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Abstract

Two approacheto vectorbasedcall-routingaredescribedpne
basedon matchingqueriesto routesand the other on match-
ing queriesdirectly to storedqueries. We arguethatthereare
someproblemswith the former approachpoth whenuseddi-
rectly and whenlatentsemanticanalysis(LSA) is usedto re-
ducethe dimensionalityof the vectors. However, the second
approachmposesahighercomputationaloadthanthefirst and
we have experimentedwith reducingthe numberof reference
vectors(using the multi-edit and condenselgorithm)andthe
dimensionalityof the vectors(usinglinear discriminantanaly-
sis(LDA)). Resultsarepresentedor thetaskof routingqueries
on bankingandfinancial servicesto oneof thirty-two destina-
tions. Bestresults(5.1% routing error) were obtainedby first
using LSA to smooththe query vectorsfollowed by LDA to
increasealiscriminationandreducevectordimensionality

1. Intr oduction

Call routingrefersto the techniqueof automaticallyrelayinga
customers telephonesnquiryto theappropriatalestinationus-
ing computationabpeechandlanguageprocessingechniques.
The potentialbenefitsof suchatechnologyareohviousto ary-
onewho hasusedthe slow andfrustratingsystemswhich are
currentlyuniversallyprovidedwhenonetelephones compar,
institution, governmentdepartmentetc. The userrespondgo
promptsfrom thesesystemsusing touch-tonesput the menus
arerigid andit mayrequirenavigationthroughseverallevels of
menuto reachthe destinatiorappropriatego the query

The major challengein call routing is that the promptto
the customeris deliberatelyvery general(e.g. “Pleasestate
yourgueryor request” or “Pleasesaywhich serviceyou would
like”). Hence,in contrastto the typical “Pleasesay yes or
no” promptsencounteredn currentvoice dialogue systems,
the promptelicits a wide rangeof responsesTheseresponses
canbevery differentin length,rangingfrom singlewords(e.g.
"Mortgages”)to long responseshat may be syntacticallyand
semanticallycomplex or ambiguousandthatmayincorporate
alarge vocahulary (e.g. “There’s a transactioron my account
thatisn’t my chagesol needto talk to somebodyaboutgetting
this removed”). However, the taskis madefeasibleby the fact
thatthe numberof possible“destinations”for a call is usually
quitelow (< 40) andmostcalls canbe unambiguouslyouted
to asingledestination.

In this paper we considersomealternatve techniquedor
the vectorbasedapproachto call routing. In this approacha
spolen queryis viewed asa “vector” of wordsandvectorpat-
tern processingechniquesare usedto route the query to the
correctdestination.This approachs someavhat differentfrom

the statisticalapproach,in which the likelihood of the set of

query words being associatedvith a particularroute is esti-

matedandstatisticaltechniquesisedto decidethe significance
of this likelihood[6]. Chu Carroll and Carpentethave shavn

thatthe vectorbasedechniqueoffers superiorperformanceon

a call-routingproblemwith 23 destination$2].

The paperis organisedasfollows: in section2 we discuss
theessentialdeasbehindvectorbasedtall-routinganddescribe
two variantsof the techniquesxperimentedwith here. Section
2.2 outlineshow latentsemanticanalysis(LSA) haspreviously
beenusedfor informationretrieval andsection2.3 givessome
amgumentsor why a differentapproacho the useof LSA may
be appropriatefor call-routing. Section3 describeghe rout-
ing scenaricusedandthe experimentgperformed andincludes
a descriptionof the applicationof linear discriminantanalysis
(LDA), which producedhe mostaccurategouting. Finally, sec-
tion 4 is adiscussiorof theideasandresultspresented.

2. Vector techniquesfor call routing

Thevectorapproacho call-routingis basednformingamatrix
W usingthe transcriptionof the queriesavailableto train the
system.We assumehat eachof thesehasbeenlabelledby an
expert with the correctroute. The rows of W correspondo
differentwords (or sequencesf words)in the vocahulary, and
the columnsto either differentroutesor differentqueries. To
routeanew query it is first representedsanadditionalcolumn
vectorof W andthenmatchedto the othercolumnvectorsin
W . Notethatthis approactignoresword orderin queries.

Two different approachedo routing have beentestedin
this paper In thefirst, which we term T-ROUTE, all training-
datatranscriptiongssociatewith thesamerouteareeffectively
pooledbeforebeingprocessedin thesecondfermedl-TRANS
ary duplicateutterancesre discardedbut thereis no pooling
of utterancegssociateavith the sameroute.

2.1. Overview of the T-ROUTE and T-TRANS training and
testing procedure

Figurel shaws the sequenc®f processeshatwereappliedto
the training datatranscriptionsprior to applicationof ary fur-
ther transformation,suchas LSA, in the T-ROUTE approach
(upperroute)andthe T-TRANSapproach(lower route).In both
approacheshe first stepsareto identify commonlyoccurring
phraseqcollocations)andto remove ary words on the “stop
list"—thesestepsaredescribedn moredetailin section3.2. An
M x N term/documenimatrix W is thenformedin which the
words and collocations(hereaftercalled collectively “terms”)
aretherows, andthe columns(called“documents™y associa-
tion with informationretrieval work) correspondo eitherindi-
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Figure 1: The T-ROUTE and T-TRANS approachego call-
routing

vidual routes(T-ROUTE) or indivdual documentg T-TRANS.
Hencearow (term)vectorin this spacds of dimensionV, and
acolumn(documentyectorof dimensionM.

In the T-ROUTE approachW is madeby poolingtheterms
associateavith queriesdestinedfor the sameroute,so thatel-
ementW;; of the matrix is the numberof timesthat term¢;
appearedn all thetranscriptionsassociateavith router;. The
next stepis to weightthe termsin the matrix in a way thatem-
phasizeswords that are importantfor identifying a route or a
transcription—thigs describedn section3.3. At this stagewe
have the option of applyingfurther processingo the matrix in
theform of LSA and/orLDA. Thesestepsaredescribedn sec-
tions 2.2 and 3.5. For classification,a queryis pre-processed
into a documentvector by identifying the termspresentin the
qgueryandeffectively makinganentryascolumnN+1 of theWw
matrix. Pre-processing thenappliedto the queryasdescribed
in section3.3. If LSA or LDA have beenusedin the training
processthe appropriatetransformationis appliedto the vec-
tor sothatit canbe matchedn a subspaceThe queryis then
classifiedby measuringthe distance(in eitherthe original or
transformedspace)of the queryvectorto eachof the N doc-
umentvectors,using an appropriatemetric, and choosingthe
routeassociateavith the“closest”vector

In the T-TRANSapproachthe W matrix is constructedy
discardingduplicatetranscriptiong(i.e. utteranceghatconsist
of the sameset of words, without regardto word order) and
then assigninga columnto eachuniquetranscription,so that
elementW;; is the numberof timesthat term ¢; appearedn
(unique)transcriptiong; . We alsokeeparecordof whichroute
eachcolumnis associatewith. Thetermsareweighted(section
3.3) andLSA or LDA canthen be appliedto the W matrix
if required. Classificationof a query vector is by measuring
the distanceof the vectorto eachof the N documentvectors,
finding the “closest” vectorandthenlooking up the routewith
whichthisit is associated.

A discussiorof the issuesin the T-ROUTE and T-TRANS
representationsf the datais givenin section2.3.

2.2. Latent semanticanalysis(LSA)

Latentsemanticanalysis(LSA) hasproved to be a successful
techniquefor informationretrieval [3]. LSA is basedon using

thetechniqueof singularvaluedecompositiofSVD) to find the

lowesterror representationf the matrix W in a compactsub-

space.This canbe seenas“smoothing”the term or document
vectors.lt is not proposedo describethetheoryof LSA in de-

tail here—foran introduction,see[8]. However, the essential
stepsin theprocessreasfollows:

1. SVD is appliedto the term/documenimatrix W sothat

W =USVT, whereU andV areorthonormaimatrices
(dimensionsM x N andN x N respectiely) andS is
anN x N diagonalmatrix of eigervalues.

2. Sisinspectecandthedimensionsorrespondingo only
thetop R eigervaluesareretained:the otherdimensions
arediscarded.If R < N, this meangsthat W is repre-
sentedn amuchreduceddimensionality

3. A queryis pre-processeihto avectorq (asdescribedn
section3.3) andis thenprojectedinto the reducedsub-
spaceo becomethevectorq’, whereq' = q”US™.

4. ' canthenbe matched(usingan appropriatecriterion)
in the subspaceo thetraining-setvectors.

2.3. The useof LSA in call routing

The descriptionof the operationof LSA givenin section2.2is
essentiallythe one given in the work of Landauer{8], which
wasconcernedvith learningsynorymsusinganeng/clopaedia
astrainingmaterial.In this casethe numberof wordswasover
60 000 and the numberof documentsover 30 000. The cen-
tral tenetof Landauers experimentsis that thereis somehid-
denconnectiorbetweenvordsandbetweerdocumentgwhich
is presumedo be governedby semantics)and that this can
be discoreredby transformingto a dimensionalitymuchlower
thanthelargedimensionf W. Theauthorsfoundthatperfor
mancepealked when R =~ 300, which might be thoughtof as
the numberof different“semanticunits” in their eng/clopaedia
data.

However, this scenarids fundamentallydifferentfrom the
call routing scenario.In call routing, the numberof “semantic
units” is known a priori and,for our purposesis simply equal
to the numberof routes. Also, the labelledtraining datatells
us which words are associatedvith eachroute. Hencethere
is no requiremento useLSA for dimensionalityreductionto
discover groupsof wordsthatareassociateavith the samese-
manticunit, asin [8]. If LSA is usediit is for smoothingof the
“noisy” queryvectors. However, the maximumnumberof di-
mensionghatcanbe usedto represena documentvectorafter
applicationof SVD to W is min(M, N). In call routingappli-
cations,V is generallyvery smallin comparisorto thenumber
of terms,(e.g. N = 32 in our application,N = 23 in [2]), and
sothedocumentvectorsarerepresenteth a spacehatmaybe
toolow.

An alternatve approachis not to pool the words associ-
atedwith eachroute but to definethe documentvectorsto be
(unique)individual utterancesasdescribedn the T-TRANSap-
proach(section2). Then N is equalto the numberof unique
documentgutterancesin thetrainingcorpuswhichwill besub-
stantiallymorethanthe numberof routes.If it is desiredto ap-
ply LSA to smooththevectors thereduceddimensionalitywill
notbeaslow asthatdictatedoy SVD whenN = thenumberof
routes.Notethatwhenthis approachs used,t is necessaryor
classificatiorpurposesto keeparecordof theroutewith which
eachuniqueutterances associated.

Anotherjustificationfor usingthe T-TRANSapproachs ap-
parentwhenonecomparesheform of the queryvectorandthe
form of the documentvectorsin the T-ROUTE approach. A
typical query vector (beforeary pre-processinggonsistsof a
columnof mostly zeroswith only afew integerentries,usually
of value one—inour application the averagenumberof terms
in aquerywas2.89.By contrastthe“route” columnvectorsare
theunionof all vectorsassociateavith a certainrouteandhave
mary non-zeroentries,someof which may belargeintegers—



for instance the mostfrequentlyusedroutein our application
hadnon-zeroentriesfor 262 termsanda countof 463 for one
term. Sowhenthequeryvectoris matchedo thesevectors,one
is notmatchinglike with like.

In addition,callerstendto usemainly useshortstereotyped
phrasego make queries:althoughthe numberof training-data
queriesavailablewas 3300, after use of the stoplist, only 777
of thesewerefoundto bedifferentdocumentectors.Although
thisis anorderof magnitudemorethanthe numberof routesjt
is not computationallyunfeasibleo match

3. Experimental Procedure and Results
3.1. Scenario

The systemdevelopedfor theseexperimentswas designecdto
route telephonequeriesrelating to bankingand financial ser
vicesto oneof thirty-two destinationsTraining dataconsisted
of about3300 calls to a prototypesystemand testingdataa
further 2271 calls madeat the sametime and underthe same
conditions.Thesecallsweretranscribedandlabelledby anex-
pertwith theappropriateoute. Becausave wereconcentrating
on routing issuesin theseexperimentswe usedonly the tran-
scriptionsof the calls ratherthan the output from the speech
recogniser Our own experimentshave indicatedthat routing
performancds degradedonly slightly whenthe transcriptions
arereplacedwith outputfrom the speechrecogniser

3.2. Term extraction and stoplist definition

Certain phrasesoccur regularly in the transcriptionsof the
queries: examplesfrom our applicationare “travel moneg”,

“changeof address”,“l would like to”, “to speakto” etc. It

would seemto be usefulto includethesecollocationsasterms
as they may bearmore information aboutthe route than the
samewordsin isolation. Any phrasein the training datathat
occurredifteenor moretimeswasaddedo thevocahulary asa
term (therewereapproximatelyfifty suchphrases)Themutual
information(MI) betweereachtermandtherouteswasthenes-
timated thetermswererankedby their MI, andthesalientterms
were identified as all termswhoseMI was above a threshold
T (T wasdeterminedexperimentally). TermswhoseMI was
lessthanT formedthe “stoplist” for experimentsi.e. the set
of wordsthatwerediscardedrom a transcriptionprior to pro-
cessingit. Using collocationsand a stoplistgave a small but
consistengainin performancen all cases.

3.3. Term weighting

The countW;; of the numberof timesterm¢; occurredwhen
requestingouter; (asin T-ROUTE) or in transcriptionj (asin

T-TRANS s notsuitablefor directusein routinganinputquery

Varioustechniquedor weightingthe elementof W have been
describedMostof thesetechniqueseplacelV;; by theproduct
of two weightings:onethattakesaccountof thelargevariation
in the numberof occurrence®f eachterm by applyingsome
form of compressior normalisatiorandanotheithataccounts
for the factthattermsthatoccurin only a few documentsare
more likely to be useful for routing purposeghan termsthat
occurin mary documents.

We experimentedvith thefollowing weightingschemes:

1. Inversedocumenfrequeny (IDF) (asdefinedin [9])
2. Theweightingdescribedy Bellegardain [1]
3. Theweightingdescribedy Sparck-Jonein [10])

4. Theweightingdescribedy Carpentein [2])

Our conclusiorover severalexperimentausingdifferentmatch-
ing techniquesn differentvectorspacesvasthattherewaslittle
to choosebetweerthe schemesut the Bellegardaschemeap-
pearedo bethemostconsistenandsothis schemavasadopted
for theexperimentseportechere.

3.4. Useof the multi-edit and condensealgorithm

Whenthe T-TRANSapproachs used thereare777 uniquedoc-
umentvectorsandit is requiredto comparethe query vector
with eachof them. Althoughthis is reasonablyfaston modern
computersit is still over twentytimesslower thanusingthe T-
ROUTE approach.The multi-edit and condenselgorithm[4]
is awell-knawn way of reducingthe sizeof the comparisorset
in k nearest-neighbouwlassification.This algorithmis applied
to thetraining-setvectorsin two distinctphases:

1. Multi-edit : The setis editedso that, after partitioninginto

subsetdor training andtesting,all vectorsarecorrectlyclassi-
fied.

2. Condense Vectorsthat are not useful for classification
arediscardedso that the size of the setof referencevectorsis

greatlyreduced.

Whenusedwith arangeof differentvectordimensionalitiesthe
applicationof multi-editandcondenseeducedhereferenceset
from 777 to 140-160vectors. One nearest-neighbourlassifi-
cationwasusedthroughout—ndmprovementwasobsenredfor
k>1.

3.5. Useof linear discriminant analysis(LDA)

A successfulliscriminative approachto call routing basedon
the minimum error classificationcriterion wasreportedin [7].
Linear Discriminant Analysis (LDA) [5] is a discriminative
classificatiortechniquehatis implementedy applyingalinear
transformatiorto the trainingandqueryvectors.LDA reduces
thedimensionalityof thevectorsto N — 1, whereN is thenum-
berof classeslt hastwo attractive featuresvhenappliedto call
routing:

1. the numberof classesqualsthe numberof routesand
this is usually small (< 40) in call routing; hence,af-
ter applicationof LDA, classificationoccursin a low-
dimensionalityspace;

2. if LSA is usedin conjunctionwith LDA, theLDA trans-
formationcanbeintegratedwith the LSA transform.

For afull descriptionof LDA, se€[5]. Therequireddiscrimina-
tive transformatiormatrix W thattransformsa vectorfrom the
original spacgdimensionR) to dimensionN — 1,is the matrix
of eigevectorsw; thatsatisfy

In equationl, X is the correspondingeigervalue of w;, S is
the“betweenclassscattematrix” for the classeg=routes)and
Sw the“within classscattematrix”.

The original spacecould be the untransformedpre-processed)
word counts,or anLSA space.lt wasfoundthatestimationof
Sy and S, wasdifficult in the untransformedpacebecausef
the sparsityof the entries. Therefore the -TRANSmatrix was
used,andthe vectorswere smoothedby applyingLSA asde-
tailedin section3.6. ThensSy, S, andhencew werecalculated,
andappliedto the training-setdocumentvectors. At recogni-
tion time, the LSA smoothingwas appliedto the queryvector



q, followedby thew transformto reducethe dimensionalityof
q' to N — 1. Thequerywasthenclassifiedusingthe Euclidean
distancebetweeny’ andthe documentectors.

3.6. Experiments

Two techniquedor classificationwere implementedvhen W
wasconfiguredasa T-ROUTE matrix:

1. Classificationwas donein the untransformedbut pre-
processedyvord countspace(32 vectorsof dimension
582)usinga Euclideandistancemetric(R-UNTRANJ

2. Classificatiorwasdonein LSA spaceg32 vectorsof di-
mension32) usinga cosinedistancemetric (R-LSA.

Four techniquedor classificationwereimplementedvhen W
wasconfiguredasa T-TRANSmatrix:

1. Classificationwas donein the untransformedbut pre-
processedyvord countspace(777 vectorsof dimension
582)usinga Euclideandistancemetric(T-UNTRANS;

2. Classificatiorwasdonein LSA space(777 vectorsof a
variablenumberof dimensionslusinga cosinedistance
metric(T-LSA);

3. Classificatiorwasdoneusinga variablenumberof ref-
erencedocumentvectors (approximatelyl40—-160)se-
lected by the multi-edit and condensealgorithm (T-
MEDIT, seesection3.4)in LSA spacegvariablenumber
of dimensions)usinga Euclideandistancemetric;

4. Classificatiorwasdonein LDA spacg777vectorsof 31
dimensions)usinga cosinedistancemetric, after appli-
cationof LSA (variablenumberof dimensions)T-LDA,
seesection3.5).

3.7. Results

Figure 2 shaws the results obtainedfrom the six different
schemedisted in section3.6. The schemeghat usedthe T-
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Figure2: Error-ratesfor thesix differentschemesested

ROUTE approachR-UNTRANS and R-LSA) were the worst
performing,followed by the multi-editandcondensegechnique
appliedto the T-TRANSvectors(T-MEDIT). A problemwith T-
MEDIT is thatin the multiedit stageof the processin orderto

ensurethat the referencesetis classifiedcompletelycorrectly
vectorswhich may be usefulfor correctclassificationare dis-
carded.lt is interestingto notethatusingLSA onits own was
worsein every casethanusing matchingin the untransformed
space. However, the bestperformancewas 5.1% error using
LSA followed by LDA (T-LDA), using 350 LSA dimensions
to smooththe dataandthenreducingto a dimensionalityof 31
usingLDA.

4. Discussion

In this paperwe have describedwo techniqueso vectorbased
call-routing. We have arguedthattherearesomeproblemswith
the applicationof LSA to the “standard”call-routing scenario
and our experimentalresultsindicate that in this application,
working in the untransformederm/documenspaces superior
to usingLSA alone. However, whenLSA was combinedwith
lineardiscriminantanalysigLDA), we obtainedhebestresults,
andwe attribute theseto the smoothingeffect of LSA followed
by thediscriminative powverof LDA. Thistechniquealsohasthe
adwantagehatit reduceshedatato alow dimensionalitysothat
matchingis relatively quick. We also experimentedwith four
differentterm-weightingschemesindfoundlittle to choosebe-
tweenthem. In thefuture,we planto investigatewvaysof using
recognisetranscriptiondn the routing decision,andalsohow
to coupletheroutingtaskmorecloselyto therecognition.
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