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Abstract
Two approachesto vector-basedcall-routingaredescribed,one
basedon matchingqueriesto routesand the other on match-
ing queriesdirectly to storedqueries.We arguethat thereare
someproblemswith the former approach,both whenuseddi-
rectly andwhenlatentsemanticanalysis(LSA) is usedto re-
ducethe dimensionalityof the vectors. However, the second
approachimposesahighercomputationalloadthanthefirst and
we have experimentedwith reducingthe numberof reference
vectors(usingthe multi-edit andcondensealgorithm)andthe
dimensionalityof thevectors(usinglineardiscriminantanaly-
sis(LDA)). Resultsarepresentedfor thetaskof routingqueries
on bankingandfinancialservicesto oneof thirty-two destina-
tions. Bestresults(5.1%routing error) wereobtainedby first
using LSA to smooththe query vectorsfollowed by LDA to
increasediscriminationandreducevectordimensionality.

1. Intr oduction
Call routingrefersto the techniqueof automaticallyrelayinga
customer’s telephoneenquiryto theappropriatedestination,us-
ing computationalspeechandlanguageprocessingtechniques.
Thepotentialbenefitsof sucha technologyareobviousto any-
onewho hasusedthe slow andfrustratingsystemswhich are
currentlyuniversallyprovidedwhenonetelephonesacompany,
institution, governmentdepartmentetc. The userrespondsto
promptsfrom thesesystemsusingtouch-tones,but the menus
arerigid andit mayrequirenavigationthroughseverallevelsof
menuto reachthedestinationappropriateto thequery.

The major challengein call routing is that the prompt to
the customeris deliberatelyvery general(e.g. “Pleasestate
yourqueryor request”,or “Pleasesaywhichserviceyouwould
like”). Hence, in contrastto the typical “Pleasesay yes or
no” promptsencounteredin current voice dialoguesystems,
thepromptelicits a wide rangeof responses.Theseresponses
canbevery differentin length,rangingfrom singlewords(e.g.
”Mortgages”) to long responsesthat may be syntacticallyand
semanticallycomplex or ambiguous,andthatmay incorporate
a largevocabulary (e.g. “There’s a transactionon my account
thatisn’t my chargesoI needto talk to somebodyaboutgetting
this removed”). However, the taskis madefeasibleby the fact
that the numberof possible“destinations”for a call is usually
quite low ( ����� ) andmostcallscanbeunambiguouslyrouted
to a singledestination.

In this paper, we considersomealternative techniquesfor
the vector-basedapproachto call routing. In this approach,a
spoken queryis viewedasa “vector” of wordsandvectorpat-
tern processingtechniquesare usedto route the query to the
correctdestination.This approachis somewhat differentfrom

the statisticalapproach,in which the likelihood of the set of
query words being associatedwith a particular route is esti-
matedandstatisticaltechniquesusedto decidethesignificance
of this likelihood[6]. Chu Carroll andCarpenterhave shown
that thevectorbasedtechniqueofferssuperiorperformanceon
a call-routingproblemwith 23 destinations[2].

Thepaperis organisedasfollows: in section2 we discuss
theessentialideasbehindvector-basedcall-routinganddescribe
two variantsof the techniqueexperimentedwith here. Section
2.2outlineshow latentsemanticanalysis(LSA) haspreviously
beenusedfor informationretrieval andsection2.3 givessome
argumentsfor why a differentapproachto theuseof LSA may
be appropriatefor call-routing. Section3 describesthe rout-
ing scenariousedandtheexperimentsperformed,andincludes
a descriptionof the applicationof linear discriminantanalysis
(LDA), whichproducedthemostaccuraterouting.Finally, sec-
tion 4 is a discussionof theideasandresultspresented.

2. Vector techniquesfor call routing
Thevectorapproachtocall-routingisbasedonformingamatrix�

usingthe transcriptionsof thequeriesavailableto train the
system.We assumethateachof thesehasbeenlabelledby an
expert with the correctroute. The rows of

�
correspondto

differentwords(or sequencesof words)in thevocabulary, and
the columnsto eitherdifferent routesor differentqueries. To
routeanew query, it is first representedasanadditionalcolumn
vectorof

�
andthenmatchedto the othercolumnvectorsin�

. Notethatthisapproachignoreswordorderin queries.
Two different approachesto routing have beentestedin

this paper. In the first, which we term T-ROUTE, all training-
datatranscriptionsassociatedwith thesamerouteareeffectively
pooledbeforebeingprocessed.In thesecond,termedT-TRANS,
any duplicateutterancesarediscarded,but thereis no pooling
of utterancesassociatedwith thesameroute.

2.1. Overview of the T-ROUTE and T-TRANS training and
testingprocedure

Figure1 shows thesequenceof processesthatwereappliedto
the training datatranscriptionsprior to applicationof any fur-
ther transformation,suchas LSA, in the T-ROUTE approach
(upperroute)andtheT-TRANSapproach(lower route).In both
approaches,the first stepsareto identify commonlyoccurring
phrases(collocations)and to remove any words on the “stop
list”—thesestepsaredescribedin moredetailin section3.2.An�
	��

term/documentmatrix
�

is thenformedin which the
words andcollocations(hereaftercalled collectively “terms”)
aretherows, andthecolumns(called“documents”by associa-
tion with informationretrieval work) correspondto eitherindi-
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Figure 1: The T-ROUTE and T-TRANS approachesto call-
routing

vidual routes(T-ROUTE) or indivdual documents(T-TRANS).
Hencea row (term)vectorin thisspaceis of dimension

�
, and

a column(document)vectorof dimension
�

.
In theT-ROUTEapproach,

�
is madeby poolingtheterms

associatedwith queriesdestinedfor thesameroute,so thatel-
ement

��� �
of the matrix is the numberof times that term � �

appearedin all thetranscriptionsassociatedwith route � � . The
next stepis to weight thetermsin thematrix in a way thatem-
phasizeswords that are importantfor identifying a routeor a
transcription—thisis describedin section3.3.At thisstage,we
have theoptionof applyingfurtherprocessingto thematrix in
theform of LSA and/orLDA. Thesestepsaredescribedin sec-
tions 2.2 and3.5. For classification,a query is pre-processed
into a documentvectorby identifying the termspresentin the
queryandeffectively makinganentryascolumn

�����
of the

�
matrix. Pre-processingis thenappliedto thequeryasdescribed
in section3.3. If LSA or LDA have beenusedin the training
process,the appropriatetransformationis appliedto the vec-
tor so that it canbematchedin a subspace.The queryis then
classifiedby measuringthe distance(in either the original or
transformedspace)of the queryvector to eachof the

�
doc-

umentvectors,usingan appropriatemetric, andchoosingthe
routeassociatedwith the“closest”vector.

In theT-TRANSapproach,the
�

matrix is constructedby
discardingduplicatetranscriptions(i.e. utterancesthat consist
of the sameset of words, without regard to word order) and
then assigninga column to eachuniquetranscription,so that
element

��� �
is the numberof times that term � � appearedin

(unique)transcription� � . We alsokeepa recordof which route
eachcolumnisassociatedwith. Thetermsareweighted(section
3.3) and LSA or LDA can then be applied to the

�
matrix

if required. Classificationof a query vector is by measuring
the distanceof the vector to eachof the

�
documentvectors,

finding the“closest”vectorandthenlooking up theroutewith
which this it is associated.

A discussionof the issuesin the T-ROUTE andT-TRANS
representationsof thedatais givenin section2.3.

2.2. Latent semanticanalysis(LSA)

Latentsemanticanalysis(LSA) hasproved to be a successful
techniquefor informationretrieval [3]. LSA is basedon using
thetechniqueof singularvaluedecomposition(SVD) to find the
lowesterror representationof thematrix

�
in a compactsub-

space.This canbeseenas“smoothing” the termor document
vectors.It is not proposedto describethetheoryof LSA in de-
tail here—foran introduction,see[8]. However, the essential
stepsin theprocessareasfollows:

1. SVD is appliedto the term/documentmatrix
�

so that

������� �"!
, where

�
and

�
areorthonormalmatrices

(dimensions
�#	$�

and
�%	$�

respectively) and
�

is
an
�&	'�

diagonalmatrix of eigenvalues.

2.
�

is inspectedandthedimensionscorrespondingto only
thetop ( eigenvaluesareretained:theotherdimensions
arediscarded.If (*) �

, this meansthat
�

is repre-
sentedin a muchreduceddimensionality.

3. A queryis pre-processedinto avector + (asdescribedin
section3.3) andis thenprojectedinto the reducedsub-
spaceto becomethevector +-, , where +-, � + ! ���/.10 .

4. + , canthenbematched(usinganappropriatecriterion)
in thesubspaceto thetraining-setvectors.

2.3. The useof LSA in call routing

Thedescriptionof theoperationof LSA given in section2.2 is
essentiallythe onegiven in the work of Landauer[8], which
wasconcernedwith learningsynonymsusinganencyclopaedia
astrainingmaterial.In thiscase,thenumberof wordswasover
60 000 and the numberof documentsover 30 000. The cen-
tral tenetof Landauer’s experimentsis that thereis somehid-
denconnectionbetweenwordsandbetweendocuments(which
is presumedto be governedby semantics),and that this can
bediscoveredby transformingto a dimensionalitymuchlower
thanthelargedimensionsof

�
. Theauthorsfoundthatperfor-

mancepeaked when (32345�5� , which might be thoughtof as
thenumberof different“semanticunits” in their encyclopaedia
data.

However, this scenariois fundamentallydifferentfrom the
call routingscenario.In call routing, thenumberof “semantic
units” is known a priori and,for our purposes,is simply equal
to the numberof routes. Also, the labelledtraining datatells
us which words are associatedwith eachroute. Hencethere
is no requirementto useLSA for dimensionalityreductionto
discover groupsof wordsthatareassociatedwith thesamese-
manticunit, asin [8]. If LSA is used,it is for smoothingof the
“noisy” queryvectors. However, themaximumnumberof di-
mensionsthatcanbeusedto representa documentvectorafter
applicationof SVD to

�
is 687:9<; �>=?��@

. In call routingappli-
cations,

�
is generallyverysmall in comparisonto thenumber

of terms,(e.g.
�&� 4�A in our application,

�B� AC4 in [2]), and
sothedocumentvectorsarerepresentedin a spacethatmaybe
too low.

An alternative approachis not to pool the words associ-
atedwith eachroutebut to definethe documentvectorsto be
(unique)individualutterances,asdescribedin theT-TRANSap-
proach(section2). Then

�
is equalto the numberof unique

documents(utterances)in thetrainingcorpuswhichwill besub-
stantiallymorethanthenumberof routes.If it is desiredto ap-
ply LSA to smooththevectors,thereduceddimensionalitywill
notbeaslow asthatdictatedby SVD when

�B�
thenumberof

routes.Notethatwhenthisapproachis used,it is necessary, for
classificationpurposes,to keeparecordof theroutewith which
eachuniqueutteranceis associated.

Anotherjustificationfor usingtheT-TRANSapproachis ap-
parentwhenonecomparestheform of thequeryvectorandthe
form of the documentvectorsin the T-ROUTE approach. A
typical queryvector (beforeany pre-processing)consistsof a
columnof mostlyzeroswith only a few integerentries,usually
of valueone—inour application,theaveragenumberof terms
in aquerywas2.89.By contrast,the“route” columnvectorsare
theunionof all vectorsassociatedwith acertainrouteandhave
many non-zeroentries,someof which maybelargeintegers—



for instance,the mostfrequentlyusedroutein our application
hadnon-zeroentriesfor 262 termsanda countof 463 for one
term.Sowhenthequeryvectoris matchedto thesevectors,one
is notmatchinglike with like.

In addition,callerstendto usemainlyuseshortstereotyped
phrasesto make queries:althoughthenumberof training-data
queriesavailablewas3300,after useof the stoplist,only 777
of thesewerefoundto bedifferentdocumentvectors.Although
this is anorderof magnitudemorethanthenumberof routes,it
is not computationallyunfeasibleto match

3. Experimental Procedure and Results
3.1. Scenario

The systemdevelopedfor theseexperimentswas designedto
route telephonequeriesrelating to bankingand financial ser-
vicesto oneof thirty-two destinations.Trainingdataconsisted
of about3300 calls to a prototypesystemand testingdataa
further 2271calls madeat the sametime andunderthe same
conditions.Thesecallsweretranscribedandlabelledby anex-
pertwith theappropriateroute.Becausewewereconcentrating
on routing issuesin theseexperiments,we usedonly the tran-
scriptionsof the calls ratherthan the output from the speech
recogniser. Our own experimentshave indicatedthat routing
performanceis degradedonly slightly whenthe transcriptions
arereplacedwith outputfrom thespeechrecogniser.

3.2. Term extraction and stoplist definition

Certain phrasesoccur regularly in the transcriptionsof the
queries: examplesfrom our applicationare “travel money”,
“changeof address”,“I would like to”, “to speakto” etc. It
would seemto beusefulto includethesecollocationsasterms
as they may bearmore information about the route than the
samewords in isolation. Any phrasein the training datathat
occurredfifteenor moretimeswasaddedto thevocabularyasa
term(therewereapproximatelyfifty suchphrases).Themutual
information(MI) betweeneachtermandtherouteswasthenes-
timated,thetermswererankedby theirMI, andthesalientterms
were identifiedas all termswhoseMI wasabove a thresholdD

(
D

wasdeterminedexperimentally). TermswhoseMI was
lessthan

D
formed the “stoplist” for experimentsi.e. the set

of wordsthatwerediscardedfrom a transcriptionprior to pro-
cessingit. Using collocationsanda stoplist gave a small but
consistentgainin performancein all cases.

3.3. Term weighting

The count
��� �

of the numberof timesterm � � occurredwhen
requestingroute � � (asin T-ROUTE) or in transcriptionE (asin
T-TRANS) is notsuitablefor directusein routinganinputquery.
Varioustechniquesfor weightingtheelementsof

�
have been

described.Mostof thesetechniquesreplace
� � �

by theproduct
of two weightings:onethattakesaccountof thelargevariation
in the numberof occurrencesof eachterm by applyingsome
form of compressionor normalisationandanotherthataccounts
for the fact that termsthat occur in only a few documentsare
more likely to be useful for routing purposesthan termsthat
occurin many documents.

Weexperimentedwith thefollowing weightingschemes:

1. Inversedocumentfrequency (IDF) (asdefinedin [9])

2. Theweightingdescribedby Bellegardain [1]

3. Theweightingdescribedby Sparck-Jonesin [10])

4. Theweightingdescribedby Carpenterin [2])

Ourconclusionoverseveralexperimentsusingdifferentmatch-
ing techniquesin differentvectorspaceswasthattherewaslittle
to choosebetweentheschemesbut theBellegardaschemeap-
pearedto bethemostconsistentandsothisschemewasadopted
for theexperimentsreportedhere.

3.4. Useof the multi-edit and condensealgorithm

WhentheT-TRANSapproachis used,thereare777uniquedoc-
umentvectorsand it is requiredto comparethe query vector
with eachof them. Althoughthis is reasonablyfaston modern
computers,it is still over twentytimesslower thanusingtheT-
ROUTE approach.The multi-edit and condensealgorithm[4]
is a well-known way of reducingthesizeof thecomparisonset
in F nearest-neighbourclassification.This algorithmis applied
to thetraining-setvectorsin two distinctphases:

1. Multi-edit : Theset is editedso that,after partitioninginto
subsetsfor trainingandtesting,all vectorsarecorrectlyclassi-
fied.
2. Condense: Vectors that are not useful for classification
arediscardedso that the sizeof the setof referencevectorsis
greatlyreduced.

Whenusedwith arangeof differentvectordimensionalities,the
applicationof multi-editandcondensereducedthereferenceset
from 777 to 140–160vectors. Onenearest-neighbourclassifi-
cationwasusedthroughout—noimprovementwasobservedforFHG �

.

3.5. Useof linear discriminant analysis(LDA)

A successfuldiscriminative approachto call routing basedon
the minimum error classificationcriterion wasreportedin [7].
Linear Discriminant Analysis (LDA) [5] is a discriminative
classificationtechniquethatis implementedby applyingalinear
transformationto the trainingandqueryvectors.LDA reduces
thedimensionalityof thevectorsto

�JIH�
, where

�
is thenum-

berof classes.It hastwo attractivefeatureswhenappliedto call
routing:

1. the numberof classesequalsthe numberof routesand
this is usuallysmall ( �3��� ) in call routing; hence,af-
ter applicationof LDA, classificationoccursin a low-
dimensionalityspace;

2. if LSA is usedin conjunctionwith LDA, theLDA trans-
formationcanbeintegratedwith theLSA transform.

For a full descriptionof LDA, see[5]. Therequireddiscrimina-
tive transformationmatrix

�
thattransformsa vectorfrom the

original space(dimension( ) to dimension
�KIL�

,is thematrix
of eigenvectorsM � thatsatisfy

�-N M �O�QPR�-S M �UT (1)

In equation1,
P

is the correspondingeigenvalue of M � , �VN is
the“betweenclassscattermatrix” for theclasses(=routes)and� S

the“within classscattermatrix”.
Theoriginal spacecouldbetheuntransformed(pre-processed)
word counts,or anLSA space.It wasfoundthatestimationof�VN

and
� S

wasdifficult in theuntransformedspacebecauseof
thesparsityof theentries.Therefore,theT-TRANSmatrix was
used,andthe vectorsweresmoothedby applyingLSA asde-
tailedin section3.6.Then

�VN
,
� S

andhenceW werecalculated,
andappliedto the training-setdocumentvectors. At recogni-
tion time, the LSA smoothingwasappliedto the queryvector



+ , followedby the W transformto reducethedimensionalityof+ , to
�XIY�

. ThequerywasthenclassifiedusingtheEuclidean
distancebetween+V, andthedocumentvectors.

3.6. Experiments

Two techniquesfor classificationwere implementedwhen
�

wasconfiguredasa T-ROUTEmatrix:

1. Classificationwasdonein the untransformed(but pre-
processed)word countspace(32 vectorsof dimension
582)usinga Euclideandistancemetric(R-UNTRANS);

2. Classificationwasdonein LSA space(32 vectorsof di-
mension32) usinga cosinedistancemetric(R-LSA).

Four techniquesfor classificationwereimplementedwhen
�

wasconfiguredasa T-TRANSmatrix:

1. Classificationwasdonein the untransformed(but pre-
processed)word countspace(777vectorsof dimension
582)usinga Euclideandistancemetric(T-UNTRANS);

2. Classificationwasdonein LSA space(777 vectorsof a
variablenumberof dimensions)usinga cosinedistance
metric(T-LSA);

3. Classificationwasdoneusinga variablenumberof ref-
erencedocumentvectors(approximately140–160)se-
lected by the multi-edit and condensealgorithm (T-
MEDIT, seesection3.4) in LSA space(variablenumber
of dimensions),usinga Euclideandistancemetric;

4. Classificationwasdonein LDA space(777vectorsof 31
dimensions)usinga cosinedistancemetric,after appli-
cationof LSA (variablenumberof dimensions)(T-LDA,
seesection3.5).

3.7. Results

Figure 2 shows the results obtained from the six different
schemeslisted in section3.6. The schemesthat usedthe T-
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Figure2: Error-ratesfor thesix differentschemestested

ROUTE approach(R-UNTRANS andR-LSA) werethe worst
performing,followedby themulti-edit andcondensetechnique
appliedto theT-TRANSvectors(T-MEDIT). A problemwith T-
MEDIT is that in themultieditstageof theprocess,in orderto

ensurethat the referenceset is classifiedcompletelycorrectly,
vectorswhich may be useful for correctclassificationaredis-
carded.It is interestingto notethatusingLSA on its own was
worsein every casethanusingmatchingin theuntransformed
space. However, the bestperformancewas 5.1% error using
LSA followed by LDA (T-LDA), using 350 LSA dimensions
to smooththedataandthenreducingto a dimensionalityof 31
usingLDA.

4. Discussion
In thispaper, wehavedescribedtwo techniquesto vector-based
call-routing.Wehavearguedthattherearesomeproblemswith
the applicationof LSA to the “standard”call-routingscenario
and our experimentalresultsindicate that in this application,
working in theuntransformedterm/documentspaceis superior
to usingLSA alone. However, whenLSA wascombinedwith
lineardiscriminantanalysis(LDA), weobtainedthebestresults,
andwe attributetheseto thesmoothingeffect of LSA followed
by thediscriminativepowerof LDA. Thistechniquealsohasthe
advantagethatit reducesthedatato alow dimensionalitysothat
matchingis relatively quick. We alsoexperimentedwith four
differentterm-weightingschemesandfoundlittle to choosebe-
tweenthem.In thefuture,we planto investigatewaysof using
recognisertranscriptionsin the routingdecision,andalsohow
to coupletheroutingtaskmorecloselyto therecognition.
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