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Abstract: We compare the finite sample performance of a number of Bayesian
and classical procedures for limited information simultaneous equations mod-
els with weak instruments by a Monte Carlo study. We consider recent
Bayesian approaches developed by Chao and Phillips (1998, CP), Geweke
(1996), Kleibergen and van Dijk (1998, KVD), and Zellner (1998). Amongst
the sampling theory methods, OLS, 2SLS, LIML, Fuller’s modified LIML,
and the jackknife instrumental variable estimator (JIVE) due to Angrist,
Imbens and Krueger (1999) and Blomquist and Dahlberg (1999) are also
considered. Since the posterior densities and their conditionals in CP and
KVD are non-standard, we propose a “Gibbs within Metropolis-Hastings”
algorithm, which only requires the availability of the conditional densities
from the candidate generating density. Our results show that in cases with
very weak instruments, there is no single estimator that is superior to oth-
ers in all cases. When endogeneity is weak, Zellner’s MELO does the best.
When the endogeneity is not weak and ρw12 > 0, where ρ is the correlation
coefficient between the structural and reduced form errors, and w12 is the co-
variance between the unrestricted reduced form errors, BMOM outperforms
all other estimators by a wide margin. When the endogeneity is not weak
and βρ < 0 (β being the structural parameter), KVD approach seems to
work very well. Surprisingly, the performance of JIVE was disappointing in
all our experiments.
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1 Introduction

Recent research on Bayesian analysis of the simultaneous equations models

addresses a problem, raised initially by Maddala (1976), and now recognized

as related to the problem of local non-identification when diffuse/flat priors

are used in traditional Bayesian analysis of such models, e.g., Drèze (1976),

Drèze and Morales (1976), and Drèze and Richard (1983).1 In this paper,

we will examine the approaches developed by Chao and Phillips (1998, here-

after CP), Geweke (1996), Kleibergen and van Dijk (1998, hereafter KVD),

and Zellner (1998). The idea in KVD is to treat an overidentified simulta-

neous equations model (SEM) as a linear model with nonlinear parameter

restrictions. While KVD focuses mainly on resolving the problem of local

nonidentification, CP explores further the consequences of using a Jeffreys

prior. By deriving the exact and (asymptotically) approximate representa-

tions for the posterior density of the structural parameter, they show that

the use of a Jeffreys prior brings Bayesian inference closer to classical infer-

ence in the sense that this prior choice leads to posterior distributions which

exhibit Cauchy-like tail behavior like the LIML estimator. Geweke (1996),

being aware of the potential problem of local nonidentification, suggests a

shrinkage prior such that the posterior density is properly defined for each

parameter. In another novel approach, Zellner (1998) has developed a finite

sample Bayesian method of moments (BMOM) procedure based on given

data without specifying a likelihood function or introducing any sampling

1Zellner (1998) provides the latest comprehensive review of the finite sample properties
of SEM estimators, and emphasizes the need for finite sample optimal estimation procedure
for such models.
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assumptions.

For the Bayesian approaches considered, while Geweke (1996) proposes

Gibbs sampling (GS) to evaluate the posterior density with a shrinkage prior,

the posterior densities as well as their conditional densities resulting from CP

and KVD are non-standard and cannot be readily simulated. In the cate-

gory of “block-at-a-time” approach, we suggest a new MCMC procedure,

which we call a “Gibbs within M-H” algorithm. The advantage of this algo-

rithm is that it only requires the availability of the conditional densities from

the candidate generating density. These conditional densities are used in a

Gibbs sampler to simulate the candidate generating density, whose drawings,

after convergence, are then weighted to generate drawings from the target

density in a Metropolis-Hastings (M-H) algorithm. In this study, we will fo-

cus on weak instruments, where the classical approach has been particularly

unsatisfactory.2

The main objective of the present paper is to compare the small sample

performance of some Bayesian and classical approaches using Monte Carlo

simulations. For the purpose of comparison, a number of classical methods

including OLS, 2SLS, LIML, Fuller’s modified LIML, and a recent jackknife

instrumental variables estimator (JIVE) due to Angrist, Imbens and Krueger

(1999) and Blomquist and Dahlberg (1999) are also computed from the gen-

erated data. Our simulation results from repeated sampling experiments

provide some unambiguous guidelines for empirical practitioners.

The plan of the paper is as follows. In Section 2, we set up the model.

2There has been a growing interest in the estimation of LISEM with weak instruments.
See Buse (1992), Bound, Jaeger and Baker (1995), Staiger and Stock (1997), Angrist,
Imbens and Krueger (1999), Blomquist and Dahlberg (1999), among others.
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Section 3 reviews in limited details the recent Bayesian approaches and JIVE.

Section 4 suggests a new MCMC procedure for evaluating the posterior dis-

tributions for CP and KVD, and discusses the convergence diagnostics imple-

mented. Section 5 presents simulation results and some discussions. Section

6 contains the main conclusions.

2 The Model

Consider the following limited information formulation of the m-equation

simultaneous equations model (LISEM):

y1 = Y2β + Z1γ + u, (1)

Y2 = Z1Π1 + Z2Π2 + V2, (2)

where y1 : (T × 1) and Y2 : (T × (m − 1)) are the m included endogenous

variables; Z1 : (T × k1) is an observation matrix of exogenous variables
included in the structural equation (1); Z2 : (T×k2) is an observation matrix
of exogenous variables excluded from (1); and u and V2 are, respectively, a

T ×1 vector and a T × (m−1) matrix of random disturbances to the system.
We assume that (u, V2) ∼ N(0,Σ⊗ IT ), where the m×m covariance matrix

Σ is positive definite symmetric (pds) and is partitioned conformably with

the rows of (u, V2) as follows

Σ =

µ
σ11 σ021
σ21 Σ22

¶
.

The likelihood function for the model described by (1) and (2) can be
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written as

L(β, γ,Π1,Π2,Σ|Y, Z) = (2π)−Tm/2|Σ|−T/2 exp{−1
2
tr[Σ−1(u, V2)0(u, V2)]},

(3)

where Y = (y1, Y2) and Z = (Z1, Z2).

The structural model described by (1) and (2) can alternatively be written

in its reduced form¡
y1 Y2

¢
=
¡
Z1 Z2

¢µ π1 Π1
Π2β Π2

¶
+
¡
ξ1 V2

¢
, (4)

where π1 = γ +Π1β, ξ1 = u+ V2β, (ξ1, V2) ∼ N(0,Ω⊗ IT ), Σ = C 0ΩC, C =µ
1 0
−β Im−1

¶
. The likelihood function corresponding to this alternative

representation is:

L(β, γ,Π1,Π2,Ω|Y, Z) = (2π)−Tm/2|Ω|−T/2 exp{−1
2
tr[Ω−1(ξ1, V2)0(ξ1, V2)]}.

(5)

The likelihood functions (3) and (5) are equivalent since the Jacobian between

Ω and Σ is unity.

Geweke (1996) considers the following reduced rank regression specification3

Y = Z1A+ Z2Θ+ E, (6)

where A = (Π1,π1), Θ = Π2Φ, and Φ = (Im−1,β), E = (V2, ξ1) ∼ N(0,Σ⊗
IT ) with Σ

−1 =
µ
Σ11 Σ12

Σ21 Σ22

¶
partitioned conformably with the rows of

(V2, ξ1). Obviously, (6) is equivalent to (4) and the corresponding likelihood

function is similar to (5).

Note that in the absence of restrictions on the covariance structure, (1)

is fully identified if and only if rank(Π2) = (m− 1) ≤ k2.
3Geweke (1996) considered a more general specification. To facilitate comparison, for

Geweke approach only, we have denoted Y = (Y2, y1).
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3 Review of some recent formulations

Among the most recent Bayesian approaches, Geweke (1996) used a shrink-

age prior such that all parameters are identified (in the sense that a proper

posterior distribution exists) even when Π2 has reduced rank. KVD treated

overidentified SEMs as linear models with nonlinear parameter restrictions

using the singular value decomposition. A diffuse or natural conjugate prior

for the parameters of the embedding linear model results in the posterior for

the parameters of the SEM having zero weight in the region of parameter

space where Π2 has reduced rank. This is a feature of the Jacobian of trans-

formation from the multivariate linear model to the SEM. CP used a prior

by applying Jeffreys principle on the model described by (1) and (2) and

the assumptions regarding the disturbances. An important quality of the

Jeffreys prior in the present context is that it places no weight in the region

of the parameter space where rank(Π2) < (m− 1) and relatively low weight
in close neighborhoods of this region where the model is nearly unidentified.

3.1 Zellner’s Bayesian method of moments approach

(BMOM)

Among the various Bayesian treatments of SEM proposed by Zellner (1971,

1978, 1986, 1994, 1998), the recent Bayesian method of moments approach

applies the principle of maximum entropy and generates optimal estimates

which can be evaluated by double K-class estimators. Given the unrestricted

reduced form equation y1 = Zπ1 + ξ1, Zellner (1998) considered a balanced
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loss function,

Lb = ωLg + (1− ω)Lp
= ω(y1 −Xbδ)0(y1 −Xbδ) + (1− ω)(Zπ1 −Xbδ)0(Zπ1 −Xbδ), for 0 ≤ ω ≤ 1

where X = (Y2, Z1), δ = (β 0, γ0)0, and bδ is an estimate of δ. The BMOM
estimate that minimizes ELb, where the expectation is taken with respect

to a probability density function of the π matrices appeared in unrestricted

reduced form equations, is given byµ bβbγ
¶
=

·
Y 02Y2 −K1

bV 02 bV2 Y 02Z1
Z 01Y2 Z 01Z1

¸−1 ·
(Y2 −K2

bV2)0y1
Z 01y1

¸
, (7)

where

K1 = 1− k/(T − k), K2 = 1− (1− ω)k/(T − k) with 0 ≤ ω ≤ 1,

and bV2 = (I − Z(Z 0Z)−1Z 0)Y2.
BMOM estimate will vary depending on the value of ω. When ω = 1, it

is the optimal estimate resulting from a “goodness of fit” loss function Lg.

When ω = 0, it is the optimal estimate given by a precision of estimation loss

function Lp. Meanwhile, the well-known minimum expected loss (MELO)

estimator is derived using a precision of estimation loss function and may be

evaluated as a K-class estimator with

K1 = K2 = 1− k/(T − k −m− 1).

3.2 The Geweke (1996) approach

Geweke (1996) assumes the following reference prior

|Σ|−(m+ν+1)/2 exp[−1
2
trSΣ−1] exp[−τ

2

2
(β 0β + trΠ02Π2 + trA

0A)], (8)
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which is the product of an independent inverted Wishart distribution for Σ

with ν degrees of freedom and scale matrix S, and an independent N(0, τ2)

shrinkage priors for each element of β and Π2. Geweke derived the respective

conditional posterior distributions, which may be used to generate drawings

through Gibbs sampling from the joint posterior distribution. Regarding the

vector of parameters (Σ−1, A,Π2, β), we obtain the full conditional densities

as follows:

(1) Conditional density of Σ−1

Σ−1|(Π2, β, A, Z, Y ) ∼Wishart(T + ν, G−1), (9)

where G = S + (Y − Z1A− Z2Θ)0(Y − Z1A− Z2Θ).
(2) Conditional density of A

vec(A)|(Π2,β,Σ−1, Z, Y )
∼ N([Σ−1 ⊗ Z 01Z1 + τ2Imk1 ]−1[Σ−1 ⊗ Z 01Z1]vec( bA),

[Σ−1 ⊗ Z 01Z1 + τ 2Imk1 ]−1), (10)

where bA = (Z 01Z1)−1Z 01(Y − Z2Θ).
(3) Conditional density of Π2

4

vec(Π2)|(β,Σ−1, A,Z, Y )
∼ N([eΣ11 ⊗ Z 02Z2 + τ 2Ik2(m−1)]−1[eΣ11 ⊗ Z 02Z2]vec(bΠ2),

[eΣ11 ⊗ Z 02Z2 + τ2Ik2(m−1)]−1), (11)

4The expressions for the conditional densities of Π2 and β given in Geweke (1996,
expressions (11) and (13)) contain some typographical errors and are corrected here in
(11) and (12).
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where bΠ2 = bΘ[Φ+ + Φ0eΣ21(eΣ11)−1], bΘ = (Z 02Z2)
−1Z 02(Y − Z1A). Φ+ is the

Moore-Penrose generalized inverse of Φ and the columns of Φ+ and Φ0 are

orthogonal, and C ≡ (Φ+,Φ0) is an m×m nonsingular matrix. Finally, eΣij
denotes the partitioning of eΣ−1 = (C 0ΣC)−1conformably with Y = (Y2, y1).
(4) Conditional density of β

β|(Π2,Σ−1, A, Z, Y )
∼ N([Σ22 ⊗Π02Z 02Z2Π2 + τ 2Im−1]−1[Σ22 ⊗Π02Z 02Z2Π2]bβ,

[Σ22 ⊗ Π02Z 02Z2Π2 + τ2Im−1]−1), (12)

where

bβ = (Π02Z
0
2Z2Π2)

−1Π02Z
0
2(Y2 − Z1Π1)Σ12(Σ22)−1

−Σ12(Σ22)−1 + (Π02Z 02Z2Π2)−1Π02Z 02(y1 − Z1π1).

3.3 The Chao and Phillips (1998) approach

Using Jeffreys prior, CP obtains exact and approximate analytic expressions

for the posterior density of the structural coefficient β in the LISEM (1)

and (2). Their formulas are found to exhibit Cauchy-like tails analogous

to comparable results in the classical literature on LIML estimation. For

the model (1) and (2) under normality assumption for the disturbances, a

Jeffreys prior on the parameters, θ = (β, γ,Π1,Π2,Σ), is of the form

p(β, γ,Π1,Π2,Σ) ∝
¯̄̄̄
−E

½
∂2

∂θ∂θ0
lnL(θ|Y, Z)

¾¯̄̄̄1/2
∝ |σ11|(k2−m+1)/2|Σ|−(k+m+1)/2|Π02Z 02QZ1Z2Π2|1/2,

(13)
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where lnL(θ|Y, Z) is the log-likelihood function as specified in (3), and
QX = IT − PX , PX = X(X 0X)−1X 0. As first noted by Poirier (1996), the

prior in (13) places no weight where rank(Π2) < (m− 1) through the factor
|Π02Z 02QZ1Z2Π2|1/2.
The joint posterior of the parameters of LISEM (1) and (2) is constructed

as proportional to the product of the prior (13) and the likelihood function

(3),

p(β, γ,Π1,Π2,Σ|Y,Z) ∝ p(β, γ,Π1,Π2,Σ)L(β, γ,Π1,Π2,Σ|Y,Z)
∝ |σ11|(k2−m+1)/2|Σ|−(T+k+m+1)/2|Π02Z 02QZ1Z2Π2|1/2

× exp{−1
2
tr[Σ−1(u, V2)0(u, V2)]}, (14)

where (u, V2) is defined in (1) and (2). Note that (14) or its conditionals do

not belong to any standard class of probability density functions.

3.4 The Kleibergen and van Dijk (1998) approach

To solve the problem of local nonidentification and also to avoid the so called

Borel-Kolmogorov paradox [see Billingsley (1986) and Poirier (1995)], KVD

considered (4) as a multivariate linear model with nonlinear parameter re-

strictions:

¡
y1 Y2

¢
=
¡
Z1 Z2

¢µ π1 Π1
φ1 Φ2

¶
+
¡
ξ1 V2

¢
, (15)

where φ1 is a k2 × 1 vector, Φ2 is a k2 × (m − 1) matrix. Denote Φ =

(φ1,Φ2). The reduced form model (4) is obtained if a reduced rank restriction

is imposed on the linear model (15) such that rank(Φ) = (m− 1) instead of
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m. Using a singular value decomposition (SVD) of Φ, they show that (15) is

identical to the so-called unrestricted reduced form (URF) model,5¡
y1 Y2

¢
= Z1

¡
π1 Π1

¢
+ Z2Π2B + Z2Π2⊥λB⊥ +

¡
ξ1 V2

¢
, (16)

where B =
¡
β Im−1

¢
, λ is a (k2−m+1)×1 vector. Π2⊥and B⊥ are the or-

thogonal complements of Π2andB respectively, such thatΠ
0
2Π2⊥ ≡ 0, BB0⊥ ≡

0, andΠ02⊥Π2⊥ ≡ Ik2−m+1, B⊥B0⊥ ≡ 1 (i.e. Π2⊥ =
¡ −Π22Π−121 Ik2−m+1

¢0
(Ik2−m+1+

Π22Π
−1
21 Π

−10
21 Π22)

−1/2, where Π2 =
¡
Π021 Π022

¢0
, Π21 : (m − 1) × (m − 1),

Π22 : (k2 −m+ 1)× (m− 1), and B⊥ = (1 + β 0β)−1/2
¡
1 −β0 ¢).

There is one-to-one correspondence between the parameters in (15) and

(16). The SVD of Φ is,

Φ = USV 0, (17)

where U : k2 × k2, U 0U = Ik2 ; V : m × m, V 0V = Im; and S : k2 ×
m is a rectangular matrix containing the (nonnegative) singular values (in

decreasing order) on its main diagonal (= (s11, s22, ..., smm)). Rewrite

U =

µ
U11 U12
U21 U22

¶
, S =

µ
S1 0
0 s2

¶
and V =

µ
v11 v12
V21 v22

¶
, (18)

where U11, S1, V21 : (m− 1)× (m− 1); v12 : 1× 1; v011, v22 : (m− 1)× 1; U12 :
(m−1)×(k2−m+1); U21 : (k2−m+1)×(m−1); U22 : (k2−m+1)×(k2−m+1);
s2 : (k2 −m+ 1)× 1, then the following relationship between (Π2, β,λ) and
(U,S, V ) results,

Π2 =

µ
U11
U21

¶
S1V

0
21, β = V

0−1
21 v

0
11, and

5Note that this formulation or the singular value decomposition does not change the
identification status of the LISEM specified by (1) and (2). If rank(Π2) < (m − 1), β is
locally nonidentified.

11



λ = (U22U
0
22)

−1/2U22s2v012(v12v
0
12)

−1/2. (19)

Note that λ is obtained through pre- and postmultiplication of s2 by or-

thogonal matrices while s2 contains the smallest singular values of Φ and is

invariant with respect to the ordering of variables contained in Y and Z2.

According to KVD, the above shows that the model described by (1) and

(2) can be considered as equivalent to the linear model (16) with a nonlinear

(reduced rank) restriction λ = 0 on the parameters. Therefore the priors and

posteriors of the parameters of the LISEM (1) and (2) may be constructed

as proportional to the priors and posteriors of the parameters of the linear

model (16) evaluated at λ = 0.

A diffuse (Jeffreys) prior for the parameters (π1,Π1,Φ,Ω) of the linear

model6

p(π1,Π1,Φ,Ω) ∝ |Ω|−(k+m+1)/2

∝ |Ω|−(m+1)/2|Ω−1 ⊗ Z 0Z|1/2, (20)

where k = k1 + k2, implies the prior for the parameters (β, π1,Π1,Π2,Ω) of

the LISEM (4)

p(β, π1,Π1,Π2,Ω)

∝ p(π1,Π1,Φ(Π2, β,λ),Ω)|λ=0|J(Φ, (Π2, β,λ))|λ=0|
∝ |Ω|−(m+1)/2|Ω−1 ⊗ Z 0Z|1/2|J(Φ, (Π2, β,λ))|λ=0|
∝ |Ω|−(m+1)/2|Ω−1 ⊗ Z 0Z|1/2

× ¯̄¡ B0 ⊗ Ik2 e1 ⊗Π2 B0⊥ ⊗ Π2⊥
¢¯̄
, (21)

6This is the prior suggested in Drèze (1976). Zellner (1971) and Zellner, Bauwens and
van Dijk (1988) used a similar prior with −(m+ 1)/2 in the exponent.
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where e1 = (1, 0, 0, ..., 0)0 . Note that the prior (21) is the Jeffreys prior of

the unrestricted reduced form (16) evaluated at λ = 0. Most importantly,

|J(Φ, (Π2, β,λ))|λ=0| = 0 when Π2 has reduced rank. This feature in KVD
approach eliminates the potential impact of local nonidentification.

The joint posterior of the parameters of the LISEM (4) is readily con-

structed as proportional to the product of the prior (21) and the likelihood

function (5),

p(β,π1,Π1,Π2,Ω|Y, Z)
∝ p(β,π1,Π1,Π2,Ω)L

∗(β, γ,Π1,Π2,Ω|Y, Z)
∝ |Ω|−(T+m+1)/2|Ω−1 ⊗ Z 0Z|1/2

× ¯̄¡ B0 ⊗ Ik2 e1 ⊗ Π2 B0⊥ ⊗Π2⊥
¢¯̄

× exp{−1
2
tr[Ω−1(

¡
y1 Y2

¢− ¡ Z1 Z2
¢µ π1 Π1

Π2β Π2

¶
)0

(
¡
y1 Y2

¢− ¡ Z1 Z2
¢µ π1 Π1

Π2β Π2

¶
)]}, (22)

Unfortunately, the above posterior or its conditional densities do not belong

to a known class of probability density functions.

3.5 The Jackknife Instrumental Variable Estimator (JIVE)

Motivated by split sample instrumental variables estimators, Angrist, Imbens

and Krueger (1999), and Blomquist and Dahlberg (1999) independently sug-

gested a jackknife instrumental variables estimator (JIVE). For model (1)

and (2), JIVE is given by

bδjive = ( bX 0
jiveX)

−1( bX 0
jivey1), (23)
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where bXjive is the T × (m− 1 + k1) matrix with t-th row defined by
ZtbΠ−t = Zt(Z 0−tZ−t)−1(Z 0−tX−t) = ZtbΠ− htXt

1− ht ,

Z−t and X−t are (T−1)×k and (T−1)×(m−1+k1) matrices obtained after
eliminating the t-th rows of Z and X matrics respectively, bΠ = (Z 0Z)−1Z 0X,
and ht = Zt(Z

0Z)−1Z 0t. In JIVE, the instrument is independent of the dis-

turbances even in finite samples, which is achieved by using a ’leave-one-out’

jackknife-type fitted value in place of the usual unrestricted reduced form

predictions.

Angrist, Imbens and Krueger (1999) also proposed a second jackknife

estimator that is a slight modification of (23). Similar to their study, we

found that its performance is very similar to JIVE, and is not reported here.

4 Posterior simulator: “Gibbs within M-H”

algorithm

Given the full conditional densities in (9) through (12) for the four blocks

of parameters, evaluating the joint posterior densities in Geweke (1996) by

Gibbs sampling is straightforward, see Geweke (1996) for a detailed descrip-

tion. Although Geweke’s (1996) shrinkage prior does not meet the argument

in KVD that the implied prior/posterior on the parameters of an embed-

ding linear model should be well-behaved, we found that the use of Geweke’s

shrinkage prior does not lead to a reducible Markov Chain. With the spec-

ification of a shrinkage prior, when Π2 has reduced rank, the joint posterior

density still depends on β and will not exhibit any asymptotic cusp. In the

following we only discuss the posterior simulation for CP and KVD.

14



KVD suggested two simulation algorithms for the posterior (22): an Im-

portance sampler and an Metropolis-Hastings algorithm. We found that

their M-H algorithm performs unsatisfactorily with low acceptance rate even

for reasonable parameter specifications. As mentioned earlier, since the pos-

teriors (14) and (22) as well as their conditional posteriors do not belong

to any standard class of probability density functions, Gibbs sampling can

not be used. In this section, we suggest an alternative simulation algorithm

which combines Gibbs sampling [see Casella and George (1992), and Chib

and Greenberg (1996)] and Metropolis-Hastings algorithm [see Metropolis et

al. (1953), Hastings (1970), Smith and Roberts (1993), Tierney (1994), Chib

and Greenberg (1995)]. Our algorithm is different from the “M-H within

Gibbs” algorithm, and can find its usefulness in other applications as well.

To generate drawings from the target density p(x), we use a candidate-

generating density r(x). An Independence sampler, which is a special case

of the M-H sampler, in algorithmic form is as follows:

0. Choose starting values x0

1. Draw xi from r(x)

2. Accept xi with probability

α(xi−1, xi) = { min
³
p(xi)r(xi−1)
p(xi−1)r(xi) , 1

´
, if p(xi−1)r(xi) > 0

1, if p(xi−1)r(xi) = 0
(24)

otherwise xi = xi−1.

3. i = i+ 1. Go to 1.

It is generally not feasible to draw all elements of the vector x simultane-

ously. A block-at-a-time possibility was first discussed in Hastings (1970, sec.

2.4) and then in Chib and Greenberg (1995) along with an example. Chib
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and Greenberg (1995) considered applying the M-H algorithm in turn to sub-

blocks of the vector x, which presumes that the target density p(x) may be

manipulated to generate full conditional densities for each of the subblocks

of x, conditioning on other elements of x. However the full conditionals are

sometimes not readily available from the target density for empirical investi-

gators. The posteriors (14) and (22) happen to fall in this category. In this

latter case, problems come up at step 1 while trying to generate drawings

from the joint marginal density r(x). Note that these drawings, whether

accepted or rejected at step 2, satisfy the necessary reversibility condition if

step 1 is performed successfully.

To simplify the notation, we consider a vector x which contains two

blocks, x = (x1, x2). KVD used the fact that

r(x1, x2) = r(x1)r(x2|x1) (25)

and suggested to draw xi1 from r(x1) and then draw x
i
2 from r(x2|xi1). The

pair (xi1, x
i
2) is then taken as a drawing from r(x). It turns out that this

strategy gives very low acceptance rate at step 2 in simulation studies for

various reasonable parameter values. Sometimes the move never take place

and the posterior has all its mass at the parameter values of the first drawing.

The reason for the failure is that information is not updated at subsequent

drawings and the transition kernel of (25) is static.

If the full conditionals r(x1|x2) and r(x2|x1) are available, which is usu-
ally true for many standard densities, we propose to use them in a Gibbs

sampler to make independent drawings from the invariant density r(x) after

the Markov chain has converged.

16



The combined algorithm is thus as follows, which we call “Gibbs within

M-H”:

0. Choose starting values x0 = (x01, x
0
2).

1. Draw xi1 from r(x1|xi−12 ), draw xi2 from r(x2|xi1).
2. Accept xi = (xi1, x

i
2) with probability α(x

i−1, xi) as defined in (24),

otherwise xi = xi−1.

3. i = i+ 1. Go to 1.

As explained, step 2 is the Gibbs step and step 3 is the M-H step in our

combined algorithm. In the following subsections, we describe the steps for

implementing the above procedure to generate drawings from the posteriors

(14) and (22).7

4.1 Implementing the CP approach

Note that the posterior in the CP approach is proportional to the product

of the prior, which is uniformly bounded, and the likelihood function, which

can be sampled by a Gibbs sampler. Therefore we choose the candidate-

generating density the way suggested by Chib and Greenberg (1995): we use

the likelihood function, L(β, γ,Π1,Π2,Σ|Y, Z), as the candidate generating
density for the posterior (14). Using precision matrix Σ−1, the simulation

steps are as follows,

0. Choose starting values (β0, γ0,Π01,Π
0
2,Σ

−1,0)

1. Draw Σ−1,i from p(Σ−1|βi−1, γi−1,Πi−11 ,Πi−12 , Y, Z)

Draw (βi, γi,Πi1,Π
i
2) from p(β, γ,Π1,Π2|Σ−1,i, Y, Z)

7The algorithm has been illustrated with a simple labor supply model in Gao and Lahiri
(2000).
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2. Accept (βi, γi,Πi1,Π
i
2,Σ

−1,i) as a drawing from the posterior (14) with

probability,

min(
|σi11|(k2−m+1)/2|Σ−1,i|(k+m+1)/2|Πi02Z 02QZ1Z2Πi2|1/2

|σi−111 |(k2−m+1)/2|Σ−1,(i−1)|(k+m+1)/2|Πi−102 Z 02QZ1Z2Π
i−1
2 |1/2 , 1),

otherwise, (βi, γi,Πi1,Π
i
2,Σ

−1,i) = (βi−1, γi−1,Πi−11 ,Πi−12 ,Σ−1,(i−1)).

3. i = i+ 1. Go to 1.

The conditional densities used in the first step are constructed as follows

(see Percy (1992) and Chib and Greenberg (1996)): Rewrite the model (1)

and (2) as a SUR model,

yt =Wtδ +

µ
ut
V2,t

¶
, (26)

where

yt = ( y1,t Y 02,t )
0,

Wt =

·
( Y 02,t Z 01,t )

(Im−1 ⊗ Z 0t)
¸
,

δ = (β 0, γ0, (vec
µ
Π1
Π2

¶
)0)0. Then

p(Σ−1|δ, Y, Z) ∝ |Σ−1|(T−2(m+1))/2 exp[−1
2
tr(Σ−1H)], (27)

which follows a Wishart distribution with (T −m − 1) degrees of freedom,
where H =

PT
t=1(yt −Wtδ)(yt −Wtδ)

0, and

p(δ|Σ−1, Y, Z) = N
Ã TX

t=1

W 0
tΣ

−1Wt

!−1Ã TX
t=1

W 0
tΣ

−1yt

!
,

Ã
TX
t=1

W 0
tΣ

−1Wt

!−1 .
(28)
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4.2 Implementing the KVD approach

KVD proposed to use the posterior of the unrestricted linear model (16),

p(β,λ,Π2,Ω|Y, Z), as the candidate generating density of the posterior (22),
p(β,Π2,Ω|Y,Z), where the parameters (π1,Π1) have been concentrated out.
First (Φ,Ω) is generated from p(Φ,Ω|Y, Z), and then (β,λ,Π2) is obtained
from Φ using (19). However, λ is also sampled which is not present in the

posterior p(β,Π2,Ω|Y, Z). Therefore KVD assume that λ is generated by a
conditional density of the form,

g(λ|β,Π2,Ω)
= (2π)−(k2−m+1)/2|B⊥Ω−1B0⊥|(k2−m+1)/2|Π02⊥Z 02Mz1Z2Π2⊥|1/2

× exp[−1
2
tr(B⊥Ω−1B0⊥(λ− bλ)0Π02⊥Z 02Mz1Z2Π2⊥(λ− bλ))], (29)

where bλ = (Π02⊥Z 02Mz1Z2Π2⊥)
−1Π02⊥Z

0
2Mz1(Y−Z2Π2B)Ω−1B0⊥(B⊥Ω−1B0⊥)−1.

Therefore the density p(β,λ,Π2,Ω|Y,Z) is used to approximate the posterior
g(λ|β,Π2,Ω)p(β,Π2,Ω|Y, Z). The weight function, defined as the ratio of the
posterior and the candidate generating density, becomes

w(β,λ,Π2,Ω) =
g(λ|β,Π2,Ω)p(β,Π2,Ω|Y,Z)

p(β,λ,Π2,Ω|Y, Z)
=

|J(Φ, (Π2,β,λ))|λ=0|
|J(Φ, (Π2, β,λ))| g(λ|β,Π2,Ω)|λ=0, (30)

where the Jacobian matrix J(Φ, (Π2, β,λ)) as well as J(Φ, (Π2,β,λ))|λ=0 have
been carefully derived in KVD.8 Note that w(·) = p(·)/r(·), so (30) may be
used in the “GS within M-H” algorithm to simplify (24).

8See also Kleibergen (1997, 1998). Note that their claimed relationship that
|J(Φ, (Π2,β,λ))| ≥ |J(Φ, (Π2,β,λ))|λ=0| is analytically incorrect; see the Appendix for
proof.
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Similar to the way we implemented the CP approach, it is more convenient

to work with the precision matrix Ω−1in the conditional densities. Applying

the procedure outlined above, the steps involved in constructing the Markov

chain for the posterior (22) are summarized as follows,

0. Choose starting values (Φ0,Ω−1,0)

1. Draw Ω−1,i from p(Ω−1|Φi−1, Y, Z)
Draw Φi from p(Φ|Ω−1,i, Y, Z)

2. Perform a singular value decomposition of Φi = U iSiV i0

3. Compute βi,λi,Πi2 according to (18)-(19)

4. Compute w(βi,λi, πi1,Π
i
1,Π

i
2,Ω

−1,i) according to (29)-(30)

5. Draw (πi1,Π
i
1) from p(π1,Π1|Ω−1,i,Φi(Πi2,βi,λ), Y, Z)|λ=0

6. Accept (βi, πi1,Π
i
1,Π

i
2,Ω

−1,i) as a drawing from the posterior with

probability,

min

µ
w(βi,λi,Πi2,Ω,

−1,i )
w(βi−1,λi−1,Πi−12 ,Ω−1,(i−1))

, 1

¶
,

otherwise, (βi, πi1,Π
i
1,Π

i
2,Ω

−1,i) = (βi−1, πi−11 ,Πi−11 ,Πi−12 ,Ω−1,(i−1)).

7. i = i+ 1. Go to 1.

Note that the conditional densities used in the first step are as follows:

p(Ω−1|Φ, Y, Z) ∝ |Ω−1|(T+k2−m−1)/2 exp[−1
2
tr(Ω−1G)], (31)

which follows a Wishart distribution Wm(T + k2, G
−1) with (T + k2) de-

grees of freedom, where G = Y 0QzY + (Φ − bΦ)0Z 02MZ1Z2(Φ − bΦ), andbΦ = (Z 02MZ1Z2)
−1Z 02MZ1Y . In addition,

p(Φ|Ω−1, Y, Z) ∝ |Ω−1|k2/2 exp{−1
2
tr[Ω−1(Φ− bΦ)0Z 02MZ1Z2(Φ− bΦ)]}, (32)

which is a matric-variate normal density.
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The conditional density used in step 5 is

p(π1,Π1|Ω−1,Φ(Π2, β,λ), Y, Z) ∝ |Ω−1|k1/2 exp{−1
2
tr[Ω−1(Λ−bΛ)0Z 01Z1(Λ−bΛ)]},

(33)

evaluated at λ = 0, where Λ = ( π1 Π1 ), bΛ = (Z 01Z 01)−1Z 01(Y − Z2Φ).
4.3 Convergence Diagnosis

One important implementation issue associated with MCMC methods is that

of determining the number of iterations required. There are various informal

or formal methods for the diagnosis of convergence, see Cowles and Carlin

(1996) and Brooks and Roberts (1999) for recent comprehensive reviews and

recommendations. Since the posterior densities in (14) and (22) resulting

from CP and KVD do not have moments of any positive integer order, most

of the methods proposed in the MCMC literature which require the existence

of at least the first moment (posterior mean) are ruled out. We are left with

a very few alternatives that can be used in our context.

First, the popular Raftery and Lewis (1992) method has been recognized

as the best for estimating the convergence rate of the Markov chain if quan-

tiles of the posterior density are of major interest, although the method does

not provide any information as to the convergence rate of the chain as a

whole. Because we are interested in the posterior modes and medians for

β associated with the Bayesian approaches, we may largely rely on Raftery

and Lewis’ method to determine the number of burn-ins, and the subsequent

number of iterations required to attain specified accuracy (e.g., estimating

the 0.50 quantile in any posterior within ±0.05 with probability 0.95). But
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we do not adopt their suggested skip-interval. MacEachern and Berliner

(1994) showed that estimation quality is always degraded by discarding sam-

ples. We once experimented with using the skip-intervals and found that

the results are basically the same if a sufficient number of iterations are run.

This seems to be inefficient and sometimes infeasible in terms of computation

time.

For each specification in our Monte Carlo study with repeated experi-

ments, we determined the number of burn-ins and subsequent number of

iterations by running the publicly available Fortran code gibbsit on MCMC

output of 10,000 iterations from three or more testing replications. For KVD

and CP approaches, the numbers of burn-ins for both the GS step and the

M-H algorithm were estimated. It was found that the number of burn-ins in

the GS step is negligible for most cases. However, we discarded more iter-

ations as the transient phase than the estimated number of burn-ins.9 The

estimated number of subsequent iterations across testing replications was

stable for the Gibbs sampler (in both Geweke approach and the GS step for

KVD and CP approaches), but it varied a lot for the M-H procedures, which

is also demonstrated by the variation in acceptance rates over repeated ex-

periments. We used a generous value for the number of subsequent iterations

when feasible.

Second, for MCMC output from each testing replication, we also applied

other convergence diagnostic methods, including percentiles derived from

every quarter of the long chain, Yu and Mykland (1994)’s CUSUM plot, and

9In practice, there is often a concern about possible underestimation of true length of
the burn-in period using the Raftery and Lewis method if the quantile of interest is not
properly pre-prescribed, see Brooks and Roberts (1999).

22



Brooks’ (1996) D sequence statistic. While the CUSUM partial sums actu-

ally involve averaging over sampling drawings, the computation of Brooks’

statistic is justified on the basis that it is designed to measure the frequency

of back-forth movement in the MCMC algorithm. However, these diagnostics

may sometimes provide contradictory outcomes so that one has to be extra

careful in interpreting them before making a judgment on convergence.

5 Simulation results and discussions

In this section, we present results of Monte Carlo experiments and discuss

some of the findings. As mentioned before, for the purpose of comparison, we

also computed a number of single K-class estimators including OLS, 2SLS,

LIML and Fuller’s modified LIML. In summary, the set of K-class estimator

for the structural coefficients in model (1) and (2) is given by:µ bβbγ
¶
=

·
Y 02Y2 −K1

bV 02 bV2 Y 02Z1
Z 01Y2 Z 01Z1

¸−1 ·
(Y2 −K2

bV2)0y1
Z 01y1

¸
, (7)

where bV2 = QZY2.
The following LISEM estimators have been considered:

(1) Ordinary least squares (OLS)

K1 = K2 = 0.

(2) Two stage least squares (2SLS)

K1 = K2 = 1.

(3) Zellner’s (1978) Bayesian minimum expected loss estimator (MELO)
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K1 = K2 = 1− k/(T − k −m− 1).

(4) Zellner’s Bayesian method of moments relative to balanced loss func-

tion (BMOM)10

K1 = 1− k/(T − k), K2 = 1− (1− ω)k/(T − k) with ω = 0.75

(5) Classical LIML. We compute classical LIML as an iterated Aitken

estimator [see Pagan (1979), Gao and Lahiri (1999)].

(6) Fuller (1977) modified LIML estimators (Fuller1 and Fuller4)

K1 = K2 = λ∗ − α/(T − k), for α = 1, 4

where

λ∗ =min
β

(y1 − Y2β)0QZ1(y1 − Y2β)
(y1 − Y2β)0QZ(y1 − Y2β)

and it is computed using the LIML estimate.

(7) JIVE

(8) Posterior mode and median from Geweke (1996) approach using Gibbs

Sampling. The values of the hyperparameters are chosen to be τ 2 = 0.01,

ν = m(m+ 1)/2, S = 0.01Im.
11

(9) Mode and median of the marginal density of β based on classical LIML

from Gibbs sampling (LIML-GS). LIML-GS is a by-product of the “Gibbs

10Tsurumi (1990) used ω = 0.75 for Zellner’s extended MELO (ZEM) in his experiments.
BMOM and ZEF are almost identical in our context.
11We found that the median-bias and disperson of the posterior density of β from the

Geweke (1996) approach increase as τ2 gets larger. Although one might suspect that the
convergence of the Gibbs sampler could be slow with smaller values of τ2, our convergence
diagnostics did not confirm this concern.
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within M-H” algorithm for the CP approach since the likelihood function in

(3) is used as the candidate-generating density to explore the CP posterior.

(10) Posterior mode and median from CP approach using “Gibbs within

M-H” algorithm

(11) Posterior mode and median from KVD approach using “Gibbs within

M-H” algorithm

For the recent Bayesian approaches and LIML-GS, we report both (poste-

rior) mode and median to show possible asymmetry in the marginal densities

of β. Any preference for one over the other will depend on the researcher’s

loss function. We obtain 16 estimates for each generated data set. The data

are generated from the model,

y1 = Y2β + u,

Y2 = Z2π + V2, (34)

where y1, Y2 are T × 1 such that m = 2, and Z2 : T × k2. We further specify
β = 1 and

Σ =

µ
1 ρ
ρ 1

¶
(35)

for |ρ| = 0.20, 0.60, and 0.95.12 Z2 is simulated from a N(0, Ik2⊗ IT ) distrib-
ution and (u, V2) from a N(0,Σ⊗ IT ) distribution. A constant term is added
in each equation, i.e., Z1 is a T × 1 vector of 1’s.
The simulation results are reported in Table 1 through Table 13. Tables

1 to 12 are for cases with ρ > 0, each table reporting results for one speci-

12We do not report cases with |ρ| = 0.99 or 1. As pointed out by Maddala and Jeong
(1992), when the instruments are weak and |ρ| is very close to one, the exact finite sample
distribution of IV estimator is bimodal. Our experiments show that the marginal posterior
density of β from the recent Bayesian approaches exhibits a similar pattern.
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fication. Tables 13 summarizes the results for cases with ρ < 0 for BMOM

and KVD for whom negative ρ made a surprising difference. As mentioned

before, we focus on the estimates of the structural parameter β. Specifi-

cally, we analyze the sensitivity of the various estimates of β with respect

to the strength of the instrumental variables Z, the degree of overidentifica-

tion (k2 − m + 1), the degree of endogeneity (ρ), and the sample size (T ).
Also, we will examine whether the performance of an estimator is symmetric

with respect to the sign of parameter ρ, an issue generally overlooked in the

literature.13

Note that the strength of the instrumental variables for the included

endogenous variable Y2 is measured in terms of the adjusted R
2 by regressing

Y2 on Z = (Z1, Z2). In the data generating process, we controlled R
2
to be

within ±2.5% of the specified value to reduce unnecessary variation. We did
not experiment with extremely small R

2
(say, 0.01 or less). In these cases the

mean values of all estimators approached the point of concentration ω12/ω22,

which is equal to (β + ρ) for our data generating process (DGP).

For each specification, the number of replications is 400. The number of

burn-ins (nburn GS and nburn MH), and subsequent number of iterations (n)

determined at the convergence diagnosis step are reported in the footnotes

13Denote Ω =

·
w11 w12
w12 w22

¸
. Using Σ = C 0ΩC, we have σ11 = w11 − 2βw12 + β2w22,

σ12 = w12 − βw22, and σ22 = w22. Letting ρ = σ12/√σ11σ22, the second relationship may
be rewritten as:

β − w12
w22

= −ρ
r
σ11
w22

.

If Σ is normalized as in (35) with σ11 = w22 = 1, then w12 = β + ρ. Therefore, in our
context, given β = 1, the sign and magnitude of ρ (or w12) has a special significance.
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to each table. The average acceptance rate and its standard deviation (in

parentheses) across replications for each M-H routine are reported as well.

To evaluate alternative estimators, we computed mean, standard deviation

(Std), root of mean squared errors (RMSE), and mean absolute deviation

(MAD) over repeated experiments for all the estimators considered.14 Since

LIML, posterior densities for CP and KVD, as well as 2SLS in the just-

identified case do not have finite moments of positive order in finite samples,

one should interpret the computed mean, standard deviation and RMSE

across replications for these estimators with caution. In this sense, the MAD

across replications is a preferred measure to consider.

We will first look at cases reported in Tables 1 to 12 with ρ > 0. In

Table 1, we consider a case (T = 50, ρ = 0.60, k2= 4) with moderately

strong instruments (R
2
= 0.40). It is found that with reasonably strong

instruments all estimators designed for simultaneous equations perform rea-

sonably well. As expected, OLS is seriously biased. BMOM has a slight

edge over others in terms of RMSE and MAD. For all recent Bayesian ap-

proaches and LIML-GS the medians perform a little better than modes, and

CP over KVD, in terms of bias, RMSE and MAD. Notice that the classical

LIML estimates are different from LIML-GS (mode or median). As noted

by Drèze (1976), from a Bayesian viewpoint, LIML produces an estimate of

β conditionally on the over-identifying restrictions, the modal values of all

the remaining parameters, and a uniform prior. In other words, the con-

centrated likelihood function of β after concentrating out (i.e., maximizing

14Medians were also calculated. Since they were very close to the corresponding means
in all our experiments, we did not report them in this paper.
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with respect to) other reduced-form and nuisance parameters is a conditional

density. However, LIML-GS is a marginal density with all other parameters

being integrated out. Due to possible asymmetry in the distribution of the

nuisance parameters, the modal/median values of LIML-GS may not coin-

cide with classical LIML estimates. In all our experiments, we find that the

median-unbiasedness property of (conditional) LIML does not carry over to

the marginal LIML (i.e., LIML-GS); however, the former generally has a

much larger standard deviation than the latter. In a way, LIML-GS brings

the classical LIML estimator close to its Bayesian counterpart for the purpose

comparison.

It is interesting to note that across all our tables, the difference between

LIML-GS and CP can only be attributed to the importance of Jeffreys prior.

Compared to LIML-GS, typically CP has a smaller bias, but slightly larger

standard deviation, even though the differences are very small. In some cases,

however, the use of Jeffreys prior reduces the bias in CP quite substantially.

For example, in Table 4 with T = 50 and a high degree of overidentification,

the bias is reduced from 0.36 to 0.25.

A simple case when the structural model is just identified (k2 = 1) is

reported in Table 2. For this case it is well known that classical LIML

coincides with 2SLS. KVD approach does not accommodate the case of just-
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identification since (15) requires k2 > (m−1).15 In this case, we find that CP-
Mode produces results closer to LIML-GS-Mode than to LIML. CP (1998)

showed that for a two-equation just-identified SEM in orthonormal canonical

form, the posterior density of β with Jeffreys prior has precisely the same

functional form as the density of the finite sample distribution of the cor-

responding LIML estimator as obtained by Mariano and McDonald (1979).

Our simulation results show that the assumption of orthonormal canonical

form is crucial for their exact correspondence, which cannot be extended to

a general SEM.16 In general, the Bayesian marginal density is not the same

as the classical conditional density. Interestingly, JIVE is considerably more

biased and has larger standard deviation than 2SLS. Also, CP-Median and

LIML-GS-Median perform significantly worse than their modes. This is be-

cause in an exactly identified model with weak instruments the probability of

local non-identification is substantial, and the resulting non-standard mar-

ginal density exhibits a very high variance. The same result holds true for

Geweke-Median, but to a lesser extent. Thus, for exactly identified SEMs

15When k2 = (m− 1), a diffuse prior in (20) for the linear model implies that the prior
for the parameters of the LISEM (4) is

p(β,π1,Π1,Π2,Ω) ∝ |Ω|−(k+m+1)/2|Π2|,
and the prior for the parameters of the LISEM (1) and (2) is

p(β, γ,Π1,Π2,Σ) ∝ |Σ|−(k+m+1)/2|Π2|,

which is identical to the Jeffreys prior; see also expressions (22) and (42) in CP.
16Note that the relationship between the standardized parameter vector and the original

parameter vector involves the nuisance parameters, cf. Phillips (1983). However, when a
SEM is in orthonormal canonical form ( i.e., the exogenous regressors are orthonormal and
the disturbance covariance matrix Ω is an identity matrix), both the density of random
parameter β from the CP approach and the probability density of the classical LIML
estimator for β are conditional on these information.
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with very weak instruments, mode of the marginal density is a more depend-

able measure of β. We should point out that in all other cases in this study

the medians generally turned out to be more preferable than the modes in

terms of bias, RMSE, and MAD (see Tables 11 and 12, for instance).

Results reported in Tables 3 through 12 consider cases with general over-

identification and weak instruments. As noted in the literature, OLS and

2SLS are median-biased in the direction of the correlation coefficient ρ, and

the bias in 2SLS grows with the degree of over-identification, and decreases as

sample size increases. Results in Tables 3 through 10 confirm these results..

Since MELO is a single K-class estimator with 0 < K < 1, it is always

between OLS and 2SLS estimates. The bias in MELO shows the same pattern

as that of 2SLS. With moderate simultaneity, the median-bias in 2SLS can

be as large as about 40% of the true value (see Table 8). We note that

MELO, LIML-GS-Mode, and KVD-Mode or KVD-Median are also median-

biased in the direction of ρ. But the bias in JIVE is consistently in the

opposite direction of ρ. Classical LIML is remarkably median-unbiased when

the instrumental variables are not very weak, which is well documented in

the literature. We find that LIML is median-biased in the direction of ρ

when the instruments are very weak (Table 8), which is consistent with the

finding in Staiger and Stock (1998) using local-to-zero asymptotic theory.

Even in this situation, the bias of LIML is much smaller than that of any

other estimator, except BMOM.

The MAD of OLS is very close to its bias (i.e., relatively small Std) across

all cases and it implies that OLS method is robust in the sense that it does

not suffer from heavy tails or outlying estimates, see Zellner (1998). In this
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sense, MELO and BMOM are all robust with relatively small standard devi-

ations across replications. However, OLS exhibits large bias in the presence

of simultaneity and is not so appealing. It is known that for a degree of

overidentification strictly less than 7, 2SLS would have a smaller asymptotic

mean squared error (AMSE) than LIML, cf. Mariano (1982). In cases with

weak instruments the situation gets more complicated in finite samples. In

our experiments, LIML has larger RMSE and MAD than 2SLS except in Ta-

bles 11 and 12 where ρ was 0.95. Note that the degree of over-identification

is 8 in Tables 4, 6, 8 and 10.

Among classical estimators, JIVE turns out to be least appealing. Monte

Carlo simulations in Angrist, Imbens and Krueger (1999) showed that JIVE

has slight median bias in the opposite direction of ρ (but less than 2SLS) and

have heavier tails than LIML. Our Table 6 is comparable to panel 2 of their

Table I, and the results are also similar. Our other experiments show that

JIVE may also have large absolute bias (larger than LIML) in the case with

weak instruments, sometimes even greater than 2SLS (see Table 2). Gener-

ally, JIVE has slightly less bias than 2SLS, but this gain is overshadowed by

enlarged standard deviation such that in finite samples it has no advantage

over 2SLS in terms of MAD and RMSE. We also find that JIVE has greater

RMSE and MAD than LIML. Blomquist and Dahlberg (1999) experimented

with much larger sample sizes than ours. Comparing our Table 4 with Table

6 and with an unreported simulation with a sample size of 500, we found

that the relative gain in JIVE is more than other estimators as sample size

increases, even though its relative low standing remains valid.

Fuller’s modified LIML estimators are included because Fuller1 is de-
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signed to minimize the median-bias, and Fuller4 to minimize the mean-

squared error. It seems that this conclusion is also problematic in the pres-

ence of weak instruments. Between the two, Fuller1 has smaller median-bias,

and Fuller4 has smaller standard deviations across replications. However, in

terms of RMSE or MAD, Fuller4 shows no advantage over Fuller1 in most of

the cases.

Because all the estimators except OLS are consistent and their asymp-

totic distributions are also the same, results in Tables 3 through 6 confirm

that their bias and dispersion decrease as sample size increases. But if the in-

struments are very weak (see Tables 7 and 8), their bias and dispersion may

remain significant, a point emphasized forcefully by Zellner (1998). How-

ever, when the endogeneity is not strong (see Tables 9 and 10), their bias

and dispersion may not be a big concern for some of the estimators.

Across all cases, we find that the bias in BMOM is small if ρ is not

too small and the structural equation (1) is overidentified. As sample size

increases or degree of over-identification rises, the observed bias in BMOM

decreases. The most striking feature of BMOM is that it exhibits the smallest

MAD and Std when ρ is not too small. MELO shows slightly smaller MAD

and Std than BMOM if ρ is small (see Tables 9-10). In cases with very

weak instruments and high degree of over-identification, the MAD of BMOM

is only one-fourth of that of other estimators (see Table 8). These are in

accordance with Tsurumi (1990)’s finding that in many cases, ZEM has the

least relative mean absolute deviation. Meanwhile, if ρ is very small and the

structural equation is overidentified, the bias in BMOM can be large; 2SLS,

LIML-GS, Geweke, and CP perform remarkably well in these situations.
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Next, we examine in more detail the recent Bayesian approaches. Overall,

the median bias resulting from these approaches exhibits the same pattern

as the bias of 2SLS, it increases with the degree of over-identification, and

decreases as sample size rises. The Geweke (1996) approach used a shrink-

age prior but its performance is comparable with LIML-GS and CP. The

median-bias from PMOD-Geweke is the same or slightly less than that of

LIML-GS-Mode, and the bias from Geweke-Median is always slightly less

than that of LIML-GS-Median. Similar relationships are observed for MADs.

These reflects the impact of the (informative) shrinkage prior on the posterior

density.

For each specification, the acceptance rate in the M-H algorithm using

CP approach is stable while that using KVD approach shows huge variation

across replications. The acceptance rate for CP is generally above 40% except

when sample size is small and the degree of overidentification is high. This

shows that the posterior of CP is largely dominated by the likelihood function

(3) and the Jeffreys prior generally carries little information. Second, in

terms of the computed standard deviations (Stds) of the estimates across

replications, CP-Mode has larger dispersion than LIML-GS-Mode, and CP-

Median has larger dispersion than LIML-GS-Median. These also shed light

on the notion that Jeffreys prior is less informative than a uniform prior.

However, between the Jeffreys prior (13) used by CP and the implied prior

(21) resulting from diffuse/Jeffreys prior on a linear model used by KVD, it

is not clear which one is less informative.

As for the KVD (1998) approach, we observe that it performs as well

as any other estimator if the instruments are not weak (see Table 1). But
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when the instruments are weak, and ρ is positive, KVD shows more bias and

higher MAD than those from CP. In Tables 4 with T = 50 and high degree

of overidentification, KVD performs as bad as OLS.

Next we consider cases with negative ρ, and the results are summarized

in Table 13. We replicate each case in Tables 1 - 12 with the same spec-

ification except ρ being negative. Since the performance of all estimators

except BMOM and KVD were basically the same with respect to the sign

of ρ, we only report results on these two in Table 13. We find that when ρ

changes sign, the bias of BMOM does not change sign and even increases in

magnitude. Also note that the computed Stds for BMOM when ρ < 0 are

close to the respective ones when ρ > 0. Therefore, for cases with ρ < 0,

BMOM has large RMSEs/MADs and loses its attraction. Note that BMOM

is the same as the double K-class estimator (DKC) with K values fixed. This

asymmetry in the performance in DKC is not well recognized in the litera-

ture. However, the observed asymmetry in its bias with respect to ρ in our

experiments is readily explained by examining an expression for the mean of

double K-class estimator (DKC) in Dwivedi and Srivastava (1984, Theorem

1). We can express bδDKC as:
bδDKC = bδK1 + · Y 02Y2 −K1

bV 02 bV2 Y 02Z1
Z 01Y2 Z 01Z1

¸−1 ·
(K1 −K2)bV20y1
0

¸
, (36)

where bδK1 is a single K-class estimator with characterizing scalar K1. When

Z 01Z2 = 0, which is satisfied in our experimental specifications, a double

K-class estimator of β may be written as

bβDKC = bβK1 + (K1 −K2)
Y 02QZy1
Y 02∆Y2
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where ∆ = (1−K1)Qz1 +K1PZ2 . Observe that for 0 < K1 < 1, bβK1 is biased

in the direction of ρ, as noted in Mariano (1982). Note also that Y 02∆Y2 > 0,

and Y 02QZy1 provides an estimate of w12. Although Dwivedi and Srivastava

(1984) explored the dominance of doubleK-class overK-class using the exact

MSE criterion, their guidelines for the selection of K2 for a given K1 are not

entirely valid, because the conditions were derived from a small Monte Carlo

simulation with cases with positive w12 and negative ρ only. Since K1 < K2

for BMOM, when ρ and w12 have the opposite sign, the second term in bβDKC
will be of the same sign as the bias of bβK1 , therefore bβDKC (hence BMOM)
will exhibit large bias. Otherwise, when ρw12 > 0, the bias is mitigated.

Based on our simulation results, we found that the sign of ρ has no effect on

the standard deviation of BMOM. This finding shows that the greater RMSE

of BMOM when ρw12 < 0 is due to the aggravated bias. For the specification

corresponding to table 4 in Table 13 (i.e., T = 50, ρ = -0.60, K2 = 4, R
2
=

0.10), we find that for given K1 = 0.947, RMSE is minimized if K2 is chosen

to be 0.829, which is much less than K1, and also less than K2 = 0.987 used

in BMOM.

In tables 3 - 12 we found that KVD with ρ > 0 performs very poorly, often

with substantial bias and relatively high RMSE and MAD. CP uniformly

dominates KVD in these cases. However, with ρ < 0 the picture turns

around remarkably well in favor of KVD. As we see in Table 13, across

all cases the bias tends to be negative and relatively small. With other

parameter values being the same, KVD with ρ < 0 has significantly less

RMSE and MAD than cases when ρ > 0, and performs unequivocally the

best among all estimators when endogeneity is strong. However, since this
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observed asymmetry is essentially a finite sample problem with KVD, the

improved performance when ρ < 0 becomes less significant when the sample

size increases from 50 to 100. With ρ < 0 the overall performance of KVD

is very comparable to that of CP, if not slightly better in some cases.

After experimenting with widely different negative and positive values of

β and ρ, we found out that the performance of KVD is dependent on the

sign of βρ, rather than on the sign of ρ. When βρ > 0, it performs very

unsatisfactorily as documented in Tables 3-12. Kleibergen and Zivot (1998)

have recently derived exact analytical expressions for the conditional densities

of β given Ω for both the KVD and CP posteriors. They show that the

difference between the two is in the Jacobian relating the unrestricted linear

multivariate model to the restricted reduced form model. We expect that

this additional term may account for the asymmetry in KVD with respect

to βρ. In our experiments, we found that in finite samples, when βρ > 0,

the reduced rank restriction using singular value decomposition shifts the

marginal posterior for KVD away from the marginal posterior of the linear

multivariate model. However, when the sample size gets large, the problem

seems to go away.

6 Conclusions

This paper examines the relative merits of some recent developments in the

Bayesian and classical analysis of limited information simultaneous equa-

tions models in situations where the instruments are very weak. Since the

posterior densities and their conditionals in the Bayesian approaches devel-
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oped by Chao and Phillips (1998) and Kleibergen and van Dijk (1998) are

non-standard, we proposed and implemented a “Gibbs within Metropolis-

Hastings” algorithm, which only requires the availability of the conditional

densities from the candidate generating density. These conditional densi-

ties are used in a Gibbs sampler (GS) to simulate the candidate generating

density, whose drawings, after convergence, are then weighted to generate

drawings from the target density in a Metropolis-Hastings (M-H) algorithm.

We rely on Raftery and Lewis (1992) method to determine the number of

burn-ins, and the subsequent number of required iterations in order to ensure

convergence. Through a MCMC simulation study, our results provide useful

guidelines for empirical practitioners.

The first comforting result is that with reasonably strong instruments

(marginal R
2
in excess of 0.40) all estimators perform equally well in finite

samples. In cases with very weak instruments (marginal R
2
less than 0.10),

there is no single estimator that is superior to others in all cases. When endo-

geneity is weak (ρ less than 0.20), Zellner’s MELO does the best. When the

endogeneity is relatively strong (ρ in excess of 0.60) and ρw12 > 0, BMOM

outperforms all other estimators by wide margins. When the endogeneity

is strong but βρ < 0, KVD approach seems to get very appealing; but,

otherwise, its performance is surprisingly very poor. With βρ > 0, as the

sample size gets larger, the performance of KVD improves rapidly. Fortu-

nately, the Geweke and CP approaches exhibit no such asymmetry and their

performances based on bias, RMSE, and MAD are very similar. Based on

the medians of marginal posteriors, their performance ranking is consistently

a distant second. The record of JIVE is quite disappointing across all our
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experiments, and is not recommended in practice. Even though JIVE is

slightly less biased than 2SLS in most cases, its standard deviation is con-

siderably higher, particularly in small samples. The most remarkable result

in this study is that poor instruments can affect the performance of different

estimators differently, depending on the signs and magnitudes of certain key

parameters of the model. Given the finding that even in finite samples with

very weak instruments BMOM and KVD perform so remarkably well on cer-

tain parts of the parameter space, more research is needed to understand the

reasons for the asymmetry and find ways to fix the problem.
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Appendix
This is to show that |J(Φ, (Π2, β,λ))| ≥ |J(Φ, (Π2,β,λ))|λ=0| does not

hold. In current notation, we need to show that |J(Φ, (Π21, θ2, β,λ))| ≥
|J(Φ, (Π21, θ2, β,λ))|λ=0| fails, where θ2 = Π22Π−121 . The fact is that J(Φ, (Π21, θ2,β,λ))|λ=0
andW are not orthogonal, whereW = J(Φ, (Π21, θ2, β,λ))−J(Φ, (Π21, θ2, β,λ))|λ=0.
Consider a simple case with m = k2 = 2. In this case,

Φ =

µ
1
θ2

¶
Π21

¡
β 1

¢
+

µ −θ2
1

¶
(1 + θ22)

− 1
2λ(1 + β2)−

1
2

¡
1 −β ¢ .

Denote K = (1 + θ22)
− 1
2 (1 + β2)−

1
2 . Therefore,

J(Φ, (Π21, θ2, β,λ))|λ=0 =


β 0 Π21 K(−θ2)
βθ2 βΠ21 θ2Π21 K(1)
1 0 0 K(βθ2)
θ2 Π21 0 K(−β)

 ,

W =


0 λK(1 + θ2)−1(−1) λK(1 + β2)−1(βθ2) 0
0 λK(1 + θ2)−1(−θ2) λK(1 + β2)−1(−β) 0
0 λK(1 + θ2)−1(β) λK(1 + β2)−1(θ2) 0
0 λK(1 + θ2)−1(βθ2) λK(1 + β2)−1(−1) 0

 .
Easy to check that (J(Φ, (Π21, θ2, β,λ))|λ=0)W 0 is not a zero matrix but with

its third row being 0’s. Interestingly,

(J(Φ, (Π21, θ2,β,λ))|λ=0)0W =


0 0 0 0
0 0 λK(−Π21) 0
0 λK(−Π21) 0 0
0 0 0 0

 .
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Table 1. T = 50, ρ = 0.60, k2 = 4, R2 = 0.40
Mean Std RMSE MAD

OLS 1.348 0.089 0.359 0.348
2SLS 1.045 0.144 0.151 0.121
MELO 1.115 0.126 0.171 0.144
BMOM 0.967 0.127 0.131 0.102
LIML 0.998 0.152 0.152 0.118
Fuller1 1.015 0.147 0.148 0.116
Fuller4 1.061 0.136 0.149 0.120
JIVE 0.957 0.178 0.183 0.141
Geweke_Mode 1.056 0.140 0.151 0.122
Geweke_Median 1.031 0.143 0.146 0.116
LIML_GS_Mode 1.061 0.139 0.152 0.123
LIML_GS_Median 1.036 0.142 0.146 0.116
CP_Mode 1.046 0.144 0.151 0.121
CP_Median 1.021 0.145 0.147 0.115
KVD_Mode 1.090 0.148 0.173 0.143
KVD_Median 1.079 0.137 0.158 0.130
Notes. Number of replications: 400

Geweke: nburn = 100, n = 2000
CP: nburn_GS = 100, nburn_MH = 100, n = 5000, acceptance rate = 0.482 (0.015)
KVD: nburn_GS = 100, nburn_MH = 100, n = 4000, acceptance rate = 0.215 (0.136)

Table 2. T = 50, ρ = 0.60, k2 = 1, R2 = 0.10
Mean Std RMSE MAD

OLS 1.537 0.111 0.548 0.537
2SLS 1.030 0.345 0.346 0.267
MELO 1.173 0.262 0.314 0.248
BMOM 0.881 0.264 0.290 0.229
LIML 1.030 0.345 0.346 0.267
Fuller1 1.107 0.300 0.319 0.245
Fuller4 1.250 0.219 0.332 0.277
JIVE 0.803 0.491 0.529 0.409
Geweke_Mode 1.089 0.331 0.343 0.265
Geweke_Median 0.907 0.518 0.526 0.358
LIML_GS_Mode 1.091 0.313 0.326 0.255
LIML_GS_Median 0.778 1.386 1.404 0.592
CP_Mode 1.108 0.309 0.327 0.256
CP_Median 0.797 1.383 1.398 0.580
KVD_Mode n.a. n.a. n.a. n.a.
KVD_Median n.a. n.a. n.a. n.a.
Notes. Number of replications: 400

Geweke: nburn = 100, n = 3000
CP: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.551 (0.023)
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Table 3. T = 50, ρ = 0.60, k2 = 4, R2 = 0.10
Mean Std RMSE MAD

OLS 1.539 0.111 0.550 0.539
2SLS 1.231 0.279 0.362 0.296
MELO 1.366 0.186 0.411 0.368
BMOM 0.943 0.184 0.193 0.154
LIML 1.043 0.579 0.581 0.386
Fuller1 1.143 0.367 0.394 0.307
Fuller4 1.281 0.244 0.372 0.307
JIVE 0.816 0.568 0.597 0.474
Geweke_Mode 1.244 0.287 0.377 0.309
Geweke_Median 1.204 0.309 0.370 0.300
LIML_GS_Mode 1.260 0.268 0.373 0.308
LIML_GS_Median 1.220 0.298 0.370 0.300
CP_Mode 1.230 0.293 0.372 0.301
CP_Median 1.194 0.315 0.370 0.298
KVD_Mode 1.351 0.384 0.520 0.389
KVD_Median 1.381 0.367 0.529 0.405
Notes. Number of replications: 400

Geweke: nburn = 100, n = 2000
CP: nburn_GS = 100, nburn_MH = 100, n = 10000, acceptance rate = 0.475 (0.010)
KVD: nburn_GS = 100, nburn_MH = 100, n = 3000, acceptance rate = 0.400 (0.217)

Table 4. T = 50, ρ = 0.60, k2 = 9, R2 = 0.10
Mean Std RMSE MAD

OLS 1.535 0.111 0.546 0.535
2SLS 1.363 0.221 0.425 0.371
MELO 1.463 0.139 0.483 0.463
BMOM 0.969 0.132 0.136 0.106
LIML 1.090 0.864 0.869 0.534
Fuller1 1.182 0.479 0.512 0.366
Fuller4 1.302 0.291 0.419 0.333
JIVE 0.706 0.933 0.978 0.728
Geweke_Mode 1.357 0.239 0.430 0.367
Geweke_Median 1.350 0.245 0.427 0.361
LIML_GS_Mode 1.375 0.218 0.328 0.380
LIML_GS_Median 1.367 0.228 0.432 0.374
CP_Mode 1.215 0.629 0.665 0.466
CP_Median 1.255 0.388 0.464 0.346
KVD_Mode 1.550 0.376 0.666 0.556
KVD_Median 1.573 0.322 0.657 0.576
Notes. Number of replications: 400

Geweke: nburn = 100, n = 1000
CP: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.242 (0.040)
KVD: nburn_GS = 200, nburn_MH = 100, n = 10000, acceptance rate = 0.267 (0.188)
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Table 5. T = 100, ρ = 0.60, k2 = 4, R2 = 0.10
Mean Std RMSE MAD

OLS 1.538 0.077 0.543 0.538
2SLS 1.138 0.208 0.250 0.200
MELO 1.257 0.156 0.301 0.264
BMOM 0.954 0.156 0.163 0.127
LIML 1.023 0.280 0.281 0.210
Fuller1 1.069 0.250 0.259 0.197
Fuller4 1.171 0.195 0.259 0.209
JIVE 0.914 0.320 0.331 0.262
Geweke_Mode 1.149 0.215 0.262 0.208
Geweke_Median 1.111 0.228 0.254 0.198
LIML_GS_Mode 1.162 0.205 0.261 0.209
LIML_GS_Median 1.117 0.225 0.254 0.199
CP_Mode 1.155 0.207 0.259 0.206
CP_Median 1.107 0.228 0.252 0.196
KVD_Mode 1.233 0.205 0.310 0.258
KVD_Median 1.215 0.210 0.301 0.243
Notes. Number of replications: 400

Geweke: nburn = 100, n = 2000
CP: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.616 (0.008)
KVD: nburn_GS = 200, nburn_MH = 100, n = 10000, acceptance rate = 0.312 (0.175)

Table 6. T = 100, ρ = 0.60, k2 = 9, R2 = 0.10
Mean Std RMSE MAD

OLS 1.542 0.078 0.548 0.542
2SLS 1.258 0.197 0.325 0.274
MELO 1.376 0.134 0.399 0.376
BMOM 0.972 0.132 0.135 0.110
LIML 1.003 0.437 0.437 0.291
Fuller1 1.071 0.311 0.319 0.243
Fuller4 1.180 0.233 0.294 0.232
JIVE 0.927 0.408 0.414 0.333
Geweke_Mode 1.253 0.201 0.323 0.269
Geweke_Median 1.238 0.206 0.315 0.261
LIML_GS_Mode 1.265 0.196 0.330 0.278
LIML_GS_Median 1.247 0.202 0.319 0.266
CP_Mode 1.196 0.264 0.329 0.266
CP_Median 1.192 0.232 0.301 0.240
KVD_Mode 1.371 0.278 0.464 0.382
KVD_Median 1.395 0.269 0.478 0.397
Notes. Number of replications: 400

Geweke: nburn = 100, n = 1000
CP: nburn_GS = 200, nburn_MH = 200, n = 6000, acceptance rate = 0.434 (0.029)
KVD: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.210 (0.179)
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Table 7. T = 100, ρ = 0.60, k2 = 4, R2 = 0.05
Mean Std RMSE MAD

OLS 1.565 0.080 0.571 0.565
2SLS 1.254 0.282 0.380 0.309
MELO 1.376 0.184 0.419 0.379
BMOM 0.953 0.183 0.189 0.150
LIML 1.052 0.584 0.586 0.392
Fuller1 1.158 0.377 0.409 0.307
Fuller4 1.296 0.244 0.384 0.317
JIVE 0.833 0.638 0.659 0.527
Geweke_Mode 1.264 0.285 0.388 0.314
Geweke_Median 1.224 0.316 0.387 0.305
LIML_GS_Mode 1.274 0.283 0.394 0.320
LIML_GS_Median 1.232 0.310 0.387 0.306
CP_Mode 1.263 0.295 0.395 0.318
CP_Median 1.223 0.316 0.387 0.304
KVD_Mode 1.388 0.389 0.549 0.418
KVD_Median 1.394 0.315 0.504 0.414
Notes. Number of replications: 400

Geweke: nburn = 100, n = 2000
CP: nburn_GS = 100, nburn_MH = 100, n = 4000, acceptance rate = 0.611 (0.009)
KVD: nburn_GS = 200, nburn_MH = 200, n = 8000, acceptance rate = 0.442 (0.224)

Table 8. T = 100, ρ = 0.60, k2 = 9, R2 = 0.05
Mean Std RMSE MAD

OLS 1.574 0.076 0.579 0.574
2SLS 1.386 0.219 0.444 0.394
MELO 1.478 0.131 0.496 0.478
BMOM 0.979 0.129 0.131 0.105
LIML 1.139 0.882 0.893 0.545
Fuller1 1.224 0.477 0.527 0.389
Fuller4 1.335 0.280 0.437 0.358
JIVE 0.844 0.823 0.838 0.663
Geweke_Mode 1.385 0.243 0.455 0.395
Geweke_Median 1.380 0.246 0.453 0.390
LIML_GS_Mode 1.397 0.230 0.459 0.404
LIML_GS_Median 1.387 0.236 0.453 0.396
CP_Mode 1.338 0.465 0.575 0.433
CP_Median 1.337 0.311 0.459 0.376
KVD_Mode 1.584 0.462 0.745 0.592
KVD_Median 1.608 0.368 0.711 0.610
Notes. Number of replications: 400

Geweke: nburn = 100, n = 2000
CP: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.433 (0.035)
KVD: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.371 (0.221)
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Table 9. T = 100, ρ = 0.20, k2 = 4, R2 = 0.10
Mean Std RMSE MAD

OLS 1.172 0.090 0.194 0.174
2SLS 1.046 0.253 0.257 0.206
MELO 1.083 0.189 0.206 0.164
BMOM 0.859 0.190 0.237 0.195
LIML 1.017 0.333 0.333 0.260
Fuller1 1.029 0.298 0.299 0.236
Fuller4 1.059 0.235 0.242 0.192
JIVE 0.957 0.417 0.419 0.340
Geweke_Mode 1.053 0.251 0.257 0.200
Geweke_Median 1.041 0.267 0.270 0.214
LIML_GS_Mode 1.058 0.244 0.251 0.197
LIML_GS_Median 1.044 0.265 0.269 0.212
CP_Mode 1.054 0.255 0.261 0.205
CP_Median 1.040 0.271 0.274 0.218
KVD_Mode 1.131 0.368 0.391 0.237
KVD_Median 1.161 0.328 0.365 0.245
Notes. Number of replications: 400

Geweke: nburn = 100, n = 1000
CP: nburn_GS = 100, nburn_MH = 100, n = 5000, acceptance rate = 0.615 (0.011)
KVD: nburn_GS = 100, nburn_MH = 100, n = 1000, acceptance rate = 0.548 (0.200)

Table 10. T = 100, ρ = 0.20, k2 = 9, R2 = 0.10
Mean Std RMSE MAD

OLS 1.179 0.096 0.203 0.181
2SLS 1.085 0.214 0.230 0.182
MELO 1.124 0.146 0.192 0.154
BMOM 0.823 0.143 0.228 0.193
LIML 0.992 0.397 0.397 0.301
Fuller1 1.015 0.347 0.347 0.270
Fuller4 1.055 0.267 0.273 0.216
JIVE 0.991 0.481 0.481 0.390
Geweke_Mode 1.084 0.218 0.234 0.184
Geweke_Median 1.079 0.223 0.237 0.187
LIML_GS_Mode 1.087 0.212 0.229 0.181
LIML_GS_Median 1.082 0.218 0.233 0.185
CP_Mode 1.054 0.308 0.313 0.223
CP_Median 1.063 0.254 0.262 0.207
KVD_Mode 1.249 0.234 0.342 0.283
KVD_Median 1.286 0.235 0.370 0.308
Notes. Number of replications: 400

Geweke: nburn = 100, n = 1000
CP: nburn_GS = 100, nburn_MH = 200, n = 5000, acceptance rate = 0.456 (0.023)
KVD: nburn_GS = 100, nburn_MH = 100, n = 5000, acceptance rate = 0.413 (0.202)
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Table 11. T = 50, ρ = 0.95, k2 = 4, R2 = 0.10
Mean Std RMSE MAD

OLS 1.846 0.052 0.848 0.846
2SLS 1.359 0.180 0.402 0.363
MELO 1.572 0.118 0.584 0.572
BMOM 1.057 0.118 0.131 0.102
LIML 0.988 0.404 0.404 0.255
Fuller1 1.169 0.196 0.259 0.221
Fuller4 1.417 0.120 0.434 0.417
JIVE 0.637 0.611 0.711 0.478
Geweke_Mode 1.347 0.302 0.460 0.358
Geweke_Median 1.277 0.377 0.468 0.305
LIML_GS_Mode 1.338 0.155 0.372 0.345
LIML_GS_Median 1.252 0.194 0.318 0.281
CP_Mode 1.314 0.162 0.353 0.325
CP_Median 1.234 0.194 0.304 0.266
KVD_Mode 1.411 0.379 0.559 0.428
KVD_Median 1.462 0.463 0.654 0.514
Notes. Number of replications: 400

Geweke: nburn = 100, n = 3000
CP: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.476 (0.010)
KVD: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.036 (0.038)

Table 12. T = 100, ρ = 0.95, k2 = 4, R2 = 0.10
Mean Std RMSE MAD

OLS 1.850 0.033 0.851 0.850
2SLS 1.230 0.126 0.262 0.234
MELO 1.414 0.094 0.425 0.414
BMOM 1.044 0.095 0.105 0.082
LIML 1.025 0.170 0.172 0.132
Fuller1 1.095 0.142 0.171 0.143
Fuller4 1.264 0.099 0.282 0.265
JIVE 0.873 0.199 0.236 0.191
Geweke_Mode 1.216 0.117 0.246 0.223
Geweke_Median 1.150 0.127 0.197 0.172
LIML_GS_Mode 1.227 0.118 0.256 0.235
LIML_GS_Median 1.158 0.128 0.203 0.180
CP_Mode 1.221 0.116 0.250 0.228
CP_Median 1.154 0.127 0.200 0.176
KVD_Mode 1.258 0.207 0.331 0.280
KVD_Median 1.252 0.294 0.387 0.260
Notes. Number of replications: 400

Geweke: nburn = 100, n = 3000
CP: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.626 (0.007)
KVD: nburn_GS = 200, nburn_MH = 200, n = 10000, acceptance rate = 0.022 (0.022)
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Table 13. Performance of BMOM and KVD when ρ < 0
Mean Std RMSE MAD   Remarks

    T = 50, ρ = −0.60, k2 = 4, R2 = 0.40
BMOM 0.852 0.129 0.196 0.165 Compare Table 1.
KVD_Mode 0.971 0.150 0.152 0.119 Acceptance rate for
KVD_Median 0.999 0.153 0.152 0.119 KVD: 0.713 (0.130)
    T = 50, ρ = −0.60, k2 = 4, R2 = 0.10
BMOM 0.551 0.191 0.488 0.453 Compare Table 3.
KVD_Mode 0.851 0.327 0.359 0.271 Acceptance rate for
KVD_Median 0.934 0.341 0.347 0.267 KVD: 0.680 (0.133)
    T = 50, ρ = −0.60, k2 = 9, R2 = 0.10
BMOM 0.420 0.136 0.600 0.580 Compare Table 4.
KVD_Mode 0.857 0.367 0.393 0.296 Acceptance rate for
KVD_Median 0.927 0.399 0.406 0.291 KVD: 0.482 (0.155)
    T = 100, ρ = −0.60, k2 = 4, R2 = 0.10
BMOM 0.676 0.160 0.362 0.326 Compare Table 5.
KVD_Mode 0.901 0.213 0.235 0.186 Acceptance rate for
KVD_Median 0.964 0.237 0.239 0.190 KVD: 0.772 (0.110)
    T = 100, ρ = −0.60, k2 = 9, R2 = 0.10
BMOM 0.531 0.129 0.486 0.469 Compare Table 6.
KVD_Mode 0.903 0.240 0.258 0.200 Acceptance rate for
KVD_Median 0.952 0.247 0.252 0.198 KVD: 0.614 (0.138)
    T = 100, ρ = −0.60, k2 = 4, R2 = 0.05
BMOM 0.514 0.181 0.519 0.486 Compare Table 7.
KVD_Mode 0.813 0.306 0.358 0.285 Acceptance rate for
KVD_Median 0.908 0.362 0.373 0.287 KVD: 0.720 (0.128)

    T = 100, ρ = −0.60, k2 = 9, R2 = 0.05
BMOM 0.407 0.131 0.608 0.593 Compare Table 8.
KVD_Mode 0.848 0.424 0.450 0.312 Acceptance rate for
KVD_Median 0.907 0.349 0.361 0.275 KVD: 0.585 (0.144)
    T = 100, ρ = −0.20, k2 = 4, R2 = 0.10
BMOM 0.753 0.195 0.314 0.266 Compare Table 9.
KVD_Mode 1.002 0.267 0.267 0.208 Acceptance rate for
KVD_Median 1.037 0.291 0.293 0.218 KVD: 0.699 (0.162)
    T = 100, ρ = −0.20, k2 = 9, R2 = 0.10
BMOM 0.673 0.159 0.364 0.328 Compare Table 10.
KVD_Mode 1.093 0.318 0.331 0.233 Acceptance rate for
KVD_Median 1.129 0.279 0.307 0.241 KVD: 0.553 (0.181)
    T = 50, ρ = −0.95, k2 = 4, R2 = 0.10
BMOM 0.427 0.120 0.585 0.573 Compare Table 11.
KVD_Mode 0.737 0.244 0.359 0.312 Acceptance rate for
KVD_Median 0.836 0.246 0.295 0.239 KVD: 0.173 (0.112)
    T = 100, ρ = −0.95, k2 = 4, R2 = 0.10
BMOM 0.589 0.097 0.422 0.411 Compare Table 12.
KVD_Mode 0.815 0.155 0.241 0.209 Acceptance rate for
KVD_Median 0.889 0.153 0.189 0.156 KVD: 0.179 (0.103)
Note. Number of replications: 500


