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Abstract In this paper a comparative study of five different

stability computational methods based on the Floquet the-

ory is presented. These methods are compared in terms of

accuracy and CPU performance. Test are performed on a set

of nonlinear problems relevant to rotating machinery with

rotor-to-stator contact and a variable number of degrees of

freedom, whose periodic solutions are computed with the

Harmonic Balance Method (HBM).

Keywords Harmonic Balance Method · stability · Floquet

theory · rotor nonlinear dynamics · rotor-stator contact

1 Introduction

One of the main challenges for turbomachinery designers

is to improve the efficiency of machines, whilst ensuring the

safety during operation. The steady state response of the sys-

tem as well as its stability are thus of prime interest.

As turbomachinery often operates at a constant rotational

speed, time-domain methods such as the shooting method

[1] and frequency-domain methods such as the trigonomet-

ric collocation method [2] or the harmonic balance method

(HBM) [3] are commonly used to predict the steady state

response of the system. It is well established that such tech-

niques offer a significantly reduced computational time, when

compared to transient time marching solutions.
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Concerning stability the choice for a method is not so

clear. The computation of rotor stability has yielded a vast

amount of literature in the past, with emphasis on linear sys-

tems with time periodic coefficients such as asymmetric ro-

tors, rotors subjected to aerodynamic effects or on-board ro-

tors with periodic motion of the support [4–8]. In the case of

nonlinear systems (systems with rotor-stator or blade-casing

contact, nonlinear bearings, ...) several stable and unstable

periodic responses can coexist at a given rotational speed

and appropriate numerical methods must be used in order to

obtain all solutions and distinguish between stable and un-

stable ones.

The Floquet theory and the Lyapunov exponents are cer-

tainly the most popular approaches used to assess the local

stability of periodic solutions. Several different implemen-

tations of these theories have been developed and used in

the past, as reviewed by Friedmann [5]. More recently, these

methods have been applied to nonlinear systems. Liaw [9]

studied the stability of a one-degree-of-freedom oscillator

using a piecewise linear nonlinearity and the Lyapunov ex-

ponents. Later, Raghothama and Narayanan [10] and Zhen

and Hasebe [11] applied this technique to rotor systems.

Different variants of the Floquet theory have also been fre-

quently used. Kim and Noah [12] studied the stability of a

nonlinear Jeffcott rotor by constructing and analyzing the

so-called Floquet transition or monodromy matrix, whereas

Shen et al. [13] chose to approximate the monodromy matrix

in their study of a Mathieu-Duffing oscillator. Hill’s method,

which is also a variant of the Floquet theory, was used by

Rook [14] to study the stability of a Duffing oscillator and

by Von Groll and Ewins [3] and Sinha [15] in rotordynamics

applications.

Although the aforementioned techniques are not at all

equivalent in terms of accuracy and CPU performance, such

differences are rarely debated in the literature. In this pa-

per, a comparative study of five different implementations of
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2 Loı̈c Peletan et al.

the Floquet theory for nonlinear problems is presented. The

Harmonic Balance Method is used to compute the nonlin-

ear response curves and the associated CPU time serves as a

reference for further comparisons. Following a brief presen-

tation of the HBM, several stability computational method

are reviewed. Then the accuracy and performance for five

of them are quantitatively evaluated and discussed. For this

purpose, a set of nonlinear problems relevant to rotating ma-

chinery with rotor-to-stator contact and a variable number of

degrees of freedom is considered. Techniques based on the

computation of the Lyapunov exponents are not discussed in

this paper, as their results are not directly comparable with

those given by the techniques based on the Floquet theory.

2 Harmonic Balance Method (HBM)

The Harmonic Balance Method (HBM) is a well known tech-

nique, used to compute periodic solutions for dynamic sys-

tems. This method consists in solving the equations of move-

ment in the frequency domain, rather than in the time do-

main. The general time-domain equation for a dynamic me-

chanical system is given by:

Mq̈(t)+Cq̇(t)+Kq(t)+ f(q(t), q̇(t))−p(t) = 0 (1)

where q represents the displacement vector for all of the n

degrees of freedom (DOFs); K, C and M are the generalized

n× n stiffness, damping and mass matrices; f is the nonlin-

ear force vector and p is the external excitation force vector.

When the external excitations are periodic, it is valid to as-

sume that a steady state solution for Eq. (1) exists, and that

this solution is also periodic. The displacements, the exter-

nal and the nonlinear forces can thus be written as truncated

Fourier series:

q(t) = Q0 +
N
∑

j=1

Å

Q2 j−1 cos(
j

ν
ωt)+Q2 j sin(

j

ν
ωt)

ã

(2)

p(t) = P0 +
N
∑

j=1

Å

P2 j−1 cos(
j

ν
ωt)+P2 j sin(

j

ν
ωt)

ã

(3)

f(t) = F0 +
N
∑

j=1

Å

F2 j−1 cos(
j

ν
ωt)+F2 j sin(

j

ν
ωt)

ã

(4)

Q=
[

Q0
T ,Q1

T , . . . ,QT
2N

]T
, F=

[

FT
0 ,F

T
1 , . . . ,F

T
2N

]T
and P=

[

PT
0 ,P

T
1 , . . . ,P

T
2N

]T
are the vectors of the Fourier coefficients

for displacements, nonlinear forces and external excitations,

respectively. ω is the fundamental frequency of the external

excitation, and ν is a positive integer used for sub-harmonic

responses calculation.

As described in [16], Eqs. (2) (3) and (4) can be substi-

tuted into Eq. (1), following which a Galerkin procedure is

applied to transform the nonlinear differential Eq. (1), of di-

mension n, into an algebraic nonlinear system of equations,

of dimension nHBM = n(2N +1):

R(Q,ω) = Z(ω)Q+F(Q)−P = 0 (5)

where Z = diag(K,Z1, . . . ,Zk, . . . ,ZN) with:

Zk =





K−
Ä

k
ν

ä2
ω2M

Ä

k
ν

ä

ωC

−
Ä

k
ν

ä

ωC K−
Ä

k
ν

ä2
ω2M





Equation (5) needs to be solved for Q. As this equation is

still nonlinear, an appropriate nonlinear solver must be used

to derive a correct solution. In the present paper, a Newton-

Raphson iterative solver was used. It has been demonstrated

that the combined use of HBM and a Newton-Raphson solver

is equivalent to the Incremental Harmonic Balance Method

(IHBM) [17].

The Alternating Frequency Time (AFT) algorithm [18]

proves to be an efficient way to compute the nonlinear term

F(Q) and its derivative ∂F(Q)/∂Q involved in the Newton-

Raphson iterations . The AFT scheme uses fast direct and

inverse Fourier transforms to quickly compute the nonlin-

ear forces in the time domain and then switch back to the

frequency domain. The nonlinear forces are indeed usually

much easier to evaluate in the time domain than in the fre-

quency domain. The above-mentioned algorithm is gener-

ally combined with a pseudo-arc length continuation method

[1] in order to obtain both stable and unstable solutions of

response curves.

3 Stability determination using the Floquet theory

There are different definitions for the stability of a dynamic

solution. In the present paper we investigate what is referred

to as the local stability of the solution. Assessment of the

local stability consists in applying a small perturbation to

the equilibrium solution, and then checking whether or not

this perturbation subsides with time. The HBM converges to

stable as well as unstable solutions, and there is no way to

make an a priori evaluation of its stability. However, it can

be computed a posteriori using the Floquet theory. There are

currently several different algorithms based on the Floquet

theory. Some of these are based on a description of the prob-

lem in the time domain, and consist in computing the eigen-

values of the so-called monodromy matrix. Others are based

on a description of the problem in the frequency domain.

Some of the most commonly used algorithms are de-

scribed here. It is important to emphasize that these algo-

rithms can also be used with other solving techniques (such

as the shooting method, for instance). However, the pro-

gramming effort required and the CPU performance can dif-

fer widely from one method to another.
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 3

3.1 Time domain methods

3.1.1 Monodromy matrix computation by 2n-pass

numerical integration (referred to as the ’2n-pass’ method)

In this algorithm, the equation of motion (1) is rewritten in

the following state form:

ẋ(t) = Lx(t)− f̃(x(t))+ p̃(t) (6)

where x(t)= [q(t), q̇(t)]T ; f̃(x(t))=
[

0,M−1f(q, q̇)
]T

; p̃(t)=
[

0,M−1p(t)
]T

and:

L =

ï

0 Id

−M−1K −M−1C

ò

where Id represents the identity matrix. x0(t) is defined as a

solution for Eq. (6), and y(t) as a small perturbation. x(t) =

x0(t)+y(t) is then introduced into Eq. (6) and using first or-

der approximation the following first order differential equa-

tion is eventually obtained:

ẏ(t) = J(x0, t)y(t) (7)

where:

J(x0, t) = L−

Ç

∂ f̃

∂x

å

x=x0

(t)

J is T -periodic and a 2n×2n matrix H can be defined such

that:

y(T ) = Hy(0)

H is called the monodromy or Floquet transition matrix. It

is a linear operator describing the evolution of the perturba-

tion over one period. Its eigenvalues are called the Floquet

multipliers. If any of the Floquet multipliers has a module

greater than one, then the solution is unstable, otherwise it

is stable.

Thus, the first approach to the computation of H is to do

proceed column by column. The linear equation (7) has to

be solved by proceeding to 2n time integrations over one pe-

riod, using 2n linearly independent initial conditions, namely

yi(0) = ei, i∈ [1, . . . ,2n], where ei is a vector of zeros with

a one at the ith position.

H = [y1(T ),y2(T ), . . . ,y2n(T )]

This algorithm requires relatively little programming effort,

since there are numerous existing tools in the scientific li-

braries of most programming languages, which can be used

to integrate first order linear ordinary differential equations.

As long as the numerical integration is performed correctly,

this method produces very accurate results. In the present

study, the results provided by the 2n-pass algorithm are used

as a reference. However, the downside of this approach is

that it can require an enormous computational effort. It should

also be noted that in the case where the problem is solved

using a shooting method, the monodromy matrix is a sub-

product of the solving process, such that no additional oper-

ation is required to obtain this matrix.

A single-pass version of this algorithm exists, in which

Eq. (7) is rewritten such that J is a 4n2 × 4n2 matrix and

the vectors yi(0) = ei, i ∈ [1, . . . ,2n] of size 2n are put to-

gether to form a 4n2 vector. Then the time integration is per-

formed on a larger system but only once instead of 2n times.

This single-pass scheme can save about 50% of CPU time

as reported by Gaonkar et al. [6], but only in the case of sin-

gle precision computation. As shown by Sinha et al. [7], it

does not turn out to be significantly more effective for dou-

ble precision computations which are the rule with modern

computers.

3.1.2 Monodromy matrix computation by matrix

exponentials approximation (referred to as the

’exponentials’ method)

Following the pioneer work of Hsu [19], Friedmann et al. in

[4] and later in [5] developed a method to approximate the

monodromy matrix in order to reduce CPU time, with very

little loss in accuracy. To do so, J(x0, t) is assumed to be

piecewise constant. The time interval [0,T ] is divided into K

subintervals ([0, t1, . . . , tK ]). Within each subinterval, J(x0, t)

is assumed to be constant and H can thus be approximated

by the following formula:

H ≈ H̃ =
1
∏

k=K

e[Jk](tk−tk−1)

where Jk is the mean value of J(x0, t) over the time inter-

val [tk−1, tk]. In practical applications, as J(x0, t) is evalu-

ated only at tk k ∈ [0..K], we can write Jk = (J(x0, tk)−

J(x0, tk−1))/2. The quality of the approximation depends on

K, since:

lim
K→+∞

H̃ = H

In practical applications however, the matrix exponentials

must be evaluated. Among the many different methods used

to compute a matrix exponential, one can cite the Padé ap-

proximation, the Taylor approximation, or the calculation

based on singular values decomposition. In [20], Cardona et

al. give upper bound formulae for the accuracy of the matrix

exponential when the Taylor approximation is used.

3.1.3 Monodromy matrix computation by Runge-Kutta

single-pass numerical integration (referred to as the ’RK

1-pass’ method)

As already mentioned the 2n-pass integration method can

be modified in order to perform only one numerical time in-
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4 Loı̈c Peletan et al.

tegration instead of 2n. Friedmann et al. [4] suggested an

improved single-pass algorithm based on the fourth order

Runge-Kutta integration scheme. In this algorithm H is com-

puted with the following formula:

H =
K
∏

k=1

G(T − kh)

with h = T/K being the time step size and G being a matrix

(dependant on time) calculated from the matrix J and other

parameters (Gill coefficients). From a programming point of

view, this method is very similar to the ’exponentials’ meth-

ods as the monodromy matrix is evaluated from the product

of precomputed matrices. The two methods simply differ by

the way theses matrices are calculated.

3.1.4 Monodromy matrix computation by Newmark

single-pass numerical integration (referred to as the ’Nm

1-pass’ method)

Many time integration schemes can be used to perform the

calculation of the monodromy matrix. For instance Gaonkar

et al. [6] compare different algorithms (including Runge-

Kutta, Hamming and Gear schemes) both in single-pass and

multi-pass. In the field of rotordynamics and linear struc-

tural dynamics, the implicit Newmark algorithm with con-

stant average acceleration is commonly used due to inter-

esting properties such as unconditional stability. The com-

bination of the nonlinear version of the Newmark algorithm

with a shooting method to compute the periodic solution of

nonlinear systems can be found in [21,22]. It is shown that

the calculation of the monodromy matrix can be advanta-

geously performed as a step of the Jacobian involved in the

Newton-Raphson solver. It results in solving a linear sys-

tem of differential equations in a similar way as described in

Sect. 3.1.1 but with a system of size n instead of 2n since it

is not necessary to put the equation of motion in state form.

3.1.5 Implicit monodromy matrix calculation by k-pass

numerical integration

In [23] Bauchau and Nikishkov developed a method that

does not require the explicit calculation of the monodromy

matrix. Only its k (k ≤ 2n) largest eigenvalues are approx-

imated thanks to the Arnoldi algorithm. Starting with nor-

malised random intial conditions, k numerical integrations

over one period are performed. At the end of each one of

the k integrations, a column of H̃ is determined. H̃ is a Hes-

senberg matrix of size k that represents the real monodromy

matrix H. The eigenvalues of H̃ are approximations of the

largest eigenvalues of H. If 2n integrations over one period

are performed then the eigenvalues of H̃ are exactly the same

as the ones of H. In this case this method is equivalent to the

2n-pass method.

This method is faster that the 2n-pass method because

only k integrations are performed instead of 2n. However,

this method is still slower than a single-pass scheme while

introducing an additional level of approximation. Thus, this

method shows little interest and for this reason, the results

provided by this method will not be given in this paper.

3.1.6 Monodromy matrix calculation with the use of

Chebyshev polynomials

Sinha and Wu in [7] introduced an efficient technique based

on the idea that the state system can be expanded in terms

of Chebyshev polynomials over one period. Thus, instead

of performing a numerical integration over one period of a

set of linear differential equations, one has to solve a system

of linear algebraic equations. This method has been tested

on systems with relatively small number of DOFs (up to 10

DOFs in [8]). Even though this method seems promising in

terms of CPU performance, it introduces an additional level

of approximation as the accury of the result depends on the

number of terms retained in the Chebyshev expansion. This

method has not been tested in the scope of this paper.

3.1.7 Monodromy matrix calculation by wavelet-Galerkin

procedure

In [24] and later in [25], Pernot and Lamarque introduced

a wavelet-Galerkin procedure in order to obtain transient

and periodic solutions of linear and nonlinear multi-DOFs

dynamical systems with time-periodic coefficients. Due to

good time-frequency localization properties, the wavelet-based

procedure was found to be reliable even in the case of prob-

lems involving both smooth or non-smooth parametric exci-

tations and a relatively large number of DOFs. As reported

by the authors, benefit is made of the wavelet-Galerkin pro-

cedure to compute efficiently the monodromy matrix in one

pass and consequently construct stability diagrams charac-

terizing stable/unstable parameters areas and estimators for

stability/instability levels. This method however requires an

important programming effort. For this reason it has not been

applied in this paper.

3.2 Frequency domain methods

3.2.1 Hill’s method (referred to as the ’Hill1’ method)

The methods described above are based on a time-domain

description of the problem. However, as Eq. (5) is solved in

the frequency domain, it would seem more natural to com-

pute the stability of the solution in the frequency domain

too. In Hill’s method, the perturbation is written as the com-

bination of a periodic term and a exponentially decreasing

term [3]. This perturbation is introduced into the equation of
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 5

motion and a procedure similar to that used by the HBM is

applied, leading to a quadratic eigenvalues problem which

can be transformed into a linear eigenvalues problem of size

2n(2N +1)×2n(2N +1).

However, as the perturbation is written as a truncated

Fourier series, the accuracy of this method depends on the

number of harmonics retained. Although using an infinite

number of harmonics would lead to the exact result, it would

also lead to a matrix Ĥ of infinite dimension. For obvious

numerical reasons, only a limited number of harmonics are

retained in the Fourier series. This method is known to pro-

vide inaccurate results most of the time, especially for larger

systems [5,7]. This method is also known to be CPU inten-

sive for large systems. For these reasons, the results provided

by this method will not be shown in this paper.

3.2.2 Improvement of Hill’s method (referred to as the

’Hill2’ method)

When using the Hill1 method, one obtains 2n(2N +1) Flo-

quet multipliers, of which only 2n have a physical mean-

ing. The existence of the remaining non-physical Floquet

multipliers can lead to an inappropriate stability evaluation.

To address this issue, Lazarus and Thomas [26] proposed a

technique to discriminate, and then eliminate the non physi-

cal multipliers. Their approach is slightly different from that

used in the Hill1 method.

The eigenvalues of the monodromy matrix are filtered

on the basis of a criterion related to the associated eigenvec-

tors. The reader may refer to [26] for further details. This

approach suffers from the same shortcomings as the Hill1

method (i.e. the choice of harmonics), but is supposed to

yield more accurate results as a consequence of the filtering.

4 Test cases

All aforementioned algorithms were developed in the Code Aster

[27] environment, with extensive use of python and the Scipy

library [28]. Two different test cases were considered for

the analysis of accuracy and performance. It is important

to note that these techniques rely on several control parame-

ters, which can have a considerable influence on both accu-

racy and CPU time.

Contrary to the other techniques, the evaluation of the

solution’s stability using the 2n-pass technique has no rel-

evant control parameter, since the built-in time integration

scheme has several automatic routines to determine well suited

parameter values. Indeed, the classical time integration schemes

provided with Scipy have a set of default parameters which

generally allow accurate integration. In particular, the num-

ber of time steps is handled automatically.

Fig. 1 Jeffcott rotor

The exponentials technique has two main parameters.

The most important of these is the chosen number of in-

tervals. Since from numerical experiments a total of 256 in-

tervals was found to produce sufficiently accurate results in

every situation, this number was used in all of our tests. The

second parameter is the accuracy with which the matrix ex-

ponentials are computed. When computing these exponen-

tials using the Padé or Taylor approximation, the built-in

Scipy functions use default parameters which are found to

provide sufficiently accurate results in every situation.

The Nm 1-pass technique also used a total of 256 time

intervals and used the average acceleration scheme with the

Newmark parameters β = 0.25 and γ = 0.5 (see [33]). For

convergence reasons, the RK 1-pass technique used 256 time

intervals for the first test case and 1024 intervals for the sec-

ond test case (except the last variant of the second test case

where 2048 intervals were used).

The Hill2 technique used every harmonic between 0 and

the highest harmonic present in the HBM response compu-

tation.

4.1 Nonlinear Jeffcott rotor

The first test case is inspired by Von Groll and Ewins [3].

It is a modified Jeffcott rotor which can come into contact

with the stator (see Fig. 1). Two variants of this model were

tested. The first variant features a fixed stator, and has only

two DOFs. In the second variant, the stator is suspended and

acts like an oscillator interacting with the rotor. This variant

has four DOFs. The mountings of the rotor are orthotropic.

When the mountings are isotropic, the rotor’s orbit remains

circular at all times. Thus, only one harmonic is necessary

for the HBM calculation and stability analysis. Conversely,

when the mountings are orthotropic, the orbits are not circu-

lar and contact (when it occurs) is a priori non-permanent.
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6 Loı̈c Peletan et al.

Fig. 2 Jeffcott rotor. Response curve. Stability calculated with the 2n-

pass method. (N) stable, (�) unstable

A greater number of harmonics is thus needed, to compute

the HBM solution with good accuracy. In the present exem-

ple, 24 harmonics were used for the HBM calculation in the

first variant and 32 harmonics were used in the second vari-

ant. These two variants are summarized in Table 1.

The equations of motion are shown below (for variant 2):

mrq̈r(t)+ crq̇r(t)+krqr(t)+ fc(t) = p(t) (8)

msq̈s(t)+ csq̇s(t)+ksqs(t)− fc(t) = 0 (9)

where mr and ms represent the mass matrix of the rotor and

the stator, respectively. Similarly, cr and cs are the damping

matrices and kr and ks are the stiffness matrices. qr(t) =

[qry(t),qrz(t)]
T

is the displacement of the rotor and qs(t) =

[qsy(t),qsz(t)]
T

is the displacement of the stator. fc(t) rep-

resents the contact force and p(t) is the external excitation

force. In the present example, a penalty contact law coupled

with Coulomb friction is used:

fc(t) = fn(t)+ ft(t) =−kδ (t)−µ||kδ (t)||
vrel(t)

||vrel(t)||
(10)

where fn and ft are respectively the normal and tangential

contact forces.

δ (t) =

{

(r(t)−δ0)nnorm(t) if r > δ0,

[0,0]T otherwise.
(11)

where

r(t) =
»

(qry(t)−qsy(t))2 +(qrz(t)−qsz(t))2

and

nnorm(t) =

ï

(qry(t)−qsy(t))

r(t)
,
(qrz(t)−qsz(t))

r(t)

òT

k is the contact stiffness and δ0 is the initial gap between

rotor and stator. µ is the Coulomb friction coefficient and

Fig. 3 Jeffcott rotor. Response curve (close up). (a) Stability calculated

with the Hill2 method ; (b) Stability calculated with the other methods

(2n-pass, exponentials, RK 1-pass, Nm 1-pass). (N) stable, (�) unstable

vrel is the relative velocity between the rotor and the stator

at the contact point. In this case, the external excitation is

generated by an imbalance:

p(t) = p0ω2 [cos(ωt) ,sin(ωt)]T (12)

When the first variant is treated, Eq. (9) is ignored and qs is

assumed to be zero in the other equations.

The solutions were calculated for varying values of ω .

Figs. 2 and 3 show the results of the simulation for the five

different techniques (2n-pass, exponentials, RK 1-pass, Nm

1-pass, Hill2). All the results are summarized in Table 2.

The CPU performance is given for the five algorithms, with

respect to the time spent without making a stability compu-

tation.

The 2n-pass method is very slow, since the computa-

tion times is multiplied by 23 compared to the same sim-

ulation without stability assessment. The exponentials, RK

1-pass and Nm 1-pass methods remain comparatively fast

(between 1.3 and 1.7 times the time needed without stability

calculation), while giving accurate results. The Hill2 tech-

nique proved to be quite slow compared to the three pre-
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 7

rotor model nele n N nHBM

Jeffcott v.1 N/A 2 24 98

Jeffcott v.2 N/A 4 32 260

FE rotor v.1 4 24 12 600

FE rotor v.2 6 34 12 850

FE rotor v.3 9 49 12 1225

FE rotor v.4 13 69 12 1725

FE rotor v.5 17 89 12 2225

Table 1 The variants of the rotor models. nele = number of elements.

n = number of DOFs. N = number of harmonics for the HBM calcu-

lation. nHBM = n(2N +1) = dimension of the HBM algebraic system.

Fig. 4 Multi-DOFs finite element rotor

viously mentioned techniques while yielding inaccurate re-

sults. Contrary to a duffing oscillator test case proposed by

Lazarus and Thomas (see [26]) the filtering technique is not

effective in the present test case.

4.2 Multi-DOF nonlinear rotor

A finite element nonlinear rotor model [29] was also tested

(see Fig. 4). This rotor is originaly composed of thirteen

Timoshenko beam elements. Two linear orthotropic mount-

ings are located at both ends of the rotor, and three disks

(modeled by additional mass and inertia) are added to nodes

3, 6 and 11. The rotor is excited by an imbalance force lo-

cated on disk 2. The rotor makes contact with a circular,

static, and rigid stator located in the vicinity of disk 2. The

contact model is identical to that described in section 4.1.

The equation of motion (13) is written in a finite element

form.

Mq̈(t)+C(ω)q̇(t)+Kq(t)+ fc(q) = p(ω, t) (13)

where M, C(ω) and K represent the mass, damping and

stiffness matrices respectively. C(ω) includes the gyroscopic

matrix, which varies with ω . In its original form, this model

has 69 DOFs. For the purposes of the present study five vari-

ants of this model were tested, in four of which the num-

ber of elements has been modified (see Table 1) to illustrate

the influence of the number of DOFs on the relative perfor-

mance of the stability computation techniques.

In the first and second variants, the system was reduced

to 24 and 34 DOFs respectively. In the third and last variants,

the system was modified to 49 DOFs and 89 DOFs, respec-

tively. The number of DOFs was always sufficient to avoid

any significant change in the system response over the range

of tested rotational speeds. Twelve harmonics were retained

for the HBM calculation.

The response curve of the system can be seen in Fig. 5,

and the results are summarized in Table 2. The Nm 1-pass

method gives accurate results, and is by far the fastest of the

five methods. However, it can be noted that the overhead of

this method increases with n. The computation time is mul-

tiplied by 1.4 in the case of the Jeffcott rotor with n = 2 but

it is multiplied by 10 in the case of the finite element rotor

with n = 89. The exponentials method and the RK 1-pass

method also become slower when n increases but at a much

faster rate than the Nm 1-pass method. The Hill2 method is

as slow as the 2n-pass method and yields inaccurate results.

Additional information, together with a discussion of these

performance issues, is provided in the following section.

5 Discussion

The results from the two test cases are summarized in Table

2. Although the accuracy of the Hill2 method is unsatisfac-

tory, close analysis of the CPU performance achieved with

the five techniques provides considerable insight into these

processes. Independently from the accuracy of the results, it

can be seen that there are vast differences in terms of CPU

requirements, depending on the test case and the algorithm

used. The additional cost of the stability computation can be

less than 30% of the basic computational time requirement

(without the stability calculation) in the case of the RK 1-

pass method for the Jeffcott rotor. Conversely, in the case of

variant 4 of the FE rotor test case with the Hill2 method, the

stability computation multiplies the CPU time requirement

by almost sixty thousand. The general trend for the compu-

tation times is to increase when n increases (and also when

N increases for the Hill’s method). In order to analyze this

trend, it should be noted that for each of the five methods

studied here, the stability analysis can be separated into two

main steps:

– constructing a matrix H,

– computing its eigenvalues.

However, the nature of H and/or the way in which it is con-

structed is different for each method. When using the Hill’s

methods, the dimension of H is d = 2n(2NH +1), whereas it

is d = 2n when using a time domain method (where NH rep-

resents the number of harmonics used in the Hill’s method).

In the test cases presented here, NH = 2N − 1 for the Hill2

method. Depending on the situation, most of the CPU time

is spent on either one or the other of these two steps. Tables

3 and 4 indicate the proportion of time spent computing each

of the two steps for the Hill2 method and the exponentials
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8 Loı̈c Peletan et al.

Fig. 5 Multi-DOFs finite element rotor (variant 1). Response curve and stability calculated using the 2n-pass method. (N) stable, (�) unstable

Frequency domain Time domain

rotor model No stab. Hill2 2n-pass exponentials RK 1-pass Nm 1-pass

Jeffcott v.1 1 9.5* 23 1.7 1.3 1.4

Jeffcott v.2 1 151* 45 2.0 1.6 1.5

FE rotor v.1 1 2.4×103* 1.4×103 10 7.9 1.8

FE rotor v.2 1 4.6×103* 5.3×103 22 16 2.3

FE rotor v.3 1 1.1×104* 1.3×104 51 34 3.5

FE rotor v.4 1 5.9×104* 3.7×104 170 81 5.7

FE rotor v.5 1 N/A 9.9×104 260 300 10

Table 2 Relative CPU time. The time spent to compute the response curve without stability determination is normalized to 1 as indicated in the

’No stab.’ column. Numbers with an asterisk (*) indicate unsatisfactory accuracy.

method respectively. The data relative to the other time do-

main methods (2n-pass method, RK 1-pass method and Nm

1-pass method) are not shown here as they are very similar

to the exponentials method data.

In the case of the Hill2 method, it should be noted that,

except for the Jeffcott test case, most of the CPU time (>99.9%)

is spent computing the eigenvalues of H. In the first variant

of the Jeffcott test case, constructing the matrix H repre-

sents 17% of the time spent assessing the stability. Classical

algorithms for the computation of matrix eigenvalues have

an O(d3) algorithmic complexity, and constructing H has

an O(d2) algorithmic complexity. Thus, the portion of time

computing the eigenvalues of H is is expected to increase

as the size of the system increases. The bad overall perfor-

mance of the Hill2 method can be explained by the fact that

the size of the matrix H is large (d = 2n(2NH + 1)) thus

leading to large eigenvalues computation times.

Contrary to the case of the Hill’s methods, most of the

time required by the time domain methods is spent comput-

ing H. This is due to the fact that the dimension of H in these

Hill2

rotor dimension construction compute

model of H of H eigenvalues

Jeffcott v.1 380 17% 83%

Jeffcott v.2 1016 2% 98%

FE rotor v.1 2256 0.1% 99.9%

FE rotor v.2 3196 <0.1% >99.9%

FE rotor v.3 4606 <0.1% >99.9%

FE rotor v.4 6486 <0.1% >99.9%

FE rotor v.5 8366 <0.1% >99.9%

Table 3 Proportion of time spent during stability computations with

the Hill2 method.

methods depends only on n (not N), and is therefore consid-

erably smaller than for the case of the Hill’s methods. The

eigenvalue computation thus remains relatively fast. More-

over, with these methods the construction of H is, by nature,

considerably more demanding in terms of CPU than with

Hill’s methods. However, in absolute terms, it can be noticed

that these methods becomes relatively CPU inefficient when

n grows. Among the time domain methods, large disparities
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A comparison of stability computational methods for periodic solution of nonlinear problems with application to rotordynamics 9

exponentials

rotor dimension construction compute

model of H of H eigenvalues

Jeffcott v.1 4 99.8% 0.2%

Jeffcott v.2 8 99.8% 0.2%

FE rotor v.1 48 99.9% 0.1%

FE rotor v.2 68 99.9% 0.1%

FE rotor v.3 98 >99.9% <0.1%

FE rotor v.4 138 >99.9% <0.1%

FE rotor v.5 178 >99.9% <0.1%

Table 4 Proportion of time spent during stability computations with

the exponentials method. The 2n-pass, RK 1-pass and Nm 1-pass re-

sults are very similar.

in terms of CPU efficiency can be observed. The 2n-pass

method is by far the most inefficient technique as 2n numer-

ical integrations over one period have to be performed to

compute H. This property obviously becomes problematic

as n increases. Single-pass methods (exponentials method,

RK 1-pass method, Nm 1-pass method) are indeed much

faster. However, it can be noted that the Nm 1-pass technique

outperforms the exponentials and RK 1-pass techniques. The

exponentials and RK 1-pass techniques are similar in their

implementation since the matrix H is computed as the prod-

uct of precalculated matrices in both techniques. In the ex-

ponentials method, the precalculated matrices are evaluated

by a massive use of a matrix exponential calculation func-

tion. Matrix exponential computation has an O(d3) algorith-

mic complexity, and this operation becomes predominant as

n increases. It can thus be concluded that the CPU efficiency

of this method can only be expected to decrease, when more

complex problems are dealt with.

On one hand, the RK 1-pass technique does not require

matrix exponentials calculations but on the other hand, an

increasing number of time steps is necessary to obtain con-

vergence. The period T was divided in 256 intervals in the

Jeffcott test case. As the Runge-Kutta-Gill method is not in-

conditionnaly stable, 256 time steps are not enough for the

finite element rotor model. 1024 time steps were necessary

for the first four variants and 2048 time steps were used for

the last variant. The exponentials method required only 256

time steps for all test cases. For the above-mentioned rea-

sons, both the exponentials and the RK 1-pass techniques

become very slow when n increases.

Fig. 6 shows the relative CPU time as a function of the

total size of the HBM system for the five techniques pre-

sented in this paper. The Nm 1-pass technique has proven to

be the most efficient one. As there is no need to transform the

equation of motion into the state form, the size of the system

remains equal to n instead of 2n. Moreover, only 256 time

steps per period were sufficient to obtain good accuracy in

all cases, due to the good stability of the implicit Newmark

average acceleration scheme for the considered nonlinear

problems. However, in absolute numbers, this technique still

Fig. 6 Relative CPU time as a function of nHBM. Time spent to com-

pute the response curve with stability with respect to the time spent to

compute it without stability assessment. N Hill2, H 2n-pass, � exponen-

tials , • RK 1-pass, ⋆ Nm 1-pass.

multiplies the computational time by 10 in the last test case.

The algorithmic complexity of this method is still greater

than the algorithmic complexity of the HBM method. Thus,

this technique is also expected to become increasingly inef-

ficient as the size of the system increases.

6 Conclusion

Five techniques based on the Floquet theory, which are com-

monly used to compute the stability of periodic solutions,

have been compared in terms of accuracy and CPU perfor-

mance on different test cases. One technique is based on a

modified version of the Hill’s method in the frequency do-

main and the four others are based on the computation of the

monodromy matrix in the time domain. The five techniques

require the computation of a specific matrix H, followed by

the calculation of its eigenvalues, and differ mainly in the

nature of H and/or the way in which it is constructed.

It has been shown that the four techniques based on the

monodromy matrix calculation yield substantially more ac-

curate results, and contrary to the Hill’s methods, most of

the CPU time is spent constructing H. All factors being con-

sidered, for the present nonlinear test cases the monodromy

matrix calculation using the single-pass Newmark algorithm

appears to provide the best compromise between accuracy

and CPU performance. Its accuracy is satisfactory in all of

the situations tested in this paper while being by far the

fastest of the tested methods.

However, this technique is also expected to become in-

creasingly less efficient as the number of degrees of freedom

increases. This inefficiency can nevertheless be avoided with

the use of a model reduction technique. For systems with lo-
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10 Loı̈c Peletan et al.

calized nonlinearities a condensation procedure [30,31] is

a good candidate among many others such as component

mode synthesis procedure [1] or invariant manifolds con-

struction [32].
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