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Abstract. We compare the numerical performance of several methods for solving the
discrete contact problem arising from the finite element discretisation of elastic systems
with numerous contact points. The problem is formulated as a variational inequality and
discretised using piecewise quadratic finite elements on a triangulation of the domain. At the
discrete level, the variational inequality is reformulated as a classical linear complementarity
system. We compare several state-of-art algorithms that have been advocated for such
problems. Computational tests illustrate the use of these methods for a large collection
of elastic bodies, such as a simplified bidimensional wall made of bricks or stone blocks,
deformed under volume and surface forces.
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1. Introduction

An important problem arising in practical engineering applications involves a col-
lection of linearly elastic bodies that are deformed due to volume and surface forces,

but cannot penetrate each other. The work presented in this paper is motivated by
our interest in masonry structures. We assume that they can be modelled satisfacto-

rily as a linear elasticity system assembled from a large number of elastic components
situated at nonnegative distance from one another. Our present objective is to com-

*This work was supported by the Engineering and Physical Science Research Council of
Great Britain under grant GR/S35101, and the first author was supported by a fellowship
from the Royal Society of Edinburgh.
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pare several state-of-art algorithms that have been advocated for the solution of the

linear complementarity problem that arise when such problems are discretised.

In Section 2, we describe the model problem in terms of classical partial differential

equations of linear elasticity with contact conditions. The problem is formulated
as a variational inequality and discretised using piecewise quadratic finite elements

on a triangulation of the domain. The treatment of variational inequalities and
their applications in continuum mechanics is discussed, for example, in Fichera [4],

Duvaut & Lions [3], Glowinski et al. [6], Hlaváček et al. [11], Kikuchi & Oden [13]. In
Section 3, at the discrete level, the variational inequality is reformulated as a classical

linear complementarity system. In Section 4, we discuss several iterative solvers
for the discrete constrained system. The solvers we consider are: the successive

over-relaxation with projection, cf. e.g. Glowinski et al. [6], the linear least squares
with nonnegativity constraints, cf. Lawson & Hanson [14], the primal-dual active-

set method, cf. Hintermüller et al. [9], the primal-dual predictor-corrector method,
cf. e.g. Wright [18], and the principal pivoting simplex method, cf. Graves [7]. In
Section 5, numerical experiments are presented to illustrate the use of these solvers

for a large collection of elastic bodies, such as a simplified bidimensional wall made
of bricks or stone blocks, deformed under volume and surface forces. Concluding

remarks are addressed in Section 6.

2. Formulation and discretisation of the model problem

We introduce the model contact problem in both the strong and weak forms and
discuss the finite element approximation of the problem expressed as a variational

inequality. Both the primal formulation of the problem (i.e. in terms of displacements
only) and the primal-dual formulation (i.e. in terms of displacements and stresses)

will be needed in view of the fact that the different solvers we consider are sometimes
viewed more naturally in terms of the primal or dual problem.

The mathematical model. We consider an elastic system consisting of a finite,
but possibly large, number of elastic bodies situated at nonnegative distance from
one another (Fig. 1). Each body occupies a Lipschitz domain Ωk ⊂ � d , d = 2
or 3, k = 1, . . . , nb, and the domain occupied by the overall system is defined as
Ω = Ω1 ∪ . . . ∪Ωnb . Let ∂Ω = ∂Ω1 ∪ . . . ∪ ∂Ωnb represent the global boundary of Ω.
We denote by ΓC the potential contact surface between the elastic bodies, and by
ΓB = ∂Ω \ ΓC the exterior boundary of the overall system.

Let u(x) = (u1(x), . . . , ud(x)), x ∈ Ω, denote the vector field of displacements of
the elastic system, and let ekl (k, l = 1, . . . , d) represent the corresponding linearised
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Figure 1. The assembled domain Ω ⊂ � 2 , with nb = 3.

tensor field of strain,

ekl =
1
2

(∂uk

∂xl
+
∂ul

∂xk

)
.

The forces acting in the interior of the elastic system are characterised by the stress
tensor σ, given by the usual constitutive relation (Hooke’s law):

σij(u) = aijklekl(u), i, j = 1, . . . , d.

In the above equations, the summation convention has been used. The moduli of

elasticity aijkl are bounded, measurable functions of x ∈ Ω which satisfy the usual
symmetry conditions:

(2.1) aijkl = aklij = ajikl ,

and the ellipticity condition that there exists a positive constant c0 > 0 such that
for all symmetric ξij ,

(2.2) aijkl(x)ξijξkl > c0ξijξij .

In the special case when the elastic bodies are made of a material which is ho-
mogeneous (i.e. the material properties are independent of position) and isotropic

(i.e. the behaviour of the material is the same in all directions), the stress tensor can
be written explicitly as

σij(u) = λδijell(u) + 2µeij(u), i, j = 1, . . . , d,

where 0 6 λ and 0 < µ are the Lamé parameters which represent physical properties
of the given material. Instead of the Lamé coefficients, the Young modulus (elasticity
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modulus) E and the Poisson ratio ν can be used. These are defined implicitly by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

We recall that Poisson’s ratio takes its values within the theoretical interval [−1, 0.5],
with the value 0.5 corresponding to perfectly incompressible materials. Most practi-
cal engineering materials have Poisson’s ratio between 0.0 and 0.5. Thus,

σij(u) = λδij
∂ul

∂xl
+ µ

(∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, . . . , d.

Let f = (f1, . . . , fd) be the prescribed volume force densities in the elastic bodies,
i.e. fi = %Fi, where % represents density and Fi is a body force, most usually due to
gravity, and fi ∈ L2(Ω) (i = 1, . . . , d). Then the displacement u of the elastic system
is modelled by the following equations of mechanical equilibrium:

µ∆ui + (λ+ µ)
∂2uj

∂xi∂xj
+ fi = 0 in Ω, i = 1, . . . , d.

These equations can be written equivalently as

(2.3)
∂

∂xj
σij + fi = 0 in Ω, i = 1, . . . , d.

We assume that, in the initial stage, the bodies are two by two in contact and

that the overall zone of contact is equal to ΓC . We also suppose that the unknown
final contact zone after deformation will be included in ΓC . In order to express the

conditions on ∂Ω, for every k = 1, . . . , nb, we define

(2.4)

{
uk

N = uk · nk, uk
T = uk − uk

Nn
k,

σk
N = σk

ijn
k
i n

k
j , (σk

T )i = σk
ijn

k
j − σk

Nn
k
i , i, j = 1, . . . , d,

where nk = (nk
1 , . . . , n

k
d) represents the outward unit normal to ∂Ωk, uk = u|Ωk , and

σk = σ|Ωk . Then, we set the normal

(2.5) n =

{
nk or nl on ∂Ωk ∩ ∂Ωl, k, l = 1, . . . , nb, k 6= l,

nk on ∂Ωk ∩ ∂ΓB, k = 1, . . . , nb,

where nl = −nk. Correspondingly, we denote

uN =

{
uk

N or u
l
N on ∂Ωk ∩ ∂Ωl, k, l = 1, . . . , nb, k 6= l,

uk
N on ∂Ωk ∩ ∂ΓB, k = 1, . . . , nb,

etc.
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On ΓC , the conditions are as follows:

• only nonpenetrative displacements are allowed, i.e.

(2.6) [uN ] = uk
N + ul

N 6 0 on ∂Ωk ∩ ∂Ωl, k, l = 1, . . . , nb, k 6= l;

• the action and reaction principle is satisfied, i.e.

(2.7) σN = σk
N = σl

N on ∂Ωk ∩ ∂Ωl, k, l = 1, . . . , nb, k 6= l;

• the following complementarity condition holds:

(2.8) σN [uN ] = 0,

such that where two bodies have a contact point, they do not attract each other,
i.e.

[uN ] = 0 ⇒ σN 6 0;

• for the restricted class of frictionless problems, the tangential (shear, frictional)
stress is equal to zero, i.e.

(2.9) σT = σk
T = 0, k = 1, . . . , nb.

Finally, the outer boundary ΓB is partitioned as ΓB = Γ0∪ΓD ∪ΓF ∪ΓS , according
to the following

• Dirichlet conditions:

ui = 0 on Γ0, i = 1, . . . , d (body is clamped),(2.10)

uN = 0, σT = 0 on ΓD (data are prescribed).

• Neumann conditions:

(2.11) σijnj = θi on ΓF , i = 1, . . . , d (surface forces are acting),

where θi ∈ L2(ΓF ) represent traction forces.
• Signorini conditions:

(2.12) uN 6 g, σN 6 0, σN (uN − g) = 0, σT = 0 on ΓS ,

where g is a bounded, measurable initial gap between the body’s surface and a rigid
obstacle.
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The variational form. To be able to describe the behaviour of the given elas-
tic system, first, we state the model problem (2.3)–(2.12) (the strong form) in the
equivalent variational form (the weak form), then show existence and uniqueness for
the solution of this problem. For more comprehensive details and proofs we refer,

for instance, to Hlaváček et al. [11] and Kikuchi & Oden [13]. For the subsequent
analysis, important function spaces are the following ones:

• L2(D), L∞(D), and H1(D), where D ⊂ � d , are the usual Hilbert spaces.
• H1(Ω) = {v = (v1, . . . , vnb) : vk ∈ [H1(Ωk)]d, k = 1, . . . , nb} is the space of
displacement functions with finite energy, endowed with the broken norm

|||v|||1,Ω =
( nb∑

k=1

‖vk‖21,Ωk

)1/2

,

where ‖ · ‖1,Ωk represents the norm in [H1(Ωk)]d.
• H1(Γ) = {vN : v ∈ H1(Ω)} is the range of H1(Ω) by the normal trace operator
on Γ = ΓC ∪ ΓS .

• V = {v ∈ H1(Ω): v = 0 on Γ0, v
k
N = 0 on Γk

D, k = 1, . . . , nb} is the space of
virtual displacements.

We define the bilinear form

a(u, v) =
∫

Ω

aijkleij(u)ekl(v) dx, ∀u, v ∈ V ,

and the linear form

b(v) =
∫

Ω

fivi dx+
∫

ΓF

θivi dγ, ∀ v ∈ V ,

where dγ is the element of area on ΓF (the arc length along ΓF , when this is a
one-dimensional set).

Let
K = {v ∈ V : [vN ] 6 0 on ΓC , vN 6 g on ΓS}

be the closed convex set of admissible displacements. Then the displacement in the
model system is the solution of the primal variational inequality: find u ∈ K such
that

(2.13) a(u, v − u) > b(v − u), ∀ v ∈ K.

The equivalence between (2.3)–(2.12) and (2.13) can be proved by arguments

analogous to those given, for example, in Hlaváček et al. [11, Chapter 2.1], or Kikuchi
& Oden [13, Chapter 2].
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Next, we define the functional of total potential energy as

L(v) =
1
2
a(v, v) − b(v), ∀ v ∈ K.

Then the variational inequality (2.13) can be rewritten as the minimisation problem:
find the solution u ∈ K to

(2.14) L(u) = min
v∈K

L(v),

or equivalently: find u ∈ K such that

L(u) 6 L(v), ∀ v ∈ K.

Under the previous assumptions on the moduli of elasticity, the functional L(v) is
convex (Kikuchi & Oden [13, p. 113]), i.e.

L(αu+ (1− α)v) 6 αL(u) + (1− α)L(v), ∀u, v ∈ K, ∀α ∈ [0, 1],

and lower semicontinuous, i.e.

L(u) 6 lim inf
n→∞

L(un) for un → u.

We also assume that L(v) is proper, i.e. L(u) > −∞ for all u ∈ V , and L 6= +∞.
For the problem (2.14), in the case considered by our numerical examples (see

Section 5), existence and uniqueness of the solution are established through the
following results.

Let

R =
nb∏

k=1

Rk, where Rk = {(0, rk) : rk ∈
� }

and

R+ =
nb∏

k=1

R+
k , where R+

k = {(0, rk) : rk > 0}.

Lemma 2.1. If the compatibility condition

(2.15) b(v) < 0, ∀ v ∈ K ∩R+ \ {0}

is satisfied, then for every elastic body that occupies a domain Ωk, k = 1, . . . , nb, there

exists at least one point of contact with a body that occupies a domain Ωl situated

below Ωk, or with the rigid obstacle on ΓS , i.e. [uN(γ)] = 0 for some γ ∈ ∂Ωk ∩ ∂Ωl,

or uN(γ) = g for some γ ∈ ΓS .
�������	�

. From the total potential energy, by contradiction. �
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Theorem 2.2. If the compatibility condition (2.15) is satisfied, then there exists
at most one solution u ∈ K to (2.14).
�������	�

. Let u and w be two solutions of (2.14). Then u−w = r, where r ∈ V∩R,
and, by Lemma 2.1, r = 0. Thus u = w. �

Let r0 = (r10 , . . . , r
nb
0 ), where rk

0 = (0,−g) for the bodies which can settle on ΓS

and rk
0 = (0, 0) for the remaining bodies, k = 1, . . . , nb. Then K = K0 + r0, where

K0 is a cone such that K0 ∩ R = K ∩R+.

Theorem 2.3. If the compatibility condition (2.15) is satisfied, then the func-
tional of total potential energy L(v) is coercive on K and there exists a solution of
the problem (2.14).
�������	�

. See Hlaváček and Nedoma [12, Theorem 4.1]. �

Next, we define

M =
{
Λ ∈ H1(Γ) :

∫

Γ

Λψ dγ 6 0, ∀ψ ∈ H1(Γ), ψ 6 0 on Γ
}

as the closed convex cone of admissible Lagrangian multipliers. Then, we consider
the primal-dual problem: find (u,Σ) ∈ V ×M such that

(2.16)

{
a(u, v) +m(v,Σ) = b(v), ∀ v ∈ V ,
m(u,Λ− Σ) 6 0, ∀Λ ∈M,

where

m(v,Λ) =
∫

ΓC

Λ[vN ] dγ +
∫

ΓS

Λ(vN − g) dγ.

The equivalence between (2.13) and (2.16) can be shown by arguments analogous
to those given, for example, in Hlaváček et al. [11, Chapter 2.4], or Kikuchi &

Oden [13, Chapter 3].
Let

L̄(v,Λ) =
1
2
a(v, v) +m(v,Λ)− b(v), ∀ (v,Λ) ∈ V ×M.

Then (2.16) can be written equivalently as the saddle-point problem: find the solution

(u,Σ) ∈ V ×M to

(2.17) L̄(u,Σ) = min
v∈V

max
Λ∈M

L̄(v,Λ),

or equivalently: find (u,Σ) ∈ V ×M such that

L̄(u,Λ) 6 L̄(u,Σ) 6 L̄(v,Σ), ∀ v ∈ V , ∀Λ ∈M.
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The finite element approximation. We approximate the given contact prob-
lem by the h-version piecewise quadratic finite element method with nodal (La-
grange) basis as follows. For every k = 1, . . . , nb, we consider a standard finite
element partition T k

h = {τk
h} of the subdomain Ωk ⊂ Ω, as described in Brenner &

Scott [2, Chapter 3]. We choose the degrees of freedom to be the vertices and the
midpoints of the edges of each element τk

h , and require the triangulation T k
h to be

consistent with the boundary conditions on ∂Ωk in the following sense: a node of an
element τk

h ∈ T k
h lying on ∂Ωk ∩ ∂Ωl ⊆ ΓC (k 6= l) must also be a node of an element

τ l
h ∈ T l

h , and each point on ∂Ωk ∩ΓB at which the boundary condition changes must
be a node of an element τk

h ∈ T k
h . We denote by Φk

h the set of degrees of freedom

of the triangulation T k
h lying on Γ. Let P2(τk

h ) be the set of quadratic polynomials
(i.e. polynomials of degree less than or equal to 2 globally with respect to all space

variables) defined on the element τk
h , with the element nodal basis. We define the

piecewise quadratic finite element subspace of [H1(Ωk)]d associated with T k
h as

Sh(Ωk) = {vk ∈ [H1(Ωk)]d : vk|τk
h
∈ [P2(τk

h )]d, ∀ τk
h ∈ T k

h }.

We define Th = T 1
h ∪ . . . ∪ T nb

h to be the triangulation of the domain Ω ⊂ � d and
denote by Φh the set of degrees of freedom of Th lying on Γ, Φh = Φ1

h ∪ . . . ∪ Φnb

h .

Then, we set

Sh(Ω) = {v ∈ H1(Ω): v|τh
∈ [P2(τh)]d, ∀ τh ∈ Th}

to be the piecewise quadratic finite element subspace of H1(Ω) associated with Th.
In order to express the contact constraints on Γ, we also set

Sh(Γ) = {vN : v ∈ Sh(Ω)}

to be the range of Sh(Ω) under the normal trace operator on Γ.
Next, we define

Vh = {v ∈ V : v|τh
∈ [P2(τh)]d, ∀ τh ∈ Th}

to be the discrete space of virtual displacements,

Kh = {v ∈ Vh : [vN ](ξ) 6 0, ∀ ξ ∈ Φh ∩ ΓC , vN (ξ) 6 g(ξ), ∀ ξ ∈ Φh ∩ ΓS}

to be the closed convex set of discrete admissible displacements, and

Mh =
{

Λ ∈ Sh(Γ) :
∫

Γ

Λψ dγ 6 0, ∀ψ ∈ Sh(Γ), ψ(ξ) 6 0, ∀ ξ ∈ Φh

}
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to be the closed convex cone of discrete admissible Lagrangian multipliers. Note

that, in the definitions of Kh andMh, the inequalities hold only at the mesh points
and at the midpoints of element edges, which will lead to convex constraints of linear
type.

Now, the finite element formulation of the problem (2.13) is: find uh ∈ Kh such

that

(2.18) a(uh, vh − uh) > b(vh − uh), ∀ vh ∈ Kh,

i.e. find the solution uh ∈ Kh to

L(uh) = min
vh∈Kh

L(vh).

Equivalently, the finite element formulation of the problem (2.16) is: find

(uh,Σh) ∈ Vh ×Mh such that

(2.19)

{
a(uh, vh) +m(vh,Σh) = b(vh), ∀ vh ∈ Vh,

m(uh,Λh − Σh) 6 0, ∀Λh ∈Mh,

i.e. find the solution (uh,Σh) ∈ Vh ×Mh to

L̄(uh,Σh) = min
vh∈Vh

max
Λh∈Mh

L̄(vh,Λh).

Approximations of contact problems by the finite element method are discussed,

for example, in Hlaváček et al. [11, Chapter 2.3], while more general results on the
finite element approximations of variational inequalities can be found in Kikuchi &

Oden [13, Chapter 4].

3. Matrix formulations

In this section we reformulate the above discrete problem as a classical linear
complementarity system and show how the given problem can be approximated by

regularised problems with a symmetric positive definite Hessian. Here we switch to
matrix-vector formulation to describe the algorithms.

Let {ϕj}m
j=1 represent the basis functions of Sh(Ω). Inserting the expression

uh(x) =
m∑

j=1

ujϕj(x), x ∈ Ω,
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into (2.18) generates the equivalent quadratic program with (selected) inequality

constraints (QIP): find the minimiser u ∈ � n×1 for

(3.1) L(v) =
1
2
vTAv − vT b,

defined for all v ∈ � n×1 , such that the following componentwise inequality between

vectors holds:

(3.2) Cv > c,

where A is a symmetric and positive semidefinite n× n matrix, b is an n× 1 vector,
C is a rectangular nc × n matrix, and c is an nc × 1 vector, with n equal to the
number of variables and nc equal to the number of inequality constraints assigned
to the nodes in Γ (nc 6 n). We denote by S the set of indices corresponding to

the constraints (3.2). Then each row i ∈ S of the matrix C contains at least one
nonzero entry and at most 2d nonzero entries corresponding to the components of
the normal vector, while each column of C contains at most d such entries. For
example, in the two-dimensional case, for every index i ∈ S, let ui

k = (ui
k1
, ui

k2
) and

ui
l = (ui

l1
, ui

l2
) be two opposite nodes on the potential contact zone such that the

constraint [ui
N ] = ui

k ·ni
k +ui

l ·ni
l 6 0 holds, where ni

k = (ni
k1
ni

k2
) and ni

l = (ni
l1
, ni

l2
)

are the outward unit normals to the contact zone at ui
k and u

i
l, respectively. In this

case,

Cij =





ni
k1
, if j = k1,

ni
k2
, if j = k2,

ni
l1
, if j = l1,

ni
l2
, if j = l2,

0, otherwise,

and ci = 0. The extension to the three-dimensional case is obvious.
We note that, since A is symmetric and positive semidefinite, the null space of A,

denoted by null(A), is of dimension greater than one, i.e. there exists r ∈ � n×1 \ {0}
such that Ar = 0. On the other hand, L(u) = L(u + r) − rT b for all r ∈ null(A).
In this case, the existence and uniqueness of the minimiser u for (3.1)–(3.2) are

guaranteed by Theorem 2.2 and Theorem 2.3.

A change of variables. We define C̃ to be the n× n matrix

C̃i,: =

{
Ci,:, if i ∈ S,
Ii,:, if i ∈ {1, . . . , n} \ S,
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where I is the identity matrix of order n and the index notation ‘i, :’ stands for all
the entries in the row i of the matrix. We also define the n vector

c̃i =

{
ci, if i ∈ S,
0, if i ∈ {1, . . . , n} \ S.

Let Ã = C̃−TAC̃−1 and b̃ = C̃−T b− C̃−TAC̃−1c̃. Then the matrix Ã has the same

properties as the matrix A, i.e. it is symmetric and positive semidefinite. If we apply
the change of variables

(3.3) ṽ = C̃v − c̃⇔ v = C̃−1(ṽ + c̃)

and replace A by Ã and b by b̃ in the above QIP, then we obtain an equivalent

formulation of this problem (Hlaváček et al. [11, pp. 160–161]). Henceforth, for
convenience, we shall drop the tilde from our notation (i.e. set A = Ã and b = b̃).

Thus, by the change of variables (3.3), we obtain that (3.1)–(3.2) is equivalent

to the quadratic program with (selected) nonnegativity constraints (QNP): find the
minimiser u ∈ � n×1 for

(3.4) L(v) =
1
2
vTAv − vT b,

defined for all v ∈ � n×1 , such that vS > 0.
When nc < n, by carrying out a reordering of the unknowns, we may assume that

S = {1, . . . , nc} and E = {nc + 1, . . . , n}. Then the matrix A can be written as

A =
[
ASS ASE

AT
SE AEE

]
,

where ASS is the block submatrix associated with the nodes in Γ and AEE is the

block submatrix associated with the nodes in Ω̄ \ Γ.
Now, the above QNP can be rewritten as the linear problem with (selected) non-

negativity constraints (LNP): for the vector u ∈ � n×1 solve the componentwise
inequality system:

(3.5)

{
ASSuS +ASEuE > bS,

AT
SEuS +AEEuE = bE

such that

(3.6) uS > 0 and (ASSuS +ASEuE − bS)TuS = 0.
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Equally well, we may rewrite (3.4) as the linear complementarity problem (LCP):

for the vector (u,Σ) ∈ � n×1 × � n×1 solve the linear system

(3.7) Au+ Σ = b

such that

(3.8) uS > 0, ΣS 6 0, ΣT
SuS = 0, and Σi = 0, ∀ i /∈ S.

When nc = n, the LNP (3.5)–(3.6) reduces to: for the vector u ∈ � n×1 solve the

componentwise inequality system

(3.9) Au > b

such that:

(3.10) u > 0 and (Au− b)Tu = 0.

Analogously, the LCP (3.7)–(3.8) reduces to: for (u,Σ) ∈ � n×1 × � n×1 solve the

linear system

(3.11) Au+ Σ = b,

such that

(3.12) u > 0, Σ 6 0, and ΣTu = 0.

The reduced Schur complement problem. When nc < n and AEE is non-
singular, we can define Â = ASS − ASEA

−1
EEA

T
SE to be the Schur complement (SC)

of AEE in A, and b̂ = bS − ASEA
−1
EEbE . We note that, for A symmetric and posi-

tive semidefinite (definite), Â is also symmetric and positive semidefinite (definite)

(Prasolov [17, p. 151]).
After eliminating uE in (3.5)–(3.6), we obtain the (reduced SC) LNP: for the

vector û ∈ � nc×1 solve the componentwise inequality system

(3.13) Âû > b̂

such that

(3.14) û > 0 and (Âû− b̂)T û = 0.

Then, for (3.5)–(3.6), uS = û and uE = A−1
EE(bE −AT

SE û).
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Similarly, the LCP (3.7)–(3.8) is: find (uS ,ΣS) ∈ � nc×1 × � nc×1 and uE ∈� (n−nc )×1 such that

(3.15)

{
ASSuS +ASEuE + ΣS = bS ,

AT
SEuS +AEEuE = bE ,

subject to

(3.16) uS > 0, ΣS 6 0, and ΣT
SuS = 0.

Again, after eliminating uE in (3.15), we obtain the (reduced SC) LCP: find (û, Σ̂) ∈� nc×1 × � nc×1 such that

(3.17) Âû+ Σ̂ = b̂,

subject to

(3.18) û > 0, Σ̂ 6 0, and Σ̂T û = 0.

Then, for (3.15)–(3.16), uS = û and uE = A−1
EE(bE − AT

SEû).

The regularised approximation. The fact that many bodies are free to move
under rigid body motions means that the matrix A has a large null space. Many

algorithms for the solution of the discrete problem require the matrix to be invertible.
Hence it will be useful to consider a regularisation of the problem by perturbing the

matrix A as follows. Let Aε = A+ εI , where I is the identity matrix of order n and
ε > 0 is a regularisation parameter. If A is symmetric positive semidefinite, then
Aε is symmetric positive definite.
The regularised (perturbed) LNP: for the vector uε ∈ � n×1 solve the component-

wise inequality system:

(3.19)

{
Aε

SSu
ε
S +Aε

SEu
ε
E > bS,

(Aε
SE)Tuε

S +Aε
EEu

ε
E = bE,

such that

(3.20) uε
S > 0 and (Aε

SSu
ε
S +Aε

SEu
ε
E − bS)Tuε

S = 0

represents an approximation of (3.5)–(3.6).

Equivalently, the LCP: for the vector (uε,Σε) ∈ � n×1 × � n×1 solve the linear
system

(3.21) Aεuε + Σε = b
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such that

(3.22) uε
S > 0, Σε

S 6 0, (Σε
S)Tuε

S = 0, and Σε
i = 0, ∀ i /∈ S,

represents an approximation of (3.7)–(3.8).

The following result relates the solutions of the original problem to those of the
regularised one. In particular, as we shall show later, it means that if the regulari-

sation parameter ε > 0 is chosen appropriately, then we may use information about
the active set for the regularised problem to deduce information about the active set

for the original problem. The active set represents the contact part between elastic
components, where the stress is compressive.

Theorem 3.1. Let u be the solution of the QNP (3.4) such that the compatibility
conditions in Theorem 2.2 and Theorem 2.3 are satisfied. For ε > 0 and B a positive
definite n× n matrix, we define

(3.23) Lε(v) =
1
2
vTAv +

1
2
εvTBv − vT b

for all v ∈ � n×1 such that vS > 0, and uε ∈ � n×1 such that uε
S > 0, to be its

minimiser. Then

lim
ε→0

uε = u.

�������	�
. First, we observe that

L(uε) = L(u) + (uε − u)TAu− (uε − u)T b+
1
2
(uε − u)TA(uε − u).

Hence, since

(uε − u)TAu > (uε − u)T b

and A is positive semidefinite, we deduce that

(3.24) L(uε)− L(u) > 1
2
(uε − u)TA(uε − u) > 0.

Moreover, by hypothesis,

L(uε)− L(u) = Lε(uε)− Lε(u) +
1
2
εuTBu− 1

2
ε(uε)TBuε(3.25)

6 1
2
εuTBu− 1

2
ε(uε)TBuε.
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Therefore, by (3.24) and the inequaliy in (3.25) we obtain

(3.26) (uε)TBuε 6 uTBu and
1
2
(uε − u)TA(uε − u) 6 1

2
εuTBu.

The first estimate in (3.26) shows that the sequence {(uε)TBuε}ε>0 is uniformly

bounded. Thus, there exists a convergent subsequence of {uε}ε>0, denoted also
by {uε}ε>0, with a limit u∗ ∈

� n×1 , such that u∗S > 0. The second estimate implies
that u∗ − u ∈ null(A). Hence, u = u∗ + r, where r ∈ null(A). Finally, since

L(u) = L(u∗ + r) = L(u∗)− rT b

and, by Theorem 2.2, rT b 6 0, with equality iff r = 0, we deduce that

L(u∗) 6 L(u), u∗ ∈ � n×1 , u∗S > 0,

with equality iff r = 0. By the uniqueness of the minimiser u, we conclude that r = 0.
Hence u∗ = u. Since the choice of ε > 0 was arbitrary, it follows that lim

ε→0
uε = u. �


���������
3.2. By taking B to be the identity matrix of order n, an immediate

consequence of the above result is that the non-contact set for the solution u of the
original LNP (3.5)–(3.6) is contained within the non-contact set for the solution uε of

the regularised LNP (3.19)–(3.20), i.e. there exists ε̄ > 0 such that, for all 0 < ε 6 ε̄,

ui > 0 ⇒ uε
i > 0, ∀ i ∈ S.

This can be shown as follows. By Theorem 3.1, lim
ε→0

uε
i = ui for all i ∈ S. Hence, if

ui > 0, then there exists εi > 0 such that uε
i > 0 for all 0 < ε 6 εi. Thus we can

take 0 < ε̄ 6 min{εi : ui > 0, i ∈ S}.
In practice, we wish to use information about the non-contact set for uε to make

deductions about the non-contact set for u. Therefore, when performing numerical
tests, the finite machine precision 0 < εM � 1 has to be taken into account. We
have the following consequence of Theorem 3.1: there exists ε̄ > 0 such that, for all
0 < ε 6 ε̄,

uε
i > εM ⇒ ui > 0, ∀ i ∈ S.

To see this, we choose ε̄ sufficiently small, such that if uε
i > εM , where i ∈ S, then

|ui − uε
i | < εM , hence ui > uε

i − εM > 0 for all 0 < ε 6 ε̄.
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4. Iterative solvers

In this section, we describe the salient features and give a brief account of the
convergence behaviour of several popular iterative methods for the numerical solu-
tion of the LNP (3.5)–(3.6), or equivalently, of the LCP (3.7)–(3.8). For extensive

convergence and complexity issues we shall refer to the relevant references.

First, we present three algorithms for the solution of the regularised problem.
These algorithms are: the successive over-relaxation with projection, cf. e.g. Glowin-

ski et al. [6], the linear least squares with nonnegativity constraints, cf. Lawson &
Hanson [14], and the primal-dual active-set method, cf. Hintermüller et al. [9]. In all

cases, the existing convergence theory for the algorithms depends on the assumption
that the matrix A is positive definite. However, this is not the case in general, nor

in the particular situation we consider. For many practical purposes, the solution
to the regularised problem may serve quite well as an approximation to the solution

of the original problem. Next, we discuss a primal-dual predictor-corrector method,
cf. e.g. Wright [18], where the positive semidefinite Hessian can be used directly,

but the complementarity condition in (3.8) is approximated by a sequence of duality
measures that converges monotonically to zero. Finally, we present the principal

pivoting simplex method, cf. Graves [7], for the solution of the reduced SC problem.
The previous methods can also be employed to solve this problem.

Successive Over-Relaxation with Projection (PSOR). This is a standard
projected relaxation method for solving the regularised LNP (3.19)–(3.20) (Glowinski

et al. [6, pp. 66–67, 589]). In this primal method, all basic vectors u are feasible in
the sense that they satisfy the constraint uS > 0.

Algorithm: PSOR(Aε, b, u0, n, nc, ω, tol). We choose u0 such that u0
S > 0,

to be an initial approximation to the vector solution uε of (3.19)–(3.20) (without

restricting the generality we can assume the starting approximation to be zero),
and tol to be a tolerance for zero. The steps of the PSOR procedure are as follows.

Step 1: Set u = u0, S = {1, . . . , nc}, error = tol, and iter = 0.

Step 2: If error < tol, then Stop.

Step 3: Set iter = iter + 1. For all i ∈ S, compute

ui =
1
Aε

ii

(
bi −

i−1∑

j=1

Aε
ijuj −

n∑

j=i+1

Aε
iju

0
j

)
,

then set ui = max{(1− ω)u0
i + ωui, 0}.
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Step 4: If nc < n, then set E = {nc + 1, . . . , n} and compute

uE = (Aε
EE)−1(bE −Aε

ESuS).

Step 5: Set error = ‖u0 − u‖2/‖u‖2 and u0 = u, then go to Step 2.

The convergence of this algorithm is guaranteed by the following result (Glowinski
et al. [6, pp. 68, 589–590]).

Theorem 4.1. Let uε denote the solution vector of the regularised LNP (3.19)–

(3.20). If 0 < ω < 2 and uiter is the solution vector at iteration iter of the PSOR al-
gorithm, then

lim
iter→+∞

uiter = uε.

Linear Least Squares with SelectedNonnegativity Constraints (LSSNN).
This is a single principal pivoting technique for the solution of the regularised LCP
(3.21)–(3.22) (Lawson & Hanson [14, pp. 160–165], also Gill et al. [5, pp. 180–182]).

In this method, all iterates u are feasible in the sense that uS > 0. Moreover, the
complementarity condition ΣT

SuS = 0 is always satisfied, and Σi = 0 for all i /∈ S.

When a feasible dual vector Σ is also found, in the sense that ΣS 6 0, the method
terminates.

Algorithm: LSSNN(Aε, b, u0, n, nc). We choose u0 such that u0
S > 0, to

be an initial approximation to the basic vector solution uε of (3.21)–(3.22) (without
restricting the generality we can assume the starting approximation to be zero).

First, we compute the Cholesky factor R for Aε, i.e. Aε = RTR. The steps of the
LSSNN procedure are as follows.

Step 1: Set u = u0, S = {1, . . . , nc}, SZ = S, SP = ∅, and iter = 0.

Step 2: Compute Σ = b−Aεu.

Step 3: If SZ = ∅ or ΣSZ 6 0, then Stop.

Step 4: Set iter = iter + 1. Find t ∈ SZ such that Σt = max
i∈SZ

Σi, then set SP =

SP ∪ {t} and SZ = SZ \ {t}.
Step 5: Set R as the matrix defined by

R:,i =

{
R:,i, if i ∈ {1, . . . , n} \ SZ,
0, if i ∈ SZ,

110



where the index notation ‘:, i’ stands for all entries in the column i of the
matrix. Compute the vector ū as the solution of the least squares problem:

min
v
‖Rv −R−T b‖2.

Set ūi = 0 for i ∈ SZ.
Step 6: If ūSP > 0, then set u = ū and go to Step 2.

Step 7: Find all the critical steps, along the search direction ū − u, where the

constraints become binding, then take

α = max
{ ui

ūi − ui
: ūi 6 0, i ∈ SP

}
.

Set

u = u+ α(ū− u),

SP = SP \ {i ∈ S : ui = 0} and SZ = SZ ∪ {i ∈ S : ui = 0}, then go to
Step 5.

On termination, the sets of indices SP and SZ form a partition of S, the vector u

satisfies

uSZ = 0, uSP > 0,

and is a solution vector for the quadratic program with (selected) equality con-
straints (QEP):

min
vSZ=0

(1
2
vTAεv − vT b

)
.

The dual vector Σ = b−Aεu satisfies

ΣSZ 6 0, ΣSP = 0, and Σi = 0, ∀ i /∈ S.

The fact that this algorithm terminates in a finite number of iterations can be
shown as follows (Lawson & Hanson [14, p. 164]).

Theorem 4.2. In the LSSNN algorithm, if (uiter ,Σiter) is the basic complemen-
tarity solution at Step 2 of the iteration iter, then the sequence of residual norms

{‖Ruiter −R−T b‖2} strictly decreases with iter.

The Primal-Dual Active-Set Method (PDAS). This is a block principal
pivoting technique for solving the regularised LCP (3.21)–(3.22) (Hintermüller et
al. [8], [9], [10]). This primal-dual technique combines two complementary ideas that
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lead to rapid convergence. On the one hand, as an active-set strategy, it requires a

reduced amount of work at each iteration, where an equality-constrained quadratic
problem is solved, with the constraints on the actual estimate of the active set. On
the other hand, as a semismooth Newton technique, it achieves superlinear local

convergence. An essential feature of the active-set method is that all the basic
vectors (u,Σ), except the final one, are infeasible in the sense that uS and/or ΣS

might change signs several times during the algorithm, although they always satisfy
the complementarity condition ΣT

SuS = 0, and Σi = 0 for all i /∈ S. When a

complementarity feasible basic solution is obtained, the method terminates.

Algorithm: PDAS(Aε, b, u0, n, nc). The method requires Aε to be a P -
matrix, that is, all its principal minors to be positive (Berman & Plemmons [1,

Chapter 10.2]). It also requires an artificial parameter τ > 0, which is chosen arbi-
trary. We choose u0 such that u0

S > 0, to be an initial approximation to the basic
vector solution uε of (3.21)–(3.22) (without restricting the generality we can assume
the starting approximation to be zero). The steps of the PDAS procedure are as
follows.

Step 1: Set u = u0, S = {1, . . . , nc}, and iter = 0.

Step 2: Compute Σ = b−Aεu, then set:

SZ = {i ∈ S : ui + τΣi < 0} (the active set),

SP = {i ∈ S : ui + τΣi > 0} (the inactive set).

Step 3: If iter > 1, uSZ = 0, and ΣSP = 0, then Stop.

Step 4: Solve (directly, e.g. by Gaussian elimination) for u:

{
(Aεu)i = bi, ∀ i ∈ {1, . . . , n} \ SZ,
ui = 0, ∀ i ∈ SZ,

where (Aεu)i = Aε
i1u1 + . . .+Aε

inun.

Step 5: Set iter = iter + 1, then go to Step 2.

On termination, the sets of indices SP and SZ form a partition of S, the vector u

satisfies
uSZ = 0, uSP > 0,

and is a solution vector for the QEP

min
vSZ=0

(1
2
vTAεv − vT b

)
.
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The dual vector Σ = b−Aεu satisfies:

ΣSZ < 0, ΣSP = 0, and Σi = 0, ∀ i /∈ S.

The local convergence of this algorithm is shown by the following result (Hinter-

müller et al. [8, Theorem 3.1]).

Theorem 4.3. In the PDAS algorithm, if (u0,Σ0) is sufficiently close to
the complementarity solution (uε,Σε) of the regularised LCP (3.21)–(3.22), and
(uiter ,Σiter) is the basic complementarity solution at iteration iter, then the se-
quence {(uiter ,Σiter)} converges superlinearly to (uε,Σε).

The projection procedure. In the algorithms PSOR, LSSNN, and PDAS, the
(regularised, perturbed) positive definite matrix Aε has to be used in place of the pos-

itive semidefinite matrix A. As a result, for the primal algorithm, {uiter} converges
to the solution uε of (3.19)–(3.20), or equivalently, for the primal-dual algorithms,

{(uiter,Σiter)} converges to the complementarity solution (uε,Σε) of (3.21)–(3.22).
Of course, Theorem 3.1 shows that if ε → 0, then {uε} converges to the solution u
of the LNP (3.5)–(3.6), or equivalently, {(uε,Σε)} converges to the complementarity
solution (u,Σ) of the LCP (3.7)–(3.8). In many applications, the solution to the
regularised problem may, for suitably small ε > 0, be regarded as an acceptable
approximation to the solution of the original problem. However, if an exact solution

is required, this can be obtained by a two-stage process, as follows.
At the first stage, one of the schemes described above is applied to solve the

regularised problem. Let uε be the final basic vector obtained at this first stage, and
let Σε = b−Aεuε be the corresponding dual vector. We define

SZε = {i ∈ S : uε
i = 0 and bi − (Auε)i − εuε

i < 0},
SP ε = {i ∈ S : uε

i > 0 and bi − (Auε)i − εuε
i = 0}.

The second stage consists of a procedure that projects (uε,Σε) onto the nearest
point (u,Σ) that satisfies (3.7)–(3.8). The projection algorithm is the PDAS scheme
described above, where the matrix A is used instead of Aε. The starting iterate for
this procedure is u0 = uε. Let

SZ0 = {i ∈ S : u0
i + τ(bi − (Au0)i) < 0},

SP 0 = {i ∈ S : u0
i + τ(bi − (Au0)i) > 0}

be the partitioning of S at the beginning of the second stage. It is easy to see
that SZε ⊆ SZ0 and SP ε ⊆ SP 0 for all τ > 0. Thus SZε = SZ0 and SP ε = SP 0.
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Hence, if this is the correct partitioning of S corresponding to (u,Σ) (see Remark 3.2),
then the projection algorithm successfully terminates in one iteration and as such
constitutes a negligible additional cost to the overall procedure.

The Primal-Dual Predictor-Corrector Method (PDPC). This is a Newton
approach to solving the LCP (3.7)–(3.8) (Wright [18], Portugal et al. [16]). In this

approach, all the basic vectors (u,Σ) are infeasible in the sense that ΣT
SuS 6= 0. After

a suitable approximation has been derived by this method, a projection procedure

can also be applied to obtain the complementarity solution of (3.7)–(3.8) (Wright [18,
pp. 145–149]).

Algorithm: PDPC(A, b, u0, Σ0, n, nc, tol1, tol2). We choose an initial basic
vector (u0,Σ0) such that u0

S > 0, Σ0
S < 0, and Σ0

i = 0 for all i /∈ S. We also set tol1
and tol2 to be two tolerances for zero. The steps of the PDPC procedure are as
follows.

Step 1: Set iter = 0, u = u0, Σ = Σ0, S = {1, . . . , nc}, and E = {nc + 1, . . . , n}.
Step 2: Set error1 = |ΣT

SuS|/nc and error2 = ‖b−Au−Σ‖2. If error1 < tol1 and
error2 < tol2, then Stop.

Step 3: Set iter = iter + 1, set µ = |ΣT
SuS |/nc. If iter is an odd number, then set

σ = 0, else set σ = 0.99.

Step 4: Solve (directly, e.g. by Gaussian elimination) for the vector δu, of size n,
and the vector δΣ, of size nc, the linear system





(Aδu)i + δΣi = bi − (Au)i − Σi, ∀ i ∈ S,
(Aδu)i = bi − (Au)i, ∀ i ∈ E,
Σiδui + uiδΣi = Σiui + σµ, ∀ i ∈ S,

where (Aδu)i = Ai1δu1 + . . .+Ainδun, and similarly for (Au)i.

Step 5: Take

α1 = min
{
− ui

δui
: δui < 0, i ∈ S

}
,

α2 = min
{
− Σi

δΣi
: δΣi > 0, i ∈ S

}
,

then set α1 = min{α1, 1} and α2 = min{α2, 1}. If δΣT
SδuS < 0, then set

α3 = 0.99(1− σ)
ΣT

SuS

δΣT
S δuS

.
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Take

α =

{
min{α1, α2, α3}, if δΣT

SδuS < 0,

min{α1, α2}, otherwise.

Set u = u+αδu, Σ = Σ+αδΣ, and Σi = 0 for all i ∈ E, then go to Step 2.

On termination, the basic vector (u,Σ) satisfies

‖Au+ Σ− b‖2 < tol2

such that

uS > 0, ΣS < 0, |ΣT
SuS|/nc < tol1, and Σi = 0, ∀ i /∈ S.

We remark that the linear system at Step 4 in the PDPC algorithm has a unique

solution. In order to show this, it is sufficient to prove that if (δu, δΣ) is a solution
of the corresponding homogeneous system, then δu = 0 and δΣ = 0. We replace the
right-hand side of this system by zeros, to obtain the homogenised system

(4.1)





(Aδu)i + δΣi = 0, ∀ i ∈ S,
(Aδu)i = 0, ∀ i ∈ E,
Σiδui + uiδΣi = 0, ∀ i ∈ S.

In (4.1), when we multiply the first n equations from the left by δuT , we obtain

δuTAδu+ δuT
SδΣ = 0.

As A is positive semidefinite, this implies

(4.2) δuT
SδΣ = −δuTAδu 6 0.

Then, in the last nc equations of (4.1), when we multiply, for every i ∈ S, the

corresponding equation by δui, we obtain

Σiδuiδui + uiδΣiδui = 0.

As Σi < 0, for all i ∈ S, this implies

(4.3) 0 6 −Σiδuiδui = uiδΣiδui.

Next, since ui > 0 for all i ∈ S, we also deduce

(4.4) 0 6 δΣiδui, ∀ i ∈ S.
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When we sum the above inequalities with respect to i ∈ S, we obtain δuT
SδΣ > 0,

which together with (4.2) implies

(4.5) δuT
SδΣ = 0.

On the other hand, in (4.3), when we take the maximum of ui and of Σi, respectively,
over i ∈ S, by (4.4) we deduce

0 6 −
(
max
i∈S

Σi

)
δuiδui 6

(
max
i∈S

ui

)
δΣiδui, ∀ i ∈ S.

After we sum the above inequalities, with respect to i ∈ S, by (4.5) we obtain

0 6 −
(
max
i∈S

Σi

)
δuT

SδuS 6
(
max
i∈S

ui

)
δuT

SδΣ = 0.

This implies δuT
SδuS = 0 or equivalently, δui = 0, for all i ∈ S. Finally, by replacing

these in the first n equations of (4.1), assuming that the restriction of A to the set

of indices E is nonsingular (we have previously denoted this submatrix by AEE), we
obtain, first, ui = 0 for all i ∈ E, then δΣi = 0 for all i ∈ S.
We also note that, at Step 5,

α1 = max{α ∈ [0, 1] : ui + αδui > 0, i ∈ S},
α2 = max{α ∈ [0, 1] : Σi + αδΣi 6 0, i ∈ S}.

Furthermore, when δΣT
S δuS < 0, taking

α3 < (1− σ)
ΣT

SuS

δΣT
SδuS

ensures that error1 and error2 are strictly decreasing. Now, the convergence of
the PDPC algorithm can be shown as follows.

Theorem 4.4. In the PDPC algorithm, if (uiter ,Σiter) is the basic solution at
iteration iter, then the sequence of duality measures {|(Σiter)T

Su
iter
S |/nc} and the

sequence of residual norms {‖b − Auiter − Σiter‖2} strictly decrease to zero with
every iter.

We conclude this section with a discussion on how to solve the reduced SC problem.
First, we remark that, like the Hessian A, the SC matrix Â can be approximated by

the symmetric positive definite matrix Âε = Â+ εI , where I is the identity matrix
of order nc and ε > 0 is a regularisation parameter.
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In this case, (3.13)–(3.14) is approximated by the regularised LNP: for the vector

ûε ∈ � nc×1 solve the componentwise inequality system

(4.6) Âεûε > b̂

such that

(4.7) ûε > 0 and (Âεûε − b̂)T ûε = 0.

Equivalently, (3.17)–(3.18) is approximated by the regularised LCP: for the vector
(ûε, Σ̂ε) ∈ � nc×1 × � nc×1 solve the linear system

(4.8) Âεûε + Σ̂ε = b̂

such that

(4.9) ûε > 0, Σ̂ε 6 0, and (Σ̂ε)T ûε = 0.

Thus the algorithms PSOR, LSSNN, and PDAS can be applied to solve the reg-
ularised LNP (4.6)–(4.7), or equivalently, the regularised LCP (4.8)–(4.9). Alterna-

tively, the algorithm PDPC can be used to solve the LCP (3.17)–(3.18). Once the
desired approximation to the solution of (3.17)–(3.18) has been derived, the projec-

tion procedure can be applied to solve this problem exactly. The exact solution can
also be obtained directly by the following simplex algorithm.

The principal pivoting simplex method (Graves). This is a simplex
method for solving the reduced LCP (3.17)–(3.18) (Graves [7], also Murty [15,

Chapter 4]). An advantage of this method is that it produces the exact solu-
tion to the problem. Moreover, if (3.17)–(3.18) has no solution, then this algo-

rithm will indicate so. This is achieved by using single or double principal pivots
and a vector-valued function which decreases lexicographically at each iteration,

i.e. the difference between the vector-value at one iteration and the vector-value
at the next iteration is lexico-positive. A nonzero vector is lexico-positive (lexico-

negative) if its first nonzero component is positive (negative) (Berman et al. [1,
p. 273]).

Algorithm: Graves(Â, b̂, nc). The method requires an artificial nc × nc ma-
trix B that is nonsingular and all its rows are initially lexico-positive but it is other-

wise arbitrary. For simplicity, we choose B as the identity matrix I of order nc. The
Graves procedure is as follows.
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Step 1: Set A = Â, b = −b̂, S = {1, . . . , nc}, SZ = S, SP = ∅, B = I , and

iter = 0.

Step 2: If b > 0, then set the solution vector:

uSZ = 0, uSP = bSP ,

the dual vector:
ΣSZ = −bSZ , ΣSP = 0,

and Stop.

Step 3: Set iter = iter + 1. Find t such that

Bt,:

bt
= max

bi<0
(Bi,:/bi),

where max represents the maximum in lexicographical order relation. If
t ∈ SZ, then set SP = SP ∪{t} and SZ = SZ \{t}, else set SP = SP \{t}
and SZ = SZ ∪ {t}.

Step 4: Case 1. When Att 6= 0, set:

Ātt =
1
Att

,

Ātj = − Atj

Att
, ∀ j ∈ {1, . . . , nc}, j 6= t,

Āit =
Ait

Att
, ∀ i ∈ {1, . . . , nc}, i 6= t,

Āij = Aij −Ait
Atj

Att
, ∀ i, j ∈ {1, . . . , nc}, i, j 6= t,

and

b̄t = − bt
Att

,

Btj = − Btj

Att
, ∀ j ∈ {1, . . . , nc},

b̄i = bi −Ait
bt
Att

, ∀ i ∈ {1, . . . , nc}, i 6= t,

Bij = Bij −Ait
Bij

Att
, ∀ i, j ∈ {1, . . . , nc}, i 6= t.

Case 2. When Att = 0, if Ait > 0 for all i, then indicate that the problem
has no solution and Stop, else find s such that

(Bs,: − bs(Bt,:/bt))/Ast = max
Ait<0

(Bi,: − bi(Bt,:/bt))/Ait,
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then set:

Āsj = −
(
Asj −

Ass

Ats
Atj

) 1
Ast

, ∀ j ∈ {1, . . . , nc},

Āij = Aij −
Ais

Ats
Atj −

Ait

Ast

(
Asj −

Ass

Ats
Atj

)
, ∀ i, j ∈ {1, . . . , nc}, i 6= s, t,

Ātj = − Atj

Ats
, ∀ j ∈ {1, . . . , nc},

and

b̄s = −
(
bs −

Ass

Ats
bt

) 1
Ast

,

Bsj = −
(
Bsj −

Ass

Ats
Btj

) 1
Ast

, ∀ j ∈ {1, . . . , nc},

b̄i = bi −
Ais

Ats
bt −

Ait

Ast

(
bs −

Ass

Ats
bt

)
, ∀ i ∈ {1, . . . , nc}, i 6= s, t,

Bij = Bij −
Ais

Ats
Btj −

Ait

Ast

(
Bsj −

Ass

Ats
Btj

)
, ∀ i, j ∈ {1, . . . , nc}, i 6= s, t,

b̄t = − bt
Ats

,

Btj = − Btj

Ats
, ∀j ∈ {1, . . . , nc}.

Step 5: Set A = Ā, b = b̄, and B = B, then go to Step 2.

On termination, the sets of indices SP and SZ form a partition of S, the vector u

satisfies
uSZ = 0, uSP > 0,

and the dual vector Σ = b̂− Âu satisfies

ΣSZ 6 0, ΣSP = 0.

This method can be interpreted as follows. Let û = 0 and Σ̂ = b̂ be a trial

solution for the reduced LCP (3.17)–(3.18). If all of the entries of b̂ are nonpositive,
then this is an acceptable solution, else the trial solution fails to satisfy the second

condition in (3.18). In the latter case, another trial solution may be chosen as
follows. First, some positive component of Σ̂ is set to zero, then, the new trial
solution is expressed in terms of the corresponding component of û and the remaining
components of Σ̂. When this is not possible, two components of Σ̂ are set to zero,
then the new trial solution is expressed in terms of the corresponding components
of û and the remaining components of Σ̂. In Graves [7], it is shown that, when Â is a
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positive semidefinite matrix, either one of the two choices mentioned above is always

possible, or the problem has no solution. The termination of this algorithm in a
finite number of iterations can be proved as follows (Graves [7, Theorem 3]).

Theorem 4.5. In the Graves algorithm, the vector function max
bi<0

(Bi,:/bi) defined

at Step 4 strictly decreases lexicographically with every iteration iter.

5. Numerical examples

The aim of this section is to provide a comparison of the algorithms described in

Section 4, with respect to the CPU time until successful termination, when solving
the (large-scale) LNP (3.5)–(3.6), or equivalently, the LCP (3.7)–(3.8). The informa-

tion about the test problems is contained in Tabs. 1 and 2, while the performances
of the selected algorithms when dealing with these problems are displayed in Tabs. 3
to 7. The implementations of these algorithms have been coded in Matlab 7 and

have been tested on a Sun Java Workstation W2100z. No special attempt has been
made to optimise the implementation such as to exploit the sparsity.

In the numerical tests, the closure Ω̄ of the domain Ω ⊂ � 2 , occupied by the given
structure, is considered to be the unit square [0, 1]× [0, 1]. Three different geometries
are considered. For a given H ∈ (0, 1), the ‘stack bond’ system is assembled from
squares of size H ×H (Fig. 2 up-left), the ‘running bond’ system is assembled from
rectangular components (‘bricks’) of size 2H×H (Fig. 2 up-right), and the ‘laminae’
system is assembled from (long and thin) rectangular domains of size 1×H (Fig. 2

down).
On the exterior boundary ΓB = ({0, 1} × [0, 1]) ∪ ([0, 1] × {0, 1}), the following

conditions are satisfied:




uN = 0, σT = 0 on ΓD,

σijnj = 0 on ΓF ,

uN 6 g, σN 6 0, σN (uN − g) = 0, σT = 0 on ΓS,

where the constant g ∈ (0, H), ΓD = ({0, 1}×[0, 1])∪([0.5, 1]×{0}), ΓF = [0, 1]×{1},
and ΓS = [0, 0.5)×{0}. We represent these boundary conditions graphically in Fig. 3
and note that this kind of conditions typically arise in the case of structural masonry
undergoing (vertical) settlement of the ground (due to subsidence).

In the finite element approximation, initially, a coarse triangulation is considered,
of mesh size h = H , as follows: for the ‘stack bond’ configuration, each square

component is partitioned into two triangles; for the ‘running bond’ geometry, each
‘brick’ is first partitioned into two squares, then each square is further partitioned
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Figure 2. The assembled domain Ω ⊂ � 2 with nb = 400, nb = 210, and nb = 20, respec-
tively.

Figure 3. The conditions on the exterior boundary ΓB of the domain Ω ⊂ � 2 .

into two triangles, as in the previous case; for ‘laminae’, each component is first

partitioned into 1/H squares, then each square is partitioned into two triangles, as
before. In Fig. 4, a uniform coarse mesh for each of the three systems represented

in Fig. 2 is illustrated. The number nb of elastic components, with the associated
mesh size, is specified in Tab. 1, while the corresponding dimensions n (of A) and nc

(of S) are listed in Tab. 2. The given data are E = 4 · 103, ν = 0.3, and f = (0,−1).
We derive the exact solution of the LCP (3.7)–(3.8) in two stages, as follows. First,

we apply one of the algorithms PSOR, LSSNN, or PDAS to solve the LNP (3.19)–
(3.20), or equivalently, the LCP (3.21)–(3.22), with a regularisation parameter ε ∈
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Figure 4. The triangulation of Ω ⊂ � 2 with h = 1/20, for nb = 400, nb = 210, and nb = 20,
respectively.

Stack Bond (nb) Running Bond (nb) Laminae (nb) Mesh Size (h)
25, 000 15, 000 5 1/5

100, 000 55, 000 10 1/10
225, 000 120, 000 15 1/15
400, 000 210, 000 20 1/20
625, 000 325, 000 25 1/25

2, 500 1, 275 50 1/50
5, 625 2, 850 75 1/75

10, 000 5, 050 100 1/100
15, 625 7, 875 125 1/125
22, 500 11, 325 150 1/150
30, 625 15, 400 175 1/175
40, 000 20, 100 200 1/200
50, 625 25, 425 225 1/225

Table 1. The size of the test problems.

(10−6, 10−4). The performances of these algorithms when the initial value is u0 = 0
are recorded in Tabs. 3, 4, and 5, respectively. At the second stage, we employ the
projection procedure, which successfully terminates in one iteration. For PSOR, we

take ω = 2/(1+ sin(π/n)) and tol ≈ nεM , where εM ≈ 10−16 represents the machine
epsilon. For PDAS and the projection procedure, we choose τ ≈ 10−3.
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Mesh Size (h) Number of unknowns Stack Bond Running Bond Laminae
n 411, 000 355, 000 298, 0001/5
nc 126, 000 96, 000 49, 000
n 1, 725 1, 461 1, 1981/10
nc 555, 000 417, 000 199, 000
n 3, 936 3, 317 2, 6981/15
nc 1, 281 963, 000 449, 000
n 7, 050 5, 924 4, 7981/20
nc 2, 310 1, 735 799, 000
n 11, 061 9, 280 7, 4981/25
nc 3, 636 2, 731 1, 249
n 44, 625 37, 311 29, 9981/50
nc 14, 775 11, 087 4, 999
n 100, 686 84, 092 67, 4981/75
nc 33, 411 25, 068 11, 249
n 179, 250 149, 624 119, 9981/100
nc 59, 550 44, 675 19, 999
n 280, 311 233, 905 187, 4981/125
nc 93, 186 69, 906 31, 249
n 403, 875 336, 936 269, 9981/150
nc 134, 325 100, 762 44, 999
n 549, 936 458, 717 367, 4981/175
nc 182, 961 137, 243 61, 249
n 718, 500 599, 249 479, 9981/200
nc 239, 100 179, 350 79, 999
n 909, 561 758, 530 607, 4981/225
nc 302, 736 227, 081 101, 249

Table 2. The number of unknowns for the test problems.

Mesh Size Stack Bond Running Bond Laminae
1/5 0.610 4.920 1.360
1/10 8.750 147.230 25.240
1/15 60.270 1, 187.390 151.380
1/20 264.270 6, 344.700 587.780

Table 3. PSOR-CPU time (in seconds).

Mesh Size Stack Bond Running Bond Laminae
1/5 0.010 0.100 0.030
1/10 0.050 1.790 0.240
1/15 0.140 9.700 0.890
1/20 0.260 36.050 2.550
1/25 0.450 92.250 5.170
1/50 4.840 2, 974.000 77.090

Table 4. LSSNN-CPU time (in seconds).
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Mesh Size Stack Bond Running Bond Laminae
1/5 0.030 0.010 0.010
1/10 0.070 0.130 0.040
1/15 0.190 0.470 0.090
1/20 0.460 0.800 0.200
1/25 0.900 1.670 0.320
1/50 7.000 17.850 2.360
1/75 30.460 74.910 27.490
1/100 78.730 180.030 70.120
1/125 180.870 524.650 155.270
1/150 358.260 951.230 303.130
1/175 685.340 2, 407.420 486.240
1/200 1, 193.680 4, 266.140 900.730
1/225 2, 080.830 6, 232.460 1, 429.850

Table 5. PDAS-CPU time (in seconds).

Mesh Size Stack Bond Running Bond Laminae
1/5 0.220 0.250 0.120
1/10 1.020 1.200 0.580
1/15 2.530 3.290 1.370
1/20 4.260 5.920 2.650
1/25 6.970 10.980 4.410
1/50 32.240 69.650 21.440
1/75 84.140 194.670 61.040
1/100 152.460 459.270 123.760
1/125 259.070 873.510 194.220
1/150 419.730 1, 421.100 333.700
1/175 621.930 2, 275.980 434.530
1/200 869.020 3, 365.440 818.480
1/225 1, 334.010 4, 634.230 971.180

Table 6. PDPC-CPU time (in seconds).

We also apply the algorithm PDPC to solve the LCP (3.7)–(3.8). In this case we

note that, due to round-off errors, the system at Step 4 may be found unsolvable.
To avoid this, we apply diagonal scaling such that all the entries on the diagonal

of A become equal to 1. The performance of PDPC is illustrated in Tab. 6. For this
algorithm, the initial values are u0 ≈ εen and Σ0

S ≈ εenc , where ε ∈ (10−6, 10−2)
and en and enc are two vectors of size n and nc, respectively, with all entries equal
to 1. The tolerances are tol1 ≈ ncεM and tol2 ≈ n

√
εM .

Next, we solve the (reduced SC) LCP (3.17)–(3.18) in one stage, using the Graves

algorithm, or in two stages, using the algorithms LSSNN or PDAS at the first stage,
and the (one iteration) projection scheme at the second stage. We note that, at
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Step 4 of the Graves procedure, Case 2 may incorrectly be entered, due to round-

off errors (cycling of the algorithm, which never occurs in theory, may be observed
in this case). To avoid this, before we construct the SC test problems, we use the
diagonal scaling for the original problem as mentioned above. When we apply LSSNN

or PDAS to solve the scaled SC problems, we choose the regularisation parameter
ε ≈ ncεM . The respective performances of these algorithms are presented in Tab. 7.

The performance of the PDPC procedure applied to the SC problem is also recorded
there. In this case, u0 ≈ εenc , Σ0

S ≈ εenc , where ε ∈ (10−6, 10−2), tol1 ≈ ncεM , and

tol2 ≈ nc
√
εM .

The numerical solutions for the test problems with H = 1/20 and H = 1/50 are
graphically illustrated in Figs. 5–6 and 7, respectively.

Figure 5. The deformed structure using a mesh of size h = 1/20, for nb = 400, nb = 210,
and nb = 20, respectively.

Discussion. From Tables 3 to 7, we deduce that all of the methods presented
here are very sensitive to the number of physical components nb. This is expected,

as the size of the discrete problem increases with nb. We also note the sensitivity
of these methods to the geometry of the given structure, as every algorithm tends

to take longer to achieve successful termination when applied to the ‘running bond’
configuration than when applied to the other two configurations. This is due to the

different contact conditions between the elastic components, specific to each of the
three types of structures. We have noticed a similar behaviour when solving the

contact problems, on the given structures, with other exterior-boundary conditions.
The PDAS and PDPC techniques are quite efficient in terms of CPU time needed

to find the desired solution. For the PDAS algorithm, this is reflected in Tab. 5,
as well as in Tab. 7. For the PDPC algorithm, this is indicated in Tab. 6, while
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Figure 6. The solution to the test problems with nb = 400, nb = 210, and nb = 20,
respectively.

Figure 7. The solution to the test problems with nb = 2, 500, nb = 1, 275, and nb = 50,
respectively.

in Tab. 7 we see that, in its current form, PDPC is unsuited to solve the reduced

SC problem, where the SC matrix is dense. In our numerical tests, we have also
observed that for the PDAS and PDPC procedures, the number of iterations until

successful termination increases only slightly or remains constant when nb increases,
and increases slightly when nb is fixed and the mesh is refined. However, more

iterations are required when solving the problems with the ‘running bond’ geometry
than with the other two types of geometries.
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Method Mesh Size Stack Bond Running Bond Laminae
1/5 1.190 0.260 0.010
1/10 1.170 28.060 0.320

Graves 1/15 10.180 530.760 2.500
1/20 41.850 5, 445.910 11.530
1/5 0.010 0.030 0.010

LSSNN 1/10 0.070 0.750 0.030
with projection 1/15 0.620 10.430 0.140

1/20 2.250 74.340 0.500
1/5 0.020 0.010 0, 000

PDAS 1/10 0.010 0.040 0.020
with projection 1/15 0.030 0.180 0.010

1/20 0.020 0.620 0.020
1/5 1.280 0.330 0.070
1/10 115.860 25.400 1.960

PDPC 1/15 1, 664.700 407.920 27.550
1/20 8, 155.700 1, 547.820 175.370

Table 7. CPU time (in seconds) when solving the SC problem.

Tabs. 3 and 4 indicate that LSSNN takes less time to find the desired solution
than PSOR, although both these methods are much too slow when nb is large.

Tab. 7 shows that the practical efficiency of the Graves algorithm does not match
those of LSSNN and PDAS. However, in contrast with all the other methods discussed

here, Graves technique requires no solution to be computed until the final iteration.
This particular feature offers an advantage, especially when the coefficient matrix is

dense.

6. Conclusions

We conclude that the primal-dual active-set (PDAS) and primal-dual predictor-
corrector (PDPC) methods are quite appropriate to solve contact problems of the

form (2.3)–(2.12) when the number of elastic components is large, while the successive
over-relaxation with projection (PSOR), linear least squares with selected nonneg-

ativity constraints (LSSNN), and principal pivoting simplex (Graves) methods are
suitable to solve only the smallest of these problems.
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