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Abstract

Background: Advancements in Next Generation Sequencing (NGS) technologies regarding throughput, read length

and accuracy had a major impact on microbiome research by significantly improving 16S rRNA amplicon sequencing.

As rapid improvements in sequencing platforms and new data analysis pipelines are introduced, it is essential
to evaluate their capabilities in specific applications. The aim of this study was to assess whether the same

project-specific biological conclusions regarding microbiome composition could be reached using different

sequencing platforms and bioinformatics pipelines.

Results: Chicken cecum microbiome was analyzed by 16S rRNA amplicon sequencing using Illumina MiSeq,

Ion Torrent PGM, and Roche 454 GS FLX Titanium platforms, with standard and modified protocols for library
preparation. We labeled the bioinformatics pipelines included in our analysis QIIME1 and QIIME2 (de novo

OTU picking [not to be confused with QIIME version 2 commonly referred to as QIIME2]), QIIME3 and QIIME4

(open reference OTU picking), UPARSE1 and UPARSE2 (each pair differs only in the use of chimera depletion
methods), and DADA2 (for Illumina data only). GS FLX+ yielded the longest reads and highest quality scores,

while MiSeq generated the largest number of reads after quality filtering. Declines in quality scores were observed

starting at bases 150–199 for GS FLX+ and bases 90–99 for MiSeq. Scores were stable for PGM-generated data. Overall
microbiome compositional profiles were comparable between platforms; however, average relative abundance of

specific taxa varied depending on sequencing platform, library preparation method, and bioinformatics analysis.

Specifically, QIIME with de novo OTU picking yielded the highest number of unique species and alpha diversity
was reduced with UPARSE and DADA2 compared to QIIME.

Conclusions: The three platforms compared in this study were capable of discriminating samples by treatment,

despite differences in diversity and abundance, leading to similar biological conclusions. Our results demonstrate
that while there were differences in depth of coverage and phylogenetic diversity, all workflows revealed comparable

treatment effects on microbial diversity. To increase reproducibility and reliability and to retain consistency between

similar studies, it is important to consider the impact on data quality and relative abundance of taxa when selecting
NGS platforms and analysis tools for microbiome studies.
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Background
Sequencing of 16S rRNA amplicons is now a well-

established and robust method used in compositional

studies of the gut microbiome of humans, animals, and

insects. These studies have generated a wealth of infor-

mation regarding the impact of diet [1–4], disease [5–7],

antibiotics [8], probiotics [9–11], prebiotics [12, 13] and

environmental exposures [14] on the microbiota, while

simultaneously permitting the identification of new bac-

teria [15]. However, the excitement of applying these

emerging technologies to new and important research

questions has relegated important technical consider-

ations affecting comparisons between research done by

different laboratories following different protocols. Given

the importance of NGS technologies on microbiome

research, comparative studies focusing on different plat-

forms are essential to confirm or refute published data.

Early microbiome studies focused on quality control,

aimed to reduce sequencing error by bioinformatically re-

moving chimeras and other sequencing artifacts from 16S

rRNA amplicon sequences generated by pyrosequencing

[16]. Later, studies have compared data output from differ-

ent sequencing platforms applied to genome [17–19] and

16S rRNA amplicon sequencing [20, 21]. While bioinfor-

matics tools like removal of chimeric sequences can re-

duce some of the intrinsic errors of sequencing data, it is

challenging to eliminate the bias introduced by primer

design [22], library preparation [23], DNA isolation

methods [24], and PCR amplification artifacts, each of

which introduce unique biases that can result in over or

underrepresentation of individual microbes within com-

plex communities [25]. These biases are unavoidable and

rarely impact the overall merit of a study.

Collective concerns regarding methodological biases

and the ability to compare studies from different re-

search groups originated a collaborative effort designed

to comprehensively evaluate methods employed in the

study of the human microbiome, the Microbiome Qual-

ity Control project (MBQC). Inspired by earlier projects

like the Microarray Quality Control project (MAQC),

the MBQC focused on the analyses of the impacts of

sample collection, DNA extraction, sequencing protocol,

and bioinformatics data analysis pipelines on amplicon

profiling of the human fecal microbiome. Although the

coalition is still in early stages, the MBQC has identified

the DNA isolation method (and the lab performing the

DNA isolation), as well as 16S rRNA amplification

primers used, as major sources of variation, while se-

quencing depth and sample storage had small but de-

tectable effects on the generated data [26].

A number of recent studies have attempted to identify

errors or bias generated by the intrinsic characteristics of

sequencing platforms [18, 27, 28]. Performance compari-

sons between sequencing platforms and bioinformatics

pipelines indicate that Roche GS FLX+, Illumina MiSeq,

and Ion Torrent PGM are capable of generating high

quality, comparable data [22, 29–31]. In one study, the

performance of Ion Torrent PGM, Pacific Biosciences RS

and Illumina MiSeq platforms was compared on genome

sequencing of 4 bacterial strains with different GC con-

tents [17]. Although all three platforms provided sufficient

depth and resolution, there were biases present in each

platform. PGM yielded deep coverage for GC-rich se-

quences but was biased for AT-rich sequences coverage.

PacBio and MiSeq demonstrated equivalent coverage of

GC- and AT-rich sequences [17], but had varying error

rates prior to assembly [32]. A different study compared

the performances of Illumina GA II and Roche GS FLX+

using the same DNA samples obtained from a complex

freshwater planktonic community. The platforms showed

comparable total diversity; however, more homopolymer

errors were identified with the Roche GS FLX+ platform

compared to GA II which generated longer and more ac-

curate contigs [18]. Finally, a comparison of the healthy

skin microbiome using the Illumina MiSeq and Roche GS

FLX+ platforms showed that sequencing data from the

V3-V4 16S rRNA hypervariable region were concordant

between replicates, and between platforms indicating that

the method and platforms were comparable for determin-

ing skin microbiota [33].

Further comparative studies between Ion Torrent PGM,

Illumina MiSeq, Illumina HiSeq, and Roche GS FLX+

confirmed that the later generated the longest reads

among these platforms (up to 600 bp) but had a relatively

high error rate with poly-bases of more than 6 base pairs

[27]. Additionally, sequencing runs on Roche GS FLX+

had a higher cost and lower throughput than the Illumina

platform. Conversely, the Illumina platform had the fastest

run time and highest throughput, up to 13.5 Gb on the

MiSeq PE300, but relatively high frequency of substitution

errors and shorter reads compared to GS FLX+ [34]. Run

time and homopolymer error rates for the Ion Torrent

PGM platform was substantially lower compared to the

Roche GS FLX+ platform but yielded a lower throughput,

shorter reads and lower quality scores [35].

Together, the previously discussed data indicate that

technical protocols and sequencing platforms have a

variable impact on output. In this study, we report a

comparison of the three most widely utilized sequencing

platforms: Illumina MiSeq, Ion Torrent PGM, and

Roche 454 GS FLX+, using the most current library

preparation protocols and sequencing kits available for

16S rRNA amplicon sequencing. Although Roche dis-

continued support for the 454 GS FLX+ sequencing

platform in 2016, the platform still has relevance to

studies that have used this technology in the past or any

ongoing studies that may utilize a sequencing provider

whom is still running the 454 GS FLX+ sequencer. More
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importantly, this study couples the platform comparison

with a systematic assessment of bioinformatics pipelines

commonly used for amplicon data analysis: Quantitative

Insights Into Microbial Ecology (QIIME) [36] and

UPARSE [37] with or without chimera detection

methods, based either on de novo OTU picking or open

reference OTU picking. Although a relatively recently

developed tool that has not been extensively tested for

accuracy and efficacy, we have also included DADA2

[38] and a comparator method in our analysis in order

to assess the effectiveness of bioinformatic analysis at a

finer level than the traditional 97% similarity threshold.

Fourteen cecum samples randomly selected from an

ongoing study aiming to investigate the impact of vac-

cination against Salmonella and prebiotic supplementa-

tion on the chicken gut microbiome and immune

responses were used in this study. We have previously

shown that prebiotics have a modulatory effect on the

gut microbiome [13, 39], not by dramatically altering its

composition but by impacting very specific bacterial

groups. Hence, we chose to include in our comparison

of bioinformatics pipelines methods without chimera re-

moval in order to determine if specific groups known to

be altered by the prebiotic (Bifidobacterium, Lactobacil-

lus) were impacted by this additional step. Clearly, the

utility of chimera removal has been widely demonstrated

in the analysis of 16S rRNA amplicon sequencing data

[40, 41].

The aim of the present study was to explore influences

of sequencing platforms and bioinformatics pipelines on

diversity and relative abundance of bacterial taxa in 16S

rRNA amplicon data. Additionally, each platform and

analysis pipeline was compared for their abilities to dis-

criminate between samples from various treatment

groups in order to validate their functionality in micro-

biome studies.

Methods

Samples and DNA isolation

The same physical samples were used for all sequencing

experiments across platforms and bioinformatics pipe-

lines. Total genomic DNA was extracted using E.Z.N.A.

Stool DNA Kit (Omega Bio-Tek, Norcross, GA) according

to manufacturer’s instructions with minor modifications.

Briefly, 200 mg of intestinal content were added to a tube

containing 540 μl of SLB buffer and 200 mg of glass beads.

Samples were homogenized using a TissueLyser (Qiagen,

Germantown, MD) for 5 min at 30 Hz in 1 min intervals

between bead beating and ice incubation cycles. DS buffer

and proteinase K were added according to the manufac-

turer’s instruction. The mix was incubated at 70 °C for

10 min, followed by another incubation at 95 °C for

5 min. Quality of the isolated DNA was assessed by agar-

ose gel electrophoresis and purity verified using 260/280

and 260/230 ratios measured by NanoDrop 1000 instru-

ment (Thermo Fisher Scientific, Waltham, MA). DNA

concentration was quantified using Quant-iT™ PicoGreen

dsDNA Reagent (Molecular Probes, Thermo Fisher Scien-

tific division, Eugene, OR).

454 Genome sequencer FLX+ 16S rRNA amplicon

sequencing

Protocols for preparation of libraries for sequencing are

represented in Fig. 1. Initial amplification of the hypervari-

able V1-V2 region of the bacterial 16S rRNA was per-

formed on total DNA from collected samples as

previously described [1, 13, 42]. Reaction master mixes

contained the Qiagen Hotstar Hi-Fidelity Polymerase kit

reagents (Qiagen, Valencia CA) with a forward primer

composed of the Roche Titanium Fusion Primer A (se-

quencing primers used in this study are listed in Table 1) a

10 bp Multiplex Identifier (MID) sequence (Roche, In-

dianapolis, IN), unique to each of the samples, and the

universal bacterial primer 8F [43]. The reverse primer was

composed of the Roche Titanium Primer B, the identical

10 bp MID sequence, as the forward primer, and the re-

verse bacterial primer 338R [44]. Negative controls, not

containing template, were amplified for all barcode-

primer sets. Each sample was gel purified individually

using the E-Gel Electrophoresis System (Life Technolo-

gies, Thermo Fisher Scientific division, Grand Island, NY)

and standardized prior to pooling. The 16S rRNA ampli-

cons were sequenced on a 454 Genome Sequencer FLX+

system instrument (Roche, Indianapolis, IN) at the Micro-

biome Core Facility, (University of North Carolina, Chapel

Hill, NC) using the GS FLX Titanium XLR70 sequencing

reagents and corresponding protocol. Initial data analysis,

base pair calling and trimming of each sequence to yield

high quality reads, were performed by Research Comput-

ing at the University of North Carolina at Chapel Hill.

Illumina MiSeq 16S rRNA amplicon sequencing

DNA was amplified using primers targeting the V1-V2

region of the bacterial 16S rRNA gene [15, 43] and over-

hang adapter sequences appended to the primer pair for

compatibility with Illumina index and sequencing

adapters. The complete sequences of the primers are

listed in Table 1. Master mixes contained 12.5 ng of total

DNA and 2× KAPA HiFi HotStart ReadyMix (KAPA

Biosystems, Wilmington, MA). Negative controls, not

containing template, were amplified for all barcode-

primer sets. Each 16S amplicon was purified using

AMPure XP reagent (Beckman Coulter, Brea, CA). In

the next step each sample was amplified using a limited

cycle PCR program, adding Illumina sequencing

adapters and dual- index barcodes (index 1(i7) and index

2(i5)) (Illumina, San Diego, CA) to the amplicon target.

The final libraries were again purified using AMPure XP
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reagent (Beckman Coulter), quantified and normalized

prior to pooling. The DNA library pool was then dena-

tured with NaOH, diluted with hybridization buffer and

heat denatured before loading on the MiSeq reagent

cartridge (Illumina) and on the MiSeq instrument (Illu-

mina). Automated cluster generation and paired-end

sequencing with dual reads were performed according to

the manufacturer’s instructions.

Ion torrent PGM 16S rRNA amplicon sequencing

For amplicon library preparation the V1-V2 hypervari-

able region of the 16S rRNA gene was amplified from

Table 1 Primer sequence information for all platforms

Platform Primer Name Sequence (5′ -3′) Targeting
Region

Roche 454 Roche Titanium Fusion Primer A CCATCTCATCCCTGCGTGTCTCCGACTCAG V1-V2

Universal Bacterial Primer 8F AGAGTTTGATCCTGGCTCAG V1-V2

Roche Titanium Primer B CCTATCCCCTGTGTGCCTTGGCAGTCTCAG V1-V2

Reverse Bacterial Primer 338R GCTGCCTCCCGTAGGAGT V1-V2

Illumina
MiSeq

Forward Primer TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGTTTGATCCTGGCTCAG V1-V2

Reverse Primer GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTGCCTCCCGTAGGAGT V1-V2

Ion Torrent
PGM

Forward Primer composed of Ion Torrent adapter
A

CCATCTCATCCCTGCGTGTCTCCGACTCAG V1-V2

Universal Bacterial Primer 8F AGAGTTTGATCCTGGCTCAG V1-V2

Reverse Primer of Ion Torrent trP1 adapter CCTCTCTATGGGCAGTCGGTGAT V1-V2

Reverse Bacterial Primer 338R GCTGCCTCCCGTAGGAGT V1-V2

Fig. 1 Schematic of the experimental design of this study to test impact of library preparation methods and protocols on diversity and relative

abundance of bacteria. Protocol steps are indicated on the left. Standard methods are in black boxes while non-standard methods with modified

conditions are shown in grey boxes
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total bacterial DNA using the forward primer composed

of Ion Torrent adapter A, a 10 bp IonXpress ™ barcode

(Life Technologies, Thermo Fisher Scientific division,

Grand Island, NY), unique to each sample and the uni-

versal bacterial primer 8F. The reverse primer consisted

of Ion Torrent trP1 adapter followed by reverse bacterial

primer 338R. PCR reactions contained 50 ng of DNA

template, 2.5 units of HotStar Hi-fidelity DNA polymer-

ase (Qiagen, Valencia, CA), 1× HotStar Hi-Fidelity PCR

buffer containing dNTPs, and 0.6 μM of each primer.

Negative controls, not containing template, were ampli-

fied for all barcode-primer sets. The PCR products were

gel purified individually using the E-Gel Electrophoresis

System. DNA concentrations were quantified using

Quant-iT™ PicoGreen® dsDNA Reagent (Molecular

Probes, Thermo Fisher Scientific division, Eugene, OR)

and mixed at equimolar concentrations. Template-

Positive Ion OneTouch™ 200 Ion Sphere™ Particles were

prepared from library pool using the Ion OneTouch™ 2

system (Life Technologies, Thermo Fisher Scientific div-

ision, Grand Island, NY). The prepared templates were

sequenced on the Ion Torrent PGM instrument (Life

Technologies) in the Microbiome Core Facility using the

Ion PGM 400 sequencing reagents. All kits were used

according to the manufacturer’s instructions. Initial data

analysis, base pair calling and trimming of each se-

quence was performed on Ion Torrent browser to yield

high quality reads.

Modifications to the library preparation methodologies

The library preparation protocol for the three evaluated

sequencing platforms is depicted in Fig. 1. The Illumina

amplification protocol for 16S rRNA amplicon gener-

ation has 25 cycles at 55 °C annealing temperature, while

the protocol used in this study for barcoding and library

preparation for 454 and Ion Torrent has 10 more cycles

and 5 degrees less in the annealing temperature step of

the PCR reaction. Therefore, we decided to evaluate

modifications of the PGM library preparation protocol

to determine if these differences had an impact on diver-

sity and taxa composition of samples. Consequently, for

the second PGM run (PGM2) we maintained the same

annealing temperature (50 °C) but reduced the number

of cycles to 25 and for the third PGM run (PGM3) we

maintained the number of cycles (35 cycles) but in-

creased the annealing temperature to 55 °C.

Bioinformatics analysis

Roche 454 sequencing results were initially processed

using GS Data Analysis Software package [45]. The three

Ion Torrent sequencing runs (PGM1, PGM2 and

PGM3) were initially processed using the onboard data

analysis software of the Ion PGM [46]. The two Illumina

sequencing runs (MiSeq1 and MiSeq2) were converted

to multiplexed fastq format using CASAVA 1.8.2 [47].

Paired-end reads from the Illumina platform were joined

using the QIIME 1.8.0 [36] invocation of fastq-join [48].

Bioinformatic analysis of bacterial 16S rRNA amplicon

data was conducted using the QIIME software pipeline

[36] and as described [42]. The combined six raw se-

quencing data plus metadata describing the samples

were de-multiplexed and filtered for quality control. Se-

quences were aligned and clustered into operational

taxonomic units (OTU) based on the de novo OTU

picking algorithm using the QIIME implementation of

UCLUST [49]. After OTU picking step [49], chimeras

and singletons were removed using ChimeraSlayer [40,

50]. After taxonomic assignation of OTUs, sequences

were aligned and phylogenetic trees were built with Fas-

tTree 2.1.3 [51]. OTUs with 97% similarity level were se-

lected for taxonomical assignment and employed for

diversity (Shannon index) and richness analysis. Beta di-

versity estimates were calculated within QIIME using

weighted and unweighted Unifrac distances [52] between

samples at a sub-sampling depth of 1000 sequences per

sample. From these estimates, jackknifed principal coor-

dinates were computed to compress dimensionality into

two- and three-dimensional principal coordinate analysis

plots. QIIME was also used to calculate alpha diversity

with a sub-sampling depth of 1000 using observed

species, Shannon and phylogenetic diversity (PD) met-

rics. To evaluate the similarities between bacterial

communities a principal coordinate analysis (PCoA)

using Unweighted and Weighted Fast Unifrac [52, 53]

was performed to compare samples based on their

treatment.

In addition to the primary bioinformatics pipeline,

additional pipelines were applied. The first pipeline was

based on the de novo OTU picking algorithm as imple-

mented in QIIME 1.8.0 [49] as the primary bioinformat-

ics pipeline however in this pipeline chimeras were not

removed. The second and third pipelines were based on

open reference OTU picking as implemented in QIIME

1.8.0 [49] and differ only in the use of ChimeraSlayer

[40, 50]. The fourth and fifth pipeline was based on

UPARSE [37] and differ only in the use of chimera de-

tection. The different bioinformatics pipelines were

named as follows; QIIME1 refers to the pipeline based

on the de novo OTU picking without chimera checking,

QIIME2 (not to be confused with QIIME version 2 com-

monly referred to as QIIME2), the de novo OTU picking

pipeline with chimera detection, QIIME3 refers to the

open reference OTU picking pipeline without chimera

checking, and QIIME4 the open reference OTU picking

pipeline with chimera detection. In addition, two pipe-

lines based on UPARSE were used: UPARSE1 with

chimera detection and UPARSE2 without chimera

checking (Fig. 2).
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Restricting consideration to the two Illumina MiSeq

platform results, two pipelines intended to assess micro-

bial communities at a finer resolution than the trad-

itional 97% similarity threshold were considered. The

software package DADA2 [38] was used to produce a se-

quence table to be compared to an OTU table produced

from QIIME de novo OTU picking with a similarity

threshold of 99% from which chimeric sequences and

singleton OTUs were filtered. Assignment of taxonomy

was performed on each table using both the DADA2

taxonomy classification method and the QIIME tax-

onomy classification method. Beta diversity and procrus-

tes analysis were applied to the results of both

approaches for comparison. The non-phylogenetic Bray-

Curtis metric was used for calculation of beta diversity.

PhyloToAST [54] analysis was performed on data and

visualized using the Interactive Tree of Life (iTol) v3

[55].

Statistical analyses

Analysis of variance (ANOVA) was used to identify sig-

nificant differences in phylogenetic diversity (PD) and

species richness (S) indexes. Analysis of Similarities

(ANOSIM) and Permutational Multivariate Analysis of

Variance (PERMANOVA) analyses were applied to Un-

weighted Unifrac similarity matrices to compute similar-

ities between groups. The Kruskal Wallis test for

multiple pairwise comparisons was performed to evalu-

ate significant differences in relative abundances of bac-

terial taxa using JMP genomics (SAS, JMP Genomics

10.0). In all analyses alpha was set at 0.05.

Results
Samples from this study are from a Salmonella challenge

study conducted in poultry. The parent study aimed to

evaluate the impact of an attenuated Salmonella strain

on the gut microbiota of poultry, and to determine its

effect on the gut microbiome and efficacy on Salmonella

infection clearance after challenge. A secondary object-

ive was to determine how prebiotics modify the struc-

ture of the gut microbiome, and the impact of this

modification on Salmonella infection clearance (Azca-

rate-Peril et al., in preparation). In the current study,

analysis of microbiome composition was conducted on

14 chicken cecum samples randomly selected from 3 dif-

ferent groups: 1) control group, 2) Salmonella-vacci-

nated group, and 3) prebiotics-fed group. Each of the

groups was assigned also to two subgroups according to

a Salmonella challenge. Table 2 lists the characteristics

of each sample. In order to compare platforms perform-

ance and bioinformatics analysis pipelines, total DNA

from samples was amplified with primers targeting the

V1-V2 hypervariable region of the 16S rRNA gene and

sequenced using the GS FLX+ (Roche), Ion Torrent

PGM or Illumina MiSeq platforms according to the

scheme shown in Fig. 1. A summary of expected sequen-

cing output, reads length, and quality scores from the

three platforms is presented in Table 3. The GS FLX+

run produced the lowest number of raw reads (1/8 of a

plate) compared to PGM (314X chip) and MiSeq (one

lane); however, quality scores were higher in comparison

to both PGM and MiSeq platforms (Table 4). Quality

scores were more stable over the read length for the

Fig. 2 Evaluated bioinformatics pipelines using QIIME [36] and UPARSE [37] using two different OTU picking methods (QIIME only) either with or

without chimera removal steps
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PGM instrument while we observed a decline starting at

bases 150–199 for the GS FLX+ run and at bases 90–99

for the MiSeq run. After filtering (length > 200 bp, qual-

ity scores >25), 96% of the GS FLX+ reads, 91.8% of the

MiSeq, but only 14.9% of the PGM platform reads were

suitable for further analysis. However, the filtered num-

ber of reads for this platform and sequencing chip was

within the manufacturer’s indicated output (≈ 80,000–

100,000 reads/314X chip).

UPARSE reported a lower phylogenetic diversity than

both de novo QIIME and open reference QIIME pipelines

regardless of the sequencing platform

The bioinformatics analysis pipelines used in our study

to determine the taxonomic composition and bacterial

diversity of 14 chicken cecum samples using three differ-

ent platforms are depicted in Fig. 2. Rarefaction analyses

at an even sampling depth of 1000 reads/sample were

conducted to determine Phylogenetic Diversity (PD) and

Table 2 Characteristics of samples used in this study

Sample Intestinal Location Treatment Chicken Salmonella-challenged Time point (week)

M848A Cecum Control 7 Yes 7

M480A Cecum Vaccinated 1 No 6

M736A Cecum Vaccinated 2 No 9

M572A Cecum Vaccinated 3 No 7

M576A Cecum Vaccinated 4 No 7

M988A Cecum Vaccinated 2 Yes 8

M908A Cecum Vaccinated 3 Yes 7

M368A Cecum Prebiotics 1 No 5

M452A Cecum Prebiotics 1 No 6

M620A Cecum Prebiotics 1 No 8

M704A Cecum Prebiotics 1 No 9

M540A Cecum Prebiotics 2 No 7

M464A Cecum Prebiotics 4 No 6

M884A Cecum Prebiotics 4 Yes 7

Table 3 GS FLX (Roche), PGM (Ion Torrent, Life Technologies) and MiSeq (Illumina) platform comparison. Data was obtained from

the corresponding platform’s website

Roche 454 Ion Torrent Illumina MiSeq

Sequencing Kit GS FLX Titanium XLR70 PGM 400 Sequencing MiSeq Reagent Kits v2

Expected Read
Length

Up to 600 bp Up to 400 bp MiSeq Reagent Kit v2: Up to 2 × 250 bp

Typical
Throughput

450 Mb Ion 314™ Chip v2: Up to 100 Mb
Ion 316™ Chip v2: Up to 1 Gb
Ion 318™ Chip v2: Up to 2 Gb

Up to 8.5 Gb

Reads per Run ~1000,000 shotgun,
~700,000 amplicon

Ion 314™ Chip v2: 400–550 thousand
Ion 316™ Chip v2: 2–3 millions
Ion 318™ Chip v2: 4–5.5 millions

~15 million reads

Consensus
Accuracy

99.995% 99% 99%

Run Time 10 h Ion 314™ Chip v2: 2.3
to 3.7 h
Ion 316™ Chip v2: 3.0
to 4.9 h
Ion 318™ Chip v2: 4.4
to 7.3 h

4 h and
approximately 39 h
depending on the
number of cycles

Sample Input gDNA, cDNA, or amplicons
(PCR products)

gDNA, cDNA, or amplicons
(PCR products)

gDNA, cDNA, or amplicons
(PCR products)
Small genome, amplicon, and targeted gene panel
sequencing

Weight 532 lbs. (242 kg) 65 lbs. (30 kg) 120 lbs. (54.5 kg)

Instrument cost ~$500 K ~ $80 k ~ $125 k
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Species Richness (S) of samples (Fig. 3a and b, Add-

itional file 1: Table S1). PD values were lower for all plat-

forms when UPARSE pipelines were applied to data

compared to both de novo QIIME pipelines and open

reference QIIME pipelines (Fig. 3a). A similar observa-

tion in the case of de novo OTU picking was previously

reported by Pylro et al. [56]. In contrast, S values were

comparable between all bioinformatics pipelines (Fig. 3b).

Statistically significant differences in pairwise compari-

sons between platforms and all bioinformatics pipelines

are summarized in Fig. 3, right panels. In general terms,

diversity values for GS FLX+ compared to the MiSeq

runs were significantly different, while diversity values

for the PGM1 platform (the PGM standard method)

were not significantly different to data generated using

the MiSeq platform. The non-standard PGM2 and

Table 4 Comparative summary of sequencing depth, reads length, and quality between GS FLEX, PGM, and MiSeq platforms

Platform Raw
reads

Filtered
readsa

Mean Length after
filtering (bp)

Percentage of reads kept
after filtering

Mean quality score before
quality filtering

Number of
identified OTUs

Roche 454 118,018 113,306 377 96% 37.7 1028

Ion Torrent
PGM

481,593 71,652 297 14.9% 23.4 2747

Illumina
Miseq

4,149,441 3,811,042 334 91.8% 37.5 3731

aNumber of reads after filtering, reads of less than 200 nucleotides and with quality scores below 25 were removed

Significantly different (p<0.05)

Not significantly different (p>0.05)

GSFLEX MiSeq1 0.015 0.06 0.18 0.015 0.015 0.015

GSFLEX MiSeq2 0.03 0.075 0.075 0.03 0.015 0.03

MiSeq1 MiSeq2 1 1 1 1 1 1

PGM1 MiSeq2 0.135 0.06 0.69 1 0.555 1

PGM1 MiSeq1 0.06 0.12 1 0.645 0.045 0.105

PGM1 GSFLEX 0.015 0.015 1 0.225 0.195 0.015

PGM2 PGM3 0.015 0.03 0.015 0.015 0.015

PGM2 MiSeq2 1 1 1 1 1 1

PGM2 MiSeq1 1 1 1 1 1 0.15

PGM2 GSFLEX 0.015 0.015 0.33 0.03 0.015 0.015

PGM2 PGM1 0.36 0.435 1 1 1 1

PGM3 PGM1 0.015 0.015 0.075 0.015 0.105 0.015

PGM3 GSFLEX 1 1 1 1 1 1

PGM3 MiSeq1 0.015 0.015 0.015 0.015 0.015 0.015

PGM3 MiSeq2 0.045 0.03 0.015 0.015 0.015 0.015

P
L

A
T

F
O

R
M

GSFLEX MiSeq1 0.075 0.195 0.09 0.105 0.03 0.03

GSFLEX MiSeq2 1 1 1 1 0.36 0.93

MiSeq1 MiSeq2 0.015 0.015 0.105 0.225 0.075 0.015

PGM1 MiSeq2 1 1 1 1 1 1

PGM1 MiSeq1 0.015 0.015 1 1 0.705 0.195

PGM1 GSFLEX 1 1 1 1 1 1

PGM2 PGM3 0.18 0.165 0.03 0.03 0.105 0.06

PGM2 MiSeq2 1 1 1 1 1 1

PGM2 MiSeq1 0.255 0.255 0.015 0.015 0.015 0.015

PGM2 GSFLEX 1 1 0.09 0.285 1 1

PGM2 PGM1 0.015 0.03 1 1 1 1

PGM3 PGM1 0.015 0.03 1 1 1 1

PGM3 GSFLEX 0.3 0.225 0.015 0.015 0.015 0.015

PGM3 MiSeq1 1 1 0.06 0.03 0.075 0.09

PGM3 MiSeq2 0.015 0.015 0.015 0.03 0.015 0.015

(A)

(B)

ANALYSIS PIPELINE

P
L

A
T

F
O

R
M

Phylogenetic Diversity

Species Richness

Fig. 3 A comparison of phylogenetic diversity (PD) and species richness (S) between the 6 runs (GS FLX, MiSeq1, MiSeq2, PGM1, PGM 2 and

PGM3) and in each pipeline a Phylogenetic diversity b Species Richness. Panels on the right show a matrix comparison between pipelines.

Numbers within cells indicate P-values >0.05 < 0.1. *P < 0.01,**P < 0.001
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PGM3 generated diversity values were significantly dif-

ferent to the Illumina, GS FLX+ and standard PGM

runs. Interestingly, significant differences were observed

in the number of species detected between the Miseq1

and Miseq2 runs, which were intended to test reproduci-

bility, when data was applied through QIIME1, QIIME2,

and UPARSE2 pipelines. We did not observe overall

statistical significant differences in phylogenetic diversity

or number of species due to treatment, time, or chicken

within any of the platforms.

Overall microbiome composition of samples

Analysis of Similarities (ANOSIM) and Permutational

Multivariate Analysis of Variance (PERMANOVA) ana-

lyses were performed on Unweighted Unifrac data to

evaluate differences between the 6 runs and bioinformat-

ics pipelines. We did not observe clustering by sequen-

cing platform (Additional file 2: Figure S1) but instead

samples grouped according to their corresponding ex-

perimental treatment group regardless of the sequencing

platform and bioinformatics pipelines (Fig. 4a). Principal

Coordinates Analysis (PCoA) of samples also showed

two sub clusters in the prebiotics group, which are most

probably associated with different time points in the

course of this experiment. Similar results were observed

in the Principal Coordinates Analysis (PCoA) based on

Weighted Unifrac matrices (not shown).

Procrustes analysis allowed us to determine whether

the same conclusions could be made from different β-

diversity analyses regardless of which platform was used

to compare the samples. Although Procrustes analysis of

data generated in the three platforms (GS FLX+, MiSeq1

and PGM1) analyzed using the QIIME2 pipeline (de

novo OTU picking plus chimera depletion) showed sub-

stantial differences (Monte Carlo p < 0.01 and high M2

values) (Fig. 4b), these differences were not as large as

the differences observed between treatments groups.

This analysis suggests that in spite of differences in the

β-diversity, all platforms were capable of discriminating

between treatments.

Microbiome composition was impacted by platform and

bioinformatics pipeline

Operational Taxonomic Units (OTUs) were identified at

a 97% similarity cut-off in the QIIME and UPARSE pipe-

lines. The number of sequences assigned to OTUs for

GS FLX+ was similar in all bioinformatics pipelines

(99%). De novo (QIIME1 and QIIME2) versus open-

reference OTU picking impacted the number of assigned

sequences for Illumina MiSeq runs but not for GS FLX+

runs. QIIME1 and QIIME2, both using UCLUST for de

novo OTU picking, and UPARSE1 and UPARSE2, both

using USEARCH for open reference OTU picking, re-

sulted in a higher number of unassigned reads from the

Illumina MiSeq generated data (ranging from 3.6 to

4.1%). Marginal differences were observed in the OTU

assignment between the three PGM runs in all bioinfor-

matics pipelines. PGM3 (same annealing temperature,

50 °C, and a reduced number of cycles from 35 to 25)

showed a Firmicutes abundance of almost 99%, while

PGM1 and PGM2 ranged from 96.8% to 98.7%. How-

ever, this difference was exaggerated when comparing

Vaccinated and Vaccinated-Challenged samples, with

Firmicutes dropping as low as 72.8% for PGM3 vs 90.3%

for PGM2. (Additional file 1: Table S2).

Firmicutes and Bacteroidetes were the most repre-

sented phyla in QIIME and UPARSE pipelines. GS FLX+

generated data showed the highest abundance of Firmi-

cutes with an average of 96.2% followed by the MiSeq

platform with an average of 93.2%, and PGM with

91.8%. Bacteroidetes were detected at 3% by GS FLX+,

2.3% by the MiSeq platform, and 6.4% by PGM. Proteo-

bacteria and Tenericutes were represented in low abun-

dance in all platforms and pipelines; however, they were

significantly (Kruskal-Wallis P ≤ 0.01) over represented

in the MiSeq generated data compared to PGM and GS

FLX+.

Distinct differences were observed between platforms and

pipelines in the relative abundance of specific genera (Fig. 5).

Overall, the QIIME pipelines generated a different bacterial

profile compared to the UPARSE pipeline with a clear im-

pact of the chimera depletion on relative abundance of bac-

terial taxa. GS FLX+ resulted in an over representation of

Eubacterium cylindroides compared to the other platforms

and protocols. Modification of PCR protocols in the PGM

runs also had an impact on this taxa as well as on detection

of Butyricicoccus pullicaecorum, a butyrate producer

thought to exert anti-inflammatory effects [57] and Oscillos-

pira, a genus highly represented in the data generated by

the PGM platform and analyzed by the QIIME pipeline

with no chimera depletion (QIIME1). The open reference

OTU picking pipelines (QIIME3 and QIIME4) generated a

differential representation of unclassified Erysipelotricha-

ceae (specifically over represented in PGM1), Turicibacter

(highly prevalent in the Illumina runs), and potential Rumi-

nococcus species. Taxa differentially represented by platform

in the UPARSE pipelines included Turicibacter, unclassified

Clostridiaceae, Clostridiales (highly prevalent in the PGM

pipelines), Eubacterium biforme, Lactobacillus spp., unclas-

sified Erysipelotrichaceae, Ruminococcus, Anaerotruncus,

and Lachnospiraceae.

Further analysis using PhyloToAST [54] (Fig. 6)

showed that the de novo OTU picking approach in the

QIIME pipeline identified the highest number of unique

species (over 250) followed by the open reference OTU

picking approach (approximately 180) and UPARSE (ap-

proximately 140). Relevant groups under detected by the

open reference and UPARSE OTU picking approaches
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included Bifidobacterium spp. (absent in the open refer-

ence and UPARSE OTU picking approaches) and Bifido-

bacterium adolescentis (not identified by UPARSE).

Differences in the detection profiles were also observed

for lactobacilli. Bifidobacteria and lactobacilli are of sig-

nificance for the samples analyzed in this study since

these populations are expected to be impacted by pre-

biotic feeding, one of the conditions analyzed. Other

taxa differentially identified by the different pipelines in-

cluded species of Tepidimicrobium, Thermacetogenium,

Tindallia_Anoxynatronum, and Tissierella_Soehngenia.

These groups correspond to poorly characterized soil

bacteria.

Finally, comparing the results of the pipelines intended

to assess finer resolution features of the microbial com-

munities, we found that the conclusions obtained in the

previous analyses largely hold. For both pipelines, sam-

ples clustered in beta diversity PCoA plots according to

treatment and sequencing run. Procrustes analysis

showed that the primary difference in taxa assessments

occurred due to the OTU/variant selection rather than

the mechanism of assigning taxa to individual sequence

representatives (Fig. 7a). The number of OTUs or se-

quence representatives produced by DADA2 was smaller

than the number of OTUs obtained from de novo OTU

picking with at 99% similarity threshold (Fig. 7b). At the

QIIME1

ANOSIM R=0.4946, P=0.001, 

PERMANOVA F=7.2165, P=0.001, 

QIIME2

ANOSIM p=0.001, R=0.4998

PERMANOVA p=0.001, F=7.3045 

QIIME3

ANOSIM p=0.001, R=0.5015 

PERMANOVA p=0.001, F=8.4217 

QIIME4

ANOSIM p=0.001, R=0.5052

PERMANOVA p=0.001, F=8.6540

UPARSE1

ANOSIM p=0.001, R=0.5768

PERMANOVA p=0.001, F=10.1628 

UPARSE2

ANOSIM p=0.001, R=0.5554 

PERMANOVA p=0.001, F=9.4836 

Control-Challenged Vaccinated Vaccinated - Challenged Prebiotics Prebiotics-Challenged

Monte Carlo p < 0.01
M2= 0.387 

Monte Carlo p < 0.01
M2= 0.482

Monte Carlo p < 0.01
M2= 0.345

GS FLEX – MiSeq1 GS FLEX – PGM1 MiSeq– PGM1

(A)

(B)

Fig. 4 a Principal Coordinates Analysis PCoA (Unweighted UniFrac) plots of data generated by the three different platforms, analyzed by different

bioinformatics pipelines and colored according to treatment group (Prebiotics, control and Salmonella-vaccinated). PERMANOVA F and P values

and ANOSIM R and P values are indicated. b Procrustes analysis of sequencing data from the different platforms analyzed with the QIIME2 (de novo

OTU picking plus chimera depletion). M and P values are indicated in the figure
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genus level or lower, the pipeline using QIIME for both

OTU picking and taxonomic assignment identified a total

of 166 different taxa, while the pipeline using DADA2 for

sequencing error suppression and taxonomic assignment

detected 138 (Additional file 3: Table S3), with 65 groups

identified at the species level. However, we observed that

the taxonomy profiles determined by two different se-

quence representative selecting algorithms were similar

and impacted mainly by the treatment. For the sequencing

results produced by the Illumina MiSeq platform, both

bioinformatic approaches support essentially the same

biological conclusions.

Discussion
Next Generation Sequencing (NGS) has revolutionized

the field of microbiome research [58–63]. Over the

course of the last decade, NGS has become a faster,

more accurate, and cost effective tool for the study of

complex microbial communities [64]. In this study, with

the objective of determining project-specific impacts of

sequencing platforms and bioinformatics pipelines, we

compared 16S rRNA amplicon sequencing data

generated using three different platforms and 7 bioinfor-

matics pipelines. GS FLX+, the traditional “gold stand-

ard” in terms of sequence length and quality prior to the

development of Illumina and Life Sciences technologies,

still generated the longest reads with the highest mean

quality score per read after filtering, but this platform

was not cost effective compared to newer platforms. Illu-

mina MiSeq generated the highest number of reads per

run but exhibited a lower mean quality score when com-

pared to Roche GS FLX+. The Ion Torrent PGM plat-

form yielded lower quality reads than MiSeq, and

therefore fewer usable reads after quality filtering; how-

ever, performance was within the manufacturer’s

parameters.

PCR-based high throughput amplicon sequencing in-

troduces biases to the results obtained, regardless of the

sequencing platform [16, 50]. In this study, Ion Torrent

PGM sequencing was performed on amplicon libraries

generated from three different PCR conditions (Fig. 1).

Modification of the PCR protocols for generation of se-

quencing libraries on the PGM platform directly im-

pacted the number of identified species and sample

QIIME1 QIIME2 QIIME3 QIIME4 UPARSE1 UPARSE2

GS FLEX Illumina1 Illumina2 PGM1 PGM2 PGM3

Fig. 5 Selected differences in relative abundances of the most impacted taxa according to data generated by different platforms (indicated by

different colors) and bioniformatic analysis pipelines (indicated across the top). The full figure can be seen in Additional file 2: Figure S2
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diversity. Our results clearly indicate that modifications

to the PCR conditions result in a differential representa-

tion of specific taxa. An increased number of PCR cycles

probably increased amplification of background DNA and

decreased specificity, as a lower annealing temperature.

This is an important issue when analyzing low biomass

samples, especially considering that DNA contamination

of reagents and laboratory-grade water has been clearly

demonstrated [65]. Other parameters that can impact taxa

identification and relative quantification are DNA input

and chosen amplification primers. The DNA input for the

GS FLX+ and PGM standard protocols is 4 times greater

than the input for amplicon generation for sequencing on

the MiSeq instrument following the standard protocol.

This could account for differences observed in the relative

abundance of bacterial taxa since the less abundant bac-

terial DNA will have greater chances to be amplified when

the amount of DNA is higher. No previous studies have

compared DNA input on 16S rRNA sequencing data gen-

eration, although the DNA isolation procedure has been

shown to have a significant impact on sequencing results

[66]. Previous studies have shown an impact of the primer

sets on 16S rRNA amplicon sequencing [26, 67]. In this

study we evaluated the same set of primers for all amplifi-

cations (8F and 338R); however, a potential impact of

adapters and barcodes specific to each platform added to

the sequencing primers cannot be discarded. Moreover,

primers targeting the V4 region of the 16S rRNA gene are

currently the most widely used; however, our project ini-

tially used the 454 platform for amplicon sequencing ana-

lysis. Since the region V1-V2 was the most traditionally

used across decades of research, and was reported optimal

specifically for 16S rRNA amplicon pyrosequencing across

a range of taxonomic classifications from phylum to fam-

ily [68], we chose to target such region. We are aware,

however, that recent studies provide support to targeting

the V3-V4 regions of the 16S rRNA gene for studies of

bacterial diversity and this is currently standard in our la-

boratory. We targeted the same region across platforms

for the sake of comparison. Finally, standard library prep-

aration protocols (GS-FLX+, PGM1, and MiSeq1/MiSeq2)

coupled with the most widely used bioinformatics analysis

procedure (QIIME2 = de novo OTU picking with removal

of chimeras) showed a significant difference in PD be-

tween GS-FLX+ and PGM1, and in the number of identi-

fied species between the two MiSeq runs between PGM1

and MiSeq1.

Different sequencing platforms/pipelines generate re-

sults with differing phylogenetic distributions (Fig. 5). As

the sequencing chemistry differs between platforms,

introducing internal biases, this finding is not without

precedent [23–25, 69–71]. Furthermore, microbial
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F
u

s
o

b
a

c
te

ri
a

O
th

e
r

C
y
a

n
o

b
a

c
te

ri
a

C
h
lo

ro
b
i

C
h

lo
ro

fl
e

x
i

Proteobacteria

V
e

rr
u

c
o

m
ic

ro
b
ia

T
e

n
e

ri
c
u
te

s
T

h
e

rm
i

T
M

7

o
v

o
n

e
D

f
er

n
e

p
O

E
S

R
A

P
U

E
M II

Q

Bifidobacterium adolescentis

Bifidobacterium spp.

Fig. 6 Unique species identified by the different bioinformatic analysis schemes. Boxes indicate taxa not detected by open reference OTU picking

(QIIME) and UPARSE methods, which may be of significance for the study

Allali et al. BMC Microbiology  (2017) 17:194 Page 12 of 16



genera often vary drastically in genome composition. For

example, Lactobacillus reuteri has a GC content of

35.9%–38.9% [72] while Bifidobacterium longum has GC

content of 60% [73]. This difference in genomic GC con-

tent impacts the ability of different platforms to accur-

ately identify presence or absence, and to determine

microbial abundance. As such, biases introduced as a re-

sult of the sequencing chemistry, and limitations of indi-

vidual platforms to discriminate between microbes with

varying genomic GC content makes it important to con-

sider the technology used in relation to the scope of the

project. Our study showed that UPARSE analysis yields

fewer microbial genera and lower phylogenetic diversity

than QIIME analysis (Fig. 3a, Fig. 6). Both UPARSE and

QIIME pipelines start by quality-filtering reads, trim-

ming them to a fixed length, optionally discarding

singleton reads, and clustering the remaining reads. The

differences between the two pipelines rely on the cluster-

ing algorithm. UPARSE uses a ‘greedy’ algorithm that

performs chimera filtering and OTU clustering

simultaneously, while QIIME performs chimera filtering

as a separate step. In this study we evaluated both the de

novo and open reference OTU picking in QIIME. The

main advantage of the first method is that it does not re-

quire a collection of reference sequences before working

with a new marker gene. The open-reference OTU pick-

ing combines closed-reference OTU picking, in which

input sequences are aligned to pre-defined cluster cen-

troids in a reference database, and if the input sequence

does not match any reference sequence at a defined per-

cent identity threshold, the sequence is excluded, and de

novo OTU picking is applied to the remaining se-

quences. The OTU picking algorithm used by UPARSE

does not require technology- or gene-specific parameters

(such as an OTU size cutoff ), algorithms (such as flow-

gram denoising) or data (such as a curated multiple

alignment) [37]. The impact of different bioinformatics

pipelines on the diversity captured from specific micro-

bial ecosystems was investigated in Pylro et al. [56]. The

study concluded that UniFrac distances between samples

DADA2.DADA2/DADA2.QIIME DADA2.DADA2/QIIME.QIIMEDADA2.QIIME/ QIIME.DADA2 QIIME.QIIME/ QIIME.DADA2

(A)

(B) (D)

Control PrebioticsVaccinated

(C)

Control_run1

Control_run2

Vaccinated_run1

Vaccinated_run2

Prebiotics_run1

Prebiotics_run2

Vaccinated

Fig. 7 Comparisons made between the two different OTU/variant calling (either DADA2 or QIIME de novo OTU picking at 99% similarity) and the

two different taxa assigment algorithms (DADA2 or QIIME using the Greengenes database). Labels are: QIIME.QIIME indicating QIIME was used for

OTU picking and taxonomic assigment, QIIME.DADA2 indicating QIIME was used for OTU picking and DADA2 was used for taxonomic assignment,

DADA2.QIIME indicating the DADA2 was used for sequencing error supression and QIIME was used for taxonomic assignment, and DADA2.DADA2

indicating that used for both sequencing error suppresion and taxonomic assignment. a Procrustes analysis. b A comparison of the number of OTUs

identified by DADA2 (clear boxes) and QIIME de novo OTU picking at 99% similarity (shaded boxes).c Taxonomic profiles of samples grouped by

treatment and bioinformatics pipeline. Only major taxa are indicated in the Figure. d Correlation analysis of relative abundances of bacterial taxa at

species level. For a complete list see Additional file 3: Table S3
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sequenced on both Illumina MiSeq and PGM were sig-

nificantly correlated.

Procrustes analysis of data showed clear differences be-

tween data generated from each platform (Fig. 4b and 7a).

Nevertheless, despite differences in platform sequencing

performance and data output, all three platforms were

capable of discriminating samples by treatment and led us

to similarly valid biological conclusions (Fig. 4a). Our re-

sults are in agreement with a previous study that showed

that soil samples analyzed by 16S rRNA sequencing using

either the Illumina MiSeq or PGM platforms clustered by

site rather than by sequencing platform [56].

Determining the most accurate and appropriate ap-

proaches to generate and analyze sequencing data from

complex microbial communities remains an important

goal of researchers focused on microbiota studies. Un-

fortunately without a standardized set of protocols from

sample preparation and handling to final data analysis

(and every step in between), it is impossible to eliminate

biases from these studies entirely. However, making an

effort to choose the correct sequencing platform for a

given study as well as the most appropriate data analysis

tools will drastically reduce errors in data acquisition

and processing between studies. In this context, emer-

ging analysis methods (methods that attempt to differen-

tiate between sequences with similarity greater than the

97% convention) such as DADA2 [38] and Oligotyping

[74] are an innovative and interesting new development

in the processing of sequencing of microbial communi-

ties. These methods differ from conventional methods in

substantial ways, for example, the suppression of se-

quencing errors and estimation of their probability dis-

tribution. These matters are of fundamental importance

to methods that attempt to differentiate biologically

meaningful single nucleotide variation from sequencing

data and warrant ongoing comparisons of relevant pro-

tocols and analysis methods for the study of complex

microbial communities.

In our study, we compared DADA2 [38] and QIIME

de novo OTU picking with a similarity threshold of 99%

for OTU or variant calling, and then assignment of tax-

onomy was performed on each table using either the

DADA2 taxonomy classification method and the QIIME

taxonomy classification method. As with UPARSE, ap-

plying the DADA2 variant calling pipeline resulted in

lower numbers of identified OTUs, resulting in signifi-

cant differences between pipelines demonstrated by the

Procrustes analysis. However, both pipelines resulted in

clustering of samples by treatment and Illumina run.

Moreover, a linear correlation analysis comparing rela-

tive abundances determined by the pipeline using

QIIME for both OTU picking and taxonomic assign-

ment and the pipeline using DADA2 for both sequen-

cing error suppression and taxonomic assignment

showed a Person’s r value of 0.93 indicating a strong

correlation between values (Fig. 7d). Although applica-

tion of the DADA2 algorithm for taxonomy assignment

resulted in a higher number of species identified, reli-

ability on the assignment at sub genus level is largely

unknown since this software has not been extensively

tested and was developed with a mock community of

known bacterial strains as opposed to be done on native

communities. As such, use of this software for analysis

of gut microbial communities should be done with cau-

tion. Traditional microbiology methods and whole gen-

ome shotgun sequencing data will confirm or deny

whether single nucleotide polymorphisms of a single

bacterial gene are sufficient to obtain reliable species

level information within complex communities.

Conclusion
Our study confirmed differences between sequencing plat-

forms and library preparation protocols in the determin-

ation of microbial diversity and species richness.

Moreover, we showed that bioinformatics pipelines used

to analyze sequence data yielded results that differ de-

pending on specific parameters. However, we concluded

that, specifically for our chicken-Salmonella infection

study, despite these differences, samples from variable

treatment groups were differentiated from one another re-

gardless of the sequencing platform and/or bioinformatics

pipeline used allowing us to draw similar conclusions.

This suggested that the same biological conclusions could

be drawn from data, as long as the data is collected and

analyzed consistently throughout the course of the experi-

ment. It is critical for researchers to take into consider-

ation the limitations of each sequencing platform, and

choose a system appropriate for their experimental design.
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