally distributed. For modeling non-normal and

continuous outcome data, several studies have investi-

gated the properties of quantile residuals for checking

the model fit. For example, Pereira (2019) [12] investi-

gated the properties of the quantile residual in the beta

regression model and demonstrated that the distribu-

tion of the quantile residual is better approximated by

the standard normal distribution than that of the other

residuals in most scenarios. Lemonte andMoreno-Arenas

(2019) [13] proposed the normalized quantile residual to

check the adequacy of the generalized Johnson SB (GJS)

regression model, which were shown as a better choice

to identify departures from the model assumptions and

to assess the overall goodness-of-fit than the deviance

residual. Scudilio and Pereira (2020) [14] proposed an

adjusted quantile residual for diagnosing inverse Gaussian

or Gamma regression models, which was shown to be a

better choice to perform diagnostic analysis compared to

traditional residuals. Despite the increasing awareness of

RQRs, the literature on using RQRs has primarily focused

on diagnosing generalized linear models with the distribu-

tion of the response variable belonging to the exponential

family, i.e., Poisson, Negative binomial, inverse Gaussian,

Gamma, or being continuous non-normal. A broader sim-

ulation study that evaluates the performance of RQRs

for diagnosing count regression models, including zero-

inflated count regressions would be useful for applied

statisticians to understand the advantages of RQRs.

The purposes of this article are therefore to conduct

simulation studies to (1) demonstrate that the RQRs

approximately follow a normal distribution for count

regression models when the model is correctly speci-

fied apart from the sampling variability in the estimated

parameters, and (2) examine the power of the Shapiro-

Wilk normality test for examining the performance of
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RQRs as an overall model diagnosis tool. More specif-

ically, we show that the RQR method, in general, has

high power and low type I error for detecting various

model misspecification (i.e., having great statistical power

in detecting many types of model inadequacy, such as

non-linearity, zero-inflation, and over-dispersion).

For the remaining of this article, in “Methods” section,

we review the commonly used count regression models

and discuss the inadequacies of the Pearson and deviance

residuals for detecting model misspecification followed by

a brief review of RQRs. In “Results” section, the results of

the simulation studies and a real data application are pre-

sented. More specifically, in “Simulation studies” section,

we present the results of simulation studies to demon-

strate the superior performance of RQRs for detecting var-

ious forms of model misspecification. In “Real data appli-

cation” section, a real data application based on a health

care utilization study is presented to illustrate the per-

formance of RQRs in comparison with other traditional

residuals. Implications and limitations of the study are

presented in “Discussion” section. Concluding remarks

are given in “Conclusion” sections.

Methods
Regression models for count data

Poisson and negative binomial (NB)models

Let yi denote a discrete random variable following a Pois-

son distribution with mean λi, i = 1, · · · , n. The probabil-
ity mass function (PMF) is given by dpois(yi; λi) = e−λiλ

yi
i

yi!
,

yi = 0, 1, 2 · · · and the cumulative probability function

(CDF) is given by ppois(yi; λi) =
∑yi

yi=0 dpois(yi; λi). For

a NB regression model with mean λi and shape param-

eter k, the PMF can be expressed as, dnb(yi; λi, k) =
Ŵ(yi+k)

Ŵ(k)Ŵ(yi+1)

(
λi

λi+k

)yi ( k
λi+k

)k
, yi = 0, 1, 2 · · · and the CDF

can be expressed as pnb(yi; λi, k) =
∑yi

yi=0 dnb(yi; λi, k).

Poisson or NB models with a log link function can be

then written as log(λi) = X
T
i β , where X i denotes the

design matrix of a set of covariates and β represents the

corresponding regression coefficients.

Zero-inflatedmodels

In practice, count data often contains excessive zeros that

may not be accurately captured by a conventional Poisson

or NB model; these data are commonly known as zero-

inflated data. One popular approach to model such data

is a mixture model of degenerate zeros from the non-risk

group (i.e., structural zeros) and responses with random

zeros or positive values from the at-risk group [1, 2, 5,

15–17]. For example, one might be interested in the ques-

tion: “How often do you revisit hospitals within the last

30 days after being released from the hospital?” Among

the patients reported zero number of hospital revisits,

some may be fully recovered from this disease leading to

genuine non-users (structural zeros); however, some

might currently behave as non-users (sampling zeros) and

would have the potential to revisit the hospital depending

on their health status.

The zero-inflated Poisson (ZIP) model with parameters

λi and pi, denoted by ZIP (λi, pi), is defined by

yi ∼
{
0 with probability pi
Poisson(λi) with probability 1 − pi,

(1)

where λi is the mean of the Poisson component and pi
is the probability of belonging to the structural zeros

component for the ith observation.

Let dzip(yi; λi, pi) denote the PMF of the ZIP distri-

bution with the unconditional probability distribution

written as

dzip(yi = 0) = pi + (1 − pi) e
−λi (2)

dzip(yi = j) = (1 − pi)
e−λiλ

j
i

j!
, j = 1, 2, . . . . (3)

The CDF, denoted by pzip (yi; λi, pi), is then derived as

pzip (yi = J ; λi, pi) =
J∑

j=0

dzip(yi = j) = pi

+ (1 − pi)ppois(J , λi),

(4)

where ppois(J , λi) denotes the CDF of a Poisson distribu-

tion. The marginal mean and variance of a ZIP distribu-

tion can be derived as

E(yi) = μi = (1−pi)λi, V (yi) = (1 − pi) λi (1 + piλi) .

(5)

As a result, zero-inflated model can accommodate

overdispersion relative to a Poisson model, since V (yi) >

E(yi).

The ZIPmodel can include covariates formodeling both

pi and λi. Generally, pi is modeled with a logistic regres-

sion and λi is modeled as a log-linear regression. ZIP

model can be then written as,

logit(pi) = Z
T
i γ and log(λi) = X

T
i β , (6)

where Z
T
i and X

T
i are vectors of covariates with corre-

sponding vectors of regression parameters, γ and β , for

pi and λi, respectively. The zero-inflated negative bino-

mial (ZINB) model can be defined similarly by replacing

Poisson distribution with NB distribution in equation (1).

Pearson residuals

The Pearson residual, defined as the raw residual scaled

by the estimated standard deviation of the response vari-

able, is the most common measure for GOF, which can be

expressed as,

rPi = yi − μ̂i√
V̂ (yi)

, (7)
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Table 1 Pearson residuals for commonly used regression models

for count data

Model Pearson residuals

Poisson rPi = yi−λ̂i√
λ̂i

NB rPi = yi−λ̂i√
λ̂i+λ̂2i /k

ZIP rPi = yi−(1−p̂i)λ̂i√
(1−p̂i)λ̂i

[
1+p̂i λ̂i

]

ZINB rPi = yi−(1−p̂i)λ̂i√
(1−p̂i)

(
λ̂i+

λ̂2i
k

)
+λ̂2i (p̂

2
i +p̂i)

where μ̂i is the fitted value for yi and V̂ (yi) is the esti-

mation of variance for yi. Table 1 presents the Pear-

son residuals for some commonly used count regression

models.

Deviance residuals

Deviance residuals are derived based on the deviance,

which is defined as twice the difference between the log-

likelihood for the saturated and fitted models and is given

by D(y, μ̂) = 2
∑n

i=1

{
log[ p(yi|θ̂s)]−log[ p(yi|θ̂ )]

}
, where

log[ p(yi|θ̂s)] represents the log-likelihood function for the

saturated model and θs denotes the set of parameter esti-

mates for the saturated model, in which there are as many

estimated parameters as data points [8, 18]. By definition,

a saturated model leads to a perfect fit to the data and has

the highest log-likelihood among all models. log[ p(yi|θ̂ )]

represents the log-likelihood function of the fitted model

and θ̂ denotes the set of parameter estimates for the fit-

ted model. Deviance residuals represent the contributions

of individual samples to the deviance D(y, μ̂), which is

defined as the signed square root of the corresponding

component for D(y, μ̂) and can be written as

rDi = sign(yi − μ̂i)
√
di, (8)

where di = 2
{
log[ p(yi|θ̂s)]−log[ p(yi|θ̂ ] )

}
. For a ZIP

model, it can be shown that Poisson(yi) is the saturated

model [19]; hence, the deviance residual for a ZIP model

is defined as the signed square root of the likelihood ratio

between the fitted model (zero-inflated Poisson model)

and the saturated model (Poisson model). The deviance

residuals for a ZINB model can be defined similarly.

Table 2 presents the deviance residuals for some com-

monly used count regression models.

Problems with pearson and deviance residuals

For a normal linear regression model, the Pearson and

deviance residuals are identical and have an approximate

normal distribution under the true model. However, their

distributions are often skewed and non-normally dis-

tributed for counts regression models [8, 20]. It is argued

that the deviance residuals typically follow more closely

a normal distribution than the Pearson residuals; nev-

ertheless, as μi/φ → ∞, both Pearson and deviance

residuals from an exponential family model approach to

the normal distribution due to the distribution for the

response variable converging to normality. However, the

asymptotic normal distribution only holds when the mean

of the response variable is relatively large. Further, the

residual plots often exhibit parallel curves according to

distinct response values, imposing great challenges for

visual inspection. Hence, Pearson and deviance residuals

are difficult to use for graphically assessing the GOF of

count regression models.

Further, the overall GOF of a regression model is often

assessed based on the sum squares of the Pearson and

deviance residuals, i.e., X2 =
∑n

i=1 r
P2

i and D2 =∑n
i=1 r

D2

i , respectively. Asymptotically, under a correctly

specified normal regression model, we can expect X2 and

D2 to have a chi-square distribution χ2
n−p, where n is

the sample size, and p is the number of parameters. In

practice, we often fail to achieve large samples, which ren-

ders the null distribution of this statistic invalid. It is also

recognized that this approximation for diagnosing count

regression models can be very poor even for large sample

sizes [9, 21].

Randomized quantile residual

Definition of randomized quantile residuals

Randomized quantile residual (RQR) proposed by Dunn

and Smyth [10] gives a general tool for diagnosing regres-

sion models with independent responses, which is partic-

ularly ideal for diagnosing count regression models. RQR

is an extension of quantile residuals, which is based on

the idea of inverting the estimated distribution function

for each observation to obtain approximately normally

distributed residuals.

In the case of a normal regression model, quantile

residuals are equivalent to Pearson and deviance resid-

uals [14]. In the case of a non-normal regression model

for modeling a highly skewed and continuous outcome

variable, Scudilio and Pereira (2020) [14] proposed an

adjusted quantile residual to diagnose inverse Gaussian

or Gamma regression models, which was shown to be

a better choice to perform diagnostic analysis compared

to traditional residuals. Pereira (2019) [12] and Arenas

(2019) [13] investigated the properties of the quantile

residual in the beta regression and generalized Johnson SB
regression models, respectively. Their results showed that

the quantile residual is well approximated by a standard

normal distribution.
In the case of the discrete outcome, such as Poisson or

NB, the corresponding CDFs are discrete. To circumvent

this issue, the RQR introduces randomization between

two consecutive CDFs to produce continuous normal

residuals [10]. More specifically, suppose we consider



Feng et al. BMCMedical ResearchMethodology          (2020) 20:175 Page 5 of 21

Table 2 Deviance residuals for commonly used regression models for count data

Model Deviance residuals

Poisson rDi = sign(yi − λ̂i)
{
2
[
yi log

yi

λ̂i
− (yi − λ̂i)

]}1/2

NB rDi = sign(yi − λ̂i)
{
2
[
yi log

yi

λ̂i
− (yi + k) log

yi+k

λ̂i+k

]}1/2

ZIP

rDi = sign(yi − μ̂i)
(
2
{
−yi + yi log yi − log yi !

− I(yi = 0) log
[
p̂i + (1 − p̂i)e

−λ̂i
]

− I(yi > 0)
[
log(1 − p̂i) − λ̂i + yi log λ̂i − log yi !

]})1/2

ZINB

rDi = sign(yi − μ̂i)

(
2
{
log

Ŵ(yi + k)

Ŵ(k)Ŵ(yi + 1)
+ yi log

(
yi

yi + k

)
+ klog

(
k

yi + k

)

−I(yi = 0)log

[
pi + (1 − pi)

(
k

λi + k

)k
]

−I(yi > 0)

[
log(1 − pi) + log

Ŵ(yi + k)

Ŵ(k)Ŵ(yi + 1)
+ yi log

(
yi

yi + k

)
+ klog

(
k

yi + k

)]})1/2

fitting a regression model with F(yi; μ̂i, φ̂) denoting the

CDF for a response variable yi given a set of covariates xi,

where μ̂i is typically a function of xi (i.e., the conditional

mean of yi) and φ (i.e., the dispersion parameter) does not

depend on xi . Let p(yi; μ̂i, φ̂) be the corresponding PMF

of F(yi; μ̂i, φ̂). The estimated CDF is defined as

F∗(yi,ui; μ̂i, φ̂) = F(yi−; μ̂i, φ̂) + ui · p(yi; μ̂i, φ̂), (9)

where F(yi−; μ̂i, φ̂) is the lower limit of F at yi (i.e.,

supy<yi
F(y; μ̂i)) and ui is a random number from a uni-

form distribution on (0, 1). An alternative definition for

the randomized lower tail probability is a uniform ran-

dom number between a = supy<yi
F(y; μ̂i, φ̂) and b =

F(yi; μ̂i, φ̂) [10].

RQR for yi is then calculated as the standard normal

quantile of the estimated CDF, which is given by

z
Q
i = �−1[ F∗(yi,ui; μ̂i, φ̂)] , (10)

where�−1 is the quantile function of the standard normal

distribution. F∗(yi,ui; μ̂i, φ̂) can be converted to any other

previously mentioned standard distribution. The normal

distribution is chosen due to its well-known character-

istic (i.e., the so-called “empirical rules”), and diagnostic

and inspection methods for normal linear regression can

be then applied to RQRs. Note that when F is continu-

ous at yi, in Eq. (10), PMF at yi is p(yi; μ̂i, φ̂) = 0; for

clarification, p(yi; μ̂i, φ̂) is not the PDF of yi. Therefore,

there is no actual “randomness” in F∗(yi,ui; μ̂i, φ̂) when

response distribution is continuous. The formula given

in (9) encompasses this situation. Therefore, in the case

of continuous response variable, RQRs are equivalent to

quantile residuals. Similarly, when yi is discrete, the vari-

ability in F∗ tends to be smaller for narrower gaps at the

discontinuity points of F. This scenario typically occurs

when the mean of response variable is large.

Klar and Meintanis (2012) [11] suggested standardiz-

ing randomized quantile residuals, which are calculated

as r
Q
i = z

Q
i −z̄Q

S
zQ

, where z̄Q = n−1
∑n

i=1 z
Q
i and S2

zQ
=

(n − 1)−1
∑n

i=1

(
z
Q
i − z̄Q

)2
for performing goodness-of-

fit tests of common generalized linear models including

Poisson, NB, Gamma and Inverse Gaussian. The standard-

ized RQRs were shown to approximately follow a standard

normal distribution. Following their suggestion, we stan-

dardized RQRs in our investigation. In this paper, we show

that RQRs can also be applied for examining themodel fits

of count models in general, including zero-inflated mod-

els. Table 3 provides the derivation of the RQRs for the

Poisson, NB, and ZIP and ZINB regression models, where

ppois and dpois, pnb and dnb, pzip, dzip and pzinb and

dzinb denote their respective CDFs and PMFs.

The idea of constructing F∗ in (9) is also closely

related to the predictive p-values proposed for diagnosing

Bayesian models for discrete observations in which the ui
is fixed at 0.5 rather than being a uniform random number

Table 3 RQRs for commmonly used regression models for count

data

Model RQRs

Poisson zQi = �−1
(
ppois(yi − 1; μ̂i) + ui · dpois(yi ; μ̂i)

)

NB zQi = �−1
(
pnb(yi − 1; μ̂i , k̂) + ui · dnb(yi ; μ̂i , k̂)

)

ZIP zQi = �−1
(
pzip(yi − 1; μ̂i , p̂i) + ui · dzip(yi ; μ̂i , p̂i)

)

ZINB zQi = �−1
(
pzinb(yi − 1; μ̂i , k̂, p̂i) + ui · dzinb(yi ; μ̂i , k̂, p̂i)

)
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(See [22–25]). This approach creates non-random quan-

tile residuals, to which we refer as “middle-point quantile

residuals (MQRs)”, which will also be compared with the

RQRs in this study.

An illustrative example

To demonstrate the idea of the RQRs, we simulate a

response variable of size n = 1000 from a Poisson model

with log(μi) = −1 + 2sin(2xi), where μi is the expected

mean count for the ith subject and xi ∼ Uniform(0, 2π),

i = 1, . . . , n. Then, we fit a Poisson model with the same

mean structure as well as a Poisson model with a misspec-

ified mean structure log(μi) = β0 + β1xi to illustrate the

capability of RQRs for detecting the non-linearity of the

covariate effect.

The CDF of the response variable Yi given xi (under the

considered model with estimated parameters) is denoted

by F(k|xi) = P(Yi ≤ k|xi), for k = 0, 1, . . .. Figure 1

shows F(k|xi) as a function of xi, with each coloured line

representing a CDF curve associated with a value k. The

distance between two curves, F(k|xi) and F(k − 1|xi),
is the “theoretical” (model-based) probability of yi = k

given each xi. Each observed yi is then randomly scat-

tered uniformly to a point between the CDF lines asso-

ciated with k = yi − 1 and k = yi. The pattern of

randomized scattering of discrete yi facilitates the com-

parison of the “observed” frequency (fraction of points)

and “theoretical” frequency (distance of two lines). If the

“observed” and “theoretical” frequencies agree well, the

randomly scattered points of F∗(yi; μ̂i, φ̂,ui) should be

uniformly distributed on (0, 1] in each neighbourhood

of xi. Figure 1 depicts that under the true model, the

randomized CDFs are uniformly distributed on (0, 1]

given each xi. By contrast, under the misspecified model,

the randomized CDFs are not uniformly distributed,

exhibiting a non-linear trend. The results also show that

MQRs have the same difficulties as the Pearson and

deviance residuals for model assessment with residuals

Fig. 1 An illustrative example of the estimated CDFs, F∗ , under RQRs (top panels) and MQR (bottom panels). Panels in the left column present the

residuals under the true model and panels in the right column present the residuals under the wrong model. The curved grey lines correspond to

the theoretical CDF of F(k|xi)versusxi at each value of k. The points are the randomized CDFs F∗(yi ; μ̂i , φ̂, ui) with each colour corresponding to a

unique value of yi
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clustering along curved lines for both true and wrong

models.

Figure 2 displays the scatter plots of various types

of residuals against the covariate x under the true and

wrong models, which show that the Pearson, deviance,

and MQRs are clustered as curves according to the dis-

tinct and discrete values of the response variable. By

contrast, under the true model, RQRs are randomly

scattered between -3 and 3; under the wrong model, the

plot of RQRs against x exhibits a sinusoidal trend.

To examine whether standardized RQR is well approx-

imated by a standard normal distribution under the true

model as compared with other types of residauls, Table 4

reports the mean, variance, skewness, excess kurtosis for

the Pearson residual, deviance residual, MQR and RQR,

under the true and wrong models, respectively. The skew-

ness is a measure of symmetry. Negative skewness indi-

cates that the data is left-skewed and positive skewness

indicates that the data is right-skewed. The excess kurto-

sis describes the tail shape of the data distribution, so a

Fig. 2 An illustrative example of the RQRs in comparison with other residuals. Panels in the left column present the residuals under the true model

and panels in the right column present the residuals under the wrong model
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Table 4 Mean, variance, skewness, kurtosis and the p-value of

SW normality test for the Pearson residual, deviance residual,

MQR and RQR in the illustrative example

Model Pearson Deviance MQR RQR

Mean True 0.003 -0.213 0.072 0.003

Wrong -0.002 -0.336 -0.014 -0.067

Variance True 1.012 0.809 0.597 1.000

Wrong 1.993 1.592 1.154 1.000

Skewness True 1.828 0.646 0.756 -0.015

Wrong 1.990 1.171 1.400 0.744

Kurtosis True 4.609 0.572 1.060 0.205

Wrong 4.162 0.630 1.464 0.499

SW test True 0.000 0.000 0.000 0.684

Wrong 0.000 0.000 0.000 0.000

normal distribution has zero excess kurtosis. Negative

excess kurtosis would indicate a thin-tailed data distri-

bution, and positive excess kurtosis indicates a fat-tailed

distribution. We also used Shapiro-Wilk (SW) test [26]

to evaluate the normality of the residuals with the null

hypothesisH0: The residuals are normally distributed ver-

sus the alternative hypothesis Ha: The residuals are not

normally distributed. Previous research showed that SW

test is more powerful compared to other normality tests,

such as Kolmogorov–Smirnov test, the Lilliefors test, the

Cramer–von Mises test, the Anderson–Darling test, the

D’Agostino–Pearson test, etc., over a wide range of asym-

metric distributions [27].

The results presented in Table 4 indicate that the means

of the Pearson residuals, MQRs and RQRs are all close to

zero, but the means of the deviance residuals are below

zero under both the true and wrong models. This find-

ing is consistent with the previous investigations [13, 14],

which showed the deviance residuals do not follow a stan-

dard normal distribution regardless of the true or wrong

models. The variances of Pearson residuals under both

the true and wrong models are above one. Under the

true model, the variances of the deviance residuals and

MQRs are all below one, but above one under the wrong

model. By contrast, the variances of RQR are equal to one

for all models, since the RQRs in the present study are

all standardized to have unit variance. In terms of skew-

ness and kurtosis, the Pearson residual, deviance residual,

and MQR are right-skewed and heavy-tailed relative to

a normal distribution, and the extent of skewness and

heavy-tailed is more pronounced for Pearson residual.

RQRs are approximately symmetric with the tail shape

close to a normal distribution under the true model and

are right-skewed under the wrong model. For testing the

normality of the residuals based on the SW normality

test, the results clearly showed that both true and wrong

models were rejected according to the Pearson residual,

deviance residual, and MQR. By contrast, RQRs confirm

the adequacy of the true model with the p-value of the SW

normality test equal to 0.684 and inadequacy of the wrong

model with the SW p-value almost equal to zero.

Further, normal quantile-quantile (QQ) plots can be

produced by plotting the ordered values of the residuals

versus the expected order statistics of a normal distribu-

tion, approximated as �−1(
i−3/8
n+1/4 ), where i is the ith order

statistic, 1 ≤ i ≤ n and n is the sample size [28]. If

the residuals are normally distributed, the points in the

QQ plot should follow a straight diagonal line. However,

for the count regression models, the asymptotic distribu-

tions of the residuals are unknown; therefore, the normal

QQ plot is not informative for diagnosing model fits of

count regression models. To overcome this challenge, a

simulated envelope proposed by Atkinson (1981) [29] can

be added to the QQ plot to detect departures from the

distributional assumptions as well as outlying observa-

tions of the fitted model. The simulated envelope can be

obtained as follows [30]: (1) fitting a model, (2) extract-

ing and sorting the residuals, (3) simulating 100 response

variable using the same model matrix, error distribution

and parameter estimates, (4) fitting the same model to

each simulated response variable and extracting and sort-

ing the residuals, and (5) computing the 2.5% and 97.5%

percentiles of the simulated residuals at each ordered

residuals to form the envelope. For a well-fitted model,

most of the residuals are expected to fall within the simu-

lated envelope. As displayed in Fig. 3, all types of residuals

under the true model fall within the simulated envelopes.

By contrast, under the wrong model, a bulk of residuals

fall outside of the simulated envelopes.

The results indicate that the normality probability plot

with a simulated envelope can help distinguish the true

and wrong models; however, visualizing these plots could

not provide information on the nature of deficiencies with

respect to the fitted model. In contrast, the scatter plot

of RQRs against covariates or fitted values can provide

information on the inadequacy of different aspects of the

models, such as the misspecified functional form of the

covariate effect, over-dispersion, and zero-inflation, etc.

Moreover, a numerical measure of overall model goodness

of fit is desirable to summarize the discrepancy between

fitted and observed values under the fitted model rather

than only relying on visualizing the QQ plots with simu-

lated envelope to determine the model fit, which can be

subjective.

Results

Simulation studies

In this Section, we investigate the performance of the

RQRs in comparison with MQRs, deviance, and Pearson

residuals via simulations. The simulations consist of



Feng et al. BMCMedical ResearchMethodology          (2020) 20:175 Page 9 of 21

Fig. 3 An illustrative example of the normality QQ plots of RQRs in comparison with other residuals. Panels in the left column present QQ plots for

the residuals under the true model, and panels in the right column present the QQ plots for the residuals under the wrong model. The red dashed

lines represent the simulated envelope

testing non-linearity of the covariate effect, over-

dispersion, and zero-inflation. A numerical measure of

overall model goodness of fit is desirable to summarize

the discrepancy between expected values under the fitted

model and observed. It is also desired to have a unifying

framework for all types of models using residuals that are

approximately standard normally distributed in line with

a normal regression model. We, therefore, use the SW test

evaluating the normality of residuals as a goodness-of-fit

test with the null hypothesis H0: The model fits the data

well versus the alternative hypothesisHa: The model does

not fit the data well.

Under each simulation scenario, we randomly generated

5000 datasets from the true model to examine the type

I error rate and statistical power. The type I error rate is

defined as the probability of rejecting the true model (i.e.,

the proportion of times that the SW test p-value < 5% for

the residuals under the true model) and statistical power

is the probability of rejecting the wrong model (i.e., the

proportion of times that the SW test p-value < 5% for

the residuals under the wrong model). Ideally, a desirable

GOF test should have a probability of type I error close to

5% with high statistical power.

For each simulation, we first present the performance

of RQR for detecting model misspecification under one

simulation scenario. Further, to gain more insight into the

finite-sample performance of RQRs in comparison with

other residuals, we perform power analysis by setting the

sample sizes to n = 20, 50, 100, 200, 400, 600, 800 and

1000 with varying degrees of model misspecification.
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Detection of non-linearity

In this subsection, we first investigate the performance

of the RQRs for detecting non-linearity of the covariate

effect based on a single simulation setting. We first sim-

ulate the covariate x ∼ Uniform(−1.5, 1.5) of size n =
1000. The response variable is then simulated from a NB

regression model log(μi) = β0 + β1x
2
i , where μi is the

expectedmean count for the ith subject.We then consider

fitting the model assuming xi having a linear effect, i.e.,

log(μi) = β0 + β1xi. The regression parameters were set

as β0 = 0 and β1 = 1 while the reciprocal for the disper-

sion parameter associated with the NB distribution was

set as 2.

The panels in the first column of Fig. 4 display the

scatter plots of RQRs against the covariate under the

true and wrong models. Under the true model, RQRs

are randomly scattered without exhibiting any pattern

and being mostly distributed between -3 and 3 as stan-

dard normal variates; conversely, under the wrong model,

the RQRs clearly show a quadratic pattern. The panels

of the second column of Fig. 4 present the quantile-

quantile (QQ) plots of the RQRs under the true and

wrong models. Under the true model, the points almost

perfectly align along the diagonal line, whereas under

the wrong model, the points deviate from the diago-

nal line in both upper and lower ends with some of

the points on the ends falling outside of the simulated

envelope.

To examine the power of the SW test for RQRs as an

overall GOF, we repeatedly simulated 5000 datasets from

the true model. The panels in the third column of Fig. 4

present the histograms of 5000 SW p-values under the

true and wrong models. The SW p-values under the true

model are nearly uniform, indicating the well-calibration

of this overall GOF test. In contrast, under the wrong

model, the SW p-values are highly distributed near 0.

Thus, the SW test for the RQRs as an overall GOF test

seems to perform well with type I error close to 5% and

great power in detecting the non-linear relationship in this

simulation setting.

To further investigate the performance of the SW test

for RQRs as an overall GOF test, we conducted the power

analysis by setting β1 = 0.5, 1, 2 to increase the degree of

non-linearity of the covariate effect. As shown in the top

panels of Fig. 5, type I errors of the SW test for RQRs are

consistently centered around the 5% nominal level for all

scenarios. In contrast, type I errors for the SW tests for

MQRs, deviance, and Pearson residuals approach to 1 as

sample size increases. The bottom panels of Fig. 5 indicate

that the power of this GOF test based on RQRs increases

as the sample size increases, especially when the mis-

specified model deviates from the true model at a greater

Fig. 4 Performance of the RQRs in detecting covariate non-linearity effect of a sample dataset of size n = 1000. The panels in the first row present

the RQRs for the true fitted model: NB model with quadratic covariate effect (i.e., exp(β1x
2)). The panels in the second row present the RQRs for the

fitted wrong model: NB model with linearity covariate effect (i.e.,exp(β1x)). The first two columns display the scatter plots and QQ plots of the RQRs,

respectively. The red dashed lines in the QQ plots represent the simulated envelopes. The third column presents the histograms of the SW p-values

for the RQRs over 5000 randomly generated datasets from the true model
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Fig. 5 Comparison of the type I error and power of the SW tests for RQR, MQR, deviance residual and Pearson residual. Response variable is

simulated from the true model at varying sample sizes of n = 20, 50, 100, 200, 400, 600, 800 and 1000, and nonlinear covariate effects of β1 = 0.5

( ), 1 ( ) and 2 ( ). True model: NB model with mean exp(β1x
2). Wrong model: NB model with mean exp(β1x)

degree. Despite the high power of the SW tests based on

MQRs, deviance, and Pearson residuals, they suffer from

substantially high type I errors. As a result, overall GOF

tests based on SW tests of MQRs, deviance, or Pearson

residuals are undesirable in this scenario.

Detection of over-dispersion

As in the previous section, the same approach is imple-

mented to investigate the performance of the RQRs in

detecting over-dispersion [31] in the data. We first sim-

ulate a covariate x ∼ Uniform(−1, 2) of size n = 1000.

Then, the response variable is simulated from a NBmodel

log(μi) = β0 + β1xi, where μi is the expected mean count

for the ith study subject. We set the regression parameters

as β0 = 1 and β1 = 2 and reciprocal for the disper-

sion parameter as 2. To examine the performance of the

various types of residuals in diagnosing over-dispersion,

we considered fitting a Poisson model as the misspeci-

fied model, which has the same mean structure as the NB

model.

The panels in the first column of Fig. 6 present the scat-

ter plots of the RQRs against the covariate under the true

and wrong models. Under the true model, the residuals

are mostly scattered between -3 and 3 without any dis-

cerning pattern. In contrast, under the wrong model, the

residuals “fan out” from left to right, suggesting the pres-

ence of over-dispersion at increasing values of xi. The

panels in the second column of Fig. 6 present the QQ

plots of RQR residuals under the true and wrong models.

Under the true model, the points align along the diago-

nal line well; whereas, under the wrong model, the points

significantly deviate from the diagonal line with a substan-

tial amount of the points falling outside of the simulated

envelope, indicating the RQRs are approximately normally

distributed under the truemodel, but not under the wrong

model. The panels in the third column of Fig. 6 present the

histograms of 5000 SW p-values for testing the normality

of the RQRs under the true and wrong models. As shown,

the SW p-values under the true model are nearly uniform,

while the SW p-values under the wrong model are clus-

tered around 0. These results demonstrate that the SW

test for the RQRs as an overall GOF test can help detect

over-dispersion.

In the power analysis, we increased the level of over-

dispersion in the data by setting the dispersion parameter

as 1, 2, and 10. Figure 7 shows that the type I errors of the

SW test for the RQRs remain at the nominal level 0.05 for

all scenarios. In contrast, the type I errors of the SW tests

for the MQRs, deviance and Pearson residuals exceed 5%

as sample size increases. Further, SW tests of the RQRs

are able to maintain high statistical power at all scenarios

when the sample size is sufficiently large (i.e., n > 100).

Detection of zero-Inflation

Finally, we conduct simulations to investigate the perfor-

mance of the RQRs in detecting zero-inflation. We first

simulate a covariate x ∼ Uniform(−1, 2) of size n = 1000.

Then, the response variable is derived from a ZIP model,

where the expected mean for the Poisson component is

λi = exp(β0 + β1xi). Under the true model, we set the

regression parameters as β0 = 1 and β1 = 2, and the per-

centage of excessive zeros as 30%. A Poisson model with
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Fig. 6 Performance of the RQRs in detecting over-dispersion of a sample dataset of size n = 1000. The panels in the first row present the RQRs for

the true fitted model: NB model. The panels in the second row present the RQRs for the fitted wrong model: Poisson model with the same mean

structure as the true model. The first two columns display the scatter plots and QQ plots of the RQRs, respectively. The red dashed lines in the QQ

plots represent the simulated envelopes. The third column presents the histograms of the SW p-values for the RQRs over 5000 randomly generated

datasets from the true model

the same expected mean λi, but ignoring zero-inflation is

considered as the misspecified model.

The panels in the top row of Fig. 8 display the scat-

ter plot of RQRs against the covariate, QQ plot of RQRs,

and histogram of 5000 SW p-values of the RQRs under

the true model. The results indicate that RQRs are mostly

distributed between -3 and 3 as standard normal vari-

ates without any unusual patterns. The points in the QQ

plot align along the diagonal line, and the histogram of

the SW p-values are nearly uniform. By contrast, under

Fig. 7 Comparison of the type I error and power of the SW tests for RQR, MQR, deviance residual and Pearson residual. Response variable is

simulated from the true model at varying sample size, n = 20, 50, 100, 200, 400, 600, 800, 1000 and the over-dispersion parameter of 1 ( ), 2

( ) and 10 ( ). True model: NB model with mean exp(β0 + β1x). Wrong model: Poisson model with mean exp(β0 + β1x)
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Fig. 8 Performance of the RQRs in detecting zero-inflation of a sample dataset of size n = 1000. The panels in the first row present the RQRs for the

true fitted model: ZIP model. The panels in the second row present the RQRs for the fitted wrong model: Poisson model with the same mean

structure as the true model. The first two columns display the scatter plots and QQ plots of the RQRs, respectively. The red dashed lines in the QQ

plots represent the simulated envelopes. The third column presents the histograms of the SW p-values for the RQRs over 5000 randomly generated

datasets from the true model

the misspecified model, a clear separation of the RQRs

is observed from the residuals associated with the zero

responses, as shown in the bottom left panel of Fig. 8. The

points in the QQ plot under the misspecified model devi-

ate from the diagonal line, with a substantial amount of

the points falling outside of the simulated envelope. This

histogram of SW p-values is highly distributed near 0,

indicating that the wrong model was rejected most of the

time. Hence, the SW tests for the RQRs as the overall GOF

test can effectively detect zero-inflation.

In the power analysis, we set the probability of generat-

ing excessive zeros as 0.1, 0.3, and 0.5. Figure 9 shows that

the type I error rates of the SW test for RQRs remain at

the nominal level 5% for all scenarios. In contrast, the type

I error rates of the MQRs, deviance, and Pearson yield

extremely large type I error rates almost across all scenar-

ios. In all scenarios, RQRs demonstrate descent statistical

power even at small sample sizes, and the power increases

as the sample size increases. Overall, RQRs outperform

other types of residuals having low type I error and high

power.

Real data application

In this section, we examine the performance of RQRs in

comparison with other types of residuals in a real data

application based on the National Medical Expenditure

Survey (NMES) (see further descriptions of this data in

[32, 33]). In this data set, 4406 elderly in the United States

were surveyed about their demands of health care. The

response variable considered in this study is the num-

ber of emergency department (ED) visits. The covariates

considered include demographic characteristics (e.g., age,

race, sex, marital status, education, and region), socioe-

conomic variables (e.g., family income, employment sta-

tus, supplementary private insurance status, and public

insurance status) and health measures (e.g., self-perceived

health, the number of chronic conditions and a measure

of disability status).

Multicollinearity among all the covariates, was evalu-

ated using the generalized variance inflation factor (GVIF)

[34], which is a generalization of the variance inflation

factor (VIF). GVIF is applicable to measure the collinear-

ity among covariates, such as dummy regressors from a

polytomous categorical variable, by considering the size

of the joint confidence region for the related coefficients.

Literature suggests reporting GVIF1/(2·df ), where df is

the number of dummy variables in a categorical vari-

able, which is analogous to reporting the square root of

the VIF for a single coefficient [34]. As a rule of thumb,

VIF of 5 (i.e.,
√
VIF ≈ 2.236) or greater indicates mul-

ticollinearity is high. Table 7 in Appendix reported no

values of GVIF1/(2·df ) are greater than 2.236; therefore, all
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Fig. 9 Comparison of the type I errors and powers of the SW tests for the RQR, MQR, deviance residual and Pearson residual. Response variable is

simulated from the true model at varying sample size, n = 20, 50, 100, 200, 400, 600, 800, 1000 and percentage of excessive zeroes of p = 10%

( ), 30% ( ) and 50% ( ). True model: ZIP model with mean exp(β0 + β1x). Wrong model: Poisson model with mean exp(β0 + β1x)

the covariates considered are not highly correlated in this

analysis.

Over 81% of the patient-year records were zero, imply-

ing that themajority of patients did not make any ED visits

during the year of the study. The number of non-zero vis-

its ranged from 1 to 12, with only 5% havingmore than one

visit in the study year. Given the high percentage of zeros

and skewness of the response variable, we considered fit-

ting Poisson, NB, ZIP, and ZINB regression models. After

backward elimination at the 5% significance level, the final

models included the following covariates: The number

of chronic conditions, self-perceived health (excellent vs.

poor; average vs. poor), limited activities of daily living

(yes vs. no) and the number of years of education. In addi-

tion to those covariates, the black race was significantly

associated with increased ED use for the Poisson and

ZIP models, but not for the NB and ZINB models. This

discrepancy highlighted the importance of examining the

model GOF; that is, fitting a model with unsatisfactory

model fit may lead to biased estimates, incorrect standard

errors, and erroneous inferences.

For the binary components of the ZIP and ZINBmodels,

no covariates were statistically significant at the 5% level

by including one variable at a time or using backward

selection. Table 5 presented the results of the analyses,

which showed that the standard errors of the estimated

regression coefficients for the NB and ZINB models are

all larger relative to their counterpart Poisson models (i.e.,

Poisson and ZIP models), indicating that the choice of

model distribution has a significant impact on covari-

ate effects. NB and ZINB models yield almost identical

estimated regression coefficients, with ZINB model giv-

ing slightly less efficient estimates compared to the NB

model; that is, the standard errors for the estimated

Table 5 Estimated regression coefficients and the standard errors (in parentheses) for the Poisson, NB, ZIP and ZINB models in the real

data application

Variables Poisson NB ZIP ZINB

Black vs. others 0.188(0.085)* − 0.300(0.097)* −
Chronic conditions 0.221(0.020)** 0.217(0.026)** 0.216(0.023)** 0.217(0.027)**

Self-perceived health

Excellent vs. poor -1.093(0.190)** -1.089(0.216)** -1.028(0.207)** -1.089(0.216)**

Average vs. poor -0.505(0.074)** -0.478(0.100)** -0.451(0.088)** -0.478(0.101)**

Limited activities 0.453(0.070)** 0.464(0.087)** 0.426(0.077)** 0.464(0.087)**

Years of education -0.017(0.008)* -0.023(0.010)* -0.019(0.009)* -0.023(0.100)*

a
Significance at the 5% and 1% level is indicated with ∗ and ∗∗, respectively
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regression coefficients of chronic conditions and self-

perceived health (Average vs. poor) were slightly larger

under the ZINB model as compared to the corresponding

standard errors under the NB model.

For comparing the competing models, the Akaike Infor-

mation Criterion (AIC) is used with smaller values indi-

cating better and more parsimonious model fit. The

AIC scores for the Poisson, NB, ZIP, and ZINB are

5648, 5352, 5418, and 5354, respectively; this suggests

that the NB and ZINB models are superior to their

counterpart Poisson and ZIP models, respectively. NB

model performs slightly better than the ZINB model.

The intercept term for the binary component of the

ZINB model is estimated as −8.912(SE: 41.106, p-value=
0.828); therefore, the estimated probability of exces-

sive zeros is about exp(−8.912)/[ 1 + exp(−8.912)]≈ 0,

which further confirms that the data does not exhibit

significant more zeros than are expected under an NB

distribution.

Although AIC can be used to compare the GOF of

competing models, it cannot measure the adequacy of

the model fit, assess the need for additional complexity,

and validate the distribution assumption of the response

variable. Diagnosing the residuals is, therefore, imper-

ative to address these concerns. Figure 10 presented

the scatter plots of Pearson, deviance, MQR, and RQRs

versus fitted values under the Poisson, NB, ZIP, and ZINB

models for modeling the number of ER visits. It is evident

that Pearson, deviance, and MQR are clustered as curved

lines. RQRs achieved continuity correction via random-

ization of the cumulative distribution function. The NB

and ZINB models fitted the data fairly well with residuals

ranging mostly between -3 and 3, and no discernible pat-

tern. By contrast, Poisson and ZIP models do not appear

to accommodate larger values of the response variable.

The QQ plots of all types of residuals are presented in

Fig. 11, which indicates that under the NB and ZINBmod-

els, the residuals fall within the simulated envelope. By

comparison, under Poisson and ZIP models, a portion of

residuals fall outside of the simulated envelopes. This indi-

cates that NB and ZINB models fit the data adequately

well, and Poisson and ZIP do not fit the data well, which

further supports the need to model over-dispersion in this

data.

One concern of using RQRs is the fluctuation in the

residuals introduced by randomization for producing con-

tinuously distributed residuals. As suggested by Dunn and

Smyth [10], multiple realizations of the RQRs should be

produced to ensure that the discrepancies are not made by

the randomization in producing the residuals. To assess

the uncertainty in the GOF test due to randomization

in the real data application, we generated 1000 realiza-

tions of the RQRs. Figure 12 presents the histograms of

1000 replicated p-values of the SW tests, which indicates

that randomization introduced little variation to the SW

p-values of the RQRs in this application. More specifi-

cally, the SW p-values of RQRs under the fitted Poisson

and ZIP models were close to 0, as depicted on the left

panels of Fig. 12 with the histogram concentrated at 0,

confirming the inadequacies of both models. Conversely,

the SW p-values of the RQRs for the fitted NB and ZINB

models varied between 0 and 1 with about 96% of the p-

values being above 0.05, as depicted on the right panels

of Fig. 12, demonstrating the adequacies of both NB and

ZINB models, although about 5% of the SW p-values are

below 0.05.

To further illustrate RQR can be well approximately by

a standard normal distribution in comparison with other

types of residuals in the real data application, we cal-

culated the mean, variance, skewness, kurtosis and the

p-value of the SW normality test for the Pearson resid-

ual, deviance residual, MQR and RQR in the real data

analysis. Note that for the SW normality test of the RQRs,

the average of SW p-values based on 1000 replicated

RQRs was presented to account for the fluctuation in

the residuals introduced by randomization. As shown in

Table 6, the results indicate that the means of the Pear-

son residuals, MQRs and RQRs are close to zero, but the

means of the deviance residuals are consistently lower

than zero under all models. The variances of Pearson

residuals under all models are above one, and the vari-

ances of the deviance residuals and MQRs are all below

one. By contrast, the variances of RQR are equal to one

for all models, since the RQRs in the present study are

all standardized. In terms of skewness and kurtosis, the

Pearson residual, deviance residual, and MQR are right-

skewed and heavy-tailed relative to a normal distribution,

but RQRs are approximately symmetric with the tail shape

close to a normal distribution under the NB and ZINB

models. For testing the normality of the residuals based on

the SW normality test, the results clearly showed that all

models were rejected under the Pearson residual, deviance

residual, and MQR. By contrast, RQRs confirm the ade-

quacy of NB and ZINB models, with an average of SW

p-values close to 0.5.

Discussion
Diagnosing regression models is crucial to ensure the

validity of the results and implications that heavily rely

on the tenability of the model assumptions. Pearson and

deviance residuals and their corresponding χ2 tests are

commonly used in practice. However, the use of these

tools in count regression models are often not valid, since

Pearson and deviance residuals do not have an asymptotic

normal distribution under the correctly specified model.

This paper reminisces that RQRs as a diagnostic tool to
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Fig. 10 Scatter plots of the Pearson residual, deviance residual, MQR, and RQR versus fitted values under the Poisson, NB, ZIP, and ZINB models in

the real data application modeling the number of ER visits. The rainbow colors correspond to the distinct values of the response variables ranging

from red for the smallest value to blue for the largest value

show that it has great advantages over other types of

considered residuals for diagnosing count regression

models, including zero-inflated count regression models.

Although using the QQ-plots for the Pearson residual,

the deviance residual or MQR with simulated envelope

could be used to check the model fit, visual inspection of

the points falling outside of the simulated envelope can be

subjective, and no single numerical measure of the over-

all model fit could be easily summarized based on such

plots. A key strength of RQRs is that the plots of RQRs

against covariates or fitted values contain important infor-

mation concerning the inadequacy of different aspects

of the model, which could not be easily reflected in the

QQ plots with simulated envelopes. Further, the distribu-
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Fig. 11 QQ plots for the Pearson residual (first row), deviance residual (second row), MQR (third row), and RQR (fourth row) under the Poisson, NB,

ZIP and ZINB models in the real data application modelling the number of ER visits. The red dashed lines represent the simulated envelope

tion of RQRs under the correctly specified count model is

well approximated by a standard normal distribution. As

a result, a numerical measure of overall model fit, i.e., SW

normality test, can be readily derived, which was shown

in our study to perform well for testing the overall model

lack of fit.

Note that in our investigations, RQRs are standard-

ized to have unit variance, as suggested by Klar and

Meintanis (2012) [11]. Therefore, testing the normal-

ity of RQRs is essentially the same as testing standard

normality in our investigation. Our study showed that

Pearson, deviance, and MQR residuals for count regres-

sions are not well approximated by a normal distribution.

As such, testing standard normality of those residuals

would be more stringent than testing normality, which

might give even stronger evidence of the inadequacy of
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Fig. 12 Histograms for the p-values of the SW normality test for 1000 replicated RQRs in the real data application

those types of residuals for diagnosing count regression

models.

RQRs depend on a random uniformly distributed num-

ber ui to convert the discrete cumulative distribution

function into continuous values. Although the random-

ness in ui may produce special patterns in the RQRs, we

note that the chance that the pure random numbers will

make any observable pattern decreases as the sample size

n increases. Additionally, the influence from the random-

ness in ui decreases as the number of possible values of yi
increases due to the shrinkage in the continuity gaps in the

PMF. Nevertheless, as suggested by [10], multiple realiza-

tions of the RQRs are needed to ensure that any pattern

shown in the RQRs is not caused by the randomness in

ui. Although this offers a solution to alleviate the impact

of the randomness in the RQRs, it is still desired to have

a “non-random” overall GOF test p-value for the RQRs.

Using the mean of the normality test p-values from multi-

ple sets of the RQRs is a natural choice. Further research

is needed to investigate the null distribution of the mean

or other summary for replicated normality test p-values

under the true model.

Further, although deviance residuals may not be appro-

priate for diagnosing counts regressions, they may be

constructed for each systematic component (for example,

location and dispersion) to assess specific goodness-of-fit.

For example, Paula (2013) [35] used a normal probability

plot with a simulated envelope for the deviance compo-

nent residual for the mean and precision models in double

generalized linear models [36]. Extension of randomized

quantile residuals for each systematic component could

be developed to give local information for assessing the

specific goodness of fit. In addition, in generalized addi-

tive models for location, scale and shape proposed by

Rigby and Stasinopoulos (2005) [37], the worm plot (a

de-trended normal QQ-plot of the normalized quan-

tile residuals) [38], a diagnostic tool for checking the

residuals within different ranges of the explanatory vari-

able(s), was proposed to identify regions (intervals) of the

explanatory variable within which the model does

not adequately fit the data. Such a plot could be

constructed based on randomized quantile residuals

for checking model inadequacies for count regression

models.

In many applications, counts data are often clustered

(i.e., longitudinal, spatial, or multilevel data) due to

unmeasured cluster-level confounders. For modeling the

complex dependence structure in these types of data,
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Table 6 Mean, variance, skewness, kurtosis and the p-value of

the SW normality test for the Pearson residual, deviance residual,

MQR and RQR in the real data analysis

Model Pearson Deviance MQR RQR

Mean Poisson 0.000 -0.292 0.043 -0.016

NB 0.000 -0.311 0.066 -0.022

ZIP 0.002 -0.004 0.236 0.153

ZINB 0.000 -0.311 0.066 0.001

Variance Poisson 1.495 0.789 0.555 1.000

NB 1.040 0.466 0.425 1.000

ZIP 1.145 0.927 0.657 1.000

ZINB 1.040 0.466 0.425 1.000

Skewness Poisson 3.507 2.179 2.467 0.508

NB 3.524 1.980 2.058 0.029

ZIP 3.546 2.009 2.290 0.361

ZINB 3.524 1.980 2.058 0.019

Kurtosis Poisson 18.225 5.189 7.500 1.259

NB 17.649 3.273 3.504 -0.025

ZIP 18.306 3.412 5.417 0.512

ZINB 17.649 3.272 3.504 0.033

SW test Poisson 0.000 0.000 0.000 0.000

NB 0.000 0.000 0.000 0.452

ZIP 0.000 0.000 0.000 0.000

ZINB 0.000 0.000 0.000 0.459

Note that for the SW normality test of the RQRs, the average of SW p-values based

on 1000 replicated RQRs was presented

mixed-effects models are widely used (e.g., [39]). Pro-

grams to extend normal and non-normal regression mod-

els to clustered or longitudinal data are widely available

(e.g., lme4 and mgcv packages in the R software, and

glimmix and nlmixed procedures in the SAS software);

however, model diagnosis for the mixed-effects models

for counts data are still underdeveloped. Further develop-

ment of extending the RQR method to examine the GOF

of the mixed-effects models for counts data is underway

by our research group, where the aforementioned data

features are often encountered.

RQRs can also be extended as an alternative of the

widely used posterior predictive diagnostics [40] for val-

idating hierarchical Bayesian models in the Bayesian

framework. However, extending RQRs to diagnose these

complex models is non-trivial due to the optimistic bias

of the posterior predictive diagnostics, where the actual

observations are used twice for sequentially estimating

parameters and testing the predictive distribution. The

optimal bias could lead to posterior predictive p-values

concentrating around 0.5 rather than being truly uni-

formly distributed (even after the randomness is applied).

Leave-one-out cross-validation (LOOCV) is an alterna-

tive to the posterior predictive diagnostics. However, the

actual LOOCV approach is time-consuming because sev-

eral Markov chains are required in order to sample from

each posterior distribution in which an observation is

excluded as a test case. There have been numerous com-

putational methods proposed to apply model diagnostics

with the Markov chain samples from the posterior dis-

tribution based on the full dataset without the actual

LOOCV being implemented [22–25, 41, 42]. It is possible

to apply these methods to compute LOOCV RQRs in the

Bayesian framework.

Conclusion
In this paper, we demonstrated that the RQRs is approx-

imately standard normally distributed under the cor-

rectly specified model, and their overall goodness-of-fit

(GOF) test (i.e., Shapiro-Wilk (SW) normality test) is

well-calibrated for diagnosing count regression models

including zero-inflated models. Our simulation results

indicate that the RQRs perform reasonably well to detect

many forms of model misspecification: Non-linearity,

zero-inflation, and over-dispersion. As expected, the sta-

tistical power of the RQRs for detecting model misspeci-

fication tends to be low for small sample sizes with minor

deviations from the fitted models to the true models.

Nevertheless, RQRs have substantive appeal in diagnos-

ing counts regression models with moderate or large

sample sizes and deviations between the fitted and true

models.

Appendix A: Supplementary materials

Table 7 Generalized variance inflation factor (GVIF) values for all

the covariates

GVIF df GVIF1/(2·df )

Age 1.20 1.00 1.10

Race 1.19 1.00 1.09

Sex 1.21 1.00 1.10

Marital status 1.37 1.00 1.17

Education 1.28 1.00 1.13

Region 1.10 3.00 1.02

Family income 1.17 1.00 1.08

Employment status 1.09 1.00 1.05

Supplementary private insurance 1.45 1.00 1.20

Public insurance 1.40 1.00 1.18

health_excellent 1.80 1.00 1.34

health_average 1.84 1.00 1.36

Number of chronic conditions 1.18 1.00 1.09

Disability status 1.32 1.00 1.15
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