
A comparison of several current optimization methods, and the
use of transformations in constrained problems

By M. J. Box*

The performances of eight current methods for unconstrained optimization are evaluated using a
set of test problems with up to twenty variables. The use of optimization techniques in the
solution of simultaneous non-linear equations is also discussed. Finally transformations whereby
inequality constraints of certain forms can be eliminated from the formulation of an optimization
problem are described, and examples of their use compared with other methods for handling such
constraints.

1. Introduction
The type of optimization problem with which this paper
is concerned is that in which the objective function is
highly non-linear and the number of independent
variables is small, with a maximum of about twenty.
The conclusions therefore do not apply to either linear
or mildly non-linear problems. For linear problems,
several thousand independent variables can be handled,
whilst for mildly non-linear problems the possible number
of independent variables is several hundred.

The first part of this paper describes experimental
comparisons of the performances of eight current
methods for unconstrained optimization based on a set
of test functions with up to twenty independent variables.
Little comparative information on these methods has
been published, understandably since several of the
methods are very recent; in particular, little has been
reported on the use of these methods with as many as
twenty variables.

There follows a brief demonstration that the problem
of solving sets of simultaneous non-linear equations
should be attempted by using methods based on the
Jacobian, rather than by merely minimizing the sum of
squared residuals.

The paper then goes on to consider transformations
by which problems of constrained optimization (only
inequality constraints of certain forms will be considered)
can be reduced to a form in which no constraints
explicitly appear, so that they are then suitable for
solution by methods incapable of handling constraints.
These latter methods include several which are more
powerful than the limited number available for con-
strained optimization of a general non-linear function.
Some numerical experiments in the use of this approach
in conjunction with one of the more efficient algorithms
for unconstrained optimization are described, and the
results compared with certain other techniques for
constrained optimization.

2. The optimization methods studied
The optimization methods which have been applied to

test problems without constraints are listed below. For
the sake of compactness, the methods will be identified
in the tables of results by the letters indicated.

(i) DSC, a method developed from that of Rosen-
brock (1960) by Davies, Swann and
Campey (Swann, 1964), and which has
been discussed by Fletcher (1965).

(ii) R, Rosenbrock's (1960) method.
(iii) N, the simplex method developed by Nelder

and Mead (1965) from that of Spendley,
Hext and Himsworth (1962).

(iv) P, Powell's (1964) method for minimizing a
general function without calculating de-
rivatives.

(v) F, a method, described by Fletcher and
Reeves (1964), which uses the properties
of conjugate directions.

(vi) D, the method described originally by Davidon
(1959), and in a refined form by Fletcher
and Powell (1963).

(vii) PSS, Powell's (1965) method for minimizing a
sum of squares.

(viii) B, Barnes' (1965) method for solving sets of
simultaneous non-linear equations.

Of these eight methods, DSC, R, N and P are "direct
search" methods which require a subroutine to compute
function values only, i.e. the first derivatives of the func-
tion are not required, whereas methods F and D are
"gradient methods" which do require the first derivatives
of the function to be computed as well as the function
itself.

In a number of papers it has been stated that a typical
use of optimization techniques is to solve sets of simul-
taneous non-linear equations by minimizing the sum of
the squared residuals. The PSS and B methods for

* Imperial Chemical Industries Limited, Central Instrument Research Laboratory, Bozedown House, Whitchurch Hill, Reading,
Berkshire.
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Unconstrained optimization

solving such sets of equations work with the residuals
for each equation instead of merely the sum of their
squares. The test problems which are considered in this
paper all arise from "least squares" curve fitting, and
each can be reformulated as the solution of a set of
non-linear equations, as an alternative to a straight
minimization problem. Thus the efficacy of using
methods such as PSS and B can be studied. It may not
be possible to reformulate every optimization problem
as the solution of a set of simultaneous equations,
however. Certainly it is often not feasible to attempt
this.

When a "gradient method" is being used to optimize a
function with n independent variables, each entry to the
subroutine to compute the function and its n first
derivatives requires {n + 1) items of information to be
provided. Thus in this comparison, each entry by a
"gradient method" to its subroutine will be regarded as
equivalent to (n + 1) function evaluations in a "direct
search" method, i.e. one that uses function values only,
and the term "equivalent function evaluations" will be
introduced. This "(n + 1) factor" is also equivalent to
estimating the first derivatives by forward (or backward)
differences, and this is considered to be a further justi-
fication for its use. (The use of central differences
would be equivalent to the use of a factor (2n + !)•)

In the case of methods PSS and B no multiplying
factor will be used, however, as the amount of com-
putation in the subroutine is no more than with "direct
search" methods. In all cases, all the residuals are
computed, the only difference being that the PSS and B
methods have access to these residuals individually.

All comparisons of methods will be carried out on the
basis of the number of "equivalent function evaluations,"
as for many real problems the time involved in the
computation of the function is vastly in excess of that
required to organize the search. An example is the
problem of determining "least squares" estimates of
parameters in non-linear differential equations from
experimental data. In this problem, the residual dif-
ferences, Rh between experimental data and numerically
integrated solutions of the differential equations are
computed for imputed values of the parameters. The
parameters are then varied either to minimize the sum
of squared residuals, or to find the "least squares"
solution of the simultaneous non-linear equations,
Ri = 0, according to which approach is being used.
It has been known for the computation of all the
residuals for a single set of parameter values to take up
to 1,000 times as long as the organization of the search.

3. The comparison of the methods

The performances of the eight optimization methods
have been studied with problems with 2, 3, 5, 10 and
20 independent variables.

3.1 Two dimensions

The two-dimensional test problem used was as follows:

Fig. 1.—Contours of 2-dimensionaI exponential function

to minimize

fifli = S

where the summation is over the values x = 0-1(0-1)1.
Thus the minimum is / = 0, corresponding to a, = 1,
a2 = 10.

The selection of this test function is motivated by its
equivalence to the problem of estimating two parameters
in a pair of simultaneous linear differential equations,
which is a simple example of the problem of estimating
chemical reaction rate constants, a problem on which
the author has worked. A plot of the contours of this
function, given in Fig. 1, indicates the existence of a
highly asymmetric curved valley, a feature known to
occur in many minimization problems, and noted for
the difficulty which it presents.

Five starting points were used:

I.
II.
III.
IV.
V.

«i = 0 ,

fli = 0,

«, = 5,

a, = 5,

a, =2-5,

G 2= 0,

a2 = 20,

a2 = 0,

a2 = 20,

a2 = 10,

/ =

/ =

/ =

/ =

3-064
2-087

19-588

1-808

0-808

For each starting point the number of equivalent
function evaluations necessary to reduce the function to
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Unconstrained optimization

the values 1, 0-1, 0-01 and 0-00001 are recorded in
Table 1.

Table 1

Comparison in 2 dimensions

METHOD

DSC

R

N

P

F

D

PSS

B

CONTOUR

1 0
0 1
0 0 1
0-00001

1 0
0 1
0 0 1
0-00001

1 0
0 1
0 0 1
0-00001

1 0
0 1
0 0 1
0-00001

1-0
0 1
0 0 1
0-00001

1 0
0 1
0 0 1
0-00001

1 0
0 1
0 0 1
0-00001

1-0
0 1
0 0 1
0-00001

STARTING POrNT

I

23
45
55
78

15
39
52
96

6
6

19
41

33
52
56
64

12
45
69
93

12
33
45
51

8
29
33
38

19
24
24
27

u

3
8

22
57

4
7

45
68

2
8

20
43

2
8

30
51

6
12

126
144

6
9

42
48

4
16
17
22

4
6

12
15

in

15
119
203
231

13
26
73

103

5
5

19
39

26
57
69
84

21
75
87

102

12
18
30
45

28
36
40
46

N.O

IV

7
23
28
53

12
25
77

103

5
17
26
49

16
16
37
77

12
12
60
84

15
18
54
63

4
16
22
29

25
33
34
36

V

0
6
6
6

0
20
89

109

0
12
13
40

0
6
7

23

0
12
12
21

0
6
9

27

0
4
9

12

0
6

20
24

For method B, the notation "N.O" indicates that
results corresponding to starting point III were not
obtainable. The program found a direction such that
a{ -> co, a2 -*• co with at > a2, and the minimum along
such a direction lies at infinity.

3.2 Three dimensions

A three-dimensional test problem was derived from
the two-dimensional problem as follows:

to minimize

/(a,, a2, a3) = £ [(*—* -e-») - a3(e~
x - e->°*)]2

where the summation is over the values x = 0-1(0-1)1.
The desired optimum is / = 0, ax = l,a2 = 10, a3 = 1.

There is, however, the continuum of optima / = 0
corresponding to a3 = 0, a, = a2, on which various of
the methods found solutions with some starting points.
This was rarely the case with the nine starting points
quoted below, and in the majority of these cases the
desired optimum was found by making an alternative
selection of initial step-lengths.

In point of fact, the series of computational results
presented here had almost been completed before any
difficulty in obtaining the desired solution ax = 1,
a2 = 10, a3 = 1 was encountered. It certainly appears
now that a superior definition of the three-dimensional
test function would have been

f{ax, a2, a3) = £ [a3(e-"
iX

 — e~
a2X

) — {e~
x
 — e~

l0x
)]

2

X

with the same summation as before.
The optimum ax = 10, a2 = 1 , a3 = — 1, has never

been obtained with any combination of method and
starting point tried to date.

Nine starting points were used:

II.
III.
IV.
V.

VI.
VII.

VIII.
IX.

(X\ = 0 , &2
 = = 20 ,

a, =2 -5 , a 2 = 10,
ax = 0 , a2 = 0,
ax = 0 , a2 = 10,
ax = 0 , a2 = 10,
ax = 0 , a2 = 10,

= 0,
= 0,

"3 = 10,
a3 = 10,
a3 = 1,
a3 = 10,
a3 = 20,
a 3 = 0,

a2 = 20, a
a2 = 20,

3=10 ,
= 20,

2-087
275-881
306-401

1-885
213-673

/ = l,031154
/ = 9-706
/ = 209-280
/ = l,021-655

r

j '

r

f —

For each starting point the number of equivalent
function evaluations necessary to reduce the function to
the values 1, 0 1 , 0 01 and 0-00001 are recorded in
Table 2.

The notation "F" is used to indicate that the DSC
and P methods failed on this problem for the six starting
points with the highest /-values, in that they produced
the following solution:

a, ~ 0-61, a 3 ~ l - 3 2 , / ~ 0-076,

i.e. regarding the problem as one of curve-fitting, these
methods have effectively eliminated a2 from the problem
and then endeavoured to fit one exponential and a
multiplicative factor to the data. This failure stems
from the fact that both these methods (as implemented
in the programs released to the author) set out to locate
the minimum along a line too precisely. (The author
has made no attempt to restrict the number of steps that
are taken along a line.) Any method which does not
find the minimum along a line, for instance the methods
of Rosenbrock (1960), Nelder and Mead (1965),
Spendley, Hext and Himsworth (1962) or some variants
of steepest descent, could not fail in this way.
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Unconstrained optimization

Table 2

Comparison in 3 dimensions

METHOD

DSC

R

N

P

F

D

PSS

B

CONTOUR

1-0
0-1
0-01

0-00001

1-0
0-1

0-01

0-00001

1-0
01
0-01

0-00001

1-0
0-1

001
0-00001

10
0-1
0-01

0-00001

1-0
0-1
0-01

0-00001

1-0
0-1
0-01

0-00001

1-0
01
0-01

0-00001

STARTING POINT

I

3
8
20
448

5
7

150
347

2

13
48
119

2
8
33
78

8
8

116
564

8
16
72
92

5
7

15
34

4
5
21
42

ii

F

30
57
197

281

11

11
42
128

F

28
28
40
112

8
12

16
68

N.O

N.O

m

F

31
31
139

200

6
29

46
112

F

44
44
48
104

44

52
128
144

N.O

N.O

IV

3
4

6
313

5
18
38
198

2
20
28
73

2
7
10
56

8
16
28
56

8
12

20
24

5
6
15
29

5
6
6
15

V

F

30
30
174
292

18
26
70
110

F

36
44

68
92

52

60
128
148

6
6
9
28

11
12
17

48

VI

F

43
50
165
350

27
92
198
307

F

40
48
48
92

52
60

112
140

6
6
9
28

N.O

vn

1

6
8
25

10
25
224

273

11
17
47
79

3
9
13
19

8
16
116
344

8
12

76
96

6
7
22
43

5
5
21
37

vm

F

24
55
190

460

18
28
127
164

F

36
56
208
608

52

60
120
148

6
7

30
46

11
11
42
51

IX

F

41
61

179
246

27
109
210
315

F

40
48
124
188

52

60
116
140

6
7
21
33

21
21
22
59

The notation "N.O" indicates that with method PSS
two, and with method B three, starting points gave
solutions on the line ax = a2- Although several different
combinations of initial step-lengths were tried with the
PSS method, the desired solution was not obtainable.

3.3 Five, ten and twenty dimensions

The test function used in 5, 10 and 20 dimensions was
that originally introduced by Fletcher and Powell (1963):

to minimize

/ = / - £ (A,j
y=i

+ Bu cos a,)]

with respect to the a;,
i.e. to solve the set of simultaneous non-linear equations

2 sin + Bi} cos a,) = Eh i = 1, . . . n,

by minimizing the sum of squared residuals.
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Unconstrained optimization

The Au and Bu were generated as pseudo-random
integers rectangularly distributed over the interval
[—100, 100], and target values of the variables
a.*, i = 1, 2, . . . n, were generated as pseudo-random
real numbers over the interval [—77, IT]. For these
values, the right-hand sides of the equations, Eh were
calculated. The initial point used was a* + 8,, where
the S( were generated as pseudo-random real numbers
over the interval [—TT/10, TT/10]. In each run the
criterion for convergence was that every a,- should have
been found to accuracy 0-0001, a comparison of each
variable a ; with its correct value a* being carried out
every t ime/was computed, with the number of function
evaluations needed to achieve such accuracy being
printed out the first time it was obtained. Advantages
of this test function are that the number of variables,
n, can be readily varied, and, moreover, the results can
be replicated by the use of different pseudo-random
number sequence initiators.

Replications were performed, and the number of
equivalent function evaluations necessary for conver-
gence (using the criterion described above) are recorded
in Table 3 for each combination of method and number
of dimensions. The values given for method PSS in
20 dimensions (denoted with an asterisk) may be a little
too large as these results have been provided by M. J. D.
Powell from printouts not given immediately 10~4

accuracy was obtained. "N.A" indicates that the
solution of this problem in 10 and 20 dimensions was
not attempted with method B. The results in 5, 10 and
20 dimensions for methods D, P and PSS are reproduced
from the papers of Fletcher and Powell (1963), Powell
(1964) and Powell (1965) respectively.

The results given in Table 3 have been obtained using
three different computers, all with different word-lengths,
and four different compilers and pseudo-random number
sequence generators. Thus detailed comparison of
particular runs for different optimization methods is
not meaningful as, for the most part, these runs do not
correspond to the same member of the family of test
functions. As with the two- and three-dimensional
results it is felt that to present all the results is preferable
to giving average values, particularly so as there is a
considerable spread in the results for any combination
of method and problem. The variation in the results
between different members of this family of test functions
is in fact less drastic than the variation obtained with
the two- and three-dimensional test functions arising
from the use of different starting points.

The qualitative evidence which the results of Table 3
provide will be given considerable weight when con-
clusions are drawn, as the larger the number of variables,
the more searching the test of the optimization method
turns out to be. (Many methods which successfully
optimize functions of two or three variables are found
to be highly inefficient when there are more independent
variables.) Further evidence on the relative performances
of current optimization methods with as many as twenty
or more variables would be welcome, but until such

Table 3

Comparison in 5, 10 and 20 dimensions

METHOD

DSC

R

N

P

F

D

PSS

B

NUMBER OF DIMENSIONS

5-DIM.

303
281
307

465
465
388
384

229
195
298

104
103

354
288
216

114
138

21
22

42
41
37

10-DIM.

2,269
938

1,378

1,210
1,258
1,298

752
962
970

329
369

1,639
2,860
1,276

396
319

35
34

N.A

20-DIM.

5,183
5,924
8,254

10,208
4,681
8,411

6,970
12,100
10,246

1,519
2,206

4,200
7,854

12,348

1,764
1,428
2,541

46*
65*

N.A

evidence becomes available, Table 3 summarizes much
of what is currently known.

3.4 Conclusions

Of the methods tried for unconstrained optimization,
that due to Fletcher and Powell (1963) (Davidon's
method), was the most consistently successful.

Powell's (1964) method performed remarkably simi-
larly to Davidon's method for the five-, ten- and twenty-
dimensional test functions, and in consequence was
concluded to be virtually as efficient as Davidon's
method. Both these methods, Powell (1964) and
Fletcher and Powell (1963), possess quadratic conver-
gence, i.e. the property that they will converge to the
minimum of a quadratic function in a finite number of
steps, and although such functions rarely occur in
practice, it is nevertheless found that methods with this
feature converge more rapidly, particularly of course
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Unconstrained optimization

in the vicinity of the optimum. The method of Fletcher
and Reeves (1964) also possesses quadratic convergence,
but was found to be less successful, however. A possible
explanation is that this method, having searched in a
manner that would locate the exact minimum of a
quadratic surface, periodically discards all the informa-
tion which it has collected about the actual surface, and
commences a completely new and independent search
from the best point yet obtained. (The motivation for
this drastic but necessary procedure will be found in
Fletcher and Reeves' paper.) The similarity of the
performances of the methods of Powell (1964) and
Fletcher and Powell is considered to be a justification
for the manner whereby gradient and non-gradient
methods were compared by means of the "(« + 1)-
factor."

That two methods possessing quadratic convergence
should perform substantially better with the five-,
ten- and twenty-dimensional test functions than methods
without this property, prompts the question as to whether
the members of this family of test functions are essen-
tially quadratic. The contours of a two-dimensional
member of this family are therefore given in Fig. 2,
where for convenience the minimum has been taken to
lie at the origin of the co-ordinates. As with the function
plotted in Fig. 1, the existence of a curved valley and of
asymmetric contours, rising more rapidly on one side of
the valley than the other, are again noted. However,
these features are much less marked than with the
function plotted in Fig. 1. The six crosses indicate
typical possible starting points. Whilst it seems likely
that the minimization of this surface would be easier
than finding the optimum of the function given in Fig. 1,
it is felt that the assumption of a quadratic nature for
the surface would not aid the optimization very much.
If the departure of surfaces of this family from quadratic
were only slight, then the method of Fletcher and
Reeves could be expected to perform very much better
than was in fact observed. In higher dimensions, cross-
sections of the surface resemble Fig. 2, presumably.

The method of Nelder and Mead (1965) performed
well in two dimensions, and also to a lesser extent in
three dimensions, but for more dimensions it was pro-
gressively less successful. In their paper, Nelder and
Mead compare the performances of their method and
the method of Powell (1964) with functions of two, three
and four variables. Their method is shown to perform
better than that of Powell with these problems, a result
which is surprising, bearing in mind just what the two
algorithms do. This "anomaly" is put into perspective
by the observation of this paper that the superior per-
formance of Nelder and Mead's method does not
continue as the number of independent variables is
increased.

The conclusion was also reached that, when solving
sets of simultaneous non-linear equations, methods such
as those due to Powell (1965) or Barnes (1965) should
be used in preference to merely minimizing the sum of
squared residuals, which reaffirms Powell's conclusion.

• —

X

X

, — •

.

.

X

<—*!•!•«-

—

'—•——. f- zoo

X

^ •
s o

"*~—-s,^^ f - 200

Fig. 2.—Contours of 2-dimensional trigonometric function

It is important to note that in this paper, the case where
all the residuals cannot be simultaneously reduced to
zero, i.e. no exact solution exists, has not been considered.

For the two- and three-dimensional test functions,
directions exist along which these functions are mono-
tonic decreasing, and some methods which seek the
minimum along a line precisely, and especially those
which require to straddle the minimum along this line,
will break down when using such a direction. However,
it should be possible to recognize this situation, which
can occur with any of the methods considered in this
paper except those of Rosenbrock and of Nelder and
Mead, and to limit the number of steps taken along such
a direction, but the author has not attempted to do this.

4. Transformations
In Section 3.4 it was concluded that the property of

quadratic convergence is definitely desirable for a
method designed to find unconstrained optima. As the
author had access to no quadratically convergent method
for optimizing a function of arbitrary form subject to
the most general non-linear inequality constraints, a
study was made of some cases when it is possible to
eliminate the explicit appearance of inequality con-
straints from the formulation of the problem. It is
known that Davidon's method, D, has been successfully
used with Carroll's (1961) "Created Response Surface
Technique," i.e. an optimizer with quadratic conver-
gence is used after the objective function has been
modified by the introduction of a penalty function.
The approach that will be adopted here is to transform
the independent variables and leave the objective function
unaltered. Powell's (1964) method will be used rather
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Unconstrained optimization

than Davidon's, as for many problems the computation
of the first derivatives is a major task.

As an example of the type of constraint which can be
eliminated, suppose that the three independent variables
x,, x2, X3 are to be constrained by 0 < xx < x2 < x3.
Then consider the transformations

It will be seen that an optimizing routine with no pro-
vision for incorporating constraints can now be used to
seek an unconstrained optimum in >>-space.

Transformations which have been considered include:

(i) x, = y\
(ii) x, = e»

(iii) Xi = |j>,|
(iv) Xi = sin2

 y,

(V) Xi =
eyt -yf

(i), (ii) and (iii) constrain the x; to be positive, whilst
(iv) and (v) restrict x,- to the range 0 < x, < 1.

An important practical case of constrained optimiza-
tion is that when each independent variable is subject to
constant lower and upper constraints, gt < x, < h,,
i.e. the permissible region consists of a rectilinear
"box" in n dimensions. Then the transformations
Xi = g, + {hj — gi) sin2j>, mean that now an uncon-
strained optimum in j>-space need be sought. The
periodicity of optimal solutions in _y-space should not
cause any difficulty provided the optimizer in use does
not take steps so large that it jumps from peak to peak.

All the transformations which have been considered
are such that the neighbourhood of any point Y in
y-space maps into the neighbourhood of X in x-space,
where Y maps into X. Hence although some of the
transformations are not 1 : 1 they cannot introduce
additional (essentially distinct) local optima.

The advantage of the transformations is that they have
been found to result in the correct solutions being
obtained easily for problems for which alternative
methods made only slow progress, or ceased to make
any progress whatsoever once one or two constraints
were reached, even when the current point was still a
long way from the optimum.

5. Applications of the transformations and comparisons

with other methods

The method of Powell (1964) has been used in con-
junction with transformations to solve six problems,
each of which Box (1965) has solved in three ways.
These methods of solution were:

(i) that of Rosenbrock (1960)
(ii) the Complex (constrained simplex) method des-

cribed by Box (1965)

(iii) the RA VE method (Rosenbrock with Automatic
Variable .Elimination) described by Box (1965).

Rosenbrock's method and the Complex method are
applicable to the constrained optimization of a general
function subject to general inequality constraints,
whereas the RA VE method and the method of Powell
used with transformations are more approaches to the
problem of the constrained optimization of a general
function subject to inequality constraints of somewhat
restricted forms.

The six test problems were:

(i) Box's (1965) Problem A—a simple model

The aim is to maximize the function/, of 5 independent
variables xu . . . xs, subject to 8 constraints gt < xt < h,,
i = 1, . . . 8, where x6, x7 and x8 are functions of
Xi, . . . x5 and represent implicit constraints. This
problem is set out in Appendix 1, where it will be seen
that/, x6, x-i and x8 are all linear in any one independent
variable, but quadratic due to cross-product terms. In
this example, all the lower bounds gh and upper bounds
hj, are constants.

An analytic study of this problem has shown that the
lower and upper constraints on x6 and x7 and the lower
constraint on xx can never be approached if the con-
straints on x2, x3, x4, x5 and xs are to be observed, and
consequently these constraints need not be considered
further. It is now possible to regard x2, x3, x4, x5 and
x8 as the five independent variables, each of which is
subject to constant lower and upper constraints, and
thus the transformations

= gi + (hi - sin2

may be applied, and Powell's method used to seek an
unconstrained optimum in j>-space. It is of course to
be expected that Rosenbrock's method etc. would
perform better with the transformed problem than with
the original formulation, but this has not been checked.

(ii) Box's (1965) Problem B

To maximize/= [9 - (x, — 3)2]
27V3

subject to 0 < X[
0 < x2 < x,/V3

0 < x, + V3(x2) < 6.

The initial point used was

JCJ = 1, x2 = 0-5, corresponding t o / = 001336.

The solution is

X] = 3, x2 = V 3 , / = 1.

Consider for example the transformations

X2 = x2 - x,/-v/3

and constraints 0 < X\ < 6
- 2 V 3 < X2 < 0.
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Unconstrained optimization

x, = K*i -Thus

and

This formulation includes all the constraints present
in the original problem with the exception of the
constraint x2 > 0.

Thus in Fig. 3, the original permissible region in
x-space is the triangle OAB. The transformation
described above gives this triangle plus its reflection in
the axis x2 = 0, i.e. the rhombus OABC. Hence it is
necessary to consider the region in A'-space,

0 < Xi < 6
- 2 V 3 < X2 < 0

and the transformations

x2 = i|A-,/V3 + X2\

which corresponds to the triangle OAB in x-space as
required. The usual transformations

X{ = 6 sin2
 yt

X2 = - 2 V 3 + 2V3 sin2
 y2

can now be applied to give an unconstrained problem
in >>-space.

(iii) Rosenbrock's (1960) Post Office Parcel Problem
The P.O.P. problem is to maximize

/ = XlX2X3

subject to constraints

0 < x, < 42
0 < x2 < 42
0 < x3 < 42
0 < x, + 2x2 + 2x3 < 72.

The solution i s / = 3,456 corresponding to xY = 24,
x2 = 12, x3 = 12.

A possible transformation for this problem is to set

- 2X2)

subject to 0 < Xi < 42
0 < X2 < 42
0 < X3 < 72

which is the standard form for the transformation

X-, = gi + (hi — gi) sin2
 y, as before.

This incorporates all the original constraints except
x3 > 0. However, as the constraints X! > 0 and x2 > 0
are included, and the initial points used correspond to
positive values of / , no maximum-seeking program
would search for negative x3 values, as this would result
in negative (smaller) values of / , i.e. obviously no
alternative solution exists if the constraint x3 > 0 is not
included.

Fig. 3.—Permissible region for Problem B

Cases I, II and III of this problem correspond to the
starting points:

I. X! = 10, x2 = 10, x3 = 10
II. x, = 5, x2 = 10, x3 = 10

III. x, = 15, x2 = 10, x3 = 10, respectively.

Case IV also uses the starting point x, == 10, x2 = 10,
x3 = 10 but now the constraints are modified to be

0 < x, < 20
0 < x 2 < 11
0 < x3 < 42
0 < x, + 2x2 + 2x3 < 72.

The optimum is now/ = 3,300 corresponding to x, — 20,
x2 = 11, x3 = 15. The same transformation may be
used:

but now with constraints

0 < Xx < 20
0 < X2 < 11
0 < X3 < 72.

As before, the constraint x3 > 0 is not implied by this
formulation, but again it can be excluded upon con-
sideration of the form of/, the existence of the constraints
x, > 0, x2 > 0 and the fact that the initial point cor-
responds to a positive/.

The results are given in Table 4. The notation p/x is
used to denote that the value of/obtained was in error
in the pth significant figure by an amount x, and the
number of function evaluations necessary to achieve
this accuracy is recorded under the heading "trials".
The notation "N.A" indicates that the solution of
problem B by the RAVE method was not attempted,
and "EXACT" denotes that the RAVE method leads
to the exact solution for those cases where the number
of constraints effective at the optimum equals the
number of independent variables in the problem.
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Unconstrained optimization

Table 4

Comparison of constrained methods

PROBLEM

A

B

P.O.P. I

P.O.P. II

P.O.P. Ill

P.O.P. IV

ROSENBROCK

ERROR

3/6

4/2

4/1

4/1

4/1

4/1

TRIALS

1388

310

600

600

600

600

COMPLEX

ERROR

7/7

6/5

8/1

8/1

8/1

8/5

TRIALS

1201

76

205

258

156

354

RAVE

ERROR

EXACT

TRIALS

220

N.A

7/4

7/4

7/4

EXACT

133

109

136

129

TRANSFORMS

ERROR

8/5

10/4

10/4

10/4

10/4

10/4

TRIALS

42

23

55

55

57

48

The number of trials entered in this table for the
Complex method is for a program which tests all the
constraints before entering the function evaluation sub-
routine, and thus avoids the computation of non-
feasible/-values. Box (1965) has found that with these
problems Rosenbrock's method would require on
average roughly 10% fewer function evaluations if the
computation of non-feasible/-values were to be excluded.

Although the run to solve problem A using Rosen-
brock's method was continued until 1,388 trials had
been performed, in fact no progress whatsoever was
made after the 689th trial.

6. Conclusions on the application of transformations

The self-evident conclusion on the use of transforma-
tions of the type described in Section 4 is that the
solution of constrained problems is eased considerably
by eliminating the constraints, so that one of the more
powerful methods for unconstrained optimization, e.g.
that of Powell (1964), may be employed. For many
problems, of course, no transformations can be found,
but the scope for ingenuity is considerable, and the
advantages of the transformations equally so. If only a
few constraints can be eliminated, this will be a worth-
while step forward. The experience of the application
of these transformations is limited, but such experience
as is available strongly suggests that the possibility of
using them in any constrained optimization problem
that arises should definitely be borne in mind.

These transformations have successfully been used
(again in conjunction with Powell's method) for prob-
lems with up to twenty independent variables. These
problems arose from a "design of experiments" study
(see, for example, Box and Lucas (1959), Behnken
(1964)). The aim in each case was to minimize the size
(hypervolume) of the confidence region of the estimates
of the parameters in the assumed model. Specifically,

(i) In the first model, the transformations x, = yf
were applied to ensure that all free variables remained
positive. It had been found that a much smaller con-
fidence region would formally result if certain experi-
ments could be carried out with negative x, values, a
physically absurd situation. In the optimum solution
no X; is zero, however. It can be seen that the constraints
are necessary to guide the optimizer to the only local
optimum within the permissible region, so that although
the optimum does not lie on any constraint, the con-
straints are necessary for the correct answer to be
obtained.

(ii) The transformations xt = g/ + {h-, — g,) sin2 ;>,-
were applied to all variables in a problem where every
Xi had to lie between a pair of constant values. The
optimum solution, for the case of twenty independent
variables, corresponded to five variables being at their
lower limits and five variables being at their upper
limits.

Finally the possibility of bringing any optimization
problem within the scope of the well-known technique
of linear programming (see, for example, Graves and
Wolfe (1963)) by means of transformations should not
be overlooked. As an example it will be seen that
problem A (see Appendix 1) becomes a linear pro-
gramming problem if new variables are defined as
follows:

z, = x,
z2 == x,x2

z3 = x,x3

z5 =
This transformation means that only some half dozen

steps are necessary for the solution of the problem to be
obtained.

A suitable form for writing the constraints is given in
Appendix 2.
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Appendix 1

Problem A—a simple model

The form given below is a simplification of that
originally given by Box (1965), but nevertheless the two
forms are equivalent. The aim is to maximize
/ ( * , , x2 , x3, x4, x5), where

/ = C0 + CXXX + C2X(X2 + C3X1X3 + C4XtX4

subject to constraints

where

* 6 = CgXj -

X 7 ~~~ Cj JXJ ~

X 8 = C J 6 Xi -

and where

o<
l-2<
20 <

9 <
6-5 <

o<
o<
o<

f- c7x,x2

f C,2X!X2

(- c,7x,x2

Xl

X 2 <

X 3 <

X 4 <

X 5 <

X 6 <

x7 <
x 8 «

; 2 -4
; 60
; 9 - 3
; 7 0
: 294,000
; 294,000
; 277,200

+ C8XtX3 + C9X!X4

+ Cj 3X1X3 + C]4XiX4

+ C18X,X3 + C19X!X4

The reader should not assume that the c{ are accurate
to all the figures given. The problem was presented in
the form of a computer program to calculate / , x6, x7

and x8 from xu x2, x3, x4 and x5. Many intermediate
quantities were calculated by this original program
using regression coefficients to far fewer than ten signi-
ficant figures. The amount of arithmetic necessary to
compute / , x6, x7 and x8 could be much reduced by
eliminating the explicit computation of these inter-
mediate quantities, as they were not needed in the
optimization problem. It was, however, necessary to
retain all the figures given in the c, in order that the
values of/calculated by the two programs should agree
to 7 or 8 significant figures.

The starting point used was

xi = 2 - 5 2
x2 = 2
x3== 37-5
x4 = 9-25
x5 = 6-8

corresponding to /== 2,351,244 and x8 = 130,368.
The optimum i s / = 5,280,334 corresponding to

c0 = -24 ,345
c3 = -156-6950325
c6 = -145,421-402
c9 = 5,106-192
c,2 = 4,360-53352
c15 = 13,176-786
ciS= -27-8986976

c, = -8,720,288-849 c2

c4 =476,470-3222 c5

c7 =2,931-1506 c8

c l o = 15,711-36 c,,
c , 3 = 12-9492344 c14

C i 6 = - 3 2 6 , 6 6 9 - 5 1 0 4 c17

c19 = 16,643-076 c20

150,512-5253
729,482-8271
-40-427932
-155,011-1084
10,236-884
7,390-68412
30,988 146.

x, =4-53743
x2 = 2-4
x3 = 60
x4 = 9-3
x5 = 7-0
x6 = 75,570
x7 = 198,157
x8 = 277,200

Appendix 2

Linear programming formulation of Problem A

To maximize

/ = Co + CXZX + C2Z2 + C3Z3 + C4Z4

subject to

z,>0

z9 =

z,2 =

z2>0

60z,
- 2 0 z ,

9-3z,
- 9 - 0 z !

7-0z!
- 6 - 5 z ,

C6
Z

1

—z3

+z3

—z4

+z4

- z 5

+z5

+C8Z3 +C9Z4 +Ci0Z5

>o
>o
>o
>0
>0
>0
>0

z3>0
z4>0

z5>0

z6 = 2-4z, - z 2

z7 = - l - 2 z , +z2

0
0

Z
18

 :

Z
19

 :

—c6zx —c7z2 -csz3 —c9z4 —cl0z5 +294,000 > 0
C,1Z1+C,2Z2+C13Z3+C14Z4+C15Z5 >0

—c,,z,-c1 2z2—c1 3z3—c,4z4-c1 5z5+294,000 > 0
Ci6Zi+CnZ2+clsz3+ci9z4+c2Oz5 >0

— c i 6 z l - c i l z 2 - c l s z 3 — c , 9 z 4 - c 2 0 z 5 + 2 7 7 , 2 0 0 > 0
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Correspondence (continued from p. 66)

S, = 0 designated a flight or flights Sydney-Melbourne
and Melbourne-Sydney prior to Sydney-Adelaide
flight (direct or via Melbourne depending on S2).

Other variables such as the number of flights between any
points were required to be integral.

The resulting non-linear integer programming problem
was eventually reduced to a series of linear integer problems
and run on a Honeywell H-400 6-tape computer.

The initial results appeared excellent at first sight, with
annual usages of 3,701 -4 hours and 3,688 -4 hours. However,
the time of loading of passengers at Adelaide for Sydney was
not satisfactory to the airline both from the point of view of
poor loading and "customer goodwill." Savings could be
made in the degree of daylight servicing provided in the
schedule, but the other factors were more important and this
reflects back to Elizabeth Barraclough's desire for parameters
in the input to relate to the "degree of success" of a timetable.

At this stage, it appeared that to rectify matters and incor-
porate other commercial judgements, it would be difficult to
quantify them all within the memory confines of even very
large computers. Matters such as mathematically specifying
the nature and interdependence of the frequency of a service
and the expected passenger traffic arose. The program was
modified to avoid some unacceptable time periods. Memory
size quickly limited any further conditions being incorporated.

The results showed that the departure time Sydney-Perth
was critical but it was observed that, with several cases, it
would be possible to improve this transcontinental service to
one flight every day by extracting one daily Sydney-Melbourne

—Sydney flight at a low loading time, and using the overall
weekly time gained to give almost exactly the time required
to achieve seven flights per week to Perth instead of five.
This was without disturbing the remainder of the schedule,
and was a matter which was apparent by some human
observation but not apparent to the computer method. By
the time the computer study was completed, the results
agreed with the best manual schedule derived independently,
and it was verified by the machine that the optimum had been
reached for this case.

An additional point which arose seems worthy of mention
based on the experience gained regarding formulating com-
mercial judgements: the desirability of parameters in the input
related to the degree of success and the advantage of some
human intervention. It may be that Dr. Miller's type of
linear programming study which indicated very excessive
operating costs including "overscheduling", may have
suffered due to problem simplification rather than have over-
scheduling costs introduced in explanations. The only
factors which would seem to contribute to operating costs—
low load factors, low utilization and uneconomic aircraft—
would cover "overscheduling" and were discussed in the study.

Honeywell Pty. Limited,
E.D.P. Division,
55 Macquarie Street,
Sydney, Australia.
21 January 1966.

B. S. THORNTON.
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