

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

IEEE Transactions on Industrial Informatics 8.3 (2012): 491 – 500

DOI: http://dx.doi.org/10.1109/TII.2012.2192281

Copyright: © 2012 IEEE

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1109/TII.2012.2192281

A comparison of simulation and

hardware-in-the-loop alternatives for digital control

of power converters
Alberto Sanchez, Angel de Castro, Member, IEEE, and Javier Garrido, Member, IEEE

Abstract—Debugging digital controllers for power converters
can be a problem because there are both digital and analog
components. This paper focuses on debugging digital controllers
to be implemented in FPGAs or ASICs, which are designed in
hardware description languages. Four methods are proposed and
described. All of them allow simulation, and two methods also
allow emulation — synthesizing the model of the converter to
run the complete closed loop system in actual hardware. The first
method consists in using a mixed analog and digital simulator.
This is the easiest alternative for the designer, but simulation
time can be a problem, specially for long simulations like those
necessary in power factor correction or when the controller
is very complex, for example with embedded processors. The
alternative is to use pure digital models, generating a digital
model of the power converter. Three methods are proposed: real
type, float type and fixed point models (in the latter case including
hand-coded and automatic-coded descriptions). Float and fixed
point models are synthesizable, so emulation is possible, achieving
speedups over 20,000. The results obtained with each method are
presented, highlighting the advantages and disadvantages of each
one. Apart from that, an analysis of the necessary resolution in
the variables is presented, being the main conclusion that 32-
bit floating point is not enough for medium and high switching
frequencies.

Index Terms—Digital control, switching converters, field pro-
grammable gate arrays, debugging, simulation, emulation.

I. INTRODUCTION

THE importance of debugging controllers for power con-

verters is out of doubt. Testing a controller in actual

hardware without previous simulation can result in material

damages, if not bodily injuries. Recently, there has been an

important growth of digital control of switching mode power

supplies [1]–[5]. The debugging process for digital controllers

is more complex because it is a mixed analog and digital

system. This paper focuses on debugging digital controllers

designed in a hardware description language (HDL), which

is the common choice when they will be implemented in

FPGAs (Field Programmable Gate Arrays) [6]–[10] or ASICs

(Application Specific Integrated Circuits) [2], [11]. VHDL

(Very high speed integrated circuit Hardware Description

Language) [12] is used in the experimental results, but most

conclusions can be also applied to Verilog.

Manuscript received September 19, 2011. Accepted for publication March
6, 2012. Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Authors are with the HCTLab research group, Universidad Autonoma
de Madrid, Madrid, Spain (e-mail: (alberto.sanchezgonzalez, angel.decastro,
javier.garrido@uam.es)

The first debugging step is usually accomplished while

designing the transfer function of the regulator in a control

tool, such as Matlab. This is not complex, because all the

parts (controller and power converter) are modeled in the same

tool. However, once the controller is translated into synthe-

sizable VHDL, it is necessary to debug it again. There are

multiple reasons for simulating the VHDL implementation of

the controller: possible wrong codification, checking specific

implementation details of the controller not easily modeled in

Matlab, such as fixed-point implementation, non-linear parts

of the controller, pipeline or any other RTL (Register Transfer

Level) issues, etc. So the objective is to simulate a VHDL

description of the controller together with the power converter.

The question is how to make this mixed signal simulation.

Simulation time is a main issue. It is important to notice that

the objective at this point is not a very accurate simulation

of the power converter in order to check its losses or to

see the effect of parasitic components. That is a different

problem in which a simulation of a few switching cycles

can be enough, and the controller does not need to be in its

final implementation. Our objective is to check the controller,

not the power converter, and its final HDL implementation

should be used in the simulation. This problem is not new,

and multiple solutions have been proposed. One of the first

approaches was proposed in [13]. Four alternative models

with different levels of accuracy were compared, two of them

using the HDL model of the controller. There are not many

simulation tools that allow mixed signal models including

VHDL, so there have been proposals using two simulators

[14]: one for the analog part and other for the digital blocks.

However, specific links between the simulators must be cre-

ated. Other possibility is to make a HDL model of the power

converter. The advantage of this method is obtaining faster

simulations, but the obvious disadvantage is that the power

converter model must be designed by hand. In [15], different

models of the converter in Spice, VHDL-AMS (an analog and

mixed signal extension of VHDL) and VHDL were compared

for simulation, being the VHDL model the fastest one.

However, even these simulations may not be fast enough in

some applications. For example, in power factor correction

(PFC) the voltage loop needs simulations of hundreds of

ms. Or maybe the controller has a very complex model,

such as those using hardware-software techniques that have

an embedded processor [16]. When simulation is too long,

a solution is using Hardware-in-the-Loop (HIL) techniques.

The idea is that a model of the plant is implemented in

~

VoutVg

L

O

A

D

BOOST

CONVERTER

+

-

+

-
Iin

Vref+

-
X

PWM

Gin

Iin-obj

+

- d

Voltage loop

Current loop

Fig. 1. PFC technique with a boost converter

digital hardware (a computer, a microprocessor or an FPGA)

to emulate all the closed loop system in hardware. The first

proposals used computers, but the integration step is usually

in the order of hundreds of µs, so they are only usable in low

switching frequencies applications. In [17] real time computer

techniques were used to decrease the integration step to 50 µs.

In order to drastically reduce the integration step (tens or

hundreds of ns), FPGAs can be used. There have been HIL

implementations in FPGA, like [18]–[22]. In all these cases,

low switching frequency converters were modeled using fixed

point numerical representation. Fixed point obtains the best

synthesis results, but increases design time. In fact, in [19],

[20] they use a Matlab model that is automatically translated to

VHDL. It would be easier for the designer to use floating point,

but it has not been synthesizable until recent times. In [23], the

use of the VHDL2008 float pkg package is proposed for HIL.

In their case, the controller uses an embedded microprocessor

(microBlaze), so simulations would be too long. A problem of

the float pkg package is that, by the moment, is not supported

by all synthesis tools.

In previous HIL proposals, only low switching frequency

converters were modeled (below 10 kHz). In this paper, a

100 kHz converter is used and new resolution problems arise,

such as that 32-bit floating point variables do not have enough

resolution. Apart from that, simulations and HIL emulations

are compared using different models of the power converter

in terms of simulation time and necessary resources, making

a comparison of different possibilities for debugging a HDL

controller. The rest of the paper is organized as follows.

Section II defines the application used as example, the different

models that are compared and the equations used in the

models. Section III deals with implementation details, focusing

on fixed point implementation, which is more difficult for the

designer. Section IV presents the results, comparing the four

proposed methods. Finally, conclusions are given in section V.

II. VERIFICATION OF DIGITAL CONTROLLERS

A. Application example

This paper presents the whole simulation process to verify

digital controllers for boost converters using PFC (Fig. 1).

vg

ig

a)

pin

pout

voutb)

Fig. 2. a) Input current and input voltage in a PFC converter. b) Input power,
output voltage and output power in a PFC converter

TABLE I
BOOST CONVERTER PARAMETERS

Parameter Value

fsw 100 kHz

L 5 mH

C 100 µF

P 300 W

Vout 400 V

TABLE II
REGULATORS OF THE PFC CONTROLLER

Regulator Transfer function Samp. period Bandwidth Settling time

Current
0.5z−0.4844

z−1
10 µs 6.330 kHz 472 µs

Voltage
3.052·10−5z−1.526·10−5

z−1
10 ms 6.71 Hz 109 ms

FPGA fCLK = 100 MHz

Regulators for PFC allow to control the output voltage (vout)

of the converter, while the input current (ig) is proportional

to the input voltage (vg) in order to reduce the harmonics.

Therefore, there are two loops in the regulator: current and

voltage loop. The former compares the input current to a

reference, which is the multiplication of the input voltage

and the equivalent input conductance (gin), and outputs the

duty cycle of the PWM signal that must be driven to the

switching MOSFET. The latter compares the output voltage to

a voltage reference which is an input of the regulator, usually

constant. This loop outputs the equivalent input conductance

(gin), which is an input of the current loop. Fig.2 shows

the evolution of input and output voltages, input current, and

input and output powers. While the input power is variable

because it is the multiplication of two sinusoidal waves (vg
and ig), the output power is more or less constant. Therefore,

even in steady state, there is an unavoidable ripple in the

output voltage, because the input power changes at twice the

frequency of the ac mains.

The selected parameters of the boost converter used for

experimental results are shown in table I. The transfer func-

tions of the plants related to both loops are described in

the literature [24]. The regulators to control the plants have

been implemented in an FPGA with a clock frequency of

100 MHz. The objective of this paper is not to propose

new controllers for PFC, but to show how to simulate them.

Therefore, classical and simple PID regulators have been

designed for both loops as table II describes. Both regulators

must be simulated before testing the system using a prototype.

The simulation must handle a high-frequency loop in order to

check the dynamics of the input current, but it must be also

long enough to check the evolution of the output voltage. In

our design, the clock period of the FPGA is 10 ns, the settling

time of the current loop is 472 µs, and 109 ms in the voltage

loop. For this reason, usual simulations must handle hundreds

of milliseconds (which is equivalent to tens of millions of

clock cycles), or even a few seconds.

B. Simulation possibilities

As stated before, the problem is how to simulate the final

VHDL controller together with a model of the power converter.

There are several simulation possibilities to check the opera-

tion of the regulator. Mixed analog and digital simulators, such

as Questa and SystemVision of Mentor Graphics, can handle

simultaneously analog circuits and VHDL code, and allow

modeling easily losses and electrical parasitics. However, there

are few mixed AD simulators and the simulation time is very

long.

Another approach is simulating the whole system in VHDL,

modeling the plant in VHDL — the boost converter in

our case. Whereas the regulator is natively implemented in

synthesizable VHDL, the plant may be described in non-

synthesizable VHDL. There are three main possibilities to

model the plant in VHDL:

1) Real type. The plant can be modeled with the signal

type called real, which is a floating point numeric type that

is supported by simulators but cannot be implemented in

hardware.

2) Float type. Using this type, which is implemented in the

VHDL2008 float pkg package [25], the plant can be described

with floating point signals and it can also be implemented

in hardware using certain synthesis tools, allowing emulation

but consuming many hardware resources. Both floating point

simulation strategies allow small design time as it will be

shown in section III.

3) Fixed point. This notation involves longer design time,

but allows the system to be emulated in hardware using less

resources than floating point emulation and allowing higher

emulation frequency. The higher design time of this type of

simulation is because the designer must take into account

the format of every fixed point signal. Nevertheless, it is

important to notice that the plant is usually modeled just

once, whereas the regulator is frequently changed during the

testing stage. Although fixed-point models are more complex

to design, there are software tools that automatically translate

high-level codes into synthesizable code. For example, an m-

code of Matlab/Simulink can be translated into synthesizable

code for Xilinx and Altera FPGAs using the software tools

called System Generator and DSP Builder, respectively. This

automatic code does not achieve the same results in speed and

area compared to the code designed by hand, but the design

time is much shorter.

In the following subsection, the model of a boost converter

is described using VHDL with different numeric notation:

fixed point, float, and real types.

vg

iin D

Q C R

+

-

L

Fig. 3. Boost converter topology

C. Model of the plant

The topology of a boost converter is shown in Fig.3. The

proposed model is the simplest one, using fixed time step and

therefore allowing synthesizable implementations. The model

needs to calculate the output voltage (vout) and input current

(iL) every time step, taking into account the status of the

switch. The input inductor voltage is defined by (1):

vL = L ·

diL

dt
(1)

Converting (1) in a difference equation, the input current

for each time step k is defined in (2):

iL(k) = iL(k − 1) +
∆t

L
· vL (2)

Likewise, the output capacitor current is defined by (3):

iC = C ·

dvout

dt
(3)

and converting the previous to a difference equation, the

output voltage for each time step k is defined by (4):

vout(k) = vout(k − 1) +
∆t

C
· iC (4)

∆t is the time step of the calculus of the state variables,

which is equal to the clock period (10 ns) in our case, so ∆t
L

and ∆t
C

are constants. iC is the current through the capacitor,

which is determined by the output load. iC is −iR when

the switch is closed, and iL − iR if the switch is open.

iR = vout

R
can be used if a resistive load is present, but

the proposed model lets iR as an independent variable, so

any load can be modeled. When the switch is open, the input

current (iL) can be positive so the diode does conduct (called

CCM or Continuous Current Mode), or can be zero so the

diode does not conduct (called DCM or Discontinuous Current

Mode). Thus, there are three possibilities (closed switch, open

switch in CCM or open switch in DCM) which are described

respectively in (5), (6) and (7):

iL(k) = iL(k − 1) +
∆t

L
· vg

vout(k) = vout(k − 1)−
∆t

C
· iR (5)

iL(k) = iL(k − 1) +
∆t

L
· (vg − vout)

vout(k) = vout(k − 1) +
∆t

C
· (iL − iR) (6)

iL(k) = 0

vout(k) = vout(k − 1)−
∆t

C
· iR (7)

One of these three equation sets must be calculated each

time step, involving two multiplications.

In the hand-coded fixed point model of the plant, some

transformations are used in order to speed up the calculus

of the equations. Instead of calculating iL and vout, i
∗
L and

v∗out are calculated using the transformations shown in (8) and

(9):

i∗L =
L

∆t
· iL (8)

vout∗ =
C

∆t
· vout (9)

Consequently, applying these transformations to the fixed

point model, (10) and (11) are used:

i∗L(k) = i∗L(k − 1) + vL (10)

v∗out(k) = v∗out(k − 1) + iC (11)

These equations do not use multiplications, so the maximum

working frequency is higher and they use less hardware

resources. Again, vL and iC depend on the switch and con-

duction mode, so the equations to be implemented in hardware

are:

i∗L(k) = i∗L(k − 1) + vg

v∗out(k) = v∗out(k − 1)− iR (12)

i∗L(k) = i∗L(k − 1) + vg − vout

v∗out(k) = v∗out(k − 1) + iL − iR (13)

i∗L(k) = 0

v∗out(k) = v∗out(k − 1)− iR (14)

TABLE III
SIGNED QX.Y SIGNAL FORMATS

Signal Number Format Scale Equivalent range Resolution

of bits (3 decimal places)

vg 13 9.3 - ± 511.875 V 0.125 V

vout 13 9.3 - ± 511.875 A 0.125 V

i∗R 13 22.-10 ∆t
L

± 8.387 A 2.048·10−3 A

v∗

out 34 43.-10 ∆t
L

∆t
C

± 1,759.219 V 2.048·10−7 V

voutSat∗ 18 43.-26 ∆t
L

∆t
C

± 1,759.205 V 0.013 V

i∗L 26 22.3 ∆t
L

± 8.389 A 2.500·10−7 A

iLSat∗ 18 22.-5 ∆t
L

± 8.389 A 6.400·10−5 A

III. IMPLEMENTATION

This section describes the implementation process of every

model that has been proposed: mixed AD, real type, float

type and fixed-point. Mixed analog and digital simulation is

the simplest method for the designer. This type of simulators

allows to draw a circuit using the drag-and-drop method

with components such as capacitors, inductors, ADCs, etc.

Usually, these drag-and-drop components are VHDL-AMS (an

extension of VHDL for analog and mixed-signal) models, but

that is transparent for the designer. Besides, the simulators

handle VHDL entities which in our case is the regulator to be

checked. The implementation and simulation of this system is

not complex but the simulation time is very long.

The boost model based on real signals is implemented using

the difference equations (5), (6) and (7) presented in the previ-

ous section. This model is also simple, using four multiplexers

and two multipliers apart from several adders and registers, but

must be coded by hand. This model cannot be implemented

in hardware because real type is not synthesizable, but it can

be simulated in any VHDL simulator.

Using the float type, the model can be simulated and

also synthesized. This model is almost identical to the real

type model, but using the float type which is defined in the

package float pkg of the VHDL-2008 Support Library. This

package provides the floating point notation described in the

standard IEEE 754, but is not very extended and only few

synthesizers can handle it by the moment. In our case, we have

used Synplify Premier of Synopsys. The package provides

floating type signals of 32 and 64 bits, but in order to reduce

the required hardware resources, which is one of the main

disadvantages of the float model, 32 bit signals have been

used.

Finally, the model can be implemented using fixed point

notation. The first possibility is to create a model of the boost

converter in Matlab/Simulink using m-code files and then

translate these high-level files into synthesizable HDL code.

For this purpose, System Generator can be used if the code will

be implemented in Xilinx FPGAs and DSP Builder if Altera

FPGAs will be used. This high-level model can implement

directly the equations (5), (6) and (7), so the design time is

almost as small as in the previous cases. The designer should

only specify the number of bits of the accumulators of vout
and iL, so the code translator can optimize the area of the

Fig. 4. Schematic of the implemented circuit

code. Nonetheless, the results of area and speed of automatic

code can be improved if the fixed-point model is coded by

hand, but increasing the design time.

The fixed point model coded by hand uses the difference

equations (12), (13) and (14). Fixed point signals have been

implemented using QX.Y notation. A QX.Y signal has X bits

in the integer part and Y bits in the decimal part. As 2’s

complement is used, there is one extra (MSB, most significant

bit) sign bit. For instance, a Q9.3 signal has 1+9+3 bits. Table

III shows the format, scale and equivalent range of the internal

signals of the QX.Y boost model. To translate the value of

a QX.Y signal, its value must be multiplied by the scale of

the signal and by 2−Y . Some signals, like vout, do not have

any scale, so they only need to be multiplied by 2−Y to

get their value in volts or amperes. For instance, the value

”0100000000001” in vout represents 256.125 V . However, iR
has the same number of bits but its QX.Y format is different

and it also has a scale. The scale is a constant that has to

be multiplied by the stored value before obtaining the final

value in volts or amperes. ∆t is the integration step, which

is the inverse of the FPGA clock frequency (10 ns), and

L and C are shown in table I. These scales are due to the

transformations shown in (8) and (9) used for simplifying the

resulting hardware of the model. Therefore, the same value

”0100000000001” for iR represents 4.196352 A. Finally, table

III also gives the range of each signal and its resolution, i.e.

the LSB (least significant bit) value.

Fig.4 shows the schematic of the implemented model in

QX.Y. The left part represents the hardware needed to calculate

the input current. iLAdd∗ is the quantity to be added to the

previous value each clock cycle, which is chosen with two

multiplexers depending on the switch status and conduction

mode. This quantity is in volts, so its direct addition to the

previous current value implies the transformation shown in

(8). Therefore, i∗L is in a different scale. This internal variable

uses 26 bits for avoiding resolution problems. This input

current, together with the load current i∗R, are the inputs to

the hardware that calculates the output voltage (lower right

part of the figure). However, not all the 26 bits are used, but

the 13 MSB, using the same range and scale of i∗R so they

can be directly subtracted. Again, two multiplexers choose the

value voutAdd
∗ to be added to the previous voltage sample.

Adding a current to the previous output voltage sample implies

a new transformation, as shown in (9). Therefore, v∗out has a

double scale. The loop is closed because the output voltage

is needed for calculating the input current. However, the

transformations must be undone before subtracting the output

voltage, with a double scale, to the input voltage, with no

scale. This is done multiplying by the scale. v∗out is represented

with 34 bits for avoiding resolution problems, but hardware

multipliers in Spartan-3 FPGAs only use 18 bits, so only the

18 MSB (voutSat
∗) are used in the multiplication. After the

multiplication by the scale, the output voltage is in volts, with

no scale. The final step is truncating it to 13 bits, as in the

model input vg , because they must be subtracted. Finally, the

input current is also multiplied by its scale, also using 18

bits, to get the current in amperes, which is an output of the

model. However, this second multiplier (upper right part of

the figure) is not in the critical path because its output is

not fedback to the model, so the maximum frequency is not

affected by it. The VHDL model of this schematic, together

with the VHDL models using real and float types, and the rest

of necessary files for closed loop simulation or emulation can

be downloaded from [26].

The model has two outputs, vout and iin, which are sent to

the ADC models, and three inputs: mosfet (on or off state of

the switch), vg and i∗R. mosfet is the output of the controller,

and i∗R is left as an independent input, so any load can be

modeled. However, vg , which is the rectified AC mains, will be

in most cases an always positive sinusoidal wave. In order to

simplify the emulation of the whole system, it is pre-calculated

in 1,000 time steps, so in every switching cycle the value of

vg is loaded from a BRAM (Block RAM) of the FPGA. This

memory can be used not only for the hand-coded fixed point

model but also with the automatic fixed point and floating

point models using float type.

The HIL approach requires the extraction of emulation data

to be traced. One possibility is to output the desired data to

FPGA pins so they can be read by an external digital analyzer

or sent to digital-to-analog converters. Another approach is to

add a VHDL digital analyzer which sends the data through

the programmer cable. In our case, we have used a Xilinx

ChipScope module, which is a soft-core digital analyzer. The

simplest topology of this analyzer is an ILA (Integrated Logic

Analyzer) which traces the desired internal signals, and an

ICON (Integrated CONtroller) which is the interface between

the ILA component and the JTAG programmer cable. After a

trigger, the ILA module stores a predefined number of samples

of the desired signals in the internal BRAMs of the FPGA.

Accordingly, the ICON module reads these data and sends

them to the PC for visualization and debugging. In our case,

the values of the input current and the output voltage are stored

in the BRAMs, with 11 bits each one. When the trigger is on,

16, 384 samples are taken, one every switching cycle. With

this configuration, the information of 16 rectified line cycles

can be extracted. The ChipScope module uses 23 BRAMs to

store these data. The chosen FPGA has 24 BRAMs, but one

is reserved for generating the input voltage.

IV. RESULTS

A comparison of all the simulation and emulation ap-

proaches has been accomplished. The mixed analog and dig-

ital simulation has been implemented with SystemVision of

Mentor Graphics. The real model has been simulated with

Modelsim 6.5b of Mentor Graphics. And finally, the float and

fixed point models have been both simulated with Modelsim

and implemented in a Xilinx FPGA.

The first comparison criterion is if the model can be

only be simulated or both simulated and emulated, which

is synthesizing the model and implementing it in an FPGA

for debugging the whole closed-loop system inside the FPGA

(HIL). The main advantage of emulation is that it is much

faster than simulation, as will be shown below. The mixed

model and the real type model can only be simulated, while

the float type and fixed point models can be both simulated

and emulated, which is the main advantage of these models.

However, regarding design effort, the mixed model is the

easiest because a graphic schematic is enough, with no code

typing for the power converter model. The real and float

models do need code typing, but they are direct translations

from the difference equations without worrying about data

widths or resolution. The System Generator model uses a

direct translation from the difference equations but also needs

to know the format (number of bits) of the input and output

signals of the boost model, so the regulator can handle them,

and the accumulators representing the state variables. Finally,

the QX.Y model (hand-coded) is the hardest one, because the

designer must also worry about all data widths and resolution.

However, it must be highlighted that all these methods are

proposed for debugging a VHDL controller, which will be

almost for sure a QX.Y model in order to make it work at the

objective clock frequency, 100 MHz in our case. Therefore,

the design effort is not so high because the designer is already

familiar with QX.Y models.

A critical comparison criterion is simulation time. We have

to take into account that the FPGA clock is 10 ns, but the

settling time of the voltage loop is 109 ms, so millions of

clock cycles are necessary. Table IV shows the time results

of simulation and emulation of the different models when

simulating 200 ms. This would be a basic simulation, but

if multiple load steps need to be simulated, it can easily

go into seconds. Although the HIL systems (float and fixed

point) have been designed to be implemented in hardware,

TABLE IV
TIME RESULTS OF A SIMULATION OF 200 MS

System Simulation/Emulation Time Speedup

Mixed simulation Simulation 2h 13’ 21” 751 ms Reference

”Real” type Simulation 2’ 14” 646 ms 59.4x

”Float” type Simulation 2h 5’ 14” 438 ms 1.1x

”Float” type Emulation 3” 228 ms 2,478.9x

System Generator Simulation 14’ 45” 264 ms 9.0x

System Generator Emulation 501 ms 15,971.6x

QX.Y Simulation 2’ 24” 871 ms 55.2x

QX.Y Emulation 277 ms 28,887.2x

TABLE V
FPGA (XILINX XC3S1000) RESOURCES USED BY THE DESIGN

System Max freq 4 input FFs Mult BRAMs

LUTs 18x18 (16 kB)

Boost model: QX.Y 68.747 170 60 2 0

(XST synthesizer) MHz

Boost model: QX.Y 61.584 380 79 0 0

(Synplify synthesizer) MHz

Boost model: System Generator 43.273 409 72 3 0

(XST synthesizer) MHz

Boost model: floating point 6.103 7,355 76 0 0

(Synplify synthesizer) MHz

HIL: QX.Y 68.781 447 361 4 1

(XST synthesizer) MHz

HIL: QX.Y 56.497 658 358 1 1

(Synplify synthesizer) MHz

HIL: System Generator 42.073 755 391 5 1

(XST synthesizer) MHz

HIL: floating point 6.085 9,332 392 1 1

(Synplify synthesizer) MHz

HIL w/ CS: QX.Y 72.202 814 665 4 24

(XST synthesizer) MHz

HIL w/ CS: QX.Y 55.121 1,036 662 1 24

(Synplify synthesizer) MHz

HIL w/ CS: System Generator 39.861 1,122 697 5 24

(XST synthesizer) MHz

HIL w/ CS: floating point 6.196 9,412 685 1 24

(Synplify synthesizer) MHz

simulations have been also performed. Simulation times have

been measured in a 2.33 GHz Intel Core 2 Duo E6550

with 4 GB of RAM. Emulation times are extracted from the

maximum clock frequency of each model, taking into account

that real time is reached at 100 MHz. Speedups are related

to mixed signal simulation. Emulations are much faster than

simulations, obtaining a speed-up of 28,887.2x using QX.Y

and about ten times slower using float type. However, the

speedup of float emulation is enough (a few seconds for each

emulation) and the model is much simpler than QX.Y. The

main advantages of QX.Y are area and resolution, as shown

below. Comparing simulation times, not emulations, real type

and QX.Y are more than 50 times faster than mixed signal

simulation, involving a few minutes instead of hours. float

type simulation is almost as slow as mixed signal because the

floating point hardware that is simulated is very complex, so

it makes no sense to use float type for simulation.

Both emulation systems must be synthesized, and their

synthesis results are very different. As the XST synthesizer

of Xilinx ISE 12.3 cannot compile the float pkg, Synplify

Premier E2011 of Synopsys has been used. However, the

system which uses QX.Y notation has been implemented

both with Synplify and XST, which gives better results in

this case and is included in the Xilinx ISE tool. Table V

presents the synthesis results of the emulation systems after

implementation in a Xilinx XC3S1000 FPGA, which is a

low cost FPGA. The table shows the results in area and

speed. Three different synthesis have been carried out. 1) Only

the boost model, because that is the part that changes from

case to case, as the controller is the same in all cases. 2)

The whole HIL system, which includes the boost model and

the controller (composed of two simple PID regulators), but

without including debugging hardware. This is the minimum

configuration for closed loop emulation. 3) The whole HIL

system and a ChipScope module for debugging. As the table

shows, the fixed point models need much fewer hardware

resources than the float model, and the maximum frequency

is about ten times faster. The reason is that floating point

adders and multipliers are much more complex than fixed

point ones. As a conclusion, if area is an important restriction,

fixed point models would be the preferred option. Regarding

both fixed point models (QX.Y, which is hand-coded, and

the code automatically generated by System Generator), it

can be seen that the hand-coded implementation is quite

smaller (about half size only for the boost model), and its

maximum frequency is about 50% higher. Therefore, there

is a trade-off between design effort (higher for hand-coded

fixed point) and necessary resources (higher for floating point),

with the fixed point model created by System Generator as a

point in between. Apart from that, the maximum frequency

of the QX.Y system using XST is about 30% greater than

using Synplify. The reason is that XST synthesizer uses more

dedicated multipliers (MULT18x18) instead of implementing

them with LUTs. This is because Synplify uses LUTs for

multiplications by a constant, because the multiplier can be

somewhat simplified in this particular case, but the results are

not as good as a dedicated multiplier. Finally, a comment about

maximum working frequencies. As it can be seen, they are

almost the same from the boost model to the complete system

with ChipScope, indicating that the critical path is in the boost

model. In some cases, adding additional resources (such as

ChipScope) result in a slightly higher maximum frequency,

which is in principle contradictory. The reason is the pseudo-

random part of the place and route algorithm, which can

produce slightly different results in the maximum working

frequency even if the critical path does not change.

A comment about FPGA clock frequency is necessary. It

was said that the clock frequency was 100 MHz, and ∆t (the

integration step) is therefore 10 ns. However, the emulation

models do not reach 100 MHz, which means that they will

not run at real time. However, the final implementation of the

controller, not the boost model, will run at 100 MHz, so 10 ns

is also the duty cycle resolution.

Another very important comparison criterion is accuracy.

If the simulation results are not the correct ones, no speedup

can compensate for that. An experiment has been performed

using the whole system in closed loop for power factor

correction. All the models have been used in this experiment

and a prototype has been designed and built for comparison

purposes. In this experiment the output of the voltage loop

(gin) has been extracted. Steady state Gin has been selected

because it is affected both by the calculus of the input current

and the output voltage of the model, so it allows to use a single

parameter to test the accuracy of the whole system. If the

TABLE VI
ACCURACY OF THE MODEL - PFC CONVERTER

System Simulation Gin Gin error related

Emulation to ideal Gin

Ideal Gin without losses 0.00567108

Experimental results 0.00564575 -0.45%

Mixed simulation Simulation 0.00576782 +1.71%

”Real” type Simulation 0.00565338 -0.31%

32-bit ”Float” type Sim/Emulation 0.00512314 -9.66%

QX.Y Sim/Emulation 0.00564957 -0.38%

System Generator Sim/Emulation 0.00565338 -0.31%

Results taken in steady state with Vout reference set to 400 V

output voltage calculation has inaccuracies, the voltage loop

will modify gin to compensate the error. But if the error comes

from the input current, there will be a power unbalance that

will be also compensated modifying gin. Therefore, the steady

state Gin value is a good parameter for checking inaccuracies

in any part of the model.

Table VI shows Gin values in steady state, comparing

them to ideal Gin. This can be calculated as Gin = P
V 2
g

,

representing a model without losses. The mixed simulation is

not an ideal model, but includes some parasitic elements. That

is why Gin in this model is 1.7% higher to compensate the

losses. The rest of the models do not include losses, except of

course the experimental results. As we are trying to check if

the implementation of the different models affect accuracy,

the comparison is made with the ideal case because these

other models do not include losses. The real type, which

uses floating point of double precision (64 bits), achieves

the most accurate value of Gin (the error is 0.31%). The

same result is achieved with the System Generator model,

which includes enough bits to store the variables of the boost

converter without losing precision in the internal calculations.

The QX.Y model has almost the same accuracy (0.38%), but

not exactly the same because it uses less bits to store internal

values. The number of bits has been chosen so almost no

precision is lost, but keeping the hardware implementation as

simple as possible.

The Gin value of the prototype should be a bit higher due

to the electrical losses, but it is lower, due to measurement

inaccuracies. For instance, if the gain of the ADCs is not

exactly equal to the calculated gain, the Gin parameter of

the regulator diverges upward or downward. Therefore, in this

case the experimental Gin is 0.45% lower than the expected

input conductance due to these measurement inaccuracies. An

important conclusion is that the accuracy of the previously

presented models is even higher than the inherent measurement

errors that will appear in real conditions. Therefore, the real

and fixed point models have enough accuracy.

However, results show that the float type presents an error of

9.66%, much higher than fixed point. The reason is that float

type uses 32-bit signals, which do not have enough resolution

to store the incremental values of vout and iin in this case.

For instance, typical incremental values of vout are around

7.5·10−5 V (equation (5)), while vout is around 400 V . The

float type uses 24 bits for the mantissa: a fixed ’1’ and 23

additional bits, while the QX.Y model uses 34 bits for v∗out
and 26 for i∗L (table III). For a vout value around 400 V ,

the MSB in floating point is 28, so the LSB is 2−15, i.e.

3.05·10−5. This is in the same order of magnitude of the

incremental value. For instance, 7.5 ·10−5 would have to be

rounded to twice the LSB, i.e. 6.1·10−5. That is why there

is an error in Gin of about 10%. There are two solutions to

this problem. One would be to use float signals of 64 bits, but

the resulting hardware would be enormous and only high-end

FPGAs could be used. The other solution is to increase the

parameter ∆t so the incremental values are greater. However,

this decreases the accuracy of the system as ∆t increases,

because it is the integration step. In our case, using ∆t equal

to 10 ns and 100 kHz as the switching frequency, the duty

cycle resolution is 0.1%. If ∆t was increased to 100 ns, the

duty cycle resolution would drop to 1%. The conclusion is that

float32 is not appropriate for hardware-in-the-loop emulation

of medium or high switching frequency power converters, in

which ∆t must be small. In previous examples of the state of

the art, lower frequencies were used and precision of floating

point variables with 32 bits was not an issue. However, if HIL

is going to be used in higher frequency applications, resolution

must be studied with care.

It can be surprising that the QX.Y model achieves good

accuracy when some of its signals are represented with 13

bits. For instance, vg is represented with only 13 bits. However,

this signal will be sampled by an ADC in the final system, so

13 bits including the sign bit is enough, representing a 12-bit

ADC. The resolution problem comes when two very different

values are added. This is true for the difference equations. As

said before, values of vout around 400 V must be added to

incremental values each integration step that can be around

7.5·10−5 V. Therefore, a high number of bits is used for these

variables, v∗out and i∗L in our case. However, the inputs and

outputs of the model use fewer bits. This is an advantage of

the fixed point models, that only use the necessary bits for

each variable, decreasing the hardware resources.

Another experiment to check accuracy is the simulation of a

load step. In this way, we can check the dynamic behavior of

each model compared to the real behavior in the prototype.

Figure 5 shows the behavior of vout when a step in the

load from 136 to 296 W takes place after the system has

previously achieved steady state. As it can be seen, the most

similar response to the prototype is the mixed-simulation.

This is expected, because the mixed-simulation is the only

one that includes electrical losses and other non-idealities of

the system. The real and QX.Y models have a very similar

response between them because both have enough accuracy

but they do not model electrical losses. Therefore, the output

voltage in these models has a somewhat lower dumping than

the real case. Finally, the float model presents the worst

dynamic behavior. As it was explained before, the float32

model has not enough resolution to model high-frequency

systems. The steady state is very similar in all cases because

it is a close-loop simulation. However, dynamic responses do

differ depending on the accuracy of the model. The System

Generator model has also been tested in this experiment, and

its dynamic response is almost identical to the real model.

Because of this, and for the sake of clarity, the waveform of

the System Generator model has not been included in this

0 20 40 60 80 100 120 140
350

360

370

380

390

400

410

420

Load Step t (ms)

V
o
u
t
(V

)

Real

QX.Y

Mixed simulation

Float32

Experimental results

Fig. 5. Comparison of the proposed systems after load step from 1176 Ω to
540 Ω (voutRef = 400 V)

0 2.5 5 7.5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (ms)

In
p

u
t
cu

rr
n
e
t
(A

)

Real model

Experimental results

Fig. 6. Waveform of the input current at steady state in the prototype and
the real model with the optimal regulator

figure.

Finally, another experiment has been accomplished in order

to estimate the accuracy of the models. Figures 6 and 7

show the waveforms of the input current at steady state in

the prototype and the real model simulation (the fixed point

models have almost identical results to the real model which

are not shown for the sake of clarity). The experimental

waveforms present higher noise, but both experimental and

simulated waveforms have very similar behavior. In Fig. 6 the

converter is in nominal situation and the current regulator is the

optimal one. In this case, both the experimental and simulated

waveforms have the peak of the input current located about

0.5 ms before the ideal point, which would have been in the

middle point, at 5 ms. The power factor of both experiments

has been extracted: 0.9967 in the prototype and 0.9964 in the

0 2.5 5 7.5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (ms)

In
p
u
t

c
u
rr

e
n
t

(A
)

Real model

Experimental results

Fig. 7. Waveform of the input current at steady state in the prototype and
the real model when the regulator has a quarter of the optimal gain

real model, which are almost identical. Fig. 7 shows the same

experiment, but with a non-ideal current regulator, which has

one quarter of the optimal gain. The input current is clearly

non-ideal in this case, but the simulation waveform is almost

identical to the experimental one. The conclusion is that the

proposed simulation techniques are suitable to evaluate the

performance of the regulator before being implemented in a

real prototype.

V. CONCLUSIONS

This paper has presented different alternatives for debugging

digital controllers to be implemented in FPGAs or ASICs,

which are designed in hardware description languages like

VHDL. The main difficulty is simulating the VHDL controller

together with the power converter, which is analog. The first

possibility is a mixed analog and digital simulator. This is the

easiest alternative for the designer, but simulation time can

be a problem for those cases in which long simulations are

necessary, like PFC, or the model of the controller is very

complex, like embedded microprocessors. The alternative is

to generate a digital model of the power converter. In this

way, it is possible to obtain pure digital and faster simulations

or even emulations: synthesizing the model of the converter

to run the complete closed loop system in digital hardware

(HIL). Three digital models have been presented. Using the

real type, the model is non synthesizable but the design is

straight forward, without worrying about resolution, and the

simulation runs more than 50 times faster. If this speedup is

not enough, emulation is necessary and the model must be

synthesized. The float type model is almost identical to the real

one, but can be synthesized. This emulation obtains a speedup

over 2,000, which should be enough in all cases. However,

its simulation is slow, not all synthesis tools support it, it

needs many hardware resources and, most important, it has

accuracy problems, specially when high switching frequencies

are involved. All these problems are solved by a fixed point

model. Its main disadvantage is its high design effort, at least

when the model is hand-coded. The design effort of fixed

point models can be diminished using automatic generation

of the VHDL code from a high-level model, like System

Generator. However, the design effort of the model should

not be a problem, because in most cases it will be a model

similar to the controller, usually also designed in fixed point.

Fixed point emulation speedup is over 20,000 for emulation

and also over 50 for simulation. A comparison between all

these models and a real prototype has been accomplished,

and results demonstrate that the simulation of the models is

accurate enough to show the dynamics and the steady state

variables of the converter except for the float32 model when

high switching frequencies are involved. Therefore, the final

decision of which model should be used depends on a trade-

off between design effort, simulation/emulation speedup and

available hardware resources.

REFERENCES

[1] B. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-frequency
digital PWM controller IC for DC-DC converters,” Power Electronics,

IEEE Transactions on, vol. 18, no. 1, pp. 438–446, Jan 2003.
[2] A. Peterchev, J. Xiao, and S. Sanders, “Architecture and IC implementa-

tion of a digital VRM controller,” Power Electronics, IEEE Transactions

on, vol. 18, no. 1, pp. 356–364, Jan. 2003.
[3] T. D. Nguyen, J. Hobraiche, N. Patin, G. Friedrich, and J. Vilain, “A

direct digital technique implementation of general discontinuous pulse
width modulation strategy,” Industrial Electronics, IEEE Transactions

on, vol. 58, no. 9, pp. 4445–4454, Sept. 2011.
[4] E. Vidal-Idiarte, C. Carrejo, J. Calvente, and L. Martı́nez-Salamero,

“Two-loop digital sliding mode control of DC-DC power converters
based on predictive interpolation,” Industrial Electronics, IEEE Trans-

actions on, vol. 58, no. 6, pp. 2491–2501, june 2011.
[5] M. Kazmierkowski, M. Jasinski, and G. Wrona, “DSP-based control

of grid-connected power converters operating under grid distortions,”
Industrial Informatics, IEEE Transactions on, vol. 7, no. 2, pp. 204–
211, May 2011.

[6] E. Monmasson, L. Idkhajine, M. Cirstea, I. Bahri, A. Tisan, and
M. Naouar, “FPGAs in industrial control applications,” Industrial In-

formatics, IEEE Transactions on, vol. 7, no. 2, pp. 224–243, May 2011.
[7] E. Monmasson, L. Idkhajine, and M. Naouar, “FPGA-based controllers,”

Industrial Electronics Magazine, IEEE, vol. 5, no. 1, pp. 14–26, March
2011.

[8] J. Rodriguez-Andina, M. Moure, and M. Valdes, “Features, design
tools, and application domains of FPGAs,” Industrial Electronics, IEEE

Transactions on, vol. 54, no. 4, pp. 1810–1823, Aug. 2007.
[9] J. Alvarez, O. Lopez, F. Freijedo, and J. Doval-Gandoy, “Digital

parameterizable VHDL module for multilevel multiphase space vector
PWM,” Industrial Electronics, IEEE Transactions on, vol. 58, no. 9, pp.
3946–3957, Sept. 2011.

[10] F. Taeed, Z. Salam, and S. Ayob, “FPGA implementation of a single-
input fuzzy logic controller for boost converter with the absence of
an external analog-to-digital converter,” Industrial Electronics, IEEE

Transactions on, vol. 59, no. 2, pp. 1208–1217, Feb. 2012.
[11] Z. Lukic, N. Rahman, and A. Prodic, “Multibit sigma-delta PWM digital

controller IC for DC-DC converters operating at switching frequencies
beyond 10 MHz,” Power Electronics, IEEE Transactions on, vol. 22,
no. 5, pp. 1693–1707, Sept. 2007.

[12] F. Azcondo, A. de Castro, and C. Branas, “Course on digital electronics
oriented to describing systems in VHDL,” Industrial Electronics, IEEE

Transactions on, vol. 57, no. 10, pp. 3308–3316, Oct. 2010.
[13] A. Prodic and D. Maksimovic, “Mixed-signal simulation of digitally

controlled switching converters,” in Computers in Power Electronics,

2002. Proceedings. 2002 IEEE Workshop on, June 2002, pp. 100–105.
[14] P. Zumel, M. Garcia-Valderas, A. Lazaro, C. Lopez-Ongil, and A. Bar-

rado, “Co-simulation PSIM-ModelSim oriented to digitally controlled
switching power converters,” in Control and Modeling for Power Elec-

tronics (COMPEL), 2010 IEEE 12th Workshop on, June 2010, pp. 1–7.
[15] L. Barragan, I. Urriza, D. Navarro, J. Artigas, J. Acero, and J. Bur-

dio, “Comparing simulation alternatives of FPGA-based controllers for
switching converters,” in IEEE International Symposium on Industrial

Electronics (ISIE), June 2007, pp. 419–424.

[16] O. Lucia, L. Barragan, J. Burdio, O. Jimenez, D. Navarro, and I. Ur-
riza, “A versatile power electronics test-bench architecture applied to
domestic induction heating,” Industrial Electronics, IEEE Transactions

on, vol. 58, no. 3, pp. 998–1007, March 2011.
[17] B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time

hardware-in-the-loop testing approach of power electronics controls,”
Industrial Electronics, IEEE Transactions on, vol. 54, no. 2, pp. 919–
931, April 2007.

[18] M. Matar and R. Iravani, “FPGA implementation of the power electronic
converter model for real-time simulation of electromagnetic transients,”
Power Delivery, IEEE Transactions on, vol. 25, no. 2, pp. 852–860,
April 2010.

[19] G. Parma and V. Dinavahi, “Real-time digital hardware simulation of
power electronics and drives,” Power Delivery, IEEE Transactions on,
vol. 22, no. 2, pp. 1235–1246, April 2007.

[20] A. Myaing and V. Dinavahi, “FPGA-based real-time emulation of power
electronic systems with detailed representation of device characteristics,”
Industrial Electronics, IEEE Transactions on, vol. 58, no. 1, pp. 358–
368, Jan. 2011.

[21] S. Karimi, P. Poure, and S. Saadate, “An hil-based reconfigurable
platform for design, implementation, and verification of electrical sys-
tem digital controllers,” Industrial Electronics, IEEE Transactions on,
vol. 57, no. 4, pp. 1226–1236, April 2010.

[22] Y. Chen and V. Dinavahi, “Digital hardware emulation of universal ma-
chine and universal line models for real-time electromagnetic transient
simulation,” Industrial Electronics, IEEE Transactions on, vol. 59, no. 2,
pp. 1300–1309, Feb. 2012.

[23] O. Lucia, I. Urriza, L. Barragan, D. Navarro, O. Jimenez, and J. Burdio,
“Real-time FPGA-based hardware-in-the-loop simulation test bench ap-
plied to multiple-output power converters,” Industry Applications, IEEE

Transactions on, vol. 47, no. 2, pp. 853–860, March-April 2011.
[24] R. Erickson and D. Maksimovic, Fundamentals of power electronics.

Kluwer Academic, 2001.
[25] [Online]. Available: http://www.eda.org/fphdl/
[26] [Online]. Available: http://www.hctlab.com/hil/emulationFiles.rar

Alberto Sanchez was born in Madrid, Spain, in
1986. He received the M.Sc. degree in computer
science and telecommunication engineering from
the Universidad Autonoma de Madrid, Spain, in
2010, where he is currently working toward the
Ph.D. degree in the Technology for Electronics and
Communications Department. His research interests
include digital control of switching mode power
supplies and wireles sensor networks with mobile
nodes.

Angel de Castro (M’08) was born in Madrid,
Spain, in 1975. He received the M.Sc. and the
Ph.D. degrees in electrical engineering from the
Universidad Politecnica de Madrid, Madrid, Spain,
in 1999 and 2004, respectively. He has been an
Associate Professor in the Universidad Autonoma
de Madrid since 2010, and as Assistant Professor
from 2006 to 2010. Previosly, he was an Assistant
Professor in the Universidad Politecnica de Madrid
since 2003. His research interests include digital
control of switching mode power supplies, field

programmable gate arrays and mobile nodes in wireless sensor networks.

Javier Garrido (M’97) was born in Madrid, Spain,
in 1954. He received the B.Sc. degree in 1974,
the M.Sc. degree in 1976 and the Ph.D. degree in
1984 in Physics from the Universidad Autonoma
de Madrid, UAM (Spain). Since 1992 he has been
participated, in the implementation of the Computer
Science (1992) and Telecommunication (2002) en-
gineering studies at the Polytechnic School (EPS-
UAM), and he got his current position as Full
Professor at 2010. From his incorporation to the
EPS, he has extended his research interests to topics

related with HW/SW applications on embedded systems (microcontrollers,
microprocessors, FPGAs and SOC devices) as platforms for wireless sensor
nets (WSN) or robotic sensor agents (RSA). In 2003 he co-founded the
HCTLab group, (Human Computer Technology Laboratory) and now he is
its director. Dr. Garrido has been participated in several R&D projects and
has published more than 40 articles in peer-review journals and 60 papers in
archived conference proceedings.

