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Abstract

Using single-cell -omics data, it is now possible to computationally order cells along trajectories, allowing the unbiased study
of cellular dynamic processes. Since 2014, more than 50 trajectory inference methods have been developed, each with its own
set of methodological characteristics. As a result, choosing a method to infer trajectories is often challenging, since a compre-
hensive assessment of the performance and robustness of each method is still lacking. In order to facilitate the comparison of
the results of these methods to each other and to a gold standard, we developed a global framework to benchmark trajectory
inference tools. Using this framework, we compared the trajectories from a total of 29 trajectory inference methods, on a large
collection of real and synthetic datasets. We evaluate methods using several metrics, including accuracy of the inferred order-
ing, correctness of the network topology, code quality and user friendliness. We found that somemethods, including Slingshot,
TSCAN and Monocle DDRTree, clearly outperform other methods, although their performance depended on the type of trajec-
tory present in the data. Based on our benchmarking results, we therefore developed a set of guidelines for method users.
However, our analysis also indicated that there is still a lot of room for improvement, especially for methods detecting complex
trajectory topologies. Our evaluation pipeline can therefore be used to spearhead the development of new scalable and more
accurate methods, and is available at github.com/dynverse/dynverse.

To our knowledge, this is the first comprehensive assessment of trajectory inference methods. For now, we exclusively eval-
uated the methods on their default parameters, but plan to add a detailed parameter tuning procedure in the future. We
gladly welcome any discussion and feedback on key decisions made as part of this study, including the metrics used in the
benchmark, the quality control checklist, and the implementation of the method wrappers. These discussions can be held at
github.com/dynverse/dynverse/issues.

Introduction

Single-cell -omics technologies now make it possible to model biological systems more accurately than ever before1. One area
where single-cell data has been particularly useful is in the study of cellular dynamic processes, such as the cell cycle, cell
differentiation and cell activation2. Such dynamic processes can be computationally modelled using trajectory inference (TI)
methods (also known as pseudemporal ordering methods), which use single-cell profiles from a population in which the cells
are at different unknown points in the dynamic process3,4,5. These methods computationally order the cells along a trajectory
topology, which can be linear, bifurcating, or a more complex tree or graph structure. Because TI methods offer an unbiased
and transcriptome-wide understanding of a dynamic process1, they allow the objective identification of new (primed) subsets of
cells6, delineation of a differentiation tree7,8 and inference of regulatory interaction responsible for one or more bifurcations9.
Current applications of TI focus on specific subsets of cells, but ongoing efforts to construct transcriptomic catalogues of whole
organisms10,11 underline the urgency for accurate, scalable9,12 and user-friendly TI methods.
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Table 1 Overview of the trajectory inference methods included in this study, and several characteristics thereof. This table will
be continuously updated online.

Method Date Most complex
trajectory type Fixes topology Prior required Prior optional Evaluated Reference

Monocle ICA 01/04/2014 Tree Parameter # branches None Yes [13]

Wanderlust 24/04/2014 Linear Fixed Start cell(s) None Yes [14]

SCUBA 30/12/2014 Tree Free None Time course, Marker genes Yes [15]

Sincell 27/01/2015 Tree Free None None Yes [16]

NBOR 08/06/2015 Linear TBD TBD TBD Noa i [6]

Waterfall 03/09/2015 Linear Fixed None None Yes [17]

gpseudotime 15/09/2015 Linear TBD TBD TBD Noc [18]

Embeddr 18/09/2015 Linear Fixed None None Yes [19]

ECLAIR 12/01/2016 Tree TBD TBD TBD Nof [20]

DPT 08/02/2016 Bifurcation Fixed None Marker genes Yes [21]

Pseudogp 05/04/2016 Linear Fixed None None Yes [22]

SLICER 09/04/2016 Graph Free Start cell(s) End cell(s), Marker genes Yes [23]

SCell 19/04/2016 Linear TBD TBD TBD Noe [24]

Wishbone 02/05/2016 Bifurcation Parameter Start cell(s), # end states Marker genes Yes [25]

TSCAN 13/05/2016 Tree Free None None Yes [26]

SCOUP 08/06/2016 Multifurcation Parameter Start cell(s), Cell grouping, # end states None Yes [27]

DeLorean 17/06/2016 Linear TBD TBD TBD Nog [28]

StemID 21/06/2016 Tree Free None None Yes [29]

Ouija 23/06/2016 Linear Fixed Marker genes None Yes [30]

Mpath 30/06/2016 Tree Free Cell grouping None Yes [31]

cellTree 13/08/2016 Tree Free None Cell grouping Yes [32]

WaveCrest 17/08/2016 Linear TBD Time course None Nof [33]

SCIMITAR 04/10/2016 Linear Fixed None None Yes [34]

SCORPIUS 07/10/2016 Linear Fixed None None Yes [35]

SCENT 30/10/2016 Linear TBD TBD TBD Nod [36]

k-branches 15/12/2016 Tree TBD TBD TBD Noh [37]

SLICE 19/12/2016 Tree Free None Cell grouping, Marker genes Yes [38]

Topslam 13/02/2017 Linear Fixed Start cell(s) None Yes [39]

Monocle DDRTree 21/02/2017 Tree Free None # end states Yes [40]

Granatum 22/02/2017 Tree TBD TBD TBD Noe [41]

GPfates 03/03/2017 Multifurcation Parameter # end states None Yes [42]

MFA 15/03/2017 Multifurcation Parameter # end states None Yes [43]

PHATE 24/03/2017 Tree TBD TBD TBD Noh [44]

TASIC 04/04/2017 Tree TBD TBD TBD Noa e [45]

SOMSC 05/04/2017 Tree TBD TBD TBD Noa [46]

Slingshot 19/04/2017 Tree Free None Start cell(s), End cell(s) Yes [47]

scTDA 01/05/2017 Linear TBD TBD TBD Nof [48]

UNCURL 31/05/2017 Linear TBD TBD TBD Nof [49]

reCAT 19/06/2017 Cycle Fixed None None Yes [50]

FORKS 20/06/2017 Tree TBD Start cell(s) None Nof j [51]

MATCHER 24/06/2017 Linear TBD TBD TBD Noj [52]

PhenoPath 06/07/2017 Linear Fixed None None Yes [53]

HopLand 12/07/2017 Linear TBD TBD TBD Noa j [54]

SoptSC 26/07/2017 Linear TBD Start cell(s) None Noa j [55]

PBA 30/07/2017 Multifurcation TBD TBD TBD Noj [56]

BGP 01/08/2017 Bifurcation TBD TBD TBD Noj [57]

scanpy 09/08/2017 Bifurcation TBD TBD TBD Noj [58]

B-RGPs 01/09/2017 Acyclic graph TBD TBD TBD Noj [59]

WADDINGTON-OT 27/09/2017 Graph TBD TBD TBD Nob j [60]

AGA 27/10/2017 Disconnected graph TBD TBD TBD Noj [61]

GPseudoRank 30/10/2017 Linear TBD TBD TBD Noa j [62]

p-Creode 15/11/2017 Tree TBD TBD TBD Noj [63]

iCpSc 30/11/2017 Linear TBD TBD TBD Nod j [64]

GrandPrix 03/12/2017 Multifurcation TBD Time course None Noj [65]

Topographer 21/01/2018 Tree TBD None Start cell(s) Noj [66]

CALISTA 31/01/2018 Graph TBD None None Noj [67]

scEpath 05/02/2018 Tree TBD TBD TBD Noa j [68]

MERLoT 08/02/2018 Tree TBD TBD TBD Noj [69]

ElPiGraph.R 04/03/2018 Graph TBD TBD TBD Noj

a Not free
b Unavailable
c Superseded by another method
d Requires data types other than expression
e No programming interface
f Unresolved errors during wrapping
g Too slow (requires more than one hour on a 100x100 dataset)
h Doesn’t return an ordering
i Requires additional user input during the algorithm (not prior information)
j Published later than 2017-05-01 to be included in the current version of the evaluation
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A plethora of TI methods has been developed over the last years, and even more are being created every month (Supple-
mentary Figure 1a). It is perhaps surprising that of the 59 methods in existence today, almost all methods have a unique
combination of characteristics (Table 1), in terms of the required inputs (prior information), produced outputs (topology fixing
and trajectory type) and methodology used (not shown). One distinctive characteristic of TI methods is whether the topology
of the trajectory is inferred computationally, or was fixed by design. Early TI methods typically fixed the topology algorithmi-
cally (e.g. linear14,6,17,18 or bifurcating21,25), or through parameters provided by the user13,27. These methods therefore mainly
focused on correctly ordering the cells along this fixed topology. Other methods attempt to infer the topology computationally,
which increases the difficulty of the problem at hand, but allows these methods to be broadly applicable on more use cases.
Methods that perform topology inference are still in the minority, though current trends suggest this will soon change (Sup-
plementary Figure 1c). A particularly interesting development is presented in the AGA method61 which is the only TI method
currently able to deal with disconnected graphs.

Another key characteristic of TI methods is the selection of prior information that a method requires or can optionally exploit.
Prior information can be supplied as a starting cell from which the trajectory will originate, a set of important marker genes, or
even a grouping of cells into cell states. Providing prior information to a TI method can be both a blessing and a curse. In one
way, prior information can help themethod to find the correct trajectory amongmany, equally likely, alternatives. On the other
hand, incorrect or noisy prior information can bias the trajectory towards current knowledge. Moreover, prior information is not
always easily available, and its subjectivity can therefore lead to multiple equally plausible solutions, restricting the applicability
of such TI methods to well studied systems.

A reductionist approach to characterising TI methods consists in dissecting them into a set of algorithmic components, as any
component can have a significant impact on the performance, scalability, and output data structures. Across all TI methods,
these components can be broadly grouped into two stages; (i) conversion to a simplified representation using dimensionality
reduction, clustering or graph building and (ii) ordering the cells along the simplified representation4. Interestingly, components
are frequently shared between different algorithms (Supplementary Figure 2). For example, minimal spanning trees (MST),
used in the first single-cell RNA-seq trajectory inference methods13, is shared by almost half of the methods we evaluated
(Supplementary Figure 2b).

Given the diversity in TImethods, an important issue to address is a quantitative assessment of the performance and robustness
of the existing TI methods. Many attempts at tackling this issue have already been made21,26,23,27,32,35,42,43, but due to the high
number of TI methods available today and the great diversity in the outputted data structures, a comprehensive benchmarking
evaluation of TI methods is still lacking. This is problematic, as new users to the field are confronted with a wide array of TI
methods, without a clear idea about what method would be the most optimal for their problem. Moreover, the strengths and
weaknesses of existingmethods need to be assessed, so that new developments in the field can focus on improving the current
state-of-the-art.

Results

In this study, we performed a comprehensive evaluation for 29 TI methods (Overview: Figure 1a, Extended overview: Sup-
plementary Figure 3). The inclusion criterion for TI methods was primarily based on their free availability, the presence of a
programming interface, and the date of publication (Table 1). Only methods published before june 2017 are included in the
current version of the evaluation, whilemore recentmethods will be added in the next version. The evaluation comprised three
core aspects: (i) source-code and literature-based characterisation of TI methods, (ii) assessment of the accuracy and scalability
of TI methods by comparing predicted trajectories with a gold standard, and (iii) a quality control of the provided software and
documentation.

In order to make gold standard trajectories and predicted trajectories directly comparable to one another, we developed a
common probabilistic model for representing trajectories from all possible sources (Figure 1b). In this model, the overall
topology is represented by a network of “milestones”, and the cells are placed within the space formed by each set of connected
milestones. We defined a set of metrics for comparing the likeness of such trajectories, each assessing a different aspect of the
trajectory: the similarity in cell ordering, the cell neighbourhood and the topology (Figure 1c). The data compendium consisted
of both synthetic datasets, which offer the most exact gold standard, and real datasets, which offer the highest biological
relevance. These real datasets came from a variety of single-cell technologies, organisms, and dynamic processes, and contain
several types of trajectory topologies (Supplementary Figure 4 and Supplementary Table 1). To generate synthetic datasets,
we simulated a gene regulatory network using a thermodynamic model of gene regulation70, and subsequently simulated a
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single-cell profiling experiment bymatching the distributions of the synthetic datawith real reference datasets (Supplementary
Figure 5).

As the aim of this study is to provide both guidelines for the use of TI methods and a base for the development of new TI
methods, we not only assessed the accuracy of the predictions made by a trajectory, but also investigated the quality of the
method’s implementation. To do this, we scored each method using a checklist of important scientific and software devel-
opment practices, including software packaging, documentation, automated code testing, and peer review. This allowed us
to rank each method based on its user friendliness, developer friendliness, and potential broad applicability on new unseen
datasets. Finally, using both the benchmark results and quality control, we produced a flow chart with practical guidelines for
selecting the most appropriate TI method for a given use case.
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Figure 1 An overview of several key aspects of the evaluation. a) A schematic overview of our evaluation pipeline. b) In order
to make any two trajectories comparable with one another, a common trajectory model was used to represent gold standard
trajectories from the real and synthetic datasets, as well as any predicted trajectories from TI methods. c) Three metrics were
defined in order to assess the similarity in cell ordering, cell neighbourhood, and topology, for any two trajectories.
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Evaluation of trajectory inference methods

An overview of the main results from this study is shown in Figure 2. This includes an overview of the results obtained from
the method characterisation (Figure 2a), the benchmarking evaluation (Figure 2b), and the quality control evaluation (Figure
2c).
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Figure 2 Overview of the results on the evaluation of 29 TI methods. a) The methods were characterised according to the
most complex trajectory type they can infer, whether or not the inferred topology is constrainedby the algorithmor a parameter,
and which prior information a method requires or can optionally use. b) The methods are ordered according to the overall
score achieved in the benchmark evaluation. Also shown are the aggregated scores per metric, source and trajectory type, as
well as the average execution time across all datasets and the percentage of executions in which no output was produced. c)
Overall performance in the quality control evaluation is highly variable, even amongst the highest ranked methods according
to the benchmark evaluation. Also listed are the quality control scores aggregated according to practicality and the different
categories.

Having ordered all methods by their overall benchmarking score, we found that Slingshot predicted the most accurate trajec-
tories, followed by TSCAN and Monocle DDRTree. When we looked at the benchmark scores per trajectory type, Slingshot was
the only method that performed well across most trajectory types. However, we found that several methods were specialised
in predicting specific trajectory types; for example SCORPIUS for linear trajectories, reCAT for cycles, and Monocle DDRTree for
trees.

We observed a high correlation (0.7-0.9) between results originating from real datasets versus those originating from synthetic
datasets (Supplementary Figure 6). This confirms both the relevance of the synthetic data and the accuracy of the gold stan-
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dard in the real datasets. However, this correlation was lower for converging and multifurcating datasets, potentially because
only a small number of real datasets were available for such topologies (Supplementary Table 1).

As the different metrics were selected to assess the correctness of a trajectory in various approaches, it is expected to observe
differences in rankings of TI methods amongst the different metrics. While we saw no direct link between the edge flip scores
versus the correlation or RF MSE metric, methods that obtained a high correlation score also tended to obtain higher RF MSE
scores (Supplementary Figure 7). In addition, the methods that were able to detect more complex trajectory types also ob-
tained higher edge flip scores, in comparison to methods whose trajectory topology was fixed to a simple trajectory topology.
We will explore this issue in more detail in a further section.

During the execution of a method on a dataset, if the time limit (>6h) or memory limit (32GB) was exceeded, or an error was
produced, a zero score was returned for that execution. If a method consistently generated errors on this dataset across all
replicates, the error is called “data-specific”, otherwise “stochastic”. Several methods obtained a high overall score despite
having 5 to 10% of failed executions (e.g. Monocle DDRTree, SLICE, Wishbone), meaning these methods could rank even higher
if not for the failed executions. Methods that do not scale well with respect to the number of cells or genes will exceed the
time or memory limits for the largest datasets (reCAT, SCOUP, StemID). For a few methods, the time or memory limits were
exceeded too often, making the benchmarking results uncomparable to those of other methods (SCIMITAR, Ouija, Pseudogp).

Trajectory types and topology complexity

In most cases, the methods which were specifically designed to handle a particular trajectory type, also performed better on
data containing this particular trajectory type (Supplementary Figure 8). These methods had typically better edge flip scores -
as can be expected - and RF MSE scores, compared to methods not able to handle the particular trajectory type. However, the
correlation score typically followed the opposite pattern, where methods restricted to linear trajectory types, such as embeddr,
SCORPIUS andphenopath, produced the best ordering, irrespective ofwhether the dataset contained a linear trajectory ormore
complex trajectories. To further investigate the effect of trajectory complexity on performance, we divided them in two groups:
linear methods (restricted to linear and cyclic topologies) and non-linear methods. While there were no significant differences
in performance on linear datasets, non-linear methods had significantly higher edge flip scores but lower correlation scores
on datasets containing more complex trajectory types (Supplementary Figure 9). Together, this indicates that current non-
linear methods potentially contain less accurate ordering algorithms. A combination of the ordering methods from the top
linear methods, combined with the topology inference from top non-linear methods, could therefore be a possibility for future
research.

Despite their similar overall performance, the topologies predicted by the top methods differed considerably. Trajectories de-
tected using the default parameters of slingshot and cellTree tended to be simpler, while those detected by TSCAN andMonocle
DDRTree gravitated towards more complex topologies (Figure 3). Monocle DDRTree, for example frequently predicted a tree
topology, even when only a cyclic, linear or bifurcating topology was present in the data (Figure 3a). Trajectories generated by
Monocle DDRTree (at default parameters) tended to contain more nodes and edges (Figure 3b), which could give this method
an advantage on datasets with complex tree topologies, but could also explain its relatively low performance on linear and
bifurcating datasets. Indeed, when we assessed how often a method can infer the correct topology, slingshot and TSCAN were
good at correctly predicting linear, bifurcating and converging trajectories, while Monocle DDRTree was by far the best method
to infer tree topologies. Nonetheless, the overall accuracy of topology prediction was very low, with Slingshot correctly predict-
ing bifurcating and converging topologies for half of the datasets, and Monocle DDRTree predicting the correct tree topology
in 12% of the cases (Supplementary Figure 10). Inferring the correct topology without parameter tuning, is therefore still an
open challenge. Conversely, when the data contains a complex trajectory structure, TI will currently still require a considerable
guidance by the end user, to either optimise the parameters or to choose the method with which the output best fits the user’s
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expert knowledge.

Slingshot TSCAN Monocle DDRTree SCORPIUS cellTree Maptpx

C
yc

le

Li
ne

ar

B
ifu

rc
at

io
n

C
on

ve
rg

en
ce

M
ul
tif
ur

ca
tio

n
Tr

ee

A
cy

cl
ic
 g

ra
ph

G
ra

ph

C
yc

le

Li
ne

ar

B
ifu

rc
at

io
n

C
on

ve
rg

en
ce

M
ul
tif
ur

ca
tio

n
Tr

ee

A
cy

cl
ic
 g

ra
ph

G
ra

ph

C
yc

le

Li
ne

ar

B
ifu

rc
at

io
n

C
on

ve
rg

en
ce

M
ul
tif
ur

ca
tio

n
Tr

ee

A
cy

cl
ic
 g

ra
ph

G
ra

ph

C
yc

le

Li
ne

ar

B
ifu

rc
at

io
n

C
on

ve
rg

en
ce

M
ul
tif
ur

ca
tio

n
Tr

ee

A
cy

cl
ic
 g

ra
ph

G
ra

ph

C
yc

le

Li
ne

ar

B
ifu

rc
at

io
n

C
on

ve
rg

en
ce

M
ul
tif
ur

ca
tio

n
Tr

ee

A
cy

cl
ic
 g

ra
ph

G
ra

ph

Cycle

Linear

Bifurcation

Convergence

Multifurcation

Tree

Acyclic graph

Graph

Predicted trajectory type

G
o

ld
 s

ta
n

d
a

rd
 t
ra

je
c
to

ry
 t
y
p

e

0% 50% 100%
% datasets

a

More complex More complex More complex More complex More complex

Slingshot TSCAN Monocle DDRTree SCORPIUS cellTree Maptpx

-10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30 -10 0 10 20 30

Cycle

Linear

Bifurcation

Convergence

Multifurcation

Tree

Acyclic graph

Graph

All trajectory types

Difference in topological complexity (= # nodes + # edges)
between prediction and gold standard

G
o

ld
 s

ta
n

d
a

rd
 t
ra

je
c
to

ry
 t
y
p

e

b

Figure 3 Comparing the ability of the top TI methods to detect the correct trajectory type. a) % of datasets on which a
TI method detects a particular trajectory type, compared with the correct trajectory type. b) Distributions of the topological
complexity, defined by the sum of the number of milestones and edges betweenmilestones, compared with the true trajectory
type present in the data.

Effect of prior information

In the current version of the evaluation, we only provided prior information when a method required it . We did not observe a
major difference in method performance between methods which did and did not receive prior information (Supplementary
Figure 11). Rather, methods which received prior information were on average positioned in the middle of the ranking. Fur-
thermore, we could not find any dataset where methods which received prior information performed significantly better than
other methods.

Algorithm components

Weassessedwhether the components of an algorithmcould bepredictive of amethod’s performance, using both random forest
classification and statistical testing. Methodswhich included principal curves (such as Slingshot and SCORPIUS), k-means (which
include Slingshot and several other top scoring methods) and some graph building (which include almost every top scoring
method) tended to have a slightly higher performance (Supplementary Figure 12 and Supplementary Table 2). On the other
hand, methods using t-SNE and ICA for their dimensionality reduction were ranked lower, although this was not statistically
significant.
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Method quality control

While not directly related to the accuracy of the inferred trajectory, the quality of the implementation is also an important eval-
uation metric. Good unit testing assures that the implementation is correct, good documentation makes it easier for potential
users to apply the method on their data, and overall good code quality makes it possible for other developers to adapt the
method and extend it further. We therefore looked at the implementation of each method, and assessed its quality using a
transparent scoring scheme (Supplementary Table 3). The individual quality checks can be grouped in two ways: what aspect
of the method they investigate (availability, code quality, code assurance, documentation, method’s behaviour at runtime and
the depth by which themethod was presented in its study) or which purpose(s) they serve (user friendliness, developer friendli-
ness or future proof). These categorisations can help current developers to improve their tool, and guide the selection of users
and developers to use these tools for their purpose. After publishing this preprint, we will contact the authors of each method,
allowing them to improve their method before the final publishing of the evaluation.

We found that most methods fulfilled the basic criteria, such as free availability and basic code quality criteria (Figure 4). We
found that recent methods had a slightly better quality than older methods (Supplementary Figure 13). However, several qual-
ity aspects were consistently lacking for the majority of the methods (Figure 4 right) and we believe that these should receive
extra attention from developers. Although these outstanding issues cover all five categories, code assurance and documenta-
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tion in particular are problematic areas, notwithstanding several studies pinpointing these as good practices71,72.
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Figure 4 Overview of the quality control results for every method. Shown is the score given for each methods on every item
from our quality control score sheet (Supplementary Table 3). Each aspect of the quality control was part of a category, and
each category was weighted so that it contributed equally to the final quality score. Within each category, each aspect also
received a weight depending on how often it was mentioned in a set of papers discussing good practices in tool development
and evaluation. This weight is represented in the plot as distance on the y-axis. Top: Average QC score for each method. Right:
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The average score of each quality control item. Shown into more detail are those items which had a score lower than 0.5.

We observed no clear relation between method quality and method performance (Figure 2 and Supplementary Figure 14).
We could also not find any quality aspect which was significantly associated with method performance.

Practical guidelines

Based on the results of our benchmark, we created a set of practical guidelines for method users Figure 5. As a method’s
performance is heavily dependent on the trajectory type being studied, the choice ofmethodwill by primarily driven by the prior
knowledge of the user about what trajectory topology is expected in the data. For the majority of use cases, the user will know
very little about the expected trajectory, except perhaps whether the data is expected to contain multiple trajectories, cycles or
a complex tree structure. In each of these use cases, a different set of methods performed optimally, with Monocle DDRTree
performing best when the data contained a complex tree, and Slingshot performing equally well on less complex trajectories
. No methods dealing with multiple trajectories or cycles were included in the current version of the evaluation, although
AGA61 for disconnected trajectories, and Waddington-OT60 and AGA61 for regular graphs are currently the only methods in
literature able to handle these types of trajectories. In the case where the user would know the exact expected topology,
our evaluation suggests the use of reCAT for cycles, SCORPIUS for linear trajectories, and Slingshot for bifurcating trajectories,
although Slingshot could return other topologies if it would fit the data more accurately. The most difficult use case is when
the topology is known but more complex than a bifurcating or cyclic trajectory. Here, to our knowledge, only ElPiGraph.R
github.com/Albluca/ElPiGraph.R, which is not yet published, can be used.
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Figure 5 Practical guidelines for method users. As the performance of a method most heavily depended on the topology of
the trajectory, the choice of TImethodwill be primarily influenced by the user’s existing knowledge about the expected topology
in the data. We therefore devised a set of practical guidelines, which combines the method’s performance, user friendliness
and the number of assumptions a user is willing to make about the topology of the trajectory. Methods to the right are ranked
according to overall performance. Further to the right are shown the user friendly scores (++: ≥ 0.9, +: ≥ 0.8, ± ≥ 0.65, - ≥ 0.5)
and overall performance (++: top method, +: difference between top method’s performance ≥ -0.05, ±: ≥-0.2, -: ≥ -0.5).
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When choosing a method, it is important to take two further points into account. First, it is important that a trajectory and the
downstream results and/or hypotheses originating from it are confirmed by multiple TI methods. This to make sure the model
is not biased towards the particularmodel underlying a TI method, for example its preferred trajectory type. Second, even if the
expected topology is known, it can be beneficial to also try out methods which make the less assumptions about the trajectory
topology. When the expected topology is confirmed using such a method, it provides extra evidence to the user’s knowledge
of the data. When a more complex topology is produced, this could indicate the presence of a more complex trajectory in the
data than was expected by the user.

Discussion

Trajectory inference is unique among most other categories of single-cell analysis methods, such as clustering, normalisation
and differential expression, because it models the data in a way that was almost impossible using bulk data. Indeed, for no
other single-cell analysis types have so many tools been developed, according to several repositories such as omictools.org73,
the “awesome single cell software” list74 and scRNA-tools.org75. It is therefore critical that these methods, now reaching 59,
are evaluated to guide users in their choice. In this preprint, we present an initial version of our evaluation of these methods,
focusing on the quality control and the accuracy of their model using the default parameters. When comparing the maximum
overall score over time, it is encouraging to see multiple incremental improvements over the state-of-the-art (Supplementary
Figure 15). We believe that the benchmarking presented in this study will pave the way to the next series improvements in the
field of trajectory inference.

In this study, we presented our first version of the evaluation of TI methods. We are convinced that the results we provided
will be useful for both method users and tool developers, as we provide clear practical guidelines for users depending on their
current knowledge of the trajectory, as well as an objective benchmark on which newmethods can be tested. Nonetheless, our
evaluation can be expanded on several points, all of which we will try to tackle in the near future:

• Inclusion of methods published during of after june 2017
• A parameter tuning for each method, both across all trajectory types, as well as on specific trajectory types.
• A test of robustness on noise, parameter changes and dataset size
• An evaluation of the stability of a method’s results when running the same parameter setting on the same dataset
multiple times

• Evaluate the methods when given optional priors, and compare with performance without priors
• Assess the effect of noisy or incorrect prior information
• Test methods on datasets with no clear trajectory present
• Include feedback on the quality control scoring scheme, and update the scoring when method get updated
• Test the scalability of each method, both in the number of cells and the number of features
• Include more real datasets with complex trajectory types, as they become available
• Evaluate methods on other single-cell -omics datasets, such as proteomics and epigenomics data
• Provide functionality for visually interpreting and comparing predicted trajectories

Our evaluation indicated a large heterogeneity in the performance of the current TI methods, with Slingshot, TSCAN, and Mon-
ocle DDRTree, towering above all other methods. Nonetheless, we found that methods which did not perform well across all
settings could still be useful in certain specific use cases. Indeed, on data containing more than one bifurcations, Monocle
DDRTree clearly performed better than other methods. We found that this particular result was mainly caused by the fact
that the default parameters of Monocle DDRTree preferably led to the detection of tree topologies, while those of Slingshot
preferably found linear and bifurcation trajectories.

We managed to wrap the output of all methods into one common format. This not only allowed us to compare different
methods with a gold standard, but could also be useful for TI users, as it allows the user to test multiple methods on the
same data and compare the results without manual conversion of input and output. Furthermore, it makes it possible to
directly compare the output of different methods, which opens up possibilities for new comparative visualisation techniques
or ensemble methods. However, we acknowledge that our model has some limitations. Currently, It cannot take into account
uncertainty of a cell’s position, which can both occur on the cellular ordering (e.g. when the position of a cell is uncertain within
a branch) or on the trajectory topology (e.g. when the connections between branches are uncertain). Some current methods
already model this uncertainty in some way, mainly on the cellular ordering30, and in the future we will adapt our output model
to also allow this uncertainty.
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The use of synthetic data to evaluate TI methods offers the advantage of having an exact gold standard to which the methods’
results can be compared. However, the use of synthetic data can also be questionable, because themodel which generates the
data does not necessarily reflect the intrinsic characteristics of true biological systems. This could bias an evaluation towards
methods for which the underlying model best fits the model used for generating the data. Therefore, it is essential that results
of an evaluation on synthetic data are confirmed using real data. In our study, the overall performance of methods was very
similar between real and synthetic datasets, confirming the biological relevance of the synthetic data. Given this, we believe that
our synthetic data can nowbe used to effectively prototype new TImethods formore complex trajectories such as disconnected
graphs, for which the availability of real datasets is poor. Furthermore, it is expected that in the future, methods will be able
to model even more complex cellular behaviors, such as multiple dynamic processes happening at parallel in a single cell, the
integration of datasets from different patients or trajectories in a spatial context1,4. Synthetic data generated with our workflow
could therefore be used to spearhead the development of these methods, given that currently only a limited number of real
datasets are available for which themethods could be useful. Furthermore, we believe that our data generation workflow could
also be used to evaluate other types of single-cell modelling techniques, such as single-cell network inference, clustering and
normalisation. We sincerely hope that such efforts will lead to a more rapid development of accurate methods, and will in the
near future provide a package which can be used to simulate synthetic data for a wide variety of single-cell modelling problems.

Methods

Trajectory inference methods

Method selection

We gathered a list of 59 trajectory inference methods (Table 1), by searching in literature for “trajectory inference” and “pseu-
dotemporal ordering”, and based on two existing lists found online74,76. A continuously updated list can also be found online).
We welcome any contributions by creating an issue at github.com/dynverse/dynverse/issues.

Methods were excluded from the evaluation based on several criteria: (a) Not free, (b) Unavailable, (c) Superseded by another
method, (d) Requires data types other than expression, (e) No programming interface, (f) Unresolved errors during wrapping,
(g) Too slow (requires more than one hour on a 100x100 dataset), (h) Doesn’t return an ordering, (i) Requires additional user
input during the algorithm (not prior information), (j) Published later than 2017-05-01 to be included in the current version of
the evaluation, (k) This method is not published in preprint or a peer-reviewed journal. This resulted in the inclusion of 29
methods in the evaluation (Table 1).

Method input

As input, we provided for each method either the raw count data (after cell and gene filtering) or normalised expression values,
based on the description in the methods documentation or from the study describing the method. Furthermore, when re-
quired, we also provided a maximum of 7 types of prior information. This prior information was extracted from the gold/silver
standards as follows:

• Start cells The identity of one or more start cells. For both real and synthetic data, a cell was chosen which was the
closest (in geodesic distance) from each milestone with only outgoing edges. For ties, one random cell was chosen. For
cyclic datasets, a random cell was chosen.

• End cells The identity of one or more end cells. Similar as the start cells, but now for every state with only ingoing edges.
• # end states Number of terminal states. Number of milestones with only ingoing edges.
• Grouping For each cell a label to which state/cluster/branch it belongs. For real data, the states from the gold/silver
standard. For synthetic data, each milestone was seen as one group, and cells were assigned to their closest milestone.

• # branches Number of branches/intermediate states. For real data, the number of states in the gold/silver standard.
For synthetic data, the number of milestones.

• Time course For each cell a time point fromwhich it was sampled. If available, directly extracted from the gold standard.
For synthetic data: four timepoints were chosen, at which the cells were “sampled” to provide a time course information
reflecting the one provided in real experiments.
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Common trajectory model

Due to the absence of a common format for trajectory models, most methods return a unique set of output formats with few
overlap. We therefore created wrappers around each method (available at github.com/dynverse/dynmethods) and postpro-
cessed its output into a common probabilistic trajectorymodel (Supplementary Figure 16a). Thismodel consists of three parts.
(i) The milestone network represents the overall network topology, and contains edges between different milestones and the
length of the edge between them. (ii) The milestone percentages contain, for each cell, its position between milestones, and
sums for each cell to one. (iii) The trajectory model also allows for regions of delayed commitment, where cells are allowed to
be positioned between three or more connected milestones. Regions must be explicitly defined in the trajectory model. Per
region, one milestone must be directly connected to all other milestones in the network.

Depending on the output of a method, we used different strategies to convert the output to our model (Supplementary Figure
16b). Special conversions are denoted by an *, and will be explained in more detail below.

• Type 1, direct: GPfates, reCAT, SCIMITAR, SLICE* and Wishbone. These methods assign each cell to a branch together
with a pseudotime value and a branch network. The branch network is used as the milestone network, the percentages
of a cell are proportional with its branch pseudotime.

• Type 2, linear pseudotime: Embeddr, Ouija, Ouijaflow, Phenopath, Pseudogp, SCORPIUS, Topslam, Wanderlust and
Waterfall. These methods return a pseudotime value for each cell. The milestone network will consist of a single edge
between two milestones, where cells are positioned on the transition proportional to their pseudotime value.

• Type 3, end state probability: MFA* and SCOUP. These methods return a global pseudotime value and a probability for
every end state. We use a single start state and add an edge to every endmilestone each representing an end state. The
global pseudotime then determines the distance from the begin milestone, the rest of the cell’s position is calculated by
distributing the residual percentage over the end states, proportionally to the end state probabilities.

• Type 4, cluster assignment: Mpath and SCUBA. These methods return a cluster assignment and a cluster network. The
cluster network was used as milestone network, each cell received percentage 1 or 0 based on its cluster assignment.

• Type 5, projection onto nearest branch: DPT*, Slingshot, StemID and TSCAN. Thesemethods returning a cluster assign-
ment, cluster network and dimensionality reduction. We projected each cell on the closest point on the edges between
its own cluster and neighbouring clusters within the dimensionality reduction. This projection allowed us to give each cell
a pseudotime within the edge, which was then converted into our model as described above, using the cluster network
as milestone network.

• Type 6, cell graph: cellTree Gibbs, cellTree Maptpx, cellTree VEM, Monocle DDRTree, Monocle ICA, Sincell* and SLICER.
Thesemethods return a network of connected cells, and determinewhich cells are part of the “backbone”. Onemilestone
is created for each cell that is part of the backbone and has a degree ̸= 2. Cells are positioned on the closest segment
that is part of the backbone.

Special conversions were necessary for certain methods:

• DPT We projected the cells onto the cluster network, consisting of a central milestone (this cluster contains the cells
which were assigned to the “unknown” branch) and three terminal milestones, each corresponding to a tip point. This
was then processed as described above.

• Sincell To constrain the number of milestones this method creates, we merged two cell clusters iteratively until the
percentage of leaf nodes was below a certain cutoff, default at 25%. This was then processed as described above.

• SLICE As discussed in the vignette of SLICE, we ran principal curves one by one for every edge detected by SLICE. This
local pseudotime was then processed as above.

• MFA We used the branch assignment as state probabilities, which together with the global pseudotime were processed
as described above.

Real datasets

We gathered a list of real datasets by searching for “single-cell” at the Gene Expression Omnibus and selecting those datasets in
which the cells are sampled from different stages in a dynamic process (Supplementary Table 1 and Supplementary Figure 4).
The scripts to download and process these datasets will be made available on our repository (github.com/dynverse/dynalysis).
Whenever possible, we preferred to start from the raw counts data. These raw counts were all normalised and filtered using
a common pipeline, discussed later. We determined a reference standard for every dataset using labelling provided by the
author’s, and classified the standards into gold and silver based on whether this labelling was determined by the expert using
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the expression (silver standard) or using other external information (such as FACS or the origin of the sample, gold standard)
(Supplementary Table 1).

Synthetic datasets

Our workflow to generate synthetic data is based on the well established workflow used in the evaluation of network inference
methods70,77 and consists of four main steps: network generation, simulation, gold standard extraction and simulation of the
scRNA-seq experiment (Supplementary Figure 5). At every step, we took great care to mimic real cellular regulatory networks
as best as possible, while keeping the model simple and easily extendable. For every synthetic dataset, we used a random real
dataset as a reference dataset (from those described earlier), making sure the number of variable genes and cells were similar.

Network generation

One of the main processes involved in cellular dynamic processes is gene regulation, where regulatory cascades and feedback
loops lead to progressive changes in expression and decision making. The exact way a cell choses a certain path during its
differentiation is still an active research field, although certain models have already emerged and been tested in vivo. One
driver of bifurcation seems to be mutual antagonism, where genes78 strongly repress each other, forcing one of the two to
become inactive79. Such mutual antagonism can be modelled and simulated80,81. Although such a two-gene model is simple
and elegant, the reality is frequently more complex, with multiple genes (grouped into models) repressing each other82.

To simulate certain trajectory topologies, we therefore designedmodule networks inwhich the cells follow aparticular trajectory
topology given certain parameters (Supplementary Figure 17). Two module networks generated linear trajectories (linear
and linear long), two generated simple forks (bifurcating and converging), one generated a complex fork (trifurcating), one
generated a rooted tree (consecutive bifurcating) and two generated simple undirected graphs (bifurcating loop and bifurcating
convergence).

From these module networks we generated gene regulatory networks in two steps: the main regulatory network was first
generated, and extra target genes from real regulatory networks were added. For each dataset, we used the same number of
genes as were differentially expressed in the real datasets. 5% of the genes were assigned to be part of the main regulatory
network, and were randomly distributed among all modules (with at least one gene per module). We sampled edges between
these individual genes (according to the module network) using a uniform distribution between 1 and the number of possible
targets in each module. To add additional target genes to the network, we assigned every regulator from the network to a
real regulator in a real network (from regulatory circuits83), and extracted for every regulator a local network around it using
personalized pagerank (with damping factor set to 0.1), as implemented in the page_rank function of the igraph package.

Simulation of gene regulatory systems using thermodynamic models

To simulate the gene regulatory network, we used a system of differential equations similar to those used in evaluations of
gene regulatory network inference methods77. In this model, the changes in gene expression (xi) and protein expression (yi)
are modeled using ordinary differential equations70 (ODEs):

dxi

dt
= m × f(y1, y2, ...)

︸ ︷︷ ︸

production

− λ × xi
︸ ︷︷ ︸

degradation

dyi

dt
= r × xi

︸ ︷︷ ︸

production

− Λ × yi
︸ ︷︷ ︸

degradation

wherem, λ, r andΛ represent production and degradation rates, the ratio of which determines themaximal gene and protein
expression. The two types of equations are coupled because the production of protein yi depends on the amount of gene
expression xi, which in turn depends on the amount of other proteins through the activation function f(y1, y2, ...).

The activation function is inspired by a thermodynamic model of gene regulation, in which the promoter of a gene can be
bound or unbound by a set of transcription factors, each representing a certain state of the promoter. Each state is linked
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with a relative activation αj , a number between 0 and 1 representing the activity of the promoter at this particular state. The
production rate of the gene is calculated by combining the probabilities of the promoter being in each state with the relative
activation:

f(y1, y2, ..., yn) =
∑

j∈{0,1,...,n2}

αj × Pj

The probability of being in a state is based on the thermodynamics of transcription factor binding. When only one transcription
factor is bound in a state:

Pj ∝ ν =
(y

k

)n

Where the hill coefficientn represents the cooperativity of binding and k the transcription factor concentration at half-maximal
binding. When multiple regulators are bound:

Pj ∝ ν = ρ ×
∏

j

(
yj

kj

)nj

where ρ represents the cooperativity of binding between the different transcription factors.

Pi is only proportional to ν because ν is normalized such that
∑

i Pi = 1.

To each differential equation, we added an additional stochastic term:

dxi

dt
= m × f(y1, y2, ...) − λ × xi + η × √

xi × ∆Wt

dyi

dt
= r × xi − Λ × yi + η × √

yi × ∆Wt

with ∆Wt ∼ N (0, h).

Similar to70, we sample the different parameters from random distributions, given in Supplementary Table 4.

We converted each ODE to an SDE by adding a chemical Langevin equation, as described in70. These SDEs were simulated
using the Euler–Maruyama approximation, with time-step h = 0.01 and noise strength η = 8. The total simulation time
varied between 5 for linear and bifurcating datasets, 10 for consecutive bifurcating, trifurcating and converging datasets, 15
for bifurcating converging datasets and 30 for linear long, cycle and bifurcating loop datasets. The burn-in period was for each
simulation 2. Each network was simulated 32 times.

Simulation of the single-cell RNA-seq experiment

For each dataset we sampled the same number of cells as were present in the reference real dataset, limited to the simulation
steps after burn-in. Next, we used the Splatter package84 to estimate the different characteristics of a real dataset, such as the
distributions of average gene expression, library sizes and dropout probabilities. We used Splatter to simulate the expression
levels λi,j of housekeeping genes i (to match the number of genes in the reference dataset) in every cell j. These were
combined with the expression levels of the genes simulated within a trajectory. Next, true counts were simulated using Y ′

i,j ∼
Poi(λi,j). Finally, we simulated dropouts by setting true counts to zero by sampling from a Bernoulli distribution using a
dropout probability πD

i,j = 1

1+e
−k(ln(λi,j )−x0) .

Gold standard extraction

Because each cellular simulation follows the trajectory at its own speed, knowing the exact position of a cell within the trajec-
tory topology is not straightforward. Furthermore, the speed at which simulated cells make a decision between two or more
alternative paths is highly variable. To estimate a cell’s position during a simulation within the trajectory topology, we therefore
used the known progression of themodules, given in Supplementary Figure 17c, as a backbone. We smoothed the expression
in each simulation using a rolling mean with a window of 50 time steps, and then calculated the average module expression
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along the simulation. We used dynamic time warping, implemented in the dtw R package85,86, with an open end to align a sim-
ulation to all possible module progressions, and then picked the alignment which minimised the normalised distance between
the simulation and the backbone. In case of cyclical trajectory topologies, the number of possible milestones a backbone could
progress through was limited to 20.

Expression normalisation pipeline

We used a standard single-cell RNA-seq preprocessing pipeline which applies parts of the scran and scater Bioconductor pack-
ages87. The advantages of this pipeline is that it works both with and without spike-ins, and includes a harsh cell filtering which
looks at abnormalities in library sizes, mitochondrial gene expression, and number of genes expressed using median absolute
deviations (set to 3). We required that a gene was expressed in at least 5% of the cells, and that it should have an average ex-
pression higher than 0.05. Furthermore, we used the pipeline to select the most highly variable genes, using a false discovery
rate of 5% and a biological component higher than 0.5. As a final filter, we removed both zero genes and cells until convergence.

Evaluation metrics

The importance of using multiple metrics to compare complex models has been stated repeatedly88. We defined three metrics
for comparing the likeness of predicted trajectories to a gold standard (Figure 1c). Each metric assesses the performance of
a different aspect of the trajectory (Supplementary Figure 18); (i) the correlation metric measures the similarity in pairwise
cell-cell distances; (ii) the RF MSE metric assesses whether cell neighbourhoods are similar in both trajectories; and (iii) the
edge flip scores assesses similarity in trajectory topologies.

Correlation between geodesic distances

The similarity in cell ordering between two trajectories is assessed by calculating the geodesic distances between each pair of
cells for both trajectories. The definition of a geodesic distance between two cells part of the common trajectory model will be
demonstrated using a toy example (Supplementary Figure 19).

The geodesic distance between two cells depends onwhether they are (i) on the same transition, or (ii) in different transitions. In
the first case, the distance is defined as the product of the difference in milestone percentages and the length of the transition
they both reside on. For cells a and b in the example, d(a, b) is equal to 1 × (0.9 − 0.2) = 0.7. In the latter case, the
distances between the cells and all of their neighbouring milestones will be calculated. These distances in combination with
the milestone network are used to calculate the shortest path distance between the two cells. For cells a and c in the example,
d(a, X) = 1 × 0.9 and d(c, X) = 3 × 0.2, and therefore d(a, c) = 1 × 0.9 + 3 × 0.2.

According to the defined common trajectory model (Figure 1b), cells are also allowed to have a delayed commitment. In a
region of delayed commitment, one milestone will be connected to all other milestones as per the milestone network. In this
case, the distance between two cells both inside a region of delayed commitment is calculated as the manhattan distances
between the milestone percentages weighted by the transition weights from the milestone network. For cells d and e in the
example, d(d, e) is equal to 0 × (0.3 − 0.2) + 2 × (0.7 − 0.2) + 3 × (0.4 − 0.1), which is equal to 1.9. The distance
between two cells where one is part of a region of delayed commitment is calculated similarly to the previous paragraph, by first
calculating the between the cells and their neighbouring milestones first, then calculating the shortest path distances between
the two.

Finally, calculating all pairwise distances between cells would scale poorly for trajectories with large numbers of cells. For this
reason, a set of waypoint cells are defined a priori, and only the distances between the waypoint cells and all other cells is
calculated, in order to calculate the correlation of geodesic distances of two trajectories. The waypoints are determined by
viewing each milestone, transition and region of delayed commitment as a collection of cells, and sampling cells from the
different collections weighted by the total number of cells within that collection. For calculating the correlation of geodesic
distances between two trajectories, the distances between all cells and the union of both waypoint sets is computed. For the
benchmark evaluation, the total number of waypoints sampled from a trajectory was one hundred.
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Random forest prediction error

Although the correlation between geodesic distances directly assesses the position of the cells in the trajectory, a bad correlation
does not directly imply that similar cellswere not grouped together by themethod, as illustrated in Supplementary Figure 18b,c.
For example, certainmethods will inevitably reach an incorrect ordering because they cannot handle the correct trajectory type,
but these methods could still correctly place similar cells next to each other. We therefore also included ametric which looks at
the local neighbourhood of each cell, and assesses whether this neighbourhood can accurately predict the position of this cell in
the gold standard. We used a Random Forest regression, implemented in the ranger package89 to separately predict milestone
percentages of every cell in the gold standard, using the milestone percentages of these cells in the prediction as features. We
then used the out-of-bag mean-squared error on these percentages to score each method’s capability of predicting the correct
neighbourhood of each cell.

Edge flip score

As a third independent score, we assessed the similarity between the milestone network topologies. We first simplified each
network, by merging consecutive linear edges into one edge, and adding new milestones within self loops such that A → A
would be convertedA → B → C → D, by adding an intermediate node to linear networks. Because we are interested in the
overall similarity between two topologies irrespective of the direction of the edges, the network was made undirected. Next,
we define the edge flip score as the minimal number of edges which should be added or removed to convert one network into
the other, divided by the total number of edges in both networks. This problem is equivalent to the maximum common edge
subgraph problem, a known NP-hard problem without a scalable solution90. We implemented a branch and bound approach
for this problem, by first enumerating all possible edge additions and removals with the minimal number of edges (the edge
difference between the two networks) and if none of the newnetworkswas isomorphic, we tried out all solutionswith additional
two edge changes. To further limit the search space, we made sure the degree distributions between the two networks were
similar, before assessing whether the two networks were isomorphic using the BLISS algorithm91, as implemented in the R
igraph package.

A comparison of edge flip scores between common trajectory topologies is illustrated in Supplementary Figure 20.

Aggregation of scores

Supplementary Figure 21 illustrates the full set of aggregations performed on the raw scores in order to arrive at the final
ranking ofmethods. In order tomake the scores produced by the differentmetrics comparable to one another, across datasets
of varying difficulty, the raw scores are percentile rank transformed per metric per dataset to a [0, 1] range. The arithmetic
mean is calculated across replicates. In order to ensure a method only obtains a high score if it scores well on all three metrics,
the harmonic mean across metrics is calculated. At this point, the aggregated scores of all methods across all datasets is
combined. As there can be an overrepresentation of datasets of a certain trajectory type, first an arithmetic mean is calculated
per trajectory type, followed by an overall arithmetic mean across all trajectory types, thus obtaining a ranking of the methods.

Benchmark

Method execution

Each execution of a method on a dataset was performed in a separate task as part of a gridengine job. Each task was allocated
one CPU core of an Intel(R) Xeon(R) CPU E5-2665 0 @ 2.40GHz, and was provided a maximum of 32GB in memory and 6
hours of wall time. One R session was started for each task, with the environment variable R_MAX_NUM_DLLS set to 500.
The base::set.seed was overridden in order to prevent stochastic TI methods from pretending to be deterministic and/or
robust. Timings of methods were measured for different steps along the executions, including preprocessing, postprocessing,
each of the different metrics, and the method itself.
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Effect of prior information

To assess the effect of prior information on the performance of amethod, we compared the performance of methods which do
or do not require the prior information using a two-tailed Mann–Whitney U test. P-values were controlled for multiple testing
using Benjamini-Hochberg correction.

Effect of algorithm components

To assess the effect of algorithm components on the performance of a method, we used (1) a two-tailed Mann–Whitney U
test, as implemented in the wilcox.test R function, and (2) increase in node purity importance scores using random forest
classification, as implemented in the R randomForest package, predicting whether a method scored better than the median
score. To evaluate whether a method increased or decreased performance, we used the estimate of the location parameter of
the Mann–Whitney U test. We only investigated algorithm components which were part of at least 4 different methods in our
evaluation study. P-values were controlled for multiple testing using Benjamini-Hochberg correction.

Method quality control

We created a transparent scoring scheme to check the quality of each method (Supplementary Table 3), based on several
existing tool quality and programming guidelines in literature and online92,71,93,94,72,95,96,97,98,99,100,101,102,103,104,105 . The goal of
this quality control in the first place is to stimulate the improvement of current methods, and the development of user and
developer friendly new methods. The quality control assessed 6 categories, each looking at several aspects, which are further
divided into individual items. The availability category checks whether the method is easily available, whether the code and
dependencies can be easily installed, and how the method can be used. The code quality assesses the quality of the code both
from a user perspective (function naming, dummy proofing and availability of plotting functions) and a developer perspective
(consistent style and code duplication). The code assurance category is frequently overlooked, and checks for code testing,
continuous integration99 and an active support system. The documentation category checks the quality of the documentation,
both externally (tutorials and function documentation) and internally (inline documentation). The behaviour category assesses
the ease by which the method can be run, by looking for unexpected output files and messages, prior information and how
easy the trajectory model can be extracted from the output. Finally, we also assessed certain aspects of the study in which the
method was proposed, such as publication in a peer-reviewed journal, the number of dataset in which the usefulness of the
method was shown, and the scope of method evaluation in the paper.

Each aspect was further assigned to one or more applications, based on whether it influenced the user friendliness of the tool
(such as code availability, good documentation or contains plotting functions), the developer friendliness of the tool (such as
unit testing, inline documentation and a clear licensing), or indications that the tool will be broadly applicable on new datasets
(such as being open-source, containing a good tutorial and support system, and being thoroughly evaluated in the study where
it was published).

Each quality aspect received a weight depending on how frequently it was found in several papers and online sources which
discuss tool quality (Table 1). This was to make sure that more important aspects, such as the open source availability of the
method, outweighed other aspects, such as the availability of a graphical user interface. Within each aspect, we also assigned
a weight to the individual questions being investigated (Table 1). For calculating the final score, we weighed each of the six
categories equally.

Trajectory types

We classified all possible trajectory topologies into distinct trajectory types, based on topological criteria. These trajectory types
start from the most general trajectory type, a disconnected directed graph, and move down (within a directed acyclic graph
structure), progressively becoming more simple until the two basic types: linear and cyclical (Supplementary Figure 22a). For
every directed trajectory type, a corresponding undirected trajectory type can also be defined (Supplementary Figure 22b). In
most cases, a method which was able to detect a complex trajectory type, was also able to detect less complex trajectory types,
with the only exception being DPT (limited to bifurcating trajectories).
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Supplementary Figure 1 New TI methods over time. a) Number of methods published or in preprint. b) Number of methods
fixing the trajectory topology, either by design (fixed) or through user parameters (parameter). c) Number of methods which
can handle a particular type of trajectory.
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dynamic clustering: 1
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mixture OU process: 1
Morphing Gaussian Mixture: 1
PQ tree: 1
sammon: 1
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SST: 1
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diffusion map: 2
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hierarchical clustering: 2
laplacian eigenmap: 2
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Supplementary Figure 2 Common algorithmic components shared by different TI methods. Most components can be cate-
gorised into 4 categories: clustering (pink), dimensionality reduction (orange), generative models (green) and graph building
(blue). a) Wordcloud of the common components. b) Number of times a component was shared betweenmethods. c) Number
of methods containing a particular category.
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Supplementary Figure 3 Extended overview of our evaluation pipeline. From literature we extracted a quality control checklist,
a list of trajectory inferencemethods, a set of real datasets containing a trajectory and real regulatory networks used to generate
the synthetic data. We created a wrapper of each method, so that its output was transformed into a common probabilistic
trajectory model, and used these to infer trajectories on all real and synthetic datasets using their default parameters. Using
several similarity metrics, we compared the gold standard of the real and synthetic datasets with the inferred trajectories. We
also evaluated the quality of each method using the quality control checklist, and used both the benchmark results and quality
control results to produce a final set of guidelines for method’s users.

21

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 5, 2018. ; https://doi.org/10.1101/276907doi: bioRxiv preprint 

https://doi.org/10.1101/276907
http://creativecommons.org/licenses/by-nc/4.0/


10 100100 1000 10000

Number of cells

10 100100 1000 10000

Number of genes

2014 2015 2016 2017 2018

Date

10X chromium: 1
RdRNA-seq: 1

Tang et. al.: 3

SC3-seq: 4

Smart-seq: 5

Smart-seq2: 13

Fluidigm c1: 21

Technology

Fly: 3

Macaque: 4

Human: 10

Mouse: 31

Organism

Gold: 23

Silver: 25

Standard

Aging: 2

Cell cycle: 2

Activation: 4

Maturation: 4

Differentiation: 36

Dynamic process

DAG: 2

Directed cycle: 2

DDG: 2

Multifurcation: 2

Rooted tree: 4

Bifurcation: 6

Directed

linear: 30

Trajectory type

Supplementary Figure 4 Characteristics of the real datasets used for the evaluation. Top: distributions of number of cells
and genes (after filtering) and the date these datasets were published. Bottom: Diversity of technologies which were used
to generate the dataset, the organism, whether we extracted a silver or a gold standard from the data, the type of dynamic
process and the trajectory type present in the data.
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Supplementary Figure 5 Workflow to generate the synthetic data. Starting from a state network, we extracted a regulatory
network using real networks which is expected to induce such a set of state transitions when simulated. We simulated this
network using a detailed model of gene regulation which includes the thermodynamics of transcription factor binding. Finally,
we simulated the single-cell RNA-seq (scRNA-seq) experiment itself, by matching the distribution of expression and dropouts
to a real reference dataset.
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Supplementary Figure 6 Comparison between performance on real and synthetic datasets across trajectory types. Given in
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Supplementary Figure 7 Comparison between the different metrics across trajectory types. For each row, a different pairwise
comparison is given between two metrics.
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Supplementary Figure 8 Comparison between the performance of methods able to handle a trajectory type with those who
don’t. Shown is the performance on those datasets containing a particular trajectory type (top), according to several metrics
(right).
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p-value < 0.001, ***: p-value < 0.0001
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Supplementary Figure 12 Score of methods containing particular algorithmic components. Shown are the algorithmic com-
ponents present in four or more methods, and whether the performance of methods containing a certain component was
significantly higher than all the other methods. NS: Not significant. *: corrected p-value < 0.05
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Supplementary Figure 13 Quality control scores and number of citations over time.
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Supplementary Figure 15 Method performance compared to the time the method was published. The red line indicates the
optimal performance up to a point in time.
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Supplementary Figure 16 A common interface for TI methods. a) The input and output of each TI method is standardised.
As input, each TI method receives either raw or normalised counts, several parameters, and a selection of prior information.
After its execution, a method uses one of the six wrapper functions to transform its output to the common trajectory model.
This common model then allows to perform common analysis functions on trajectory models produced by any TI method. b)
The specific transformations performed by each of the wrapper functions is explained in more detail.
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Supplementary Figure 17 Module networks, milestone networks and the module dynamics for each of the different types of
synthetic data
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Supplementary Figure 18 Different scores assess different aspects of the correspondence between a prediction and gold
standard trajectory.
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Supplementary Figure 19 The modified geodesic distances demonstrated on a toy example. a) A toy example containing
four milestones (W to Z) and five cells (a to e). b) The corresponding milestone network, milestone percentages and regions
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of delayed commitment, when the toy trajectory is converted to the common trajectory model. c) The calculations made for
calculating the pairwise geodesic distances. d) A heatmap representation of the pairwise geodesic distances.
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Supplementary Figure 20 Edge flip score values for common trajectory topologies, defined in Supplementary Figure 17.
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Supplementary Figure 21 Aggregation methodology of metric scores.
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Supplementary Figure 22 Different trajectory types can be classified in a directed acyclic graph structure, in which certain
types are a generalisation of other trajectory types. a) The graph structure for undirected and directed trajectory types. Shown
are the topological properties which change when going from a particular trajectory type to a less complex type. b) Combined
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Supplementary Tables

Supplementary Table 1 Real datasets used in this study.

Source(s) Organism Technology Trajectory type Standard determination # cells # genes

GSE52529 mouse fluidigm c1 Directed linear timeseries 291 3582
GSE52583 mouse fluidigm c1 Multifurcation clustering: hierarchical 65 1095

smart-seq Directed linear timeseries 541 3630
smart-seq Directed linear timeseries 408 3387GSE48968 mouse
smart-seq Directed linear timeseries 435 3604

E-MTAB-2805 mouse fluidigm c1 Directed cycle FACS 264 5310
Tang et. al. Bifurcation timeseries, sample origin 272 5708
Tang et. al. Directed linear timeseries, sample origin 166 3457GSE63818 human
Tang et. al. Directed linear timeseries, sample origin 101 3502

GSE64016 human fluidigm c1 Directed cycle clustering: oscope 222 3766
GSE60781 mouse fluidigm c1 Directed linear FACS 238 1845
E-MTAB-3929 human fluidigm c1 Directed linear timeseries 1299 4135

smart-seq Directed linear FACS 873 2863
GSE59114 mouse

smart-seq Directed linear FACS 493 2406
fluidigm c1 Directed acyclic graph clustering 158 1737
fluidigm c1 Directed linear clustering 117 1673
fluidigm c1 Directed linear clustering 85 1584

GSE71982 mouse

fluidigm c1 Directed linear clustering 85 1648
GSE74596 mouse fluidigm c1 Bifurcation FACS 197 3982
GSE67310 mouse fluidigm c1 Bifurcation timeseries, clustering: PCA + hierarchical 355 3301

fluidigm c1 Directed linear clustering: BackSpinV2 3694 999
GSE75330 mouse

fluidigm c1 Multifurcation clustering: BackSpinV2 4959 1008
GSE85066 human fluidigm c1 Rooted tree FACS 501 3523

SC3-seq Rooted tree clustering: hierarchical 182 5273
SC3-seq Directed linear clustering: hierarchical 83 4780
SC3-seq Rooted tree clustering: hierarchical 272 5376

GSE74767 macaque

SC3-seq Disconnected directed graph clustering: hierarchical 351 5416
GSE70240, GSE70243, GSE70244, GSE70236 mouse fluidigm c1 Directed linear FACS 318 2702
GSE70240, GSE70244, GSE70236 mouse fluidigm c1 Rooted tree FACS, clustering: ICGS 376 2967
GSE79363 mouse smart-seq2 Bifurcation FACS 60 1849

fluidigm c1 Directed linear clustering: AP 749 1033
fluidigm c1 Directed linear clustering: AP 699 1060GSE67602 mouse
fluidigm c1 Directed linear clustering: AP 346 1009

GSE90860 mouse fluidigm c1 Bifurcation timeseries, clustering: PCA + hierarchical 213 4872
smart-seq2 Directed linear clustering: DBclust 659 3630
smart-seq2 Directed linear clustering: DBclust 629 4691
smart-seq2 Directed linear timeseries, sample origin 659 3630

GSE86146 human

smart-seq2 Directed linear timeseries, sample origin 671 4459
smart-seq2 Directed linear timeseries 322 6763

GSE87375 mouse
smart-seq2 Directed linear timeseries 563 6372

GSE90047 mouse smart-seq2 Bifurcation timeseries,clustering: PCA + hierarchical 503 2037
smart-seq2 Directed linear timeseries 192 1534

GSE99951 mouse
smart-seq2 Directed linear timeseries 456 3585
smart-seq2 Directed linear timeseries, clustering: ICIM 277 1514
smart-seq2 Directed acyclic graph timeseries, clustering: ICIM 169 982GSE100058 fly
smart-seq2 Disconnected directed graph timeseries, clustering: ICIM 454 2703

GSE95315 mouse 10X chromium Directed linear clustering: markov 3580 698
GSE98664 mouse rdRNA-seq Directed linear timeseries 414 12532
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Supplementary Table 2 Importance values for algorithmic components. The overall performance was compared between
methods containing a particular algorithmic component, and we calculated both a corrected p-value using a two-tailed Mann–
Whitney U test and the increase in node purity importance measure using random forest classification.

Component Adjusted p-value Inc node purity Effect Methods Category

principal curves 0.08842 0.213 Higher performance
SCUBA, Embeddr,
SLICE, SCORPIUS,
Slingshot

ordering

k-means 0.08842 0.557 Higher performance
Waterfall,
SCORPIUS,
Slingshot, Monocle
DDRTree, reCAT

clustering

any graph building 0.08842 0.739 Higher performance

Monocle ICA,
Waterfall,
Wishbone, StemID,
TSCAN, SLICER,
Mpath, cellTree
Maptpx, cellTree
Gibbs, cellTree
VEM, SLICE,
Topslam, SCORPIUS,
Slingshot, Monocle
DDRTree, Sincell,
Wanderlust, reCAT

graph building

MST 0.13634 0.478 Higher performance

Monocle ICA,
Waterfall, StemID,
TSCAN, Mpath,
cellTree Maptpx,
cellTree Gibbs,
cellTree VEM,
SLICE, Topslam,
Slingshot, Monocle
DDRTree, Sincell

graph building

tSNE 0.13634 0.442 Lower performance StemID, Pseudogp,
Topslam, Sincell dimensionality reduction

any ordering 0.13634 0.158 Higher performance

Monocle ICA, SCUBA,
StemID, TSCAN,
SLICER, Embeddr,
SLICE, SCORPIUS,
Slingshot, Monocle
DDRTree, Wanderlust

ordering

any clustering 0.13634 0.113 Higher performance

Waterfall, SCUBA,
StemID, TSCAN,
Mpath, SLICE,
SCORPIUS,
Slingshot, Monocle
DDRTree, Sincell,
reCAT

clustering

ICA 0.31683 0.059 Lower performance
Monocle ICA,
Pseudogp, Topslam,
Sincell

dimensionality reduction

any dimensionality reduction 0.33783 0.251 Higher performance

Monocle ICA,
Waterfall,
Wishbone, DPT,
StemID, TSCAN,
SLICER, Pseudogp,
Embeddr, SLICE,
Topslam, SCORPIUS,
Slingshot, Monocle
DDRTree, Sincell

dimensionality reduction

any dimensionality reduction 0.33783 0.251 Higher performance

Monocle ICA,
Waterfall,
Wishbone, DPT,
StemID, TSCAN,
SLICER, Pseudogp,
Embeddr, SLICE,
Topslam, SCORPIUS,
Slingshot, Monocle
DDRTree, Sincell

dimensionality reduction

knn graph 0.39281 0.154 Lower performance Wishbone, SLICER,
Sincell, Wanderlust graph building

MDS 0.61356 0.074 Lower performance Pseudogp, Topslam,
SCORPIUS, Sincell dimensionality reduction

any generative model 0.73132 0.079 Lower performance

GPFates, Pseudogp,
SCOUP, cellTree
Maptpx, cellTree
Gibbs, cellTree
VEM, MFA,
Phenopath, SCIMITAR

generative model

PCA 0.9791 0.033 Lower performance
Waterfall, TSCAN,
Pseudogp, SLICE,
Topslam, Sincell

dimensionality reduction

k-medoids 0.9791 0.057 Lower performance StemID, SLICE,
Sincell, reCAT clustering
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Supplementary Table 4 Distributions from which each parameter in the thermodynamic model was sampled.

r = U(10, 200)
d = U(2, 8)
p = U(2, 8)
q = U(1, 5)

a0 =







1 if e ∈ {1} or e = ∅
0 if e ∈ {−1}
0.5 otherwise

ai =

{

1 if ei ∈ {−1}
0 otherwise

s = U(1, 20)
k = ymax/(2 ∗ s)
c = U(1, 4)
where
ymax = r/d ∗ p/q
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