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ABSTRACT: Estimating stream temperatures across broad spatial extents is important for regional conservation

of running waters. Although statistical models can be useful in this endeavor, little information exists to aid in the

selection of a particular statistical approach. Our objective was to compare the accuracy of ordinary least-squares

multiple linear regression, generalized additive modeling, ordinary kriging, and linear mixed modeling (LMM)

using July mean stream temperatures in Michigan and Wisconsin. Although LMM using low-rank thin-plate

smoothing splines to measure the spatial autocorrelation in stream temperatures was the most accurate modeling

approach; overall, there were only slight differences in prediction accuracy among the evaluated approaches. This

suggests that managers and researchers can select a stream temperature modeling approach that meets their level

of expertise without sacrificing substantial amounts of prediction accuracy. The most accurate models for Michigan

and Wisconsin had root mean square errors of 2.0-2.3�C, suggesting that only relatively coarse predictions can be

produced from landscape-based statistical models at regional scales. Explaining substantially more variability in

stream temperatures likely will require the collection of finer-scale hydrologic and physiographic data, which may

be cost prohibitive for monitoring and assessing stream temperatures at regional scales.

(KEY TERMS: rivers ⁄ streams; temperature; mixed models; geospatial analysis; landscape features; watershed

management.)
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INTRODUCTION

Water temperature is an important characteristic

influencing stream ecosystems (Allan and Castillo,

2007). Water temperature regulates biological pro-

cesses of aquatic ectotherms (Brett, 1971; Hokanson

et al., 1977; Taniguchi et al., 1998; Gillooly et al.,

2002) and plays a major role in regulating biological

communities (Vannote and Sweeney, 1980; Rahel and

Hubert, 1991; Lyons, 1996; Hawkins et al., 1997;

Sponseller et al., 2001; Steen et al., 2008). Thus,

water temperature is an essential habitat feature

that should be considered in stream conservation

efforts. At regional scales, however, stream tempera-

ture measurements are typically available for rela-

tively few locations and models capable of predicting

temperature at unsampled locations can be of great
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management value. For example, broad-scale temper-

ature predictions have been used to map species dis-

tributions to identify gaps in conservation efforts

(McKenna et al., 2006; Steen et al., 2008), assess

human impacts (Eaton and Scheller, 1996; Rahel

et al., 1996; Nelitz et al., 2007), and classify stream

reaches based on their potential to support different

species assemblages to guide fisheries management

(Seelbach et al., 2006; Brenden et al., 2008).

Models for predicting stream temperature have

been developed using both deterministic and statisti-

cal approaches. Deterministic or physical-process

models are based on energy budget equations and use

inputs such as solar radiation, evaporation, and con-

duction to calculate thermal exchange between the

atmosphere and streams. Deterministic models are

typically developed for individual stream reaches and

require extensive data inputs (e.g., stream geometry,

state hydrology, and meteorology) to calibrate.

Although deterministic models can provide very accu-

rate estimates of stream temperature (Sinokrot and

Stefan, 1993; Kim and Chapra, 1997; Gu et al., 1998;

Younus et al., 2000; Horne et al., 2004; Caissie et al.,

2007), the reach-specific data inputs and predictions

make them impractical for use at regional scales

(Mohseni et al., 1998; Risley et al., 2003), particularly

when the goal is to estimate water temperature at

hundreds of unsampled locations. In contrast, statis-

tical models do not directly account for sources of

heat flux but instead rely on variables that are corre-

lated with water temperature such as air tempera-

ture and landscape characteristics (Caissie, 2006;

Webb et al., 2008). Statistical models based on air

temperature explain much of the variation in water

temperature when developed for specific locations or

for a limited number of locations having similar char-

acteristics (Crisp and Howson, 1982; Mackey and

Berrie, 1991; Stephan and Preud’homme, 1993;

Mohseni et al., 1998). However, as more types of

streams are considered in model development, the

strength of the air-water temperature relationship

diminishes (Stephan and Preud’homme, 1993; Caissie,

2006). Statistical temperature models that include

multiple stream types typically incorporate geomor-

phic, riparian, and catchment characteristics (Hawkins

et al., 1997; Isaak and Hubert, 2001; Sponseller et al.,

2001; Abell and Allan, 2002; Scott et al., 2002; Risley

et al., 2003; Wehrly et al., 2006; Nelitz et al., 2007).

Most statistical temperature models have used rel-

atively simple methods, such as simple and multiple

linear regression (MLR) and nonlinear regression

techniques (reviewed in Caissie, 2006 and Webb

et al., 2008). Recently, a number of new modeling

approaches have been used to predict water tempera-

ture such as kriging (KRIG) (Gardner et al., 2003;

Gardner and Sullivan, 2004), wavelet analysis (Steel

and Lange, 2007), evolutionary polynomial regression

(Giustolisi et al., 2007), and artificial neural networks

(Risley et al., 2003; Roehl et al., 2006; Stewart et al.,

2006; Karacor et al., 2007; Sivri et al., 2007). Addi-

tional statistical approaches such as generalized addi-

tive modeling (GAM) and linear mixed modeling

(LMM) may improve temperature prediction accuracy

by accounting for nonlinear relationships between

response and predictor variables and by accounting

for spatial autocorrelation among sampling sites.

Despite a growing list of analytical techniques, little

information exists to aid in the selection of a particu-

lar modeling approach because few comparative stud-

ies have been published (Caissie, 2006; Webb et al.,

2008). The purpose of this study was to compare the

accuracy of MLR, GAM, KRIG, and LMM for predict-

ing July mean stream temperatures for streams

located across Michigan and Wisconsin. Such an

assessment of model performance is aimed to provide

knowledge of model accuracy, bias, and model selec-

tion to aquatic resource managers and researchers

who are interested in developing their own statistical

temperature models.

MATERIALS AND METHODS

Data Collection

We based our evaluation on data from 820 wade-

able stream sites in Michigan and 311 wadeable

stream sites in Wisconsin (Figure 1). Streams in

these states primarily drain low-elevation landscapes

of glacial origin. Climate, topography, and land use

are relatively similar between the states. Addition-

ally, ground-water loading plays an important role in

shaping stream temperature and flow regimes in both

states (Wehrly et al., 2006). Summer water tempera-

tures for the study streams were measured using con-

tinuous-recording temperature loggers that were

deployed between 1989 and 2005 by the Michigan

and Wisconsin Departments of Natural Resources.

July mean water temperature for each stream site

was computed from the logged temperatures. July

mean temperature is a useful predictor of fish assem-

blage structure (Wehrly et al., 2003; Steen et al.,

2008) and July is the time in northern latitudes when

temperature differences among streams are most pro-

nounced (Caissie et al., 2006; Kevin E. Wehrly,

unpublished data). Of the 820 sites in Michigan

where stream temperature measurements were col-

lected, 64 sites had more than one year of tempera-

ture measurements. Similarly, of the 311 sites

in Wisconsin, 31 sites had more than one year of
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temperature measurements available. Because we

were interested in characterizing the ‘‘typical’’ tem-

perature regime experienced by biota at each site, we

averaged temperatures across years so that only one

temperature measurement per stream occurred

within the datasets. Alternatively, we could have ran-

domly selected a single year of measurement for the

sites that had multiple years of measurement to be

used in our evaluations. Ultimately, we found that

the relative performance of the modeling approaches

that we evaluated in this study was the same regard-

less of whether we used average temperatures or ran-

domly selected a single year of temperature

measurements. Consequently, we only report the

results in which we averaged temperatures for sites

with multiple years of data. The study streams were

a diverse set of stream types encompassing a range of

thermal conditions (Figure 2).

Model Development

Stream temperatures were modeled as a spatial

random field that could be represented with the equa-

tion

Z sð Þ ¼ X sð Þbþ e sð Þ; ð1Þ

where Z(s) is a vector of stream temperatures

(response variable) observed at locations s1, s2,…sn;

X is a matrix of model covariates (predictor variables)

measured at the locations; and e(s) is a vector of ran-

dom model errors (Schabenberger and Gotway, 2005).

For generality, it was only assumed that e(s) had a

mean of 0 and a variance-covariance matrix denoted

by R.

The first approach that we used to predict stream

temperature was ordinary least-squares MLR. With

the MLR approach, it is assumed that stream temper-

atures at different locations have the same variance

and are uncorrelated. By uncorrelated, we mean that

temperature at one stream conveys no information

about temperatures at other nearby streams. In other

words, R is assumed to equal r2I, where I is an n · n

identity matrix. With this model structure, all vari-

ability in stream temperatures, apart from random

white-noise error, is associated with changes in the

mean function (Schabenberger and Gotway, 2005).

We modeled the mean function as a linear combina-

FIGURE 2. Histograms of Observed July Mean Water

Temperature in Michigan and Wisconsin Streams.

FIGURE 1. Michigan and Wisconsin

Stream Temperature Sampling Sites.
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tion of six landscape characteristics that were

summarized for the study stream sites: percent forest

land use in local catchments, percent water land type

in network catchments, July mean air temperature

(�C), loge transformed network catchment surface

area (km2), mean network catchment slope (%), and

mean soil permeability in network catchments

(cm ⁄100 h) (Table 1). These predictor variables were

chosen because preliminary analyses revealed they

were correlated with water temperature. Network

and local catchments differ with respect to drainage

area boundaries. We defined local catchments as only

those areas that drain directly to a particular stream

reach and we defined network catchments as all

areas that drain to a stream reach either by overland

or waterway routes (Figure 3). Predictor variables for

the study streams were summarized using a previ-

ously developed stream attribute database for upper

Midwest United States (U.S.) states (Brenden et al.,

2006). Land use ⁄ type for study streams were summa-

rized using 30-m resolution land cover ⁄use Geo-

graphic Information System (GIS) themes for the

states (MCGI, 2004; WDNR, 2004). Air temperature

was summarized from Oregon State University ⁄Spa-

tial Climate Analysis Service datasets (OSU ⁄SCAS,

2004). Mean network catchment slope for stream

reaches was calculated using the U.S. Geological Sur-

vey National Elevation Dataset (USGS, 2004a). Mean

soil permeability was calculated from U.S. Geological

soil survey database (USGS, 2004b). The MLR models

were fit in SAS (SAS Institute, 2004) using the

GLIMMIX procedure.

Our second approach for predicting stream temper-

atures was GAM. GAM is a semiparametric modeling

TABLE 1. Descriptive Statistics for Predictor Variables Used to Develop Temperature Models for Michigan and Wisconsin Streams.

Predictor Variable

Michigan Wisconsin

Minimum Median Maximum Minimum Median Maximum

AREA 0.0 4.7 9.6 )0.1 4.1 10.2

FOREST 0.0 37.6 97.9 0.0 22.4 97.0

JULAIR 14.6 20.8 25.4 17.0 21.9 25.8

PERM 73.6 636.6 1,300.0 63.0 263.3 1,242.1

SLOPE 0.0 1.2 7.4 1.0 5.3 16.1

WATER 0.0 0.9 16.8 0.0 0.4 30.4

Notes: See Brenden et al. (2006) for a description of how the stream attributes were calculated. [AREA = loge network catchment surface area

(km2), FOREST = percent forest land use ⁄ type in local catchments, JULAIR = July mean air temperature (�C), PERM = mean soil perme-

ability in network catchments (cm ⁄ 100 h), SLOPE = mean network catchment slope (�), and WATER = percent water in network catch-

ments.]

FIGURE 3. Illustrated Differences Between Local and Network Catchments, Which Were Spatial Scales Used to

Summarize Land Use ⁄Type for Stream Reaches to Predict Stream Temperatures. Local catchments (left panel)

included only those upstream areas that drained directly to a particular stream reach. Network catchments

(right panel) included all upstream areas that drained to a stream reach either by overland or waterway routes.
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approach for identifying nonlinear regression effects

between response and explanatory variables (Hastie

and Tibshirani, 1990). Whereas the MLR approach

assumed that there was a linear relationship between

stream temperature and model covariates, the GAM

approach only assumed that there were smooth rela-

tionships between stream temperature and the model

covariates; the exact nature of these smoothed rela-

tionships were estimated as part of the model fitting

process. To our knowledge, GAM has not previously

been used to predict stream temperatures, but may

be advantageous for doing so because of its ability to

account for nonlinearities between response and pre-

dictor variables without requiring explicit specifica-

tion of model equations. Like the MLR approach, the

GAM approach assumed that streams had the same

variance and were uncorrelated (i.e., R = r
2I), and

that all variability in stream temperatures (apart

from random, white-noise error) was due to changes

associated with the mean function. As with the MLR

approach, we modeled the mean function for the

GAM approach as a linear combination of the six

landscape characteristics listed in Table 1. We fit the

GAM models in SAS using the GAM procedure. We

used cubic smoothing splines to estimate the relation-

ships between stream temperature and the model co-

variates. The amount of smoothing for the model

covariates was determined through generalized cross

validation.

Our third approach for predicting stream tempera-

ture was ordinary KRIG. KRIG is an interpolation

technique that predicts information at unsampled

locations from measurements at sampled locations.

From a prediction standpoint, KRIG can be repre-

sented with the equation

Z sð Þ ¼ lþ e sð Þ; ð2Þ

where l indicates that there is a constant (and

unknown) mean at all locations. Whereas with the

MLR and GAM approaches it was assumed that

most variability in stream temperature was due to

changes in the mean function, with KRIG it is

assumed that most variability in stream tempera-

tures is associated with spatial dependency among

streams. Thus, with the KRIG approach, it is no

longer assumed that R = r
2I. Ordinary KRIG predic-

tions of stream temperature at unobserved locations

are calculated using KRIG weights, which determine

the influence of neighboring observations on pre-

dicted values. KRIG weights are affected by R and

the covariances between stream temperatures at pre-

dicted and observed locations (Schabenberger and

Gotway, 2005). It is typical with the KRIG approach

to use some parametric model to capture the spatial

dependence among observations (Schabenberger and

Gotway, 2005). Based on the empirical semivario-

grams that were calculated from the Michigan and

Wisconsin datasets, we chose to use a spherical semi-

variogram model to model the spatial dependence

among streams. Although Gardner et al. (2003)

found that KRIG using the shortest stream length

between sampling locations yielded the most accu-

rate stream temperatures for a river network, for

many watersheds in our dataset only a few stream

temperature measurements occurred within the

same upstream and downstream network. For exam-

ple, in a hypothetical stream network, temperature

measurements may be available for a site in the

headwaters and for a site located tens of kilometers

downstream. Because thermal regimes typically vary

as a function of network position (Caissie, 2006), the

temperature of the headwater site in our hypotheti-

cal stream would be more similar to other headwater

streams in adjacent river networks than to the

downstream site in the same network. We thus felt

that the sparse temperature data available within

each network were inadequate to use in-water path

distance as the basis for assessing spatial depen-

dence among observations. Instead, we used Euclid-

ean distance, or the shortest distance between two

sampling locations regardless of whether the path

was overland or instream, as the basis for assessing

spatial dependence among observations. We used the

MIXED procedure in SAS and restricted maximum

likelihood to estimate the parameters of the spherical

semivariogram model. Ordinary KRIG of the stream

temperatures for the Michigan and Wisconsin data-

sets was conducted using the KRIGE2D procedure in

SAS.

Our fourth and fifth approaches for predicting

stream temperatures were based on LMM. The

LMM approaches differed from the other approaches

used in this study in that the spatial structure in

stream temperatures was incorporated as part of

both the mean function and error process, rather

than as part of the mean function or error process

separately. Based on the relative performance of the

GAM and MLR approaches, we chose only to con-

sider linear relationships between stream tempera-

ture and the model covariates, although, with LMM,

nonlinearities between response and predictor vari-

ables could also have been considered. For the LMM

approaches to predicting stream temperature, the

random error [e(s)] in Equation (1) gets separated

into two components, a component that includes

smooth-scale and micro-scale variation in stream

temperatures and a white-noise measurement error

component (Schabenberger and Gotway, 2005). Thus,

Equation (1) for the LMM approach can be decom-

posed to
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Z sð Þ ¼ X sð Þbþ t sð Þ þ e sð Þ; ð3Þ

where t sð Þ represents the smooth-scale and micro-

scale variation component and e sð Þ represents the

white-noise measurement error component [the KRIG

approach assumes a similar decomposition of e(s)].

With Equation (3), it is assumed that t sð Þ has a mean

of 0 and a variance-covariance matrix of
P

S, and that

e sð Þ has a mean of 0 and a variance-covariance matrix

of r2

eI. From a mixed models standpoint, t sð Þ forms

the random effects component of the model (Schaben-

berger and Gotway, 2005). As with the MLR and

GAM approaches, we modeled the mean function in

Equation (3) as a linear combination of the six land-

scape characteristics listed in Table 1. The fourth and

fifth approaches differed in respect to how the spatial

dependence among streams was modeled. For the

fourth approach (hereafter referred to as LMM-

Spherical), we predicted stream temperature by

assuming t sð Þ was a zero mean random field with

spherical covariance structure. Thus, the fourth

approach combined elements of both the MLR and

KRIG approaches. For the fifth approach (hereafter

referred to as LMM-Smooth), we used low-rank radial

smoothing splines to model t sð Þ. This approach

entailed placing ‘‘knots’’ at various locations through-

out the study area. Smoothing splines were then used

to model the spatial autocorrelations in stream tem-

peratures based on distances of streams to knots

(Ruppert et al., 2003; Schabenberger and Gotway,

2005). This approach is computationally efficient as

only stream-to-knot rather than stream-to-stream dis-

tances need to be calculated (Schabenberger and

Gotway, 2005). We used the MIXED procedure in SAS

to fit the models for the LMM-Spherical approach. We

used the GLIMMIX procedure for the LMM-Smooth

approach. Restricted maximum likelihood estimation

was used to fit both the LMM-Spherical and LMM-

Smooth approaches. The placement of knots for the

LMM-Smooth approach was based on a space filling

design, which involves placing knots at locations

within the study area such that the sum of the

minimum distances from each knot to the locations of

the original data are minimized (Ruppert et al., 2003).

We used the OPTEX procedure in SAS to determine

exact knot placement. A total of 60 knots, which is

intermediate to the minimum and maximum numbers

of knots recommended by Ruppert et al. (2003), were

used as part of the LMM-Smooth approach.

Model Evaluation

We evaluated the accuracy of the five modeling

approaches for predicting stream temperatures by

fitting the models to a random selection of 75%

(Michigan: n = 615 and Wisconsin: n = 233) of the

study stream sites and then calculating the accuracy

in stream temperature predictions for the remaining

(Michigan: n = 205 and Wisconsin: n = 78) study

streams (validation dataset). Accuracy was deter-

mined by calculating the mean absolute error (MAE)

and root mean square error (RMSE) in temperature

predictions for the validation dataset (Power, 1993).

We chose to use both metrics to assist in identifying

variability in model errors for the modeling

approaches. We repeated the process of randomly

selecting streams, fitting the models, and evaluating

accuracy of the temperature predictions 500 times.

This method for validating models has been given

several names, including repeated random subsam-

pling validation and delete-d validation (Good, 2006),

and is beneficial for ensuring that results are not

affected by a single aberrant selection. We averaged

the MAE and RMSE across all 500 model runs to

evaluate overall accuracy of the different modeling

approaches.

Prediction of Statewide July Mean Temperatures

To evaluate the utility of landscape-based models

for predicting stream temperatures across large

regions, we used the best performing modeling

approach to predict statewide stream temperatures

for Michigan and Wisconsin using a previously

developed stream attribute database for the states

(Brenden et al., 2006). In fitting these models, we

used the full set of stream temperatures measure-

ments for the states. To determine how well these

models predicted stream temperature, we regressed

predicted vs. observed stream temperatures using

simple linear regression and tested whether the

slopes and intercepts for the regression models

equaled 1 and 0, respectively. The results of such

tests can gage whether the prediction model is con-

sistent and unbiased (Smith and Rose, 1995; Piñeiro

et al., 2008). We also calculated Theil’s partial

inequality coefficients for the Michigan and

Wisconsin stream temperature datasets, which

separates total error of model predictions into three

components: Ubias, Uslope, and Uerror (Smith and

Rose, 1995; Piñeiro et al., 2008). Ubias represents the

proportion of total error associated with mean differ-

ences between observed and predicted values. Uslope

represents the proportion of total error associated

with deviance of the slope from the 1:1 line. Uerror

represents the proportion of total error associated

with the unexplained variance (Smith and Rose,

1995; Piñeiro et al., 2008).
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RESULTS

Comparison of Modeling Approaches

For Michigan streams, the mean MAE for the five

modeling approaches ranged from 1.55�C to 2.07�C,

while the mean RMSE for the approaches ranged

from 2.00�C to 2.64�C (Figure 4). The similarity in

RMSE and MAE for the modeling approaches sug-

gested that each avoided large outliers in predicted

temperatures (Figure 4). The most accurate approach

for predicting stream temperatures was the LMM-

Smooth approach. The mean MAE for this approach

was 1.55�C, while the mean RMSE was 2.00�C. The

second best performing modeling approach was the

LMM-Spherical approach, although it performed only

slightly worse than the LMM-Smooth approach. The

mean MAE and RMSE for the LMM-Spherical

approach equaled 2.03�C and 1.56�C, respectively.

The next best performing modeling approaches were

the MLR and GAM approaches. The mean MAE and

RMSE for the MLR approach equaled 1.66�C and

2.11�C, respectively; the mean MAE and RMSE for

the GAM approach equaled 1.68�C and 2.15�C. The

KRIG approach was the least accurate modeling

approach. The mean MAE and RMSE for the KRIG

approach was 2.07�C and 2.63�C, respectively.

For Wisconsin streams, the mean MAE for the

modeling approaches ranged from 1.83�C to 2.36�C,

while the mean RMSE ranged from 2.32�C to 2.95�C

(Figure 5). As with Michigan, the similarity in RMSE

and MAE for the modeling approaches suggested that

each avoided large outliers in predicted temperatures

(Figure 5). The performance of the modeling

approaches for Wisconsin streams were similar to

what was found for Michigan streams; the LMM-

Smooth approach resulted in the most accurate

stream temperature predictions (mean MAE = 1.83�C

and mean RMSE = 2.32�C), but was followed closely

by the LMM-Spherical (mean MAE = 1.89�C and

mean RMSE = 2.40�C), MLR (mean MAE = 1.92�C

and mean RMSE = 2.45�C), and GAM (mean MAE =

1.96�C and mean RMSE = 2.48�C) approaches. The

FIGURE 4. Prediction Accuracy Based on Mean

Absolute Error and Root Mean Square Error for

Different Modeling Approaches Used to Predict July

Mean Water Temperature in Michigan Streams.

FIGURE 5. Prediction Accuracy Based on Mean

Absolute Error and Root Mean Square Error for

Different Modeling Approaches Used to Predict July

Mean Water Temperature in Wisconsin Streams.
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KRIG approach yielded the least accurate tempera-

ture predictions (MAE = 2.36�C and RMSE = 2.95�C).

Statewide Temperature Predictions

Based on the prediction accuracies for the different

modeling approaches, we chose to use the LMM-

Smooth approach to predict statewide stream temper-

atures for Michigan and Wisconsin. The fixed

parameter coefficients for the LMM-Smooth models

that were fit to the full set of Michigan and Wiscon-

sin stream temperature datasets were similar in

direction and magnitude (Table 2). For Michigan, the

coefficient estimates for all variables used to model

the mean function were significantly different from

zero (p < 0.004). For Wisconsin, the coefficient esti-

mates for percent forest land use in local catchments

and mean network catchment slope were not signifi-

cantly different from zero (p ‡ 0.05); the coefficient

estimates for all other variables were significantly

different from zero (p < 0.003). Predicted tempera-

tures were slightly more accurate when all variables

were included in the model. For this reason, we kept

percent forest land use and catchment slope in the

Wisconsin model.

The statewide July mean stream temperature pre-

dictions ranged from 5.2�C to 26.9�C for Michigan

and from 7.6�C to 29.4�C for Wisconsin. The intercept

and slope for the regression of observed vs. predicted

stream temperatures were not significantly different

from 0 and 1, respectively (Table 3). The intercept

and slope for the regression of predicted vs. observed

stream temperatures for the Wisconsin dataset also

were not significantly different from 0 and 1 (Table 3).

Thus, for both datasets, model predictions and

observed values were linearly related and the models

were unbiased. These findings were supported by the

Theil partial inequality coefficients that were calcu-

lated for both datasets. In both cases, Uerror was

greater than 0.99, meaning that almost all of the pre-

dictive error resulted from unexplainable variance

rather than from predictive error associated with

model bias (Ubias) or deviation from the 1:1 line

(Uslope). Both the Michigan (R2 = 63%) and Wisconsin

(R2 = 60%) stream temperature models explained

similar levels of variation in the observed stream

temperature data (Figure 6).

DISCUSSION

The modeling approaches evaluated in this study

varied considerably. Some methods incorporated spa-

tial structure in stream temperatures as part of the

mean function (MLR and GAM approaches) and error

process (KRIG approach) separately, while others

incorporated spatial structure in stream tempera-

tures as part of both the mean function and

error process (LMM-Spherical and LMM-Smooth

approaches). With the exception of the KRIG

approach, differences in performance among modeling

approaches were relatively minor. The LMM-Spheri-

cal and LMM-Smooth approaches resulted in slight,

albeit consistent, improvements in predictions for

both states, suggesting that it may be somewhat

advantageous to incorporate spatial structure in both

the mean function and error process when trying to

predict stream temperatures. However, the question

remains whether additional model complexity is

worth only marginal improvement in stream

temperature predictions. The LMM-Smooth approach

TABLE 2. Standardized Coefficients for Fixed Effects for the

LMM-Smooth Models That Were Fit to the Full Set of Michigan

and Wisconsin Stream Temperature Measurements.

Variable

Michigan Wisconsin

Estimate SE Estimate SE

AREA 45.414 2.198 32.644 2.493

FOREST )10.469 3.117 )1.941 3.636

JULAIR 24.265 2.924 17.741 3.214

PERM )8.667 3.024 )9.377 3.146

SLOPE )9.393 2.719 )5.466 4.728

WATER 9.766 2.155 8.057 2.485

Notes: Coefficient estimates in bold font were significantly different

from zero (p < 0.0001). [AREA = loge network catchment surface

area (km2), FOREST = percent forest land use ⁄ type in local catch-

ments, JULAIR = July mean air temperature (�C), PERM = mean

soil permeability in network catchments (cm ⁄ 100 h), SLOPE =

mean network catchment slope (�), and WATER = percent water

in network catchments.] LMM, linear mixed modeling.

TABLE 3. Regression Parameter Estimates and

Significance Testing Results for the Regression of

Observed vs. Predicted Stream Temperatures for the

Michigan and Wisconsin Stream Temperature Datasets.

Michigan Wisconsin

Intercept

Estimate )0.38 )1.48

t 0.71 1.45

p 0.48 0.15

Slope

Estimate 1.02 1.07

t 0.72 1.44

p 0.47 0.15

Note: The null hypotheses that were tested were intercept = 0 and

slope = 1, the results of which can be used to evaluate prediction

consistency and bias.
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performed slightly better than the LMM-Spherical

approach, which likely stemmed from the spherical

covariance structure not accurately accounting for

the spatial dependency in temperatures among

streams. The LMM-Smooth approach allows for the

incorporation of spatial dependency in temperature

among streams, without requiring explicit specifica-

tion as to how streams are interrelated. The LMM-

Smooth has the additional advantage of being compu-

tationally simpler than the LMM-Spherical approach

because fewer observations are used to model the

spatial correlation among streams (Ruppert et al.,

2003).

Our finding that the KRIG approach resulted in

the least accurate temperature predictions may have

stemmed, in part, from our use of Euclidean distance

for assessing spatial dependence among streams.

Euclidean distance is based on the shortest distance

between locations and, as a result, does not account

for the spatial variability in temperature due to flow

path and position in the stream network. Gardner

et al. (2003) found that using network distance and

position resulted in more accurate KRIG predictions

than using Euclidean distance in a study of the

Beaverkill watershed in New York. The lack of ade-

quate data coverage in our datasets precluded the

use of network path distances for the KRIG approach.

In some cases temperature would have been interpo-

lated from fewer than 10 measurements for water-

sheds with more than 1,000 confluence-to-confluence

stream reaches at a spatial scale of 1:100,000. With

more observations, it is likely that the accuracy of

the stream temperature predictions from the KRIG

would have improved. It remains uncertain, however,

whether using KRIG alone would be more beneficial

than accounting for spatial variability as part of both

the mean function and error. The ability to use model

covariates such as large ground-water input at partic-

ular locations may result in more accurate tempera-

ture predictions even when there is sufficient data to

use network distances as the KRIG basis.

Our finding that the LMM-Smooth and LMM-

Spherical approaches consistently resulted in the

most accurate stream temperature predictions sug-

gests that there may be important landscape or cli-

mate variables that were not included in the

prediction model (Peterson et al., 2007). These vari-

ables could be related to regional patterns in land

use, surficial geology, ground-water loading, or air

temperature variability. Identifying additional vari-

ables that would improve model prediction likely

would be a very time consuming process. As a result,

accounting for spatial autocorrelations in stream tem-

peratures may be an efficient alternative to searching

among a large number of stream attributes. When

attempting to model stream temperatures based on

regional landscape variables, we encourage analysts

to consider incorporating spatial dependence among

streams as a way of improving temperature predic-

tions regardless of whether dependency is modeled

using Euclidean or network path distances.

Although LMM using low-rank thin-plate smooth-

ing splines to measure the spatial autocorrelation in

stream temperatures was the most accurate modeling

FIGURE 6. Scatterplots of Predicted vs. Observed July Mean

Stream Temperatures for the LMM-Smooth Models Developed for

Michigan and Wisconsin. The dashed line on the plots indicates 1:1

agreement between predicted and observed temperature. The solid

line on the plots indicates the fitted values from a regression of

observed vs. predicted temperatures.
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approach; overall, there were only slight differences in

prediction accuracy among the evaluated approaches.

One implication of this is that it permits substantial

flexibility in choosing among modeling approaches

without sacrificing a substantial amount of accuracy.

Thus, researchers and managers can choose a method

with which they are already experienced. A second

implication is that in order to develop more accurate

stream temperature predictions, it will likely require

finer-scale hydrologic (e.g., volume of water in the

channel and travel time) and physiographic features

(e.g., riparian shading, location and volume of

springs, and substrate type) (Risley et al., 2003; John-

son, 2004). Because obtaining measurements of these

finer-scale factors will require substantially more

effort, researchers and managers will need to con-

sider the tradeoffs between increased model accuracy

and the costs associated with obtaining this finer-

scale information.

The scale at which conservation planning and

resource assessment can be carried out is ultimately

limited by data availability. Statistical temperature

models based on landscape features provide a cost-

effective means to generate critical habitat data at

sites across large regions, such as several watersheds

or even across an entire state. Although our tempera-

ture predictions are relatively coarse, they do provide

the best available information to policy makers and

managers who often must develop and implement

strategies in the absence of field observations (Sowa et

al., 2007). In this study, the number of inter-confluence

reaches that had temperature measures represented

less than 2% of the total number of reaches across

Wisconsin and Michigan, and in the Huron River

watershed, MI, measured temperature data were

available at only 5 out of 547 inter-confluence reaches

(Figure 7). By linking temperature predictions to

inter-confluence stream reaches, we were able to

predict water temperature for the majority of stream

reaches across Wisconsin and Michigan (Figure 7).

The ability to identify and assess stream ecosystems

across this region is greatly enhanced by having com-

prehensive, albeit coarse, temperature information.

ACKNOWLEDGMENTS

We thank Paul Seelbach, Rick Clark, Mike Wiley, and John

Lyons for their recommendations on the overall direction of model

development. We also thank Steve Aichele, Ed Bissell, Arthur

Cooper, Dave Day, Ann Holtrop, and Jana Stewart for their con-

tributions to the development of the landscape databases. This

publication was partially developed under STAR Research Assis-

tance Agreement No. R-83059601-0 awarded by the U.S. Environ-

mental Protection Agency. It has not been formally reviewed by

the EPA. The views expressed in this document are solely those

of the authors and the EPA does not endorse any products or

commercial services mentioned in this publication. This project

was also supported by Federal Aid in Sport Fishery Restoration

Program, Project F-80-R, through the Fisheries Division of the

Michigan Department of Natural Resources. This is publication

2009-11 of the Quantitative Fisheries Center at Michigan State

University.

LITERATURE CITED

Abell, R. and J.D. Allan, 2002. Riparian Shade and Stream Tem-

peratures in and Agricultural Catchment, Michigan, USA. Pro-

ceedings of the International Association of Theoretical and

Applied Limnology 28:232-237.

FIGURE 7. Predicted Distribution of Cold Water (light gray), Cool

Water (dark gray), and Warm Water (black lines) Streams Across

Michigan and Wisconsin (upper panel) and in the Huron River

Watershed, Michigan (lower panel; shown in black in upper panel).

A COMPARISON OF STATISTICAL APPROACHES FOR PREDICTING STREAM TEMPERATURES ACROSS HETEROGENEOUS LANDSCAPES

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 995 JAWRA



Allan, J.D. and M.M. Castillo, 2007. Stream Ecology: Structure and

Function of Running Waters (Second Edition). Springer,

Dordrecht, the Netherlands.

Brenden, T.O., R.D. Clark, Jr, A.R. Cooper, P.W. Seelbach, L.

Wang, S.S. Aichele, E.G. Bissell, and J.S. Stewart, 2006. A GIS

Framework for Collecting, Managing, and Analyzing Multi-

Scale Landscape Variables Across Large Regions for River Con-

servation and Management. In: Influences of Landscape on

Stream Habitats and Biological Assemblages, R.M. Hughes, L.

Wang, and P.W. Seelbach (Editors). American Fisheries Society

Special Publication 48, Bethesda, Maryland, pp. 49-73.

Brenden, T., L. Wang, and P.W. Seelbach, 2008. A Landscape-

Based River Classification System for Michigan Rivers and

Streams for Fisheries and Environmental Management. Trans-

actions of American Fisheries Society 137:1621-1636.

Brett, J.R., 1971. Energetic Responses of Salmon to Temperature.

A Study of Some Thermal Relations in the Physiology and

Freshwater Ecology of Sockeye Salmon (Oncorhynchus Nerka).

American Zoologist 11:99-113.

Caissie, D., 2006. The Thermal Regime of Rivers: A Review. Fresh-

water Biology 51:1389-1406.

Caissie, D., M.G. Satish, and N. El-Jabi, 2006. Predicting River

Water Temperatures Using the Equilibrium Temperature Con-

cept With Application on Miramichi River Catchments (New

Brunswick, Canada). Hydrological Processes 19:2137-2159.

Caissie, D., M.G. Satish, and N. El-Jabi, 2007. Predicting Water

Temperatures Using a Deterministic Model: Application on Mir-

amichi River Catchments (New Brunswick, Canada). Journal of

Hydrology 336:303-315.

Crisp, D.T. and G. Howson, 1982. Effect of Air Temperature Upon

Mean Water Temperature in Streams in the North Pennines

and English Lake District. Freshwater Biology 12:359-367.

Eaton, J.G. and R.M. Scheller, 1996. Effects of Climate Warming

on Fish Thermal Habitat in Streams of the United States. Lim-

nology and Oceanography 41:1109-1115.

Gardner, B. and P.J. Sullivan, 2004. Spatial and Temporal Stream

Temperature Prediction: Modeling Nonstationary Temporal

Covariance Structures. Water Resources Research 40:1-9.

Gardner, B., P.J. Sullivan, and A.J. Lembo, Jr., 2003. Predicting

Stream Temperatures: Geostatisical Model Comparison Using

Alternative Distance Metrics. Canadian Journal of Fisheries

and Aquatic Science 60:344-351.

Gillooly, J.F., E.L. Charnov, G.B. West, V.M. Savage, and J.H.

Brown, 2002. Effects of Size and Temperature on Developmen-

tal Time. Nature 417:70-73.

Giustolisi, O., A. Doglioni, D.A. Savic, and B.W. Webb, 2007. A

Multi-Model Approach to Analysis of Environmental Phenom-

ena. Environmental Modelling and Software 22:674-682.

Good, P.I., 2006. Resampling Methods (Third Edition). Birkhäuser,
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