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The purpose of this study was to compare the performance of several methods for statistically
analyzing censored datasets [i.e. datasets that contain measurements that are less than the field
limit-of-detection (LOD)] when estimating the 95th percentile and the mean of right-skewed oc-
cupational exposure data. The methods examined were several variations on the maximum like-
lihood estimation (MLE) and log-probit regression (LPR) methods, the common substitution
methods, several non-parametric (NP) quantile methods for the 95th percentile and the NP
Kaplan–Meier (KM) method. Each method was challenged with computer-generated censored
datasets for a variety of plausible scenarios where the following factors were allowed to vary ran-
domly within fairly wide ranges: the true geometric standard deviation, the censoring point or
LOD and the sample size. This was repeated for both a single-laboratory scenario (i.e. single
LOD) and a multiple-laboratory scenario (i.e. three LODs) as well as a single lognormal distri-
bution scenario and a contaminated lognormal distribution scenario. Each method was used to
estimate the 95th percentile and mean for the censored datasets (the NP quantile methods esti-
mated only the 95th percentile). For each scenario, the method bias and overall imprecision (as
indicated by the root mean square error or rMSE) were calculated for the 95th percentile and
mean. No single method was unequivocally superior across all scenarios, although nearly all
of the methods excelled in one or more scenarios. Overall, only theMLE- and LPR-based meth-
ods performedwell across all scenarios, with the robust versions generally showing less bias than
the standard versionswhen challengedwith a contaminated lognormal distribution andmultiple
LODs. All of theMLE- andLPR-basedmethods were remarkably robust to departures from the
lognormal assumption, nearly always having lower rMSE values than the NP methods for the
exposure scenarios postulated. In general, the MLE methods tended to have smaller rMSE val-
ues than the LPR methods, particularly for the small sample size scenarios. The substitution
methods tended to be strongly biased, but in some scenarios had the smaller rMSE values, espe-
cially for sample sizes <20. Surprisingly, the various NPmethods were not as robust as expected,
performing poorly in the contaminated distribution scenarios for both the 95th percentile and
the mean. In conclusion, when using the rMSE rather than bias as the preferred comparison
metric, the standard MLE method consistently outperformed the so-called robust variations
of the MLE-based and LPR-based methods, as well as the various NP methods, for both the
95th percentile and the mean. When estimating the mean, the standard LPR method tended
to outperform the robust LPR-based methods. Whenever bias is the main consideration, the ro-
bust MLE-based methods should be considered. The KM method, currently hailed by some as
the preferred method for estimating the mean when the lognormal distribution assumption is
questioned, did not performwell for either the 95th percentile ormean and is not recommended.
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INTRODUCTION

As exposure limits decrease and exposure controls
improve an increasingly frequent occurrence is the

left-censored dataset; that is, a dataset where one
or more measurements are less than the field
limit-of-detection (LOD; i.e. the laboratory LOD

divided by the sample volume) for a particular com-

bination of sampling method, flow rate and sample

time. Left-censored datasets tend to occur when-

ever there is a high LOD relative to exposures;
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the exposures span several orders of magnitude; or
the sample time is short or the flow rate is low, re-
sulting is a small sample volume. Published cen-
sored data analysis (CDA) methods fall into four
general categories: substitution methods, log-
probit regression (LPR) methods, maximum likeli-
hood estimation (MLE) methods and non-paramet-
ric (NP) methods. Within each category or family,
there are several variations, usually developed to
reduce transformation bias (discussed later) or
for the situation where it is suspected that the un-
derlying distribution departs significantly from the
assumed lognormal distribution in the hope of
reducing the bias or improving overall accuracy
(defined as bias plus precision) when estimating
the ‘mean concentration’ (Helsel, 2005). This has
resulted in numerous peer-reviewed articles that
offer sometimes contradictory guidance regarding
which is the preferable method. Information on
the accuracy of upper percentile compliance statis-
tics, such as the 95th percentile, when calculated
from a censored dataset, is difficult to find. Helsel
(2005), author of a recently published text devoted
entirely to CDA, strongly recommended using the
NP Kaplan–Meier (KM) method to estimate the
mean whenever the dataset is ,50% censored
and ‘robust’ parametric methods in other instances.
Last, the simple substitution methods, which con-
tinue to be commonly used, are often condemned
in the literature in preference to these other
methods.

We distinguish between ‘simple-censored’ and
‘complex-censored’ datasets. A simple-censored
dataset contains one or more measurements censored
at a single LOD, or two or more LODs, but all at
the low end. In contrast, a complex-censored data-
set contains measurements censored at two or more
LODs with uncensored measurements scattered in
between (Bullock and Ignacio, 2006). In our experi-
ence, most censored datasets appear to be of the
simple-censored variety: a single laboratory is used
and the exposure profile for the exposure group is
reasonably stable. Complex datasets occur whenever
investigators combine data from several studies where
different laboratories were used or combine data
from exposure groups that were collected across some
broad span of time during which several laboratories
were utilized. Furthermore, with large datasets comes
the possibility that the data reflect different exposure
distributions as exposure profiles are unlikely to
be stable for periods of more than a year (Symanski
et al., 1996).

In this paper we address the following questions:

� What is the method bias and overall accuracy
when estimating the 95th percentile or mean of
a lognormal or contaminated lognormal exposure
profile?

� Assuming that the underlying exposure profile is
reasonably lognormal, which CDA methods
should be considered?

� Which method should be used for complex-
censored datasets and/or when we suspect that
the underlying exposure distribution departs sig-
nificantly from single lognormal assumption?

� Is there an ‘omnibus’ method that should be the
first choice, regardless of the sample size, (ob-
served) percent censored, complexity of censor-
ing or variability in the data?

To address these questions, we estimated the bias and
root mean square error (rMSE) for each of the CDA
methods when estimating a commonly used compli-
ance statistic (i.e. the 95th percentile) and the expo-
sure profile mean (often used in environmental
evaluations and epidemiological studies). The bias
is a function not only of the CDA method employed
but is also a function of the true geometric standard
deviation (GSD), true percent censored and the sam-
ple size. The rMSE for each method is an estimate of
the overall accuracy (i.e. overall imprecision), which
is a function of both bias and precision.

While earlier studies of CDA methods (discussed
later) are helpful for sorting out the above issues,
they often had limitations. Obviously, the very early
studies will be dated with respect to newer methods.
Most studies, even the relatively recent studies, fo-
cused on only a limited number of methods. Many
of the studies averaged their results across all of
the posited scenarios and underlying distributions
making it difficult to impossible to sort out the results
for a specific method and type of underlying distribu-
tion. Most of the studies considered only one or a few
samples sizes and/or only a few levels of variability.
Many of the studies generated only 500–1000 simu-
lated datasets per method, which can result in
variable and misleading bias and rMSE values, which
we in this study attempted to avoid by using
100 000 as the simulation sample size. Several stud-
ies examined the robustness of the CDA methods
by challenging them with data drawn from identi-
cal ‘contaminated lognormal’ distributions, that is,
distributions created by combining two lognormal
distributions. However, these contaminated distribu-
tions were similar in shape to a standard lognormal
and thus not a severe challenge for the methods. Last,
all of the studies focused exclusively or primarily on
estimating the mean of a lognormal, right-skewed
distribution. Our main interests are the upper percen-
tiles estimates, such as the 95th percentile exposure
(Mulhausen and Damiano, 1998; Bullock and Igna-
cio, 2006), and while a few of the studies passingly
addressed upper percentiles, none did so comprehen-
sively enough for us to draw reliable inferences.

We recognize that many aspects of our computer
simulations repeat work reported in earlier papers.
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For example, we will address the analysis of both
lognormal and contaminated lognormal exposure
profiles, examine the effect of LODs in ranges of
1–50% and 50–80% of the underlying distribution
and cover sample sizes ranging from 5–100. Further-
more, we will contrast and compare the most
common examples from all four families of CDA
methods, nearly all of which have been addressed
by one or more previous papers. However, we feel
these repeats are justified as our results provide
interesting and sometimes surprising comparisons
between the various methods.

We purposefully did not address confidence inter-
vals in this study. Neither did the majority of the pre-
vious investigators. Some authors have examined and
promote the use of the bootstrap or jackknife meth-
ods for devising confidence intervals (Shumway
et al., 2002; Helsel, 2005). Helsel (2005) devotes
a chapter to calculating parameter confidence inter-
vals for censored datasets and discusses the various
alternatives.

Last, we suspected at the outset that it was unlikely
that a single method would always perform better
than the others, regardless of the exposure scenario,
which indeed proved true. Therefore, our goal is to
inform the reader regarding the ability of each of
the selected methods to extract unbiased and precise
estimates of the usual parameters from datasets
where the underlying distribution is either lognormal
or contaminated lognormal, as well as from both sim-
ple- and complex-censored datasets. To accomplish
this goal, we devised several exposure scenarios with
the expectation that the reader will select the scenar-
ios that best describe their experience and focus on
the methods that perform best under these conditions.

CENSORED DATA ANALYSIS METHODS

Published or recommended methods for analyzing
such datasets tend to fall into four categories or
families:

� substitution methods,
� LPR methods,
� MLE methods, and
� NP methods.

Substitution methods

The three common substitution methods are LOD,
LOD/2 and LOD/

ffiffiffi
2

p
substitution, although the

choice of the substitution fraction is largely arbitrary.
Substitution of each ‘less than value’ with the LOD
continues to occur, despite the numerous recommen-
dations against, with the invariable justification that
such a practice is conservative (LOD substitution
tends to result in a ‘conservative’ or positive bias
for the mean and a negative bias for variability.
The reduction in variability tends to result in a nega-

tive bias for the 95th percentile (which is calculated
from the sample GM and sample GSD)). LOD/2 sub-
stitution appears to be the CDA method of choice in
the epidemiological literature whenever large, com-
plex-censored datasets are used to construct a job-
exposure matrix (Hornung and Reed, 1990; Glass
and Gray, 2001). When estimating the true geometric
mean (GM) and GSD, Hornung and Reed (1990) rec-
ommended using LOD

� ffiffiffi
2

p
substitution whenever it

was suspected that the underlying GSD is ,3, and
LOD/2 substitution otherwise. But when estimating
the mean, they recommended the LOD/2 method
provided the percent censoring was ,50%. Their
paper is frequently referenced to justify using the
LOD/2 substitution method.

All of the substitution methods are biased, and this
bias will be a function of the true GSD, the true per-
cent censored and the sample size. As the sample size
increases, the bias asymptotically approaches a fixed
value. El-Shaarawi and Esterby (1992) derived for-
mulae for directly calculating the large sample bias
for the mean when using substitution methods, given
known values for the GM, GSD and the true percent
censored. But since their formulae cannot be used to
determine the bias for small sample sizes, bias when
estimating upper percentiles, or the overall accuracy
(bias plus precision) of the estimates and cannot be
applied to complex-censored or contaminated log-
normal distributions, we included the substitution
methods in our simulations.

LPR methods

In occupational health, the LPR method has long
been recommended (Hawkins et al., 1991; Mulhausen
and Damiano, 1998) for analyzing censored data.
The data, including the LODs, are sorted and plotted
using log-probability plotting paper. This method,
the LPR method, is based on following relationship,
which is derived from the Z-value equation:

yi 5 l̂y þ r̂y � U� 1ðpiÞ;

where yi 5 ln(xi) and U�1(pi) refers to the inverse
cumulative normal distribution for plotting position
pi. This is a linear equation which is solved for the
non-LOD pairs of yi and U�1(pi). The sample GM
and sample GSD are estimated using the exponential
of the intercept and slope, respectively. Blom’s for-
mula is typically used for calculating the ith plotting
position: pi 5 (i � 3/8)/(n þ 1/4).

A variation on this method is the robust LPR
(LPRr) method, which is felt to be less susceptible
to departures from the lognormal assumption (Kroll
and Stedinger, 1996) and avoids transformation bias
[transformation bias refers to the bias in the estimate
of the mean that results when the mean (on the
concentration scale) is calculated from the sample
GM and sample GSD (which are estimated using
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the log-transformed data); the minimum variance un-
biased estimator equation (Mulhausen and Damiano,
1998) is typically used with complete (i.e. uncen-
sored) samples to reduce this bias] since the mean
can be estimated using the simple arithmetic mean.
With LPRr, the missing values, represented by the
non-detects, are predicted using the ‘initial’ values
of the sample GM and sample GSD determined using
LPR. The ‘final’ sample estimates are calculated by
combining the predicted values and the detects and
analyzing the dataset in the conventional fashion
for the sample GM and GSD (and from these calcu-
lating the sample 95th percentile) and for the sample
arithmetic mean (thus avoiding transformation bias).

In principle, neither of the LPR and LPRr methods
should be applied to complex-censored datasets.
Helsel and Cohn (1988) devised an ad hoc method
that can be applied to a complex-censored dataset
by evenly spreading the LODs throughout the lower
portion of the dataset. This method, which we will
call the robust, multiple LOD LPR method (LPRrm),
was recommended by Helsel and Cohn (1988) when-
ever the lognormal distribution assumption is in
doubt. The methodology is complex, so the reader
is referred to the original articles. Helsel (2005) pro-
vided a worked example of the LPRrm method, which
he referred to as the ‘robust regression on order sta-
tistics’ method.

MLE methods

The MLE method is often considered the gold
standard provided the data are well described by a
lognormal distribution. The sample GM and GSD are
those values that maximize the likelihood function:

LF5
Yn

i5kþ1

pdf ðln xi j ln GM; lnGSDÞ

�
Yk
j51

cdf ðln xj j ln GM; lnGSDÞ;

where n 5 sample size (including both censored and
uncensored data), k 5 number of censored data, pdf
refers to the probability density function and cdf re-
fers to the cumulative distribution function. Since
there is no close-form solution to this equation,
Finkelstein and Verma (2001) recommended using
the solver-function available in most spreadsheets
to find the optimal solution. They provided an easy
to follow example that can be extended to virtually
any sample size and degree of censoring.

If the underlying distribution is felt to depart sig-
nificantly from the lognormal distribution assump-
tion, Kroll and Stedinger (1996) recommended
using robust maximum likelihood estimation (MLEr)
where the MLE method is used to derive the initial
estimates of the sample GM and GSD. As with LPRr,
the missing values (i.e. the censored exposures) are

predicted using the initial sample GM and GSD
and then combined with the detects. The final sample
GM and GSD, as well as the simple arithmetic mean
(thus avoiding transformation bias), are calculated in
the conventional manner using the combined dataset.

While in principle either MLE or MLEr can be ap-
plied to complex-censored datasets, we decided to
create an additional variation (MLErm) which is iden-
tical to LPRrm, except that the MLE method, rather
than the LPR method, is used to generate the initial
estimates of the sample GM and GSD. Otherwise,
all other calculations are the same as those used for
the LPRrm method (see the citations for LPRrm, such
as Helsel, 2005).

The last variation on the MLE method is that de-
vised by Succop et al. (2004). The MLE method is
used to derive initial estimates of the sample GM
and GSD. These estimates are used to estimate the
cdf for each unique LOD in the dataset. Each non-
detect is then replaced with what the Succop et al.
called ‘the most probable value’ concentration,
which corresponds to the predicted concentration at
half of the cdf value for the LOD (for example, if
an LOD is situated at the 10th percentile for the log-
normal exposure profile predicted using the MLE
method, each non-detect is simply replaced with
the concentration predicted to occur at the 5th per-
centile). The mean of new dataset, which consists
of the uncensored and the most probable values, is
then estimated using the standard arithmetic mean
formula. The authors did not estimate, via computer
simulation, the bias or accuracy for this method, but
after comparing these most probable values to labo-
ratory values (where the laboratory was persuaded
to provide measurements below the LOD), the au-
thors concluded that this method is preferable to
the simple substitution methods. We implemented
the authors’ method (referred to here as MLEmpv)
and after replacing all LOD values with the most
probable values estimated the GM, GSD, 95th per-
centile and mean using the standard statistical formu-
lae. We should note, however, that Succop et al.
never claimed that their method could be applied to
accurately estimating any parameter other than the
mean.

NP methods

KM quantile and mean. Schmoyer et al. (1996)
and She (1997) recommended applying the KM
method, originally intended for application to the
right-censored data that occur in prospective epide-
miological studies and in clinical trials, to the left-
censored concentration data encountered in environ-
mental studies. The KM method is basically a NP
method based on the empirical cdf [for uncensored
datasets, the KM method produces quantiles that
are identical to those produced by the empirical cdf
method for all sample sizes except those where np
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(where n 5 sample size and p 5 proportion: for ex-
ample, p 5 0.95 for the 95th percentile) equals an in-
teger; in these cases, the empirical cdf method
assigns the proportion to the ranked value for that in-
teger, while the KM method assigns the proportion to
the next higher ranked value]. Its main advantage is
the ability to estimate the mean in the presence of
non-detects, without relying upon a distributional
assumption. The KM method is available in many sta-
tistics programs, but because it was originally intended
for right-censored datasets, the exposure data must be
‘flipped’ before analysis (i.e. the left-censored data-
set must be converted to a right-censored dataset).
Helsel (2005) provided an example of the calcula-
tions and recommended it in preference to ‘all other
methods’ whenever the (observed) percent censored
is ,50%. To implement this method, we wrote com-
puter code that does not require flipping of the data.
KM can also be used to estimate the median and
other quantiles. For the 95th percentile, the minimum
sample size should be 20.
Quantiles. NP methods for estimating quantiles

(i.e. NP percentiles) do not require an assumption re-
garding the shape of the underlying distribution and
are therefore considered to be robust to departures
from the lognormal or any other distributional as-
sumption. For the 95th quantile, that is, the NP sam-
ple 95th percentile, at least 19 or 20 measurements
are required, depending upon the calculation method,
and an observed percent censored that is no more
than roughly 90% (depending upon the sample size).
Hyndman and Fan (1996) present several methods,
which they numbered Q1 through Q8, for calculating
NP quantiles (see Appendix 1). The Systat (2007)
statistical package default quantile method is ‘Cleve-
land’s method’ (i.e. the Q5 method in Appendix 1).
The SAS (2006) statistical package default method
is the ‘Empirical CDF with averaging’ method (i.e.
the Q2 method). The EPA recently recommended us-
ing the Q7 method. For these simulations, we se-
lected the Q6 method as it was recommended by
Gilbert (1987) and Helsel and Hirsch (2002):

� sort the data from low to high,
� calculate i 5 integer portion of 0.95(n þ 1), and
� estimate the 95th percentile: X̂0:95 5 xi þ

ð0:95ðnþ 1Þ � iÞðxiþ1 � xiÞ:

Recommendations in the literature

Gilliom and Helsel (1986) applied several CDA
methods—including LOD, LOD/2, LPR and
MLE—to the analysis of randomly generated data-
sets of size 10, 25 and 50, drawn from lognormal,
‘contaminated lognormal’ (i.e. a mixture of two spe-
cific lognormal distributions), gamma and delta dis-
tributions. The datasets were censored at a single
LOD set at 20%, 40%, 60% and 80% of the underly-
ing distribution. Simulations were done at four levels

of variability (i.e. four coefficients of variation) for
each of the four types of distributions. For each of
the 16 scenarios, 500 random datasets were gener-
ated. The rMSE summary statistics were calculated
across all 16 simulations, making the results difficult
to interpret for any one method and scenario, but the
authors concluded that the LPR and MLE methods
were, across all the distributions, the preferred meth-
ods for estimating the mean and ‘median and inter-
quartile range’, respectively.

Helsel and Cohen (1988) extended the work of
Gilliom and Helsel (1986) by considering multiple
LODs and adding the LPRrm method to the methods
tested. They looked at only one sample size (n 5 25)
and three LODs, set at 20%, 40% and 80% of the un-
derlying distribution. Roughly one-third of the meas-
urements were assigned to each LOD. (If a randomly
generated measurement was less than the assigned
LOD, the measurement was truncated at the LOD.)
Otherwise, their procedures were identical to those
of Gilliom and Helsel (1986). The authors used the
rMSE as the primary metric for comparison and con-
cluded that the LPRrm method is superior to all others
when the underlying distribution departs from the
lognormal distribution assumption.

Kroll and Stedinger (1996) compared the LPR,
LPRr, MLE and MLEr methods when analyzing
censored datasets drawn from the lognormal, con-
taminated lognormal [using the same contaminated
lognormal distributions used by Gilliom and Helsel
(1986) and Helsel and Cohen (1988)], gamma, delta
and other distributions. They generated concentra-
tion datasets for samples sizes of 10, 25 and 50 and
single LODs set at 10%, 20%, 40%, 60% and 80%
of the underlying distribution. Because they summa-
rized the rMSE results across all the distributions and
their variations, as well as calculated ratios compar-
ing the various methods, their results are difficult to
interpret and to compare to the results of others.
The authors used the rMSE as the metric for compar-
ison and concluded that for censoring of 60% or less,
the methods in general produced similar rMSE val-
ues, but that the MLE method was superior for the
80% censored scenarios. The robust methods—LPRr

and MLEr—performed better when estimating the
mean, with the MLEr performing slightly better than
the LPRr method. However, for low to moderate cen-
soring, the authors recommended the LPR and LPRr

methods over the MLE and MLEr methods on the ba-
sis that they are easier to understand and implement.

Schmoyer et al. (1996) compared the KM method
to the MLE method when doing hypothesis tests on
the mean for datasets of size n 5 10 drawn from log-
normal, truncated normal and gamma distributions
where the percent censored was roughly 25%, 50%
and 75% of the underlying distribution. For each
combination they generated 500 datasets. They pre-
sented their results in terms of power curves for a test
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on the mean exposure. While they allowed that the
interpretation of the power curves was subjective,
they concluded that ‘in general, the (KM) test seems
better’ than the MLE method. She (1997) compared
the KM method to the LOD/2 substitution, LPR and
MLE methods. She generated 1000 datasets of size
n 5 21 where each dataset had three censoring
points randomly assigned from 10% to 80% of the
underlying distribution (in increments of 10%). The
bias and rMSE results varied, with the LOD/2 substi-
tution occasionally performing better than the KM
method. However, She rejected the LOD/2 as a valid
method based on the perception that it ‘has no statis-
tical theoretical basis’. She concluded that the KM
method ‘performs as well as or better than’ the
MLE, LPR or LOD/2 substitution methods, making
it an ‘attractive alternative . . . because it is non-
parametric and quite robust when the distribution de-
parts from normality (for the log-transformed data)’.

Shumway et al. (2002) compared the LPRr and
MLE methods when estimating the mean and variance
from censored datasets drawn from the lognormal dis-
tribution. They looked at sample sizes of 20 and 50,
with LODs set at 50% and 80% of the underlying dis-
tribution. They concluded that neither method was
consistently better and that the choice depends upon
the percent censored and departures from lognormal-
ity. They warned against combining different datasets
as it would increase the probability that the data will
come from a ‘mixture of distributions’, recommend-
ing instead the ‘grouping of data into similar subsets’.

There are other articles, but the above appeared to
be the most relevant. Textbooks on the statistical
analysis of environmental data offer differing advice.
Gibbons and Goleman (2001) reviewed the literature
and concluded that the MLE method is the ‘best over-
all estimator’. In what may be the only published
textbook devoted to the topic of CDA, Helsel
(2005) reviewed the literature and offered the follow-
ing recommendations:

� for ,50% censored use the KM method (for all
sample sizes),

� for 50–80% censored use MLEr or LPRrm for
sample sizes ,50, and MLE for sample sizes
.50, and

� for .80% censored report the NP exceedance
fraction for the limit whenever the sample size
is ,50 and the NP upper percentiles (e.g. 90th
or 95th) for sample sizes .50.

Helsel (2005) justified the universal application of
the KM method for low to moderately censored data-
sets on the strength of the She (1997) and Shumway
et al. (2002) papers, and the opinion that the KM
method, since it does not require any distributional
assumption, is robust to all situations where the true
exposure profile departs significantly from the log-
normal distribution assumption.

US agencies and organizations have published sev-
eral monographs on the analysis of environmental
data. The Environmental Protection Agency (EPA,
2006) offered the following general recommenda-
tions:

� if the percent censored is ,15%, use substitution
with zero, LOD/2, or the LOD, or use the MLE
method,

� for 15–50% censored, use the MLE method, and
� for 50–90% censored, calculate the NP exceed-

ance fraction for the limit.

The US Geological Survey agency (Helsel and
Hirsch, 2002) published a guide to statistical meth-
ods in which the substitution methods were recog-
nized to have good overall accuracy (i.e. low
rMSE), but were not recommended because they
tend to be biased and have no theoretical foundation.
The MLE, MLEr or LPRr methods were recommen-
ded, the last two in particular when the lognormal
distribution assumption is in doubt. The LPRrm

method was recommended whenever there are multi-
ple LODs in the dataset. Frome and Wambach (2005)
of Oak Ridge National Laboratory published an over-
view of the statistical methods that can be applied to
censored datasets. They recommended the MLE
method for general use and the KM method when-
ever the lognormal distribution assumption is in
doubt.

In summary, it would appear that no one method
has been recommended for all instances of sample
size, degree of conformity to the lognormal distribu-
tion assumption and the degree of censoring. It
also appears that the published computer simulations
more often than not were limited in terms of the num-
ber of methods compared, the simulation sizes, the
sample sizes selected and/or ranges for the percent
censored. Our computer simulations are more com-
prehensive in regards to all of these issues and hope-
fully can be generalized to a wider range of actual
scenarios.

COMPUTER SIMULATION METHODS

To estimate the bias and rMSE, we developed
a computer program to generate and analyse cen-
sored datasets using the following CDA methods:

� Substitution: LOD, LOD/2 and LOD/
ffiffiffi
2

p

� Log-probit regression: LPR, LPRr, LPRrm.
� Maximum likelihood estimation: MLE, MLEr,

MLErm and MLEmpv.
� Non-parametric methods: NP and KM.

For each artificial dataset, the estimates of the 95th
percentile [most of the CDA methods lead to a sample
GM and GSD, from which the sample 95th per-
centile can be estimated using the standard equation:
X̂0:95 5 expðlnðGMÞ þ 1:645 � lnðGSDÞÞ] and mean
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were compared to the true values. After the genera-
tion and analysis of 100 000 artificial-censored data-
sets, the average bias and rMSE (an estimate of the
overall accuracy, discussed later) were calculated
for each parameter.

To compare the methods, we devised the following
three simulations (Table 1):

� Simulation 1: n ranged between 20 and 100, the
true percent censored ranged between 1% and
50% and the true GSD ranged between 1.2 and 4,

� Simulation 2: n ranged between 20 and 100, the
true percent censored ranged between 50% and
80% and the true GSD ranged between 1.2 and
4, and

� Simulation 3: n ranged between 5 and 19, the true
percent censored ranged between 1% and 50%
and the true GSD ranged between 1.2 and 4.

For each of these simulations, we devised the follow-
ing four scenarios:

� Scenario I: a single lognormal distribution and
a single LOD,

� Scenario II: a single lognormal distribution and
three LODs,

� Scenario III: a contaminated lognormal distribu-
tion and a single LOD, and

� Scenario IV: a contaminated lognormal distribu-
tion and three LODs.

While there are other permutations that we could
have devised (and did, as discussed later), we felt that
the simulations and scenarios above represented
a thorough testing of the various methods for analyz-
ing censored data. Readers should be able to identify
a familiar scenario and then determine the best
method or methods.

For Simulation 1, we generated 100 000 artificial
datasets from censored lognormal or censored con-
taminated lognormal distributions. The sample size
for each dataset was randomly varied (using the uni-
form distribution) between 20 and 100 (inclusive).
The percentage of the distribution that was censored
was also randomly varied (using the uniform distri-
bution), between 1% and 50% (inclusive). The labo-
ratory LOD was then set at the concentration in the
distribution corresponding to the percent censored.

Simulation 1 was repeated for each of four scenar-
ios (see Table 1) and for each of the CDA methods. In
Scenario I, a single lognormal distribution was as-
sumed as well as a single laboratory. The GM was
fixed at 1, while the GSD for the distribution was ran-
domly varied between 1.2 and 4 (inclusive) using the
uniform distribution. In Scenario II, a single lognor-
mal distribution was also assumed, as in Scenario I,
but three laboratories with different LODs were as-
sumed to have been used, one each for approximately
one-third of the samples. The LOD for each labora-
tory was randomly generated as described above. In
Scenario III, a single laboratory was used; however,
the underlying distribution was contaminated. A con-
taminated (i.e. non-lognormal) distribution was cre-
ated by combining two lognormal distributions.
The GM and GSD for each distribution were ran-
domly generated from uniform distributions where
the minimum and maximum values were 1 and 3,
and 1.2 and 4, respectively. The fraction that the first
distribution contributed to the overall distribution
was also randomly varied by generating a fraction
from a uniform distribution where the minimum and
maximum were 0 and 1. (The fraction contributed
by the second distribution was one minus this value.)
In Scenario IV, a contaminated distribution was again

Table 1. Parameters used in Simulation 1

Simulation parameter Scenario I Scenario II Scenario III Scenario IV

min–max min–max min–max min–max

Sample size 20–100 20–100 20–100 20–100

Exposure profile distributions

GM1a 1 1 1–3 1–3

GSD1 1.2–4 1.2–4 1.2–4 1.2–4

GM2 — — 1–3 1–3

GSD2 — — 1.2–4 1.2–4

Distribution1 %b 100% 100% 0–100% 0–100%

Laboratory LOD as % of the
exposure profilec

Laboratory1 LOD % 1–50% 1–50% 1–50% 1–50%

Laboratory2 LOD % — 1–50% — 1–50%

Laboratory3 LOD % — 1–50% — 1–50%

Simulations 2 and 3 were identical to Simulation 1 except that for Simulation 2 the LOD as a percent of the exposure profile
ranged between 50% and 80% and for Simulation 3 the sample size ranged between 5 and 19.
aSince only a single distribution is used in Scenarios I and II, the GM was fixed at 1.
bDistribution2 % will be 1—the percentage for Distribution1.
cIf three laboratories were used each was used �1/3 of the time.
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used, as just described, but with three laboratories
and three LODs, as was described for Scenario II.
Simulation 2 was identical to Simulation 1 above,
except that the percentage censored varied between
50% and 80% (inclusive). Simulation 3 was also
identical to Simulation 1, except that the sample sizes
were allowed to vary between 5 and 19 (inclusive),
rather than 20 and 100.

For each randomly generated dataset, the com-
puter program did the following:

� determined if the dataset was invalid,
� determined if the dataset was completely uncen-

sored,
� applied standard statistical methods to each valid,

uncensored dataset, and
� applied the selected CDA method to each valid,

censored dataset.

A dataset was invalid if all n measurements were cen-
sored or there were too few uncensored data. For the
LPR-based and MLE-based methods, a valid dataset
was one with at least three measurements and at least
two of those must be uncensored. For the substitution
methods, a valid dataset must have at least two meas-
urements and at least one must be uncensored. The
fraction of invalid datasets for each method was
tracked by the program [for Simulations 1 and 2,
the fraction of invalid datasets was typically
,0.1%; for Simulation 3, the typical fraction was
,0.5% (the smaller sample sizes increased the likeli-
hood of an invalid or completely censored dataset)].
If all n measurements were uncensored, the dataset
was statistically analysed by the program using the
standard statistical methods for estimating the GM,
GSD, 95th percentile and mean (see Mulhausen
and Damiano, 1998). The selected CDA method
was applied whenever the dataset was valid and there
was at least one LOD value. After the sample GM
and GSD were calculated, the sample 95th percentile
was calculated using the standard equation [most
of the CDA methods lead to a sample GM and
GSD, from which the sample 95th percentile can
be estimated using the standard equation: X̂0:955

expðlnðGMÞ þ 1:645 � lnðGSDÞÞ]. For the LPR and
MLE methods, the mean was estimated using the
minimum variance unbiased estimator (mvue) equa-
tion (Mulhausen and Damiano, 1998), using n � k
and n as the sample size, respectively. (The mvue
equation was designed to minimize the transforma-
tion bias that occurs when moving from the log scale
to the concentration scale. Preliminary simulations
suggested that using the full sample size (n) in the
mvue equation was appropriate for the MLE-based
methods, while for the LPR-based methods, a re-
duced sample size (n � k) results in less bias when
used in the mvue equation.) For the substitution
methods, the robust MLE or LPR methods and the
MLEmpv method, the mean was estimated using the

standard simple arithmetic mean formula. For the
KM method, the mean was estimated without varia-
tion from the procedure outlined in Helsel (2005).

However, we estimated the mean regardless of the
actual fraction of censored data [Helsel (2005) rec-
ommended that the KM method should not be used
to estimate the mean whenever the dataset is .50%
censored]. The KM and NP methods were used to es-
timate the 95th percentile in those simulations where
the sample size was 20 or greater.

Once the sample 95th percentile and mean were
calculated, the differences between the sample esti-
mates and the true values were determined. After
all 100 000 datasets were generated, the program cal-
culated the average bias for each of the parameters
across all 100 000 datasets:

Bias5 ð�x � hÞ;
where �x is the mean of the 100 000 parameter esti-
mates and h is the true value. The program also cal-
culated the rMSE, which is a combination of bias and
precision:

rMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�x � hÞ2 þ

P
ðx � �xÞ2

N � 1

s

where N 5 100 000. The rMSE value can be consid-
ered a measure of overall imprecision or overall ac-
curacy. For example, for a particular parameter,
a proposed method may be biased but have lower var-
iability. If the resulting rMSE is comparable to a gold
standard method, the proposed method could be con-
sidered suitably accurate.

The bias and rMSE can be evaluated on the log
scale (e.g. bias relative to ln X0.95) or the concentra-
tion scale (e.g. bias relative to X0.95). Consistent with
the overwhelming majority of other investigators, we
chose to examine the bias and rMSE on the concen-
tration scale, or relative to the true 95th percentile and
mean.

RESULTS AND DISCUSSION

The results for the Simulation and Scenario combi-
nations are listed in Tables 2 through 13. For the bias
comparison metric, the methods are ranked in order
of the absolute value of the bias. For the rMSE com-
parison metric, the methods are ranked from low to
high. The bias and rMSE are given in terms of the
percent of the true value. Given that we used N 5

100 000 for all simulations, the estimates of bias
and rMSE should be fairly stable. Repeating the
same simulation will generally produce a result that
is within –0.2 of the table values. In contrast, when
we reduce the simulation size to the N 5 500 or
N5 1000, as was used in most of the published stud-
ies on CDA, we observed that the bias and rMSE val-
ues frequently vary from the table values by plus or
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Table 2. Simulation 1, Scenario I—single lognormal distribution and a single laboratory where the laboratory LOD is 1–50% of
the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLErm �0.4 MLEmpv 22.4 MLErm 0.0 MLE 17.9

LPRr 0.4 Sub LOD
� ffiffiffi

2
p

22.6 MLEr 0.1 LPR 18.4

Sub LOD/2 0.5 MLErm 23.0 LPRr 0.1 MLEr 19.5

MLEr 0.5 Sub LOD/2 23.1 MLEmpv �0.1 MLErm 19.6

MLE 0.6 MLEr 23.2 LPRrm �0.2 LPRr 19.6

LPRrm 1.4 MLE 23.3 LPR 0.5 LPRrm 19.8

LPR 2.5 LPRr 23.8 MLE �0.5 MLEmpv 19.8

KM 2.8 LPRrm 24.1 Sub LOD
� ffiffiffi

2
p

0.6 Sub LOD
� ffiffiffi

2
p

19.9

MLEmpv �6.0 Sub LOD 24.2 Sub LOD/2 �1.8 Sub LOD/2 20.4

Sub LOD
� ffiffiffi

2
p

�7.8 LPR 24.9 Sub LOD 4.2 KM 20.5

Sub LOD �13.5 KM 35.8 KM 4.2 Sub LOD 20.5

NP 15.2 NP 50.6

Table 3. Simulation 1, Scenario II—single lognormal distribution and three laboratories where the LOD for each laboratory fell
in the range of 1–50% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLE 0.4 Sub LOD
� ffiffiffi

2
p

21.9 LPRrm 0.0 LPR 16.5

Sub LOD/2 0.7 LPRr 22.0 LPR 0.0 MLE 17.9

LPRrm �1.4 MLErm 22.1 MLErm 0.2 LPRrm 19.6

MLErm �2.3 MLEr 22.3 MLEmpv �0.3 MLErm 19.6

MLEr �2.5 LPR 22.4 Sub LOD
� ffiffiffi

2
p

0.6 LPRr 19.8

KM 2.9 Sub LOD/2 22.4 MLE �0.7 KM 19.8

MLEmpv �4.1 LPRrm 22.5 KM 1.4 MLEr 19.9

LPR �6.5 Sub LOD 22.6 MLEr 1.4 MLEmpv 19.9

LPRr �7.1 MLE 23.1 Sub LOD/2 �1.8 Sub LOD
� ffiffiffi

2
p

20.0

Sub LOD
� ffiffiffi

2
p

�7.4 MLEmpv 23.5 LPRr 3.2 Sub LOD 20.1

Sub LOD �12.1 KM 34.2 Sub LOD 4.2 Sub LOD/2 20.1

NP 15.0 NP 52.1

Table 4. Simulation 1, Scenario III—a contaminated lognormal distribution and a single laboratory where the laboratory LOD is
1–50% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

LPRr 0.2 MLEmpv 24.1 MLErm �0.1 MLE 18.2

MLEr �0.3 Sub LOD
� ffiffiffi

2
p

24.4 MLEmpv �0.1 LPR 18.7

MLE �0.5 Sub LOD/2 24.4 LPRr �0.1 MLErm 21.4

MLErm �1.2 MLErm 24.7 MLEr �0.2 MLEmpv 21.5

LPRrm 1.3 MLE 24.9 LPRrm �0.4 Sub LOD
� ffiffiffi

2
p

21.8

Sub LOD/2 �1.6 MLEr 25.2 Sub LOD
� ffiffiffi

2
p

1.1 MLEr 21.8

LPR 1.8 LPRr 25.7 Sub LOD/2 �1.4 Sub LOD/2 21.9

KM 4.6 Sub LOD 26.0 LPR �1.5 LPRrm 21.9

MLEmpv �7.2 LPRrm 26.5 MLE �2.3 LPRr 22.6

Sub LOD
� ffiffiffi

2
p

�9.0 LPR 26.9 Sub LOD 4.3 KM 22.7

Sub LOD �14.4 KM 39.9 KM 4.4 Sub LOD 22.9

NP 19.7 NP 64.4
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Table 5. Simulation 1, Scenario IV—a contaminated lognormal distribution and three laboratories where the LOD for each
laboratory fell in the range of 1–50% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLE �0.7 Sub LOD
� ffiffiffi

2
p

23.8 MLErm 0.0 LPR 16.8

Sub LOD/2 �1.3 MLErm 24.1 LPRrm �0.2 MLE 18.1

LPRrm �2.2 Sub LOD/2 24.2 MLEmpv �0.4 LPRrm 21.4

MLEr �3.2 LPR 24.3 Sub LOD
� ffiffiffi

2
p

1.0 LPRr 21.5

MLErm �3.3 LPRr 24.3 Sub LOD/2 �1.3 MLEr 21.6

KM 4.4 MLEr 24.3 MLEr 1.4 MLEmpv 21.8

MLEmpv �5.4 LPRrm 24.6 KM 1.6 KM 21.9

LPRr �7.9 MLE 24.7 LPR �1.9 Sub LOD
� ffiffiffi

2
p

21.9

LPR �7.9 Sub LOD 24.8 MLE �2.4 MLErm 21.9

Sub LOD
� ffiffiffi

2
p

�8.7 MLEmpv 25.3 LPRr 3.1 Sub LOD/2 22.3

Sub LOD �13.3 KM 39.7 Sub LOD 4.3 Sub LOD 22.4

NP 19.5 NP 62.7

Table 6. Simulation 2, Scenario I—single lognormal distribution and a single laboratory where the laboratory LOD is 50–80% of
the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLE 0.0 MLErm 24.2 MLE 0.0 MLE 18.9

MLEr 0.3 MLE 24.8 LPR 0.0 LPR 19.5

LPRr 0.9 MLEr 25.2 MLErm 0.3 MLEr 19.8

LPRrm 1.7 LPRr 25.8 MLEr 0.6 LPRr 20.0

MLErm �1.8 LPRrm 26.4 Sub LOD/2 �0.7 MLEmpv 20.0

KM 2.5 Sub LOD 26.6 MLEmpv �1.4 MLErm 20.1

LPR 3.5 Sub LOD
� ffiffiffi

2
p

27.7 LPRrm �1.5 LPRrm 20.4

NP 14.9 LPR 28.0 LPRr 1.6 Sub LOD/2 21.7

Sub LOD/2 �19.8 Sub LOD/2 28.3 Sub LOD
� ffiffiffi

2
p

12.0 Sub LOD
� ffiffiffi

2
p

24.5

Sub LOD �20.7 MLEmpv 29.6 KM 30.2 KM 38.2

Sub LOD
� ffiffiffi

2
p

�21.3 KM 33.5 Sub LOD 30.3 Sub LOD 38.3

MLEmpv �21.6 NP 49.8

Table 7. Simulation 2, Scenario II—single lognormal distribution and three laboratories where the LOD for each laboratory fell
in the range of 50–80% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLE 0.2 MLErm 22.9 MLE 0.0 MLE 19.0

KM 2.9 LPRr 22.9 MLErm 0.1 MLErm 19.6

LPRrm �3.1 LPRrm 24.1 LPRrm �0.6 LPRrm 19.8

LPR �4.2 Sub LOD 24.3 Sub LOD/2 �0.8 MLEr 19.9

LPRr �4.6 MLE 24.9 MLEmpv �1.7 MLEmpv 20.6

MLEr 4.8 Sub LOD
� ffiffiffi

2
p

26.3 MLEr 3.4 Sub LOD/2 21.4

MLErm �5.4 LPR 26.6 Sub LOD
� ffiffiffi

2
p

12.1 Sub LOD
� ffiffiffi

2
p

23.9

NP 15.0 MLEr 26.7 LPR 17.9 LPR 25.8

Sub LOD �17.8 Sub LOD/2 27.2 KM 19.8 KM 28.1

Sub LOD/2 �19.0 MLEmpv 29.5 LPRr 21.9 LPRr 30.6

Sub LOD
� ffiffiffi

2
p

�19.8 KM 34.1 Sub LOD 30.5 Sub LOD 37.2

MLEmpv �21.8 NP 51.2
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Table 8. Simulation 2, Scenario III—a contaminated lognormal distribution and a single laboratory where the laboratory LOD is
50–80% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLE 0.9 MLErm 26.7 Sub LOD/2 �0.2 MLE 20.1

MLEr 1.0 MLE 27.7 LPRr �0.9 LPR 21.0

MLErm �1.2 MLEr 27.9 MLEr �1.0 MLErm 21.6

LPRr 3.0 Sub LOD 28.2 MLErm �1.1 MLEr 21.6

LPRrm 3.8 Sub LOD
� ffiffiffi

2
p

29.1 MLE �2.3 LPRr 21.8

KM 4.5 LPRr 29.5 LPR �3.2 MLEmpv 21.8

LPR 5.4 Sub LOD/2 29.7 MLEmpv �3.2 LPRrm 22.3

NP 19.7 LPRrm 30.3 LPRrm �3.8 Sub LOD/2 22.7

Sub LOD �21.1 MLEmpv 31.3 Sub LOD
� ffiffiffi

2
p

12.4 Sub LOD
� ffiffiffi

2
p

25.9

Sub LOD/2 �21.2 LPR 31.8 Sub LOD 29.9 Sub LOD 39.0

Sub LOD
� ffiffiffi

2
p

�22.1 KM 40.0 KM 30.0 KM 39.1

MLEmpv �22.7 NP 62.3

Table 9. Simulation 2, Scenario IV—a contaminated lognormal distribution and three laboratories where the LOD for each
laboratory fell in the range of 50–80% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLE 1.0 MLErm 25.4 Sub LOD/2 �0.1 MLE 19.9

LPRrm �2.1 LPRr 25.7 MLErm �1.3 LPRrm 21.7

LPR �3.5 LPR 26.2 MLEr 2.0 MLErm 21.8

LPRr �3.6 Sub LOD 26.2 MLE �2.3 MLEr 21.8

KM 4.6 LPRrm 26.9 LPRrm �2.8 MLEmpv 22.4

MLErm �5.1 MLE 27.7 MLEmpv �3.2 Sub LOD/2 22.9

MLEr 5.7 Sub LOD
� ffiffiffi

2
p

28.1 Sub LOD
� ffiffiffi

2
p

12.3 LPR 24.6

Sub LOD �18.5 Sub LOD/2 28.8 LPR 15.2 Sub LOD
� ffiffiffi

2
p

25.7

NP 19.7 MLEr 29.5 KM 19.8 KM 29.4

Sub LOD/2 �20.3 MLEmpv 31.2 LPRr 20.4 LPRr 31.1

Sub LOD
� ffiffiffi

2
p

�20.7 KM 40.0 Sub LOD 30.0 Sub LOD 37.6

MLEmpv �22.8 NP 61.6

Table 10. Simulation 3, Scenario I—single lognormal distribution and a single laboratory where the laboratory LOD is 1–50% of
the true distribution; 5 � n � 19; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLEmpv 1.3 Sub LOD
� ffiffiffi

2
p

54.3 LPRrm 0.0 MLE 38.9

Sub LOD
� ffiffiffi

2
p

�1.8 Sub LOD/2 58.3 MLErm 0.0 LPR 40.2

MLE 3.7 Sub LOD 60.9 MLEr 0.2 LPRr 41.2

MLErm 4.1 MLEmpv 61.3 MLEmpv 0.2 MLErm 41.8

LPRr 4.4 MLE 63.4 Sub LOD
� ffiffiffi

2
p

0.7 MLEr 42.0

MLEr 5.4 MLErm 63.7 LPR 0.8 KM 42.1

Sub LOD/2 6.8 MLEr 66.7 LPRr 0.9 Sub LOD
� ffiffiffi

2
p

42.7

Sub LOD �7.9 LPRr 69.0 Sub LOD/2 �1.9 Sub LOD/2 42.9

LPRrm 11.5 LPRrm 94.8 MLE �2.1 MLEmpv 43.1

LPR 12.6 LPR 110.5 KM 4.0 LPRrm 43.2

Sub LOD 4.4 Sub LOD 45.6
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Table 11. Simulation 3, Scenario II—single lognormal distribution and three laboratories where the LOD for each laboratory fell
in the range of 1–50% of the true distribution; 5 � n � 19; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLErm 0.9 Sub LOD 50.8 MLErm 0.1 MLE 38.0

MLEmpv 0.8 Sub LOD
� ffiffiffi

2
p

56.0 MLEmpv �0.3 LPR 38.0

LPRr �1.0 MLErm 59.6 LPRrm 0.4 MLErm 41.0

Sub LOD
� ffiffiffi

2
p

�1.2 MLEmpv 60.2 Sub LOD
� ffiffiffi

2
p

0.8 MLEmpv 41.7

MLEr 2.9 Sub LOD/2 60.6 MLEr 1.5 MLEr 42.1

MLE 3.1 MLE 60.7 LPR 1.6 Sub LOD 42.5

LPR 3.4 LPRr 62.3 KM 1.6 LPRrm 42.7

LPRrm 4.1 MLEr 63.8 Sub LOD/2 �1.8 LPRr 42.8

Sub LOD �6.8 LPRrm 72.3 MLE �2.3 KM 44.0

Sub LOD/2 7.2 LPR 90.6 LPRr 4.0 Sub LOD/2 44.9

Sub LOD 4.2 Sub LOD
� ffiffiffi

2
p

45.6

Table 12. Simulation 3, Scenario III—a contaminated lognormal distribution and a single laboratory where the laboratory LOD is
1–50% of the true distribution; 5 � n � 19; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLEmpv 0.5 Sub LOD 56.7 MLEmpv 0.0 MLE 39.8

Sub LOD
� ffiffiffi

2
p

�2.6 Sub LOD
� ffiffiffi

2
p

58.1 LPRrm �0.1 LPR 40.8

MLE 3.4 Sub LOD/2 62.8 MLEr �0.1 MLErm 45.4

MLErm 4.0 MLEmpv 64.4 MLErm �0.3 LPRr 45.8

MLEr 5.5 MLE 65.8 LPRr 0.7 MLEr 45.8

Sub LOD/2 5.7 MLErm 68.0 LPR �0.8 MLEmpv 46.5

LPRr 6.1 MLEr 73.1 Sub LOD
� ffiffiffi

2
p

1.0 Sub LOD/2 46.6

Sub LOD �8.6 LPRr 100.9 Sub LOD/2 �1.5 Sub LOD 47.5

LPRrm 13.2 LPRrm 103.6 MLE �3.4 Sub LOD
� ffiffiffi

2
p

47.8

LPR 13.7 LPR 121.3 Sub LOD 4.3 KM 47.9

KM 4.5 LPRrm 48.0

Table 13. Simulation 3, Scenario IV—a contaminated lognormal distribution and three laboratories where the LOD for each
laboratory fell in the range of 1–50% of the true distribution; 5 � n � 19; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLEmpv 0.3 Sub LOD 54.8 MLErm 0.2 LPR 38.5

MLErm 0.8 Sub LOD
� ffiffiffi

2
p

57.4 LPR 0.2 MLE 38.9

LPRr �0.8 MLE 63.7 MLEmpv �0.2 LPRr 46.2

Sub LOD
� ffiffiffi

2
p

�2.3 Sub LOD/2 64.3 LPRrm 0.7 MLErm 46.5

MLE 2.3 MLEmpv 65.5 Sub LOD
� ffiffiffi

2
p

0.9 Sub LOD 46.5

MLEr 2.9 MLErm 66.4 Sub LOD/2 �1.3 Sub LOD
� ffiffiffi

2
p

47.4

LPR 3.9 LPRr 66.8 MLEr 1.4 Sub LOD/2 47.8

LPRrm 4.9 MLEr 70.6 KM 1.7 MLEmpv 47.9

Sub LOD/2 6.0 LPRrm 84.0 LPRr 3.8 MLEr 47.9

Sub LOD �7.5 LPR 89.1 MLE �4.0 LPRrm 48.3

Sub LOD 4.2 KM 49.2
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minus several percentage points. Consequently, we
feel that the bias and rMSE estimates in the tables
are reliable.

When comparing methods, our view is that there is
little practical difference between methods having an
absolute bias that differs by only 1% or so, or a rMSE
that differs by only 2% or so. Furthermore, it is worth
mentioning that these are composite results for a wide
range of distributions and censoring points created
using the simulation parameter ranges specified in
Table 1. It is likely that the rankings would change
if the methods were challenged with a specific distri-
bution, a specific LOD and a specific sample size.
Our view is that a composite analysis is more infor-
mative regarding the performance that one should ex-
pect in the long run from each method.

Which comparison metric should be used: the bias
or rMSE? The majority of the studies used the rMSE
as a basis for comparing methods, a few used only bi-
as and several provided both. We provide both met-
rics for the reader to consider, but lean toward the
rMSE as the more informative metric. In principle,
a method with the lowest rMSE has the best combi-
nation of both bias and precision. However, past
investigators have often rejected the LOD/2 substitu-
tion method, even though the method had similar or
lower rMSE values than their preferred method, on
the basis that it had no theoretical basis. Our view
is more utilitarian. While some methods do indeed
appeal to a distributional assumption, we feel that be-
cause the true underlying exposure profile will never
be identical in shape to this assumed distribution that
all methods are essentially ad hoc. Therefore, those
methods that have low rMSE values and are reason-
ably robust to departures from the unimodal, lognor-
mal model should be preferred, with relative ties
going to the method having the lowest bias.

Looking at both the rMSE and bias results, none
of the CDA methods stood out as the ‘single best
method’. If anything, what was clear is that nearly
every method will occasionally excel at estimating
the 95th percentile or mean given some particular
Simulation–Scenario combination. Given that there
was no obvious overall winner, questions that could
be addressed by inspecting the results in Tables 2
through 13 are:

� Which family of methods or specific method is
generally superior overall?

� Which family of methods or specific method is
generally superior given the types of distributions
typically encountered in your experience?

For example, in our experience, a typical scenario is
one where a single laboratory is used each year, re-
sulting in a single censoring point, or LOD, assuming
that the measurements all have roughly the same
sample volume. Therefore, we are more inclined to
weight the Scenario I results over the results of the

other Simulation–Scenario combinations. Other in-
vestigators may have a different experience. For ex-
ample, perhaps only a single laboratory is used, but
the sample sizes are typically ,20, suggesting that
the Simulation 3 results will be more informative.
Or perhaps the datasets are always complex and the
lognormal distribution assumption is always in
doubt, resulting from the combination of data from
disperse areas and/or time periods, in which case
the Scenario IV simulations are of interest.

Substitution methods

While the substitution methods have often been
condemned (She, 1997; Helsel, 2005), their use con-
tinues. Our results, as expected, show that there is
good reason for not using the LOD substitution
method, as it consistently ranked near the bottom
of the rankings in terms of both bias and rMSE, con-
sistently underestimating the 95th percentile and
overestimating the mean. In Simulation 1 (Tables
2–5), where the maximum percent censored was
50%, the LOD/2 and LOD

� ffiffiffi
2

p
substitution methods

did surprisingly well when estimating the 95th per-
centile, being consistently in the top half of the rMSE
rankings. Neither of the LOD/2 and LOD

� ffiffiffi
2

p
meth-

ods did well when estimating the mean (with the
LOD

� ffiffiffi
2

p
substitution method doing slightly better

than the LOD/2 method), being consistently in the
bottom half of the rankings. In Simulation 2 (Tables
6–9), where the percent censored ranged between
50% and 80%, the substitution methods were consis-
tently in the middle rankings for rMSE when estimat-
ing the 95th percentile, but were nearly always at the
bottom of the rankings for bias. For the mean, the
substitution methods were consistently in the bottom
of the rankings for both bias and rMSE. On the other
hand, in Simulation 3 (Tables 10–13), where the sam-
ple sizes ranged between 5 and 19 (inclusive), the bi-
as was variable, leading to no general observation,
except to say that all three methods performed con-
sistently well, using the rMSE metric, when estimat-
ing the 95th percentile.

Overall, the substitution methods—LOD, LOD/2
and LOD

� ffiffiffi
2

p
substitution—did poorly when their

bias is compared to the bias of the MLE-based and
LPR-based methods (discussed later) for both the
95th percentile and mean, particularly in Simulation
2 where the distributions were highly censored. Of
the three, LOD substitution was, as expected, the
most severely biased and should be categorically
avoided. However, there were scenarios, particularly
those in Simulation 3, where the rMSE of the LOD/2
or LOD

� ffiffiffi
2

p
methods was similar to or less than that

of the higher order methods (i.e. the LPR-based or
MLE-based methods), suggesting that the bias inher-
ent in the substitution methods is somewhat offset by
the reduced variability (i.e. increased precision) in
the estimates.
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LPR-based methods

While there were exceptions, the LPR-based meth-
ods tended to be in the middle to top half of the
bias and rMSE rankings for Simulations 1 and 2. The
LPR-based methods appear to be fairly robust when
confronted with multiple LODs and/or contaminated
distributions. The LPRrm method tended to have
lower bias than the LPR and LPRr methods in the
multiple LOD scenarios (Scenarios II and IV) in
Simulations 1 and 2. Overall, the LPR-based meth-
ods were slightly lower in the rankings than the
MLE-based methods, although exceptions frequently
occurred. The LPRrm method, which was designed
solely with the intention of estimating the mean from
complex datasets and when the single lognormal dis-
tribution assumption is in doubt, consistently had low
bias when estimating the mean in all three simula-
tions. However, the simpler LPR method consistently
had lower rMSE values, suggesting that it is the supe-
rior method even when confronted with multiple
LODs and/or contaminated distributions.

All three LPR-based methods did poorly when es-
timating the 95th percentile from small datasets
(Simulation 3; Tables 10–13), frequently having both
large bias and rMSE values. Overall, the LPR-based
methods tended to have larger rMSE values when
compared to the MLE-based methods (due to the oc-
casional very large sample GSD). When estimating
the 95th percentile, there was no consistent winner
among the LPR-based methods, in which case the
simplest to implement—that is, the LPR method—
should probably be preferred. When estimating the
mean, if only the rMSE is considered, the standard
LPR method, while often more biased relative to
the two so-called robust LPR-based methods, almost
always had the lowest rMSE, regardless of the simu-
lation or scenario. If bias for the mean estimate is
a concern, the LPRrm method should be considered.

MLE-based methods

With the exception of the MLEmpv method, the
MLE-based methods performed well in the single-
distribution scenarios and were generally fairly ro-
bust in the multiple LOD and contaminated distribu-
tion scenarios. Typically, when estimating the 95th
percentile, the MLE or MLEr methods often ranked
high for the bias metric, while for the mean, the
MLErm method was often ranked very high. Regard-
ing the rMSE metric, the MLE, MLEr and MLErm

methods were usually in the top half of the rankings.
In Scenarios 1 and 2, the MLEmpv method consis-
tently ranked below the other MLE methods and
most of the LPR-based methods for both bias and
rMSE, particularly when estimating the 95th percen-
tile. However, in the small sample size scenario
(Scenario 3, Tables 10–13), the MLEmpv method per-
formed well, consistently exhibiting low bias and

rMSE for the 95th percentile and low bias for the
mean.

Overall, our choice would be either of the MLE or
MLEr methods when estimating the 95th percentile
and the MLE or MLErm methods when estimating
the mean. Since both the MLEr and MLErm methods
require additional manipulations, we would, if con-
fined to a single choice, select the standard MLE
method. Regarding the mean, the standard MLE
method almost always had the lowest rMSE, regard-
less of the simulation or scenario. For the 95th per-
centile, the MLE method consistently appeared in
the top half of the rankings for both bias and rMSE,
particularly for the severely censored scenarios (Sim-
ulation 2; Tables 6–9) and appeared to be surpris-
ingly robust when confronted with contaminated
distributions (Scenarios III and IV) and complex-
censored datasets (Scenarios II and IV). Given that
the MLEmpv method generally ranked lower than
the other MLE methods for bias in Simulations 1
and 2, particularly for the complex-censored scenar-
ios, and rarely exhibited clearly superior rMSE val-
ues, we see no compelling reason for using this
method, even when estimating the mean (for which
is was originally intended).

NP methods

KM method for estimating the 95th percentile
and the mean. With occasional exceptions, the KM
method was consistently in the middle to bottom half
of the bias and rMSE rankings when estimating the
95th percentile. Regarding the mean, the KM method
was, along with the LOD method, the worst of all the
methods whenever there was a single LOD (Scenar-
ios I and III), consistently yielding a strong positive
bias for the mean. Its performance improved when-
ever there were multiple LODs (Scenarios II and
IV), but still it remained consistently in the bottom
half of the rankings. Helsel (2005) recommended
against using the KM method whenever the observed
percent censored was 50% or greater on the basis that
the median cannot be estimated under such circum-
stances (and presumably the estimation of the mean
also becomes problematic). In our simulations, we
chose to ignore this restriction and estimated the
mean and 95th percentile for any observed percent
censored of ,95%. Running the simulations with
Helsel’s restriction did not improve the situation,
and in fact, increased the absolute bias.

The KM method was selected by Helsel (2005) as
the method of choice for estimating the mean for all
sample sizes whenever the (observed) percent cen-
sored is ,50%. This recommendation appeared to
be based solely upon two studies that endorsed the
KM method as a reasonable alternative to the stan-
dard CDA methods. In one study, the investigators
(Schmoyer et al., 1996) concluded that the KM
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method ‘seems better’ than the MLE method, but
their conclusion was not free of equivocation and
was focused on hypothesis testing rather than param-
eter estimation (as is the focus of our study). In the
other study, the investigator (She, 1997) found that
the LOD/2 substitution method often outperformed
the KM method, but recommended the KM method
over the substitution method because the LOD/2
method ‘has no statistical theoretical basis’.

Interestingly, as we programmed the KM method,
we immediately recognized that when estimating the
mean exposure the KM method is mathematically
identical to the worst of the substitution methods
(LOD substitution), which was demonstrated in the
results (e.g. see the tables for Scenarios I and III), re-
sulting in a strong positive bias for the mean. If the
non-detects are internal, that is, bounded on both
sides by detects, the KM method, in principle, has
a negative bias. When a dataset has both a terminal
non-detect and one or more internal non-detects,
the biases introduced tend to cancel, but with no
guarantee of a near zero overall bias, as we see in
the tables for Scenarios II and IV. Helsel (2005) felt
that in most multi-LOD situations, the overall bias ‘is
not large’, but did not determine the degree of the bi-
as for any particular scenario. We found that with
three LODs (i.e. Scenarios II and IV), the KM
method performs better than the LOD method, but
still does poorly when compared to the MLE-based
and LPR-based methods, even for Scenario IV (i.e.
the multiple LOD and contaminated distribution sce-
nario) where one would expect it to outperform those
methods that require a distributional assumption. Re-
garding the 95th percentile (whenever the sample
size is 20 or more), the KM method performed better
than the LOD method, but only infrequently outper-
formed the higher order methods.

Based on these results, we see no compelling rea-
son to recommend the KM method for estimating ei-
ther the mean or the 95th percentile, even when the
dataset contains multiple LODs and is suspected to
contain multiple distributions (i.e. is a contaminated
lognormal). Furthermore, according to She (1997)

for the KM to be successfully applied the censoring
must be random: ‘. . .the probability that the mea-
surement of an object is censored cannot depend on
the value of censored variable’. Schmoyer et al.
(1996) recognized this essential requirement when
in their computer simulations the authors assumed
that the censoring point or LOD was a random vari-
able and generated a random LOD for each random
measurement. However, with occupational exposure
data (and we suspect environmental data as well),
the probability that a measurement will be censored
does indeed depend on the true ‘value’ or concentra-
tion: the censoring point is relatively fixed and any
true concentration below that censoring point will re-
sult in a LOD measurement. These considerations
make it difficult to envision an occupational scenario
where the KM method could be applied, even if it
consistently performed better in the computer simu-
lations than the other methods (which it did not).
Quantile methods for estimating the 95th

percentile. In terms of both bias and rMSE, the NP
quantile method that we selected for estimating the
95th percentile (i.e. the Q6 method, list in Appendix
1) was either the worst or among the worst for both
bias and rMSE, even for the contaminated distribu-
tion scenarios (Scenarios III and IV). Using the pa-
rameters for Simulation 1, Scenario IV, we tested
the other quantile methods for estimating the 95th
percentile (see Table 14 and Appendix 1). While all
had less absolute bias than the Q6 method, the rMSE
values were at the bottom of the rMSE rankings when
compared to the parametric CDA methods (compare
to the results in Table 5). This suggests that for the
sample sizes considered in Simulation 1, Scenario
IV (i.e. 20 � n � 100), the LPR- and MLE-based
methods are sufficiently robust as to outperform the
NP quantile methods. This begs the question, at what
point will the NP methods be superior?

We increased the severity of the contaminated dis-
tributions used in the Simulation 1–Scenario IV com-
bination by increasing the range for the two GMs
from 3-fold to 10-fold, but otherwise retained the
other simulation parameters in Table 1. As expected,

Table 14. Simulation using Simulation 1, Scenario IV parameters, comparing the eight 95th percentile (quantile) estimation
methods presented by Hyndman and Fan (1996)

95th Percentile

Method Bias (%) Method rMSE

Q1—empirical CDF 3.3 Q4—weighted average 1 30.0

Q2—empirical CDF w/averaging 3.9 Q7—weighted average 3 30.1

Q7—weighted average 3 �4.1 Q3—closest value 32.0

Q4—weighted average 1 �4.8 Q2—empirical CDF w/averaging 37.6

Q3—closest value �4.9 Q1—empirical CDF 38.8

Q5—Cleveland 5.8 Q5—Cleveland 39.9

Q8—median quartile 10.1 Q8—median quartile 47.6

Q6—weighted average 2 19.4 Q6—weighted average 2 63.7
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the bias and rMSE values for the NP quantile meth-
ods were virtually identical to those in Table 14. For
the LPR- and MLE-based methods, the bias and
rMSE values were again superior, little worse than
the values in Table 5. However, when we increased
the sample size range from 20–100 to 100–1000,
holding all other Simulation 1, Scenario IV parame-
ters the same, the bias and rMSE values for the NP
quantile methods tended to approach those of the
LPR- and MLE-based methods. This suggests that
the NP methods could be applied to contaminated
distributions, but only for very large sample sizes.

In summary, the NP methods, while they have the
advantage of being applicable to any underlying ex-
posure profile, whether or not that profile is close to
some assumed distribution function, do not perform
as well as the parametric methods for right-skewed
exposure profiles for sample sizes of 100 or less, even
for highly contaminated distributions. We feel that
the contaminated distribution scenario that we devel-
oped was a rigorous test of the robustness of the
parametric methods (i.e. the LPR- and MLE-based
methods): the GM’s for the two distributions were al-
lowed to vary by a factor of three (or even 10, as de-
scribed above), the GSD’s were allowed to range
between GSDs representing very low to extreme var-
iability, and the percentage contribution of each dis-
tribution was allowed to range between 0% and
100%. Even so, the parametric methods appear to
be sufficiently robust to these departures from the
single lognormal distribution model that we routinely
assume for our data.

Small (,20) and large (.100) sample sizes

Most of the above discussions apply to Simula-
tions 1 and 2. At the smaller sample sizes used in
Simulation 3, which unfortunately are all too com-
mon, the rankings could lead to different recommen-
dations. For example, the MLEmpv method, which
did not fare well when confronted with larger data-
sets, consistently did very well for both the 95th per-
centile and mean, with both bias and rMSE at or near
the top of the rankings for all four scenarios. How-
ever, the other MLE-based methods, which appear
to be more universally applicable, also did well.
The LPR-based methods tended to fall in the rank-
ings, consistently ranking at or near the bottom for
the rMSE. Furthermore, if the rMSE is taken as the
premier comparison metric, it has to be noted that
for this set of simulations the substitution methods
did very well when estimating the 95th percentile.

The above discussions apply to either small or
moderate sample sizes. As discussed earlier in the
discussion regarding the quantile results, we repeated
the simulations, but this time increasing the sample
size range from 20–100 to 100–1000, holding all
other Simulation 1, Scenario IV parameters the same.

For these larger sample sizes, the bias and rMSE
results for the LPR- and MLE-based methods tend
to converge, suggesting that method-related dif-
ferences should be a minor consideration when esti-
mating either the 95th percentile or the mean. When
estimating the 95th percentile, in the contaminated
distribution scenarios the NP quantile methods
tended to slightly outperform the MLE-based meth-
ods in terms of bias, but not rMSE, when challenged
with a contaminated distribution, suggesting that the
NP methods should not in such instances be consid-
ered an automatic alternative to the higher order
methods when estimating the 95th percentile for
large datasets. For sample sizes ,100, the LPR-
and MLE-based methods are sufficiently robust to
be preferable to the NP quantile methods.

Opportunities for improvement

The purpose of this paper is to present and discuss
the computer simulation results and not to identify
any real or imagined defects in the various CDA
methods. However, since all of the methods are es-
sentially ad hoc and none can be considered the ac-
knowledged universal choice, there must be room
for improvement. For example, the effect of the plot-
ting position formula on the LPR-based methods
could be reexamined, although Helsel and Cohn
(1988) stated that it had little effect. The plotting po-
sition method for the LPRrm method is considerably
different than that used in the LPR and LPRr meth-
ods, being based upon the Weibull plotting positions
rather than formulae that assume an underlying nor-
mal distribution (for the log-transformed values) (see
Helsel, 2005). We found that the LPRrm method
causes identical plotting positions to be assigned to
adjacent single, unique non-detects. Is this correct
or is this a defect? Perhaps there are superior plotting
position schemes for all of the LPR-based methods.
Furthermore, all of the LPR-based methods rely upon
standard linear regression with its independent–
dependent variable assumption. Perhaps the utility
of methods that do not assume that all measurement
error resides with the dependent variable—such as
major axis regression or reduced major axis regres-
sion—should be examined. For both the LPR and
MLE methods, we adopted a simple scheme that al-
lowed the use of the mvue equation (Mulhausen and
Damiano, 1998) to reduce the transformation bias:
for the LPR method we used the number of detects
as the sample size in the mvue equation and for the
MLE method we used the full sample size. This
scheme was based upon preliminary computer simu-
lations and seemed to work well, particularly as the
sample size increased. However, a more sophisti-
cated scheme for adjusting the sample size for the
mvue equation might improve the bias and rMSE
of these methods when estimating the mean.
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One of the themes of this paper is that there will
be datasets where the unimodal, lognormal distribu-
tion assumption is inappropriate, but to date, there
is little guidance on how to make this determina-
tion. Certainly, subjective graphical techniques—
log-probability plots and histograms—are helpful,
but thus far all of the objective goodness-of-fit proce-
dures assume or require a complete or uncensored
dataset. A censored data goodness-of-fit method, per-
haps consisting of both a subjective graphical test
and an objective statistical test, where the outcome
is a decision to use a standard versus robust version
of a method (e.g. MLE versus MLEr or MLErm)
might prove to be useful.

None of the methods studied here account for the
residual information in a complex dataset: the LOD
and the laboratory in use for each measurement
(whether a detect or a non-detect). It is conceivable
that a superior CDA method could be devised for
complex datasets that makes use of this discarded
information.

Additional simulations

There are obviously numerous simulations and sce-
narios that we could have devised. We have already
mentioned other simulations where we increased the
sample size range or increased the severity of the con-
taminated distributions to examine to usefulness of
the NP quantile methods when confronted with con-
taminated distributions. In addition, we repeated Sim-
ulation 1, but this time increasing the range for the
percent censored in the four Scenarios from 1–50%
to 1–80%. While there were some changes in the
rankings, our conclusions above remain the same.

Hornung and Reed (1990) suggested that the LOD/
2 substitution method could be used in epidemiolog-
ical studies where the mean exposure is of interest
and the percent censored is ,50%. We repeated
Simulation 1, Scenario I, but this time restricting the
range of GSDs to 1.2–2, 2–3 and 3–4. For the low
GSD range, we found that the LOD

� ffiffiffi
2

p
method,

while slightly biased, had an rMSE value only
slightly greater than those of the LPR- and MLE-
based methods. For the medium GSD range, we
found that both methods, while again slightly biased,
had rMSE values slightly greater than those of the
LPR- and MLE-based methods. For the high GSD
range, we found that the LOD/2 method was virtually
unbiased for the mean and had an rMSE value
slightly greater than the LPR- and MLE-based meth-
ods. These findings are consistent with those of
Hornung and Reed (1990) and suggest that the use
of a judiciously selected substitution method when
estimating the mean is not unreasonable.

Effect of exposure measurement error

To our knowledge, none of the published papers on
CDA have considered the potentially confounding

effect of measurement error. In our own computer
simulations, we assumed that the randomly gener-
ated exposures were (i) measured precisely and (ii)
that the measurements were not rounded or trun-
cated. Therefore, our conclusions, and those of the
referenced studies, are strictly applicable to ideal
exposure measurement systems.

A sampling and analytical method produces an es-
timate of the true concentration. The accuracy (refer-
ring to the combination of bias and precision) of
these estimates vary with the mass collected, the an-
alyte and the analytical method. Due to variability in
the sampling pump flow rate and manufacturing var-
iation in the sampling device (e.g. the sampling de-
vice used to obtain a respirable dust sample), the
mass collected will be an estimate of the true mass
per unit volume at the location sampled. An analyti-
cal method is used to estimate the true mass of the an-
alyte collected by the sampling device. The relative
variability in the analytical method increases with
decreasing collected mass. The overall effect of these
factors on the method’s total coefficient of variation
(CVt) is demonstrated in Appendix 2 for sampling
respirable dust (i.e. respirable particulate mass or
RPM).

The second issue involves the rounding or
truncation of the measurements. The sample volume
is typically rounded to two or three significant fig-
ures. More importantly, the analyte mass for samples
near the laboratory LOD is reported using one
significant digit. As the detected mass increases,
the laboratory result will generally have two or three
significant digits. Furthermore, instead of rounding,
a laboratory may use truncation to obtain the
necessary number of significant digits. All of this
adds additional uncertainty to the reported mass
detected per sample and the eventual calculated
concentration.

We repeated Scenario I (see Table 1) for Simula-
tions 1, 2 and 3 for the sampling of RPM and taking
into account measurement error (but ignoring for
now the potential effect of rounding or truncation).
We assumed that each filter is blanked corrected us-
ing a separate blank per sample. Other assumptions
regarding filter weighing precision and the variabil-
ity associated with the flow rate and the sampling
device are described in Appendix 2. In all of the
previous Scenario I simulations (see Table 1), the
GM was fixed at 1, and the field LOD varied ac-
cording to the percentage of the distribution that
was censored. Here the field LOD was fixed at
0.037 mg m�3 (see Appendix 2), which required
that the GM vary according to the percentage of
the distribution that was censored. Otherwise, all
of the simulation conditions presented in the Com-
puter Simulation Methods section for Scenario I
apply. True concentrations were generated as be-
fore, but this time a ‘measurement’ was simulated
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by adding measurement error to the true concentra-
tion using the following equation:

x9 5 x � ð1 þ Zr � CVtðxÞÞ;
where x9 5 measured concentration, x 5 true con-
centration (a random value generated from a log-
normal distribution), Zr 5 random Z-value and
CVt(x) 5 the sampling and analytical method CVt

at x (see Appendix 2).
The results are presented in Tables 15–17. Interest-

ingly, while the bias tended to increase for all meth-
ods, the rMSE often changed little or even decreased.
(After considering the issue, we recognized that the
since the CVt increases with decreasing concentra-
tion, it is more likely that a true non-detect will be
‘measured’ as a detect and less likely that a detect
will be measured as a non-detect. This results in
a positive bias for the GM and a negative bias for
the GSD, with an overall positive bias for both the
95th percentile and the mean with little change in
the rMSE. This effect becomes more pronounced as
the percent censored increases.) Although the rela-
tive ranking of an individual method often changed,
the relative ranking of the LPR- and MLE-based
methods remained much the same. Therefore, our
general conclusions remain unchanged.

The results of the modified Scenario I simulations
indicate that the general effect of measurement error
is an increase in the bias for both the 95th percentile
and the mean, but with little to no change to the
rMSE, leaving unchanged our general conclusions
regarding the relative rankings of the methods, at
least when sampling respirable dust. However, we
suspect that this will be true for substances other than
respirable dust (i.e. RPM), given that the flow rate
CV and analysis CV used in the RPM analysis are
similar to those for most sampling and analytical
methods. In conclusion, the general effect of mea-
surement error on the comparisons of the various
CDA methods should be minimal. The potentially
confounding effect of rounding or truncation will
be investigated at a later date.

RECOMMENDATIONS

Since in reality occupational exposure profiles
cannot be truly lognormal, our view is that all of
the CDA methods discussed here are ad hoc. While
some have a practical basis (substitution, KM, NP)
and the remainder appeal to the notion that the data
are reasonably well described by a theoretical distri-
bution function (the LPR- and MLE-based methods),
all are data analysis tools that we use in the hope that
the results will be reasonably close to the truth. In oc-
cupational health, we rely heavily on the lognormal
distribution assumption for summarizing our right-
skewed datasets and for approximating the shape of
the true exposure profile. However, unlike the log-

normal distribution function, the actual exposure
profile for any particular workplace has an upper
boundary and is an unknown function of the physical
parameters of the workplace and work practices of
the employees, and not a function of the GM and
GSD. Even if the underlying exposure profile is rea-
sonably lognormal, we will never know the true GSD
or the true percentage of the underlying distribution
that lies below the field LOD, so that overall it can
be difficult to determine which of the simulation
and scenario combinations devised here best fit our
situation.

Our results show that for the simulations and sce-
narios postulated an ‘omnibus’ CDA method does
not yet exist. In our view, a ‘preferred’ CDA method
is one that has both low bias and rMSE for the expo-
sure profile parameter of interest and is robust when-
ever the true underlying distribution departs from the
lognormal distribution model. Our personal prefer-
ence when estimating the 95th percentile is to use
a MLE-based method (with the exception of the
MLEmpv method). The MLE-based methods appear
to be fairly robust, especially when compared to
the supposedly robust NP methods and preferable
to the LPR-based methods which tend to have larger
rMSE values, particularly when the sample size is
,20. Within the MLE-based methods, the standard
MLE method comes closest to being an omnibus
method, and therefore receives our recommendation
as the preferred method.

Another selection factor to consider is the ease of
calculation (or accessibility). The substitution meth-
ods are by far the easiest to implement and when
dealing with large datasets, such as when construct-
ing a job-exposure-matrix for the mean exposure,
are certainly expedient and may be reasonably accu-
rate, as was suggested by Hornung and Reed (1990),
depending upon the true (but unknown) underlying
GSD and percent censored. The LPR-based methods
are more complicated, particularly the LPRr and
LPRrm methods as these involve ad hoc methods
and as such are difficult to automate via a program-
ming language. The MLE method is easily accessible
using the solver-function of most computer spread-
sheets (Finkelstein and Verma, 2001), but some
manual manipulation of the data is required. The
MLEr and MLErm methods require additional man-
ual manipulation and are therefore also difficult to
program.

Procedures using r-code have been published for
implementing the more complicated methods—for
example, MLE and KM—but even here the user is
required to become proficient in the statistical program-
ming language of r-plus (Frome and Wambach, 2005).
Many statistical packages include the KM method
for right-censored data, which necessitates some ma-
nipulation of both the data and results in order to ap-
ply the method to left-censored data. Consequently,
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Table 15. Simulation 1, Scenario I (with measurement error)—single lognormal distribution and a single laboratory where the
laboratory LOD is 1–50% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLErm 1.7 MLEmpv 22.5 MLE 0.4 MLE 17.9

LPRr 2.5 Sub LOD
� ffiffiffi

2
p

22.8 Sub LOD
� ffiffiffi

2
p

�0.8 LPR 18.4

MLEr 2.8 MLErm 22.9 LPRrm 1.0 MLErm 19.6

MLE 2.8 Sub LOD 23.7 MLEmpv 1.1 LPRrm 19.7

Sub LOD/2 3.5 MLE 23.7 MLErm 1.1 MLEr 19.7

LPRrm 3.5 MLEr 23.7 MLEr 1.2 MLEmpv 19.7

MLEmpv �3.6 LPRr 24.1 LPRr 1.5 LPRr 19.9

LPR 4.3 LPRrm 24.7 LPR 1.5 Sub LOD
� ffiffiffi

2
p

20.0

KM 4.7 Sub LOD/2 24.9 Sub LOD
� ffiffiffi

2
p

1.7 Sub LOD/2 20.6

Sub LOD
� ffiffiffi

2
p

�5.3 LPR 25.2 Sub LOD 5.3 KM 20.8

Sub LOD �11.4 KM 34.1 KM 5.3 Sub LOD 20.9

NP 16.9 NP 52.3

Table 16. Simulation 2, Scenario I (with measurement error)—single lognormal distribution and a single laboratory where the
laboratory LOD is 50–80% of the true distribution; 20 � n � 100; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

MLErm 2.4 MLErm 24.4 Sub LOD/2 3.6 MLE 19.6

MLEr 4.3 Sub LOD 25.4 LPRrm 4.1 LPR 20.2

LPRr 5.0 MLEr 25.5 MLEmpv 5.1 MLEmpv 20.5

MLE 5.4 MLE 25.8 LPR 5.5 LPRrm 20.9

LPRrm 6.0 Sub LOD
� ffiffiffi

2
p

26.1 MLErm 6.7 MLEr 20.9

KM 6.6 LPRr 26.6 LPRr 6.8 MLErm 20.9

LPR 7.3 Sub LOD/2 26.7 MLE 6.8 Sub LOD/2 21.1

Sub LOD/2 �13.4 MLEmpv 26.7 MLEr 6.8 LPRr 21.2

MLEmpv �15.6 LPRrm 27.7 Sub LOD
� ffiffiffi

2
p

15.9 Sub LOD
� ffiffiffi

2
p

26.5

Sub LOD
� ffiffiffi

2
p

�16.3 LPR 28.4 Sub LOD 33.0 KM 40.4

Sub LOD �17.1 KM 33.8 KM 33.0 Sub LOD 40.5

NP 19.0 NP 51.7

Table 17. Simulation 3, Scenario I (with measurement error)—single lognormal distribution and a single laboratory where the
laboratory LOD is 1–50% of the true distribution; 5 � n � 19; 1.2 � GSD � 4

95th Percentile Mean

Method Bias (%) Method rMSE Method Bias (%) Method rMSE

Sub LOD
� ffiffiffi

2
p

0.8 Sub LOD 52.4 Sub LOD/2 �0.9 MLE 38.5

MLEmpv 3.7 Sub LOD
� ffiffiffi

2
p

55.6 LPRrm 0.9 LPR 40.5

MLE 6.1 Sub LOD/2 59.7 MLE �1.0 MLErm 41.7

Sub LOD �6.1 MLEmpv 61.0 MLEr 1.0 MLEr 41.9

LPRr 6.4 MLE 62.2 MLErm 1.1 LPRr 41.9

MLErm 6.6 MLEr 65.0 MLEmpv 1.3 MLEmpv 42.1

MLEr 7.2 MLErm 65.8 Sub LOD
� ffiffiffi

2
p

1.8 LPRrm 42.9

Sub LOD/2 9.8 LPRr 70.9 LPR 2.0 Sub LOD 43.2

LPRrm 13.1 LPRrm 85.6 LPRr 2.2 KM 43.2

LPR 13.9 LPR 96.2 KM 5.2 Sub LOD
� ffiffiffi

2
p

43.7

Sub LOD 5.3 Sub LOD/2 44.0
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apart from any opinions regarding the preferred
method, ease of use and accessibility are bound to
be factors in the final selection of a CDA method.

One obvious solution to these dilemmas is to sim-
ply eliminate or reduce the need for a CDA method
through the judicious selection of an analytical
method that has a low LOD and/or the collection of
larger volume samples. Furthermore, for those labo-
ratories that routinely report LOQs rather than LODs,
they should be requested to additionally report the
traditional LOD and the mass detected between the
LOD and the LOQ. While a measurement between
the LOD and LOQ is admittedly less reliable than
a measurement above the LOQ, the loss of informa-
tion when using the LOQ makes it even more diffi-
cult to estimate the lognormal parameters for the
underlying distribution (Eduard, 2002; Helsel, 2005).

We agree with Shumway et al. (2002) that the
temptation to combine disparate data—that is, data
collected from different plants or similar exposure
groups or from periods when different laboratories
were used—should be resisted. The resulting datasets
are often complex, with multiple censoring points,
and probably were drawn from more than one under-
lying distribution. It is unreasonable, in our view, to
expect a CDA method to extract a highly accurate es-
timate of a parameter of interest under such circum-
stances, and a faith that a NP method will indeed do
so is, as our simulations reveal, somewhat misplaced.
However, if the analysis of a complex dataset is re-
quired and it is strongly suspected that the underlying
distribution departs significantly from the unimodal
lognormal model, our recommendation is to use the
standard MLE method for estimating either the
95th percentile (or other upper percentiles) and mean.
The results in this study suggest that little is gained
from the increased complexity of the MLEr and
MLErm methods (or the LPRr and LPRrm methods).

Finally, Table 18 summarizes our recommenda-
tions for sample sizes of 100 or less. The listed meth-
ods are felt to be roughly equal in performance. Our
preference is to select from a particular family of
methods when at all possible. Since the MLE-based

methods did consistently well in all of the scenarios,
our table consists primarily of the MLE-based meth-
ods. However, a similar table could be constructed
that would hold primarily LPR-based methods (ex-
cept for perhaps when n is small). In our view, the
standard MLE method comes closest to being an om-
nibus method. The so-called robust versions of the
MLE- and LPR-based methods did not consistently
result in superior performance when challenged with
contaminated lognormal distributions. Due to the fail-
ure of the NP quantile methods and the KM method to
perform better than the LPR- and MLE-based meth-
ods when confronted with contaminated distributions
(for the scenarios postulated in this paper), we do not
recommend their inclusion in any such table.

APPENDIX 1. QUANTILE CALCULATUION

METHODS

The following table lists the NP quantiles pre-
sented by Hyndman and Fan (1996), the correspond-
ing quantiles offered by two commercial statistics
packages and the necessary calculations. Hyndman
and Fan recommended the Q8 method. Q1 through
Q3 use a step function approach. However, the Q2
method uses a averaging method whenever 0.95n
equals an integer. The Q4 through Q8 methods use
linear interpolation to estimate the 95th percentile
whenever k is not an integer. The default quantile
methods for the Systat Version 11 and the SAS Ver-
sion 9 statistics programs are the Q5 and Q2 meth-
ods, respectively.

APPENDIX 2. CALCULATION OFMEASUREMENT

ERROR AND THE MINIMUM DETECTABLE

CONCENTRATION

Overall method accuracy is usually summarized
using the propagation of errors formula (Kogut
et al., 1997):

CVt 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

pump þ CV2
sampler þ CV2

analysis

q
;

Table 18. Recommended methods based on the rMSE results

Distribution assumption Sample size Parameter

X0.95 Mean

1–50% Censored

Reasonably lognormal Small n, 5 � n � 19 MLE MLE (MLErm) LPR

Large n, 20 � n � 100 MLErm (MLE, MLEr) MLE MLErm LPR (LPRrm)

Contaminated lognormal Small n, 5 � n � 19 MLE MLE LPR

Large n, 20 � n � 100 MLE (MLEr MLErm) MLE (MLEr MLErm) LPR

50–80% Censored

Reasonably lognormal Large n, 20 � n � 100 MLE MLE

Contaminated lognormal Large n, 20 � n � 100 MLE (MLErm) MLE (MLErm)

Methods in parentheses are roughly equivalent in performance to the recommended method.
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where CVt 5 total coefficient of variation for a sam-
pling and analytical method; CVpump 5 fractional
variation due to random variations in the pump
flowrate; CVsampler 5 fractional variation due to the
manufacturing variation in the sampling device and
CVanalysis 5 fractional variation due to the analytical
determination of the analyte mass.

The CVpump and CVsampler are generally considered
to be independent of the true concentration. The
CVanalysis is not independent of the true concentration,
resulting in the following general equation for CVt:

CVtðxÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2

pump þ CV2
sampler þ

��
rmass

Q � T

��
x

�2

;

s

where rmass 5 the standard deviation of the analyti-
cal system; Q5 flowrate; T5 averaging time for the
measurement and x 5 true concentration.

Using as an example, the sampling of respirable
dust (respirable particulate mass, RPM) (and ignoring
any uncorrectable particle size distribution effects),
the total coefficient of variation at different concentra-
tions of RPM can be estimated. Although recent stud-
ies (Kogut et al., 1997) have shown slightly lower
values, the CVpump has traditionally been given a value
of 0.05. The CVsampler for the Dorr-Oliver 10-mm ny-
lon cyclone has been estimated by Kogut et al. (1997)
to be 0.023, but in this example we will use 0.05 as re-
ported by Bartley et al. (1994). The rmass will vary

with the analyte and analytical method. For a single
weighing of a filter used in respirable dust sampling,
a typical rmass is 0.005 mg. Let us assume that the
mass collected on each filter is also blank corrected
(i.e. each sample filter has a matching blank filter).
Since both the sample filter and the matched blank
are pre- and post-weighed, a total of four weighings
are required to estimate the mass collected on the sam-
ple filter, resulting in an overall rmass of 0.010 mg.
Finally, the low rate and averaging time will be set
at the standard values of 1.7 Lpm (for RPM) and
480 min, resulting in the following equation:

Figure 1 shows the relationship between the CVt

and the true RPM concentration. At the higher

Hyndman and
Fan (1996)
quantile method

Systat Version 11 SAS Version 9 Intermediate
calculationsa

95th Percentile calculation

Q1 Empirical CDF QNTLDEF 3 k 5 0.95n,
i 5 Floor(k)

If (k � i) . 0 then X0.95 5 xiþ1,
if (k � i) 5 0 then X0.95 5 xi

Q2 Empirical CDF
with averaging

QNTLDEF 5
(default)

k 5 0.95n,
i 5 Floor(k)

If (k � i) . 0 then X0.95 5 1⁄2(xiþ1 � xi),
if (k � i) 5 0 then X0.95 5 1⁄2(xiþ1 � xi)

Q3 Closest value QNTLDEF 2 k 5 0.95n,
i 5 Round(k)

X0.95 5 xi

Q4 Weighted average 1 QNTLDEF 1 k 5 0.95n,
i 5 Floor(k)

X0.95 5 xi þ (k � i)(xiþ1 � xi)

Q5 Cleveland’s method
(default)

k 5 0.95n þ 1⁄2,
i 5 Floor(k)

X0.95 5 xi þ (k � i)(xiþ1 � xi)

Q6 Weighted average 2 QNTLDEF 4 k 5 0.95(n þ 1),
i 5 Floor(k)

X0.95 5 xi þ (k � i)(xiþ1 � xi)

Q7 Weighted average 3 k 5 0.95(n � 1) þ 1,
i 5 Floor(k)

X0.95 5 xi þ (k � i)(xiþ1 � xi)

Q8 k 5 0.95(n þ 1⁄3) þ 1⁄3,
i 5 Floor(k)

X0.95 5 xi þ (k � i)(xiþ1 � xi)

aThe ‘Floor(k)’ function returns the highest integer less than or equal to k. The ‘Round(k)’ function uses Banker’s Rounding.

CVtðxÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:052 þ 0:052 þ

�
0:010 mg

0:0017 m3 min�1 � 480 min
� 1

x

�2

:

s

Fig. 1. Total coefficient of variation (CVt) calculated as
a function of true concentration when sampling respirable dust

(i.e. RPM).
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concentrations, the CVt is relatively constant. Suffi-
cient mass is collected that the contribution of the
CVanalysis becomes insignificant compared to the
fixed variability due to the sampling pump and
sampler. At low concentrations, the CVanalysis pre-
dominates and steadily increases with decreasing
collected mass. (The curve does not remain flat
forever as the concentration increases. Very high
concentrations will tend to result in overloaded sam-
plers, which will drive the CVt upwards.)

A CVt curve can be determined for any analyte and
sampling method, and will have a shape similar to
that in Fig. 1. According to the NIOSH (Abell and
Kennedy, 1997), a reasonably accurate method
should have a true CVt that is ,0.128 over the range
of 10–200% of the exposure limit. However, at the
method’s field LOD—that is, the laboratory LOD di-
vided by the sample volume, also called the mini-
mally detectable concentration—the CVt can be
much greater. The field LOD for sampling RPM
can be estimated using the rmass:

LOD5
3 � rmass

Q � T :

LOD5
3 � 0:010 mg

0:0017 m3 min� 1 � 480 min
5 0:037 mg m� 3:

The factor of three forces the field LOD to be three
standard deviations above the mean weight change
for an unused filter (the true mean weight change is
zero). Three standard deviations above the mean in-
strument response is the traditional method for deter-
mining the analytical LOD (Abell and Kennedy,
1997).

At the field LOD the CVt is 0.34, indicating that
there is a considerable amount of method variability,
or what is commonly referred to as measurement er-
ror. This suggests that at and below the LOD, it is
highly likely that a true non-detect—that is, a true
concentration that is less than the LOD—could be re-
ported as a detect, above the LOD, due to measure-
ment error. The reverse it also true, a true detectable
concentration could be reported as a non-detect.
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