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ABSTRACT
Information retrieval (IR) researchers commonly use three
tests of statistical significance: the Student’s paired t-test,
the Wilcoxon signed rank test, and the sign test. Other
researchers have previously proposed using both the boot-
strap and Fisher’s randomization (permutation) test as non-
parametric significance tests for IR but these tests have seen
little use. For each of these five tests, we took the ad-hoc re-
trieval runs submitted to TRECs 3 and 5-8, and for each pair
of runs, we measured the statistical significance of the dif-
ference in their mean average precision. We discovered that
there is little practical difference between the randomization,
bootstrap, and t tests. Both the Wilcoxon and sign test have
a poor ability to detect significance and have the potential
to lead to false detections of significance. The Wilcoxon
and sign tests are simplified variants of the randomization
test and their use should be discontinued for measuring the
significance of a difference between means.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Experimentation

Keywords
Statistical significance, hypothesis test, sign, Wilcoxon, Stu-
dent’s t-test, randomization, permutation, bootstrap

1. INTRODUCTION
A chief goal of the information retrieval (IR) researcher

is to make progress by finding better retrieval methods and
avoid the promotion of worse methods. Given two informa-
tion retrieval (IR) systems, how can we determine which one
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is better than the other? A common batch-style experiment
is to select a collection of documents, write a set of topics,
and create relevance judgments for each topic and then mea-
sure the effectiveness of each system using a metric like the
mean average precision (MAP). TREC typifies this style of
evaluation [20].

We know that there is inherent noise in an evaluation.
Some topics are harder than others. The assessors hired
to judge relevance of documents are human and thus open
to variability in their behavior. And finally, the choice of
document collection can affect our measures.

We want to promote retrieval methods that truly are bet-
ter rather than methods that by chance performed better
given the set of topics, judgments, and documents used in
the evaluation. Statistical significance tests play an impor-
tant role in helping the researcher achieve this goal. A pow-
erful test allows the researcher to detect significant improve-
ments even when the improvements are small. An accurate
test only reports significance when it exists.

An important question then is: what statistical signifi-
cance test should IR researchers use?

We take a pragmatic approach to answering this question.
If two significance tests tend to produce nearly equivalent
significance levels (p-values), then to the researcher there
is little practical difference between the tests. While the
underlying fundamentals of the tests may be very different,
if they report the same significance level, the fundamental
differences cease to be practical differences.

Using the runs submitted to five TREC ad-hoc retrieval
evaluations, we computed the significance values for the Stu-
dent’s paired t, Wilcoxon signed rank, sign, shifted boot-
strap, and randomization tests. Comparing these signifi-
cance values we found that:

• Student’s t, bootstrap, and randomization tests largely
agree with each other. Researchers using any of these
three tests are likely to draw the same conclusions re-
garding statistical significance of their results.

• The Wilcoxon and sign tests disagree with the other
tests and each other. For a host of reasons that we
explain, the Wilcoxon and sign tests should no longer
be used by IR researchers.

We also came to the following conclusions as part of our
study:

• A test should test the same statistic that a researcher
reports. Thus, the t-test is only appropriate for testing
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Figure 1: The distribution of 50 average precision
scores for two example IR systems submitted to
TREC 3. The mean average precision (MAP) of sys-
tem A is 0.258 and the MAP of system B is 0.206.

the difference between means. Both the randomization
and bootstrap can use any statistic.

• Based on the tests’ various fundamentals, we recom-
mend the randomization test as the preferred test in
all cases for which it is applicable.

Other researchers have studied the use of significance tests
as part of IR evaluation [5, 6, 10, 16, 17, 18, 21], but we know
of no other work that looks at all of these tests or takes our
pragmatic, comparative approach.

2. SIGNIFICANCE TESTING
As Box, Hunter, and Hunter [1] explain, a significance test

consists of the following essential ingredients:

1. A test statistic or criterion by which to judge the two
systems. IR researchers commonly use the difference
in mean average precision (MAP) or the difference in
the mean of another IR metric.

2. A distribution of the test statistic given our null hy-
pothesis. A typical null hypothesis is that there is no
difference in our two systems.

3. A significance level that is computed by taking the
value of the test statistic for our experimental sys-
tems and determining how likely a value that large
or larger could have occurred under the null hypothe-
sis. This probability of the experimental criterion score
given the distribution created by null hypothesis is also
known as the p-value.

When the significance level is low, the researcher can feel
comfortable in rejecting the null hypothesis. If the null hy-
pothesis cannot be rejected, then the difference between the
two systems may be the result of the inherent noise in the
evaluation.

To make our discussion more concrete, we will use two
actual runs submitted to TREC 3 as an example. On the 50
topics of TREC 3, system A had a MAP of 0.258 and system
B had a MAP of 0.206. Figure 1 shows the distribution of
average precision scores for systems A and B.

We know that a large amount of the variability in the
scores on an IR evaluation comes from the topics. Each
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Figure 2: The per topic differences in average pre-
cision of the same two systems as in Figure 1.

system produces a score for each topic and on a per-topic
basis we obtain matched pairs of scores. All of the tests
we consider evaluate significance in light of this paired de-
sign, which is common to most batch-style IR experiments.
Figure 2 shows the per topic differences between the two
example systems.

As measured by mean average precision, system A per-
formed 20.1% better than B, but is this a statistically sig-
nificant improvement? We have already chosen our criterion
by which to judge the difference of the two systems – dif-
ference in mean average precision. We next need to form
a null hypothesis and determine whether we can reject the
null hypothesis.

Each of the following significance tests has its own crite-
rion and null hypothesis. The randomization and bootstrap
tests can use whatever criterion we specify while the other
tests are fixed in their test statistic. While there are fun-
damental differences in the null hypotheses, all of the tests
aim to measure the probability that the experimental re-
sults would have occurred by chance if systems A and B
were actually the same system.

2.1 Randomization Test
For Fisher’s randomization test [1, 4, 8, 9], our null hy-

pothesis is that system A and system B are identical and
thus system A has no effect compared to system B on the
mean average precision for the given topics, corpora, and
relevance judgments.

If system A and system B are identical, we can imagine
that there is some system N that produced the results for A
and B. For example, on one topic, system A had an average
precision (AP) of 0.499 and system B had an AP of 0.577.
Under the null hypothesis, system N produced both results
and we merely labeled one as being produced by system A
and the other by system B. To generate the results for all 50
topics, we asked system N to produce two results for each
topic and we labeled one of them as produced by A and the
other by B.

Thus, if system A and system B are identical, then we can
think of them as merely labels applied to the scores produced
by system N. The decision to label one score for a topic as
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Figure 3: The distribution of 100,000 differences in
mean average precision between random permuta-
tions of system A and B.

produced by system A or B is arbitrary. In fact, since there
are 50 topics, there are 250 ways to label the results under
the null hypothesis. One of these labelings is exactly the
labeling of the example that produced MAPs of 0.258 for
system A and 0.206 for system B.

Under the null hypothesis, any permutation of the labels
is an equally likely output. We can measure the difference
between A and B for each permutation. If we created each
of the 250 permutations, we could measure the number of
times a difference in MAP was as great or greater than the
difference we measured in our example (0.258 − 0.206 =
0.052). This number divided by 250 would be the exact
one-sided p-value or achieved significance level for the null
hypothesis. Doing such a test of the null hypothesis is known
as a randomization test or permutation test. If we measured
the number of times the absolute value of the difference was
as great or greater than the measured difference, we would
have the exact two-sided p-value.

Computing 250 permutations takes even a fast computer
longer than any IR researcher is willing to wait. An alterna-
tive is to sample and produce a limited number of random
permutations. The more samples, the more accurate will
our estimate of the p-value be. We will discuss the number
of samples needed in Section 3.

Returning to our example, we created 100,000 random
permutations of system A and B and measured the difference
in mean average precision for each arrangement. Figure 3
shows the distribution of differences. Our example’s MAP
difference is 0.052. Of the 100,000 measured differences, 689
are ≤ −0.052 and 691 are ≥ 0.052. This gives us a two-sided
p-value of (689+691)/100000 = 0.0138. This shows that the
difference of 0.052 is unlikely and thus we should reject the
null hypothesis and report that system A has achieved a
statistically significant improvement over system B.

Before the era of cheap computer power, the randomiza-
tion test was impractical for all but the smallest experi-
ments. As such, statisticians created significance tests that
replaced the actual score differences with the ranks of the
scores [2]. Of these tests, IR researchers have most widely
used the Wilcoxon signed rank test.

2.2 Wilcoxon Signed Rank Test
The null hypothesis of the Wilcoxon signed rank is the

same as the randomization test, i.e. systems A and B have
the same distribution [13].

Whereas the randomization test can use any test statistic,
the Wilcoxon test uses a specific test statistic. The Wilcoxon
test statistic takes the paired score differences and ranks
them in ascending order by absolute value. The sign of each
difference is given to its rank as a label so that we will typ-
ically have a mix of “negative” and “positive” ranks. For
a two-sided test, the minimum of the sums of the two sets
of ranks is the test statistic. Differences of zero and tied
differences require special handling [13].

The Wilcoxon test statistic throws away the true differ-
ences and replaces them with ranks that crudely approxi-
mate the magnitudes of the differences. This loss of informa-
tion gained computational ease and allowed the tabulation
of an analytical solution to the distribution of possible rank
sums. One refers the test statistic to this table to determine
the p-value of the Wilcoxon test statistic. For sample sizes
greater than 25, a normal approximation to this distribution
exists [13].

For our example, the Wilcoxon p-value is 0.0560. This
is significantly larger than the randomization test’s 0.0138.
While we would likely judge the systems to be significantly
different given the randomization test, we would likely come
to the opposite conclusion using the Wilcoxon test.

Of note is that the null hypothesis distribution of the
Wilcoxon test statistic is the same distribution as if this
test statistic was used for the randomization test [11]. Thus
we can see the dramatic affect that choosing a different test
statistic can have for a statistical test.

Wilcoxon’s test made sense when Wilcoxon presented it
in 1945 as a test to “obtain a rapid approximate idea of
the significance of the differences” [22]. Given that IR re-
searchers will use a computer to compute their significance
tests, there seem to be only disadvantages to the test com-
pared to the randomization test; the randomization test can
use the actual test statistic of concern such as the difference
in mean.

Wilcoxon believed that one of the advantages of his test
was that its utilization of magnitude information would make
it better than the sign test, which only retains the direction
of the difference [22].

2.3 Sign Test
Like the randomization and Wilcoxon tests, the sign test

has a null hypothesis that systems A and B have the same
distribution [13].

The test statistic for the sign test is the number of pairs
for which system A is better than system B. Under the null
hypothesis, the test statistic has the binomial distribution
with the number of trials being the total number of pairs.
The number of trials is reduced for each tied pair.

Given that IR researchers compute IR metrics to the pre-
cision available on their computers, van Rijsbergen proposed
that a tie should be determined based on some set absolute
difference between two scores [19]. We will refer to this
variant of the test as the sign minimum difference test and
abbreviate it as the sign d. test in tables and figures. We
used a minimum absolute difference of 0.01 in average pre-
cision for our experiments with the sign minimum difference
test.
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For our example, system A has a higher average precision
than system B on 29 topics. The two-sided sign test with
29 successes out of 50 trials has a p-value of 0.3222. The
sign minimum difference test with the minimum difference
set to 0.01 has 25 successes out of 43 trials (seven“ties”) and
a p-value of 0.3604. Both of these p-values are much larger
than either the p-values for the randomization (0.0138) or
Wilcoxon (0.0560) tests. An IR researcher using the sign
test would definitely fail to reject the null hypothesis and
would conclude that the difference between systems A and
B was a chance occurrence.

While the choice of 0.01 for a minimum difference in aver-
age precision made sense to us, the sign minimum difference
test is clearly sensitive to the choice of the minimum dif-
ference. If we increase the minimum difference to 0.05, the
p-value drops to 0.0987.

The sign test’s test statistic is one that few IR researchers
will report, but if an IR researcher does want to report the
number of successes, the sign test appears to be a good can-
didate for testing the statistical significance.

The sign test, as with the Wilcoxon, is simply the ran-
domization test with a specific test statistic [11]. This can
be seen by realizing that the null distribution of successes
(the binomial distribution) is obtained by counting the num-
ber of successes for the 2N permutations of the scores for N
trials, where for our IR experiments N is the number of
topics.

As with the Wilcoxon, given the modern use of computers
to compute statistical significance, there seem to only be
disadvantages to the use of the sign test compared to the
randomization test used with the same test statistic as we
are using to measure the difference between two systems.

2.4 Bootstrap Test – Shift Method
As with the randomization test, the bootstrap shift method

significance test is a distribution-free test. The bootstrap’s
null hypothesis is that the scores of systems A and B are ran-
dom samples from the same distribution [4, 8, 14]. This is
different than the randomization test’s null hypothesis that
makes no assumptions about random sampling from a pop-
ulation.

The bootstrap tries to recreate the population distribution
by sampling with replacement from the sample. For the shift
method, we draw pairs of scores (topics) with replacement
from the scores of systems A and B until we have drawn the
same number of pairs as in the experiment. For our example
the number of topics is 50. Once we have our 50 random
pairs, we compute the test statistic over this new set of pairs,
which for our example is the difference in the mean average
precision. The bootstrap can be used with any test statistic.

We repeat this process B times to create the bootstrap
distribution of the test statistic. As we did with the ran-
domization test, we set B = 100,000, which should be more
than adequate to obtain an accurate bootstrap distribution.

The bootstrap distribution is not the same as the null hy-
pothesis distribution. The shift method approximates the
null hypothesis distribution by assuming the bootstrap dis-
tribution has the same shape as the null distribution. The
other tests we examine do not make any similar guesses.
The other tests directly determine the null hypothesis dis-
tribution.

We then take the bootstrap distribution and shift it so
that its mean is zero. Finally, to obtain the two-sided p-

value, we determine the fraction of samples in the shifted
distribution that have an absolute value as large or larger
than our experiment’s difference. This fraction is the p-
value.

For our example of system A compared to system B, the
bootstrap p-value is 0.0107. This is comparable to the ran-
domization test’s p-value of 0.0138.

2.5 Student’s Paired t-test
In some ways the bootstrap bridges the divide between the

randomization test and Student’s t-test. The randomization
test is distribution-free and is free of a random sampling as-
sumption. The bootstrap is distribution-free but assumes
random sampling from a population. The t-test’s null hy-
pothesis is that systems A and B are random samples from
the same normal distribution [9].

The details of the paired t-test can be found in most statis-
tics texts [1]. The two-sided p-value of the t-test is 0.0153,
which is in agreement with both the randomization (0.0138)
and bootstrap (0.0107) tests.

In 1935 Fisher [9] presented the randomization test as
an “independent check on the more expeditious methods in
common use.” The more expeditious methods that he refers
to are the methods of Student’s t-test. He was responding
to criticisms of the t-test’s use of the normal distribution
in its null hypothesis. The randomization test provided a
means to test “the wider hypothesis in which no normal-
ity distribution is implied.” His contention was that if the
p-value produced by the t-test was close to the p-value pro-
duced by the randomization test, then the t-test could be
trusted. In practice, the t-test has been found to be a good
approximation to the randomization test [1].

2.6 Summary
For our example, the randomization test has a p-value of

0.0138. The Wilcoxon signed rank test’s p-value is 0.0560.
The sign test has a p-value of 0.3222 and the sign minimum
difference test has a p-value of 0.3604. The bootstrap has a
p-value of 0.0107, and the paired t-test’s p-value is 0.0153.
All p-values are for two-sided tests.

If a researcher decides to declare p-values less than 0.05
as significant, then only the randomization, bootstrap, and
t tests were able to detect significance. The Wilcoxon and
sign p-values would cause the researcher to decide that sys-
tem A did not produce a statistically significant increase in
performance over system B.

If the Wilcoxon and sign test tend to produce poor esti-
mates of the significance of the difference between means, a
researcher using the Wilcoxon or sign test is likely spend a
lot longer searching for methods that improve retrieval per-
formance compared to a researcher using the randomization,
bootstrap, or t test.

We next describe our experiments to measure the degree
to which the various tests agree with each other.

3. METHODS AND MATERIALS
In this section, we describe the details of the data used

and important specifics regarding our experiment.
We took the ad-hoc retrieval runs submitted to TRECs 3

and 5–8 and for each pair of runs, we measured the statistical
significance of the difference in their mean average precision.
This totaled 18820 pairs with 780, 1830, 2701, 5253, and
8256 pairs coming from TRECs 3, 5-8 respectively.

626



We computed all runs’ scores using trec eval [3]. We spec-
ified the option -M1000 to limit the maximum number of
documents per query to 1000.

We measured statistical significance using the Student’s
paired t-test, Wilcoxon signed rank test, the sign test, the
sign minimum difference test, the bootstrap shift method,
and the randomization test. The minimum difference in av-
erage precision was 0.01 for the sign minimum difference
test. All reported p-values are for two-sided tests.

We used the implementations of the t-test and Wilcoxon
in R [15] (t.test and wilcox.test). We implemented the
sign test in R using R’s binomial test (binom.test) with ties
reducing the number of trials.

We implemented the randomization and bootstrap tests
ourselves in C++. Our program can input the relational
output of trec eval.

Since we cannot feasibly compute the 250 permutations
required for an exact randomization test of a pair of TREC
runs, each scored on 50 topics, we randomly sampled from
the permutations. The coefficient of variation of the esti-
mated p-value, p̂ as shown by Efron and Tibshirani [8] is:

cvB(p̂) =

(
(1 − p)/p

B

)1/2

where B is the number of samples and p is the actual one-
sided p-value. The coefficient of variation is the standard
error of the estimated p-value divided by the mean. For
example, to estimate a p-value of 0.05 with an error of
10% requires setting p = 0.05 and B = 1901 to produce
a cvB(p̂) = 0.1. To estimate the number of samples for a
two sided test, we divide p in half.

For our comparative experiments, we used 100,000 sam-
ples. For a set of experiments in the discussion, we used 20
million samples to obtain a highly accurate p-value for the
randomization test. The p-value for the randomization test
with 100K samples differs little from the value from 20M
samples.

With 100K samples, a two-sided 0.05 p-value is computed
with an estimated error of 2% or ±0.001 and a 0.01 p-value
has an error of 4.5% or ±0.00045. This level of accuracy is
very good.

With B = 20 × 106, an estimated two-sided p-value of
0.001 should be accurate to within 1% of its value. As the
estimated p-value get larger, they become more accurate
estimates. For example, a 0.1 p-value will be estimated to
within 0.01% or ±0.0001 of its value. Thus, even with the
small p-values that concern most researchers, we will have
calculated them to an estimated accuracy that allows us to
use them as a gold standard to judge other tests with the
same null hypothesis.

On a modern microprocessor, for a pair of runs each with
50 topics, our program computes over 511,000 randomiza-
tion test samples per second. Thus, we can compute a ran-
domization test p-value for a pair of runs in 0.2 seconds using
only 100K samples.

We do not know how to estimate the accuracy of the boot-
strap test’s p-values given a number of samples, but 100K
samples is 10 to 100 times more samples than most texts rec-
ommend. Wilbur [21] and Sakai [16] both used 1000 samples
for their bootstrap experiments.

Selection of a random number generator (RNG) is im-
portant when producing large numbers of samples. A poor
RNG will have a small period and begin returning the same

rand. t-test boot. Wilcx. sign sign d.
rand. - 0.007 0.011 0.153 0.256 0.240
t-test 0.007 - 0.007 0.153 0.255 0.240
boot. 0.011 0.007 - 0.153 0.258 0.243
Wilcx. 0.153 0.153 0.153 - 0.191 0.165
sign 0.256 0.255 0.258 0.191 - 0.131
sign d. 0.240 0.240 0.243 0.165 0.131 -

Table 1: Root mean square errors among the ran-
domization, t-test, bootstrap, Wilcoxon, sign, and
sign minimum difference tests on 11986 pairs of
TREC runs. This subset of the 18820 pairs elim-
inates pairs for which all tests agree the p-value was
< 0.0001.

sequence of random numbers. We used Matsumoto and
Nishimura’s Mersenne Twister RNG [12], which is well suited
for Monte Carlo simulations given its period of 219937 − 1.

4. RESULTS
In this section, we report the amount of agreement among

the p-values produced by the various significance tests. If
the significance tests agree with each other, there is little
practical difference among the tests.

We computed the root mean square error between each
test and each other test. The root mean square error (RMSE)
is:

RMSE =

[
1

N

N∑
i

(Ei − Oi)
2

]1/2

where Ei is the estimated p-value given by one test and Oi

is the other test’s p-value.
Table 1 shows the RMSE for each of the tests on a subset

of the TREC run pairs. We formed this subset by removing
all pairs for which all tests agreed the p-value was < 0.0001.
This eliminated 6834 pairs and reduced the number of pairs
from 18820 to 11986. This subset eliminates pairs that are
obviously very different from each other — so different that
a statistical test would likely never be used.

The randomization, bootstrap, and t tests largely agree
with each other. The RMSE between these three tests is
approximately 0.01, which is an error of 20% for a p-value of
0.05. An IR researcher testing systems similar to the TREC
ad-hoc runs would find no practical difference among these
three tests. The Wilcoxon and sign tests do not agree with
any of the other tests. The sign minimum difference test
better agrees with the other tests but still is significantly
different. Of note, the sign and sign minimum difference
tests produce significantly different p-values.

We also looked at a subset of 2868 TREC run pairs where
either the randomization, bootstrap, or t test produced a
p-value between 0.01 and 0.1. For this subset, the RMSE
between the randomization, t-test, and bootstrap tests av-
eraged 0.006, which is only a 12% error for a 0.05 p-value.
For this subset of runs, the RMSE between these three tests
and the Wilcoxon decreased but was still a large error of
approximately 0.06. The sign and sign minimum difference
showed little improvement.

Figure 4 shows the relationship between the randomiza-
tion, bootstrap, and t tests’ p-values. A point is drawn
for each pair of runs. Both the t-test and bootstrap ap-
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Figure 4: The three way agreement between the randomization test, the Student’s t-test, and the bootstrap
test. Plotted are the p-values for each test vs. each other test. The figure on the left shows the full range of
p-values from 0 to 1 while the figure on the right shows a closer look at smaller p-values.

pear to have a tendency to be less confident in dissimilar
pairs (small randomization test p-value) and produce larger
p-values than the randomization test, but these tests find
similar pairs to be more dissimilar than the randomization
test. While the RMSE values in Table 1 say that overall the
t-test agrees equally with the randomization and bootstrap
tests, Figure 4 shows that the t-test has fewer outliers with
the bootstrap.

Of note are two pairs of runs for which the randomization
produces p-values of around 0.07, the bootstrap produces
p-values of around 0.1, and the t-test produces much larger
p-values (0.17 and 0.22). These two pairs may be rare ex-
amples of where the t-test’s normality assumption leads to
different p-values compared to the distribution free random-
ization and bootstrap tests.

Looking at the view of smaller p-values on the right of
Figure 4, we see that the behavior between the three tests
remains the same except that there is small but noticeable
systematic bias towards smaller p-values for the bootstrap
when compared to both the randomization and t tests. By
adding 0.005 to the bootstrap p-values, we were able to re-
duce the overall RMSE between the bootstrap and t-test
from 0.007 to 0.005 and from 0.011 to 0.009 for the random-
ization test.

Figure 5 plots the randomization test’s p-value versus the
Wilcoxon and sign minimum difference test’s p-values. As
variants of the randomization test, we use the randomization
test for comparison purposes with these two tests. The dif-
ferent test statistics for the three tests leads to significantly
different p-values. The bands for the sign test are a result
of the limited number of p-values for the test. Compared

to the randomization test, and thus to the t-test and boot-
strap, the Wilcoxon and sign tests will result in failure to
detect significance and false detections of significance.

5. DISCUSSION
To our understanding, the tests we evaluated are all valid

tests. By valid, we mean that the test produces a p-value
that is close to the theoretical p-value for the test statistic
under the null hypothesis. Unless a researcher is inventing
a new hypothesis test, an established test is not going to be
wrong in and of itself.

A researcher may misapply a test by evaluating perfor-
mance on one criterion and testing significance using a dif-
ferent criterion. For example, a researcher may decide to
report a difference in the median average precision, but mis-
takenly test the significance of the difference in mean aver-
age precision. Or, the researcher may choose a test with an
inappropriate null hypothesis.

The strong agreement among the randomization, t-test,
and bootstrap shows that for the typical TREC style eval-
uation with 50 topics, there is no practical difference in the
null hypotheses of these three tests.

Even though the Wilcoxon and sign tests have the same
null hypothesis as the randomization test, these two tests
utilize different criteria (test statistics) and produce very
different p-values compared to all of the other tests.

The use of the sign and Wilcoxon tests should have ceased
some time ago based simply on the fact that they test cri-
teria that do not match the criteria of interest. The sign
and Wilcoxon tests were appropriate before affordable com-
putation, but are inappropriate today. The sign test retains
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Figure 5: The relationship between the randomization test’s p-values and the Wilcoxon and sign minimum
difference tests’ p-values. The Wilcoxon test is on the left and the sign minimum difference test is on the
right. A point is drawn for each pair of runs. The x axis is the p-value produced by the randomization test
run with 100K samples, and the y axis is the p-value of the other test.

validity if the only thing one can measure is a preference for
one system over another and this preference has no scale,
but for the majority of IR experiments, this scenario is not
the case.

A researcher wanting a distribution-free test with no as-
sumptions of random sampling should use the randomiza-
tion test with the test statistic of their choice and not the
Wilcoxon or sign tests.

5.1 Wilcoxon and Sign Tests
The Wilcoxon and sign tests are simplified variants of the

randomization test. Both of these tests gained popularity
before computer power made the randomization test feasi-
ble. Here we look at the degree to which use of these sim-
plified tests results in errors compared to the randomization
test.

Common practice is to declare results significant when a
p-value is less than or equal to some value α. Often α is
set to be 0.05 by researchers. It is somewhat misleading to
turn the p-value into a binary decision. For example, there
is little difference between a p-value of 0.049 and 0.051, but
one is declared significant and the other not. Our preference
is to report the p-value and flag results meeting the decision
criteria.

Nevertheless, some decision must often be made between
significant or not. Turning the p-value into a binary decision
allows us to examine two questions about the comparative
value of statistical tests:

1. What percent of significant results will a researcher
mistakenly judge to be insignificant?

2. What percent of reported significant results will actu-
ally be insignificant?

We used a randomization test with 20 million samples to
produce a highly accurate estimate of the p-value. Given its

Randomization Test
Other Test Significant Not Significant
Significant H = Hit F = False Alarm
Not Significant M = Miss Z

Table 2: The randomization test is used to deter-
mine significance against some α. If the other test
returns a p-value on the same side of α, it scores a
hit or a correct rejection of the null hypothesis (Z).
If the other test returns a p-value on the opposite
side of α, it score a miss or a false alarm.

accuracy, we use it to judge which results are significant at
various values of α for the null hypothesis of the randomiza-
tion test. Recall that the null hypotheses of the Wilcoxon
and sign tests are the same as the randomization test. The
only difference between the randomization, Wilcoxon, and
sign tests is that they have different test statistics. The ran-
domization’s test statistic matches our statistic of interest:
the difference in mean average precision.

For example, if the randomization test estimates the p-
value to be 0.006 and we set α = 0.01, we will assume the
result is significant. If another test estimates the p-value to
be greater than α, that is a miss. If the other p-value is
less than or equal to α, the other test scores a hit. When
the randomization test finds the p-value to be greater than
α, the other test can false alarm by returning a p-value less
than α. Table 2 shows a contingency table summarizing hits,
misses, and false alarms.

With these definitions of a hit, miss, and false alarm we
can define the miss rate and false alarm ratio as measures
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Figure 6: Miss rate and false alarm ratio for α = 0.1.

of questions 1 and 2 above:

MissRate =
M

H + M

where M is the number of misses and H is the number of
hits.

FalseAlarmRatio =
F

H + F

where F is the number of false alarms and H is the number
of hits. The false alarm ratio is not the false alarm rate.

Another way to understand the questions we are address-
ing is as follows. A researcher is given access to two statisti-
cal significance tests. The researcher is told that one is much
more accurate in its p-values. To get an understanding of
how poor the poorer test is, the researcher says “I consider
differences with p-values less than α to be significant. I al-
ways have. If I had used the better test instead of the poorer
test, what percentage of my previously reported significant
results would I now consider to be insignificant? On the flip
side, how many significant results did I fail to publish?”

The miss rate and false alarm ratio can be thought of
as the rates at which the researcher would be changing de-
cisions of significance if the researcher switched from using
the Wilcoxon or sign test and switched to the randomization
test.

As we stated in the introduction, the goal of the researcher
is to make progress by finding new methods that are better
than existing methods and avoid the promotion of methods
that are worse.

Figures 6 and 7 show the miss rate and false alarm ratio for
the sign, sign minimum difference (sign d.), and Wilcoxon
when α is set to 0.1 and 0.05. We show α = 0.1 both as an
“easy” significance level but also for the researcher who may
be interested in the behavior of the tests when they produce
one-sided p-values and α = 0.05. In all cases, all of our tests
produced two-sided p-values.

Given the ad-hoc TREC run pairs, if a researcher reports
significance for a small improvement using the Wilcoxon or
sign, we would have doubt in that result. Additionally, an

IR researcher using the Wilcoxon or sign tests could fail to
detect significant advances in IR techniques.

5.2 Randomization vs. Bootstrap vs. t-test
The randomization, bootstrap, and t tests all agreed with

each other given the TREC runs. Which of these should one
prefer to use over the others? One approach recommended
by Hull [10] is to compute the p-value for all tests of interest
and if they disagree look further at the experiment and the
tests’ criteria and null hypotheses to decide which test is
most appropriate.

We have seen with the Wilcoxon and sign tests the mis-
takes an IR researcher can make using a significance test
that utilizes one criterion while judging and presenting re-
sults using another criterion. This issue with the choice of
test statistic goes beyond the Wilcoxon and sign tests. We
ran an additional set of experiments where we calculated
the p-value for the randomization test using the difference
in median average precision. The p-values for the median
do not agree with the p-values for the difference in mean
average precision.

The IR researcher should select a significance test that
uses the same test statistic as the researcher is using to com-
pare systems. As a result, Student’s t-test can only be used
for the difference between means and not for the median or
other test statistics. Both the randomization test and the
bootstrap can be used with any test statistic.

While our experiment found little practical difference among
the different null hypotheses of the randomization, boot-
strap, and t tests, this may not always be so.

Researchers have been quite concerned that the null hy-
pothesis of the t-test is not applicable to IR [19, 18, 21]. On
our experimental data, this concern does not appear to be
justified, but all of our experiments used a sample size N of
50 topics. N = 50 is a large sample. At smaller sample sizes,
violations of normality may result in errors in the t-test. Co-
hen [4] makes the strong point that the randomization test
performs as well as the t-test when the normality assump-
tion is met but that the randomization test outperforms the
t-test when the normality assumption is unmet. As such,
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Figure 7: Miss rate and false alarm ratio for α = 0.05.

the researcher is safe to use the randomization test in either
case but must be wary of the t-test.

Between the randomization (permutation) test and the
bootstrap, which is better? Efron invented the bootstrap in
1979. Efron and Tibshirani [8] write at the end of chapter
15:

Permutation methods tend to apply to only
a narrow range of problems. However when they
apply, as in testing F = G in a two-sample prob-
lem, they give gratifyingly exact answers without
parametric assumptions. The bootstrap distri-
bution was originally called the“combination dis-
tribution.” It was designed to extend the virtues
of permutation testing to the great majority of
statistical problems where there is nothing to
permute. When there is something to permute,
as in Figure 15.1, it is a good idea to do so, even if
other methods like the bootstrap are also brought
to bear.

The randomization method does apply to the typical IR ex-
periment. Noreen [14] has reservations about the use of the
bootstrap for hypothesis testing.

Our largest concern with the bootstrap is the systematic
bias towards smaller p-values we found in comparison to
both the randomization and t tests. This bias may be an
artifact of our implementation, but an issue with the boot-
strap is the number of its possible variations and the need for
expert guidance on its correct use. For example, a common
technique is to Studentize the test statistic to improve the
bootstrap’s estimation of the p-value [8]. It is unclear when
one needs to do this and additionally such a process would
seem to limit the set of applicable test statistics. Unlike the
bootstrap, the randomization test is simple to understand
and implement.

Another issue with both the bootstrap and the t-test is
that both of them have as part of their null hypotheses that
the scores from the two IR systems are random samples
from a single population. In contrast, the randomization
test only concerns itself with the other possible experimental

outcomes given the experimental data. The randomization
test does not consider — the often incorrect — idea that the
scores are random samples from a population.

The test topics used in TREC evaluations are not random
samples from the population of topics. TREC topics are
hand selected to meet various criteria such as the estimated
number of relevant documents in the test collection [20]. Ad-
ditionally, neither the assessors nor the document collection
are random.

The randomization test looks only at the experiment and
produces a probability that the experimental results could
have occurred by chance without any assumption of random
sampling from a population.

An IR researcher may argue that the assumption of ran-
dom samples from a population is required to draw an infer-
ence from the experiment to the larger world. This cannot
be the case. IR researchers have for long understood that
inferences from their experiments must be carefully drawn
given the construction of the test setup. Using a signifi-
cance test based on the assumption of random sampling is
not warranted for most IR research.

Given these fundamental difference between the random-
ization, bootstrap, and t tests, we recommend the random-
ization test be used when it is applicable. The randomiza-
tion test is applicable to most IR experiments.

5.3 Other Metrics
Our results have focused on the mean average precision

(MAP). We also looked at how the precision at 10 (P10),
mean reciprocal rank (MRR), and R-precision affected the
results. In general the tests behaved the same as for the
MAP. Of note, the Wilcoxon test showed less variation for
the MRR than for the other metrics.

6. RELATED WORK
Edgington’s book [7] on randomization tests provides ex-

tensive coverage of the many aspects of the test and details
how the test was created by Fisher in the 1930s and later
was developed by many other statisticians. Box et al. pro-
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vide an excellent explanation of the randomization test in
chapter 4 of their classic text [1]. Efron and Tibshirani have
a detailed chapter on the permutation (randomization) test
in their book [8].

Kempthorne and Doerfler have shown that for a set of ar-
tificial distributions the randomization test is to be preferred
to the Wilcoxon test which is to be preferred to the sign test
[11]. In contrast, our analysis is based on the actual score
distributions from IR retrieval systems.

Hull reviewed Student’s t-test, the Wilcoxon signed rank
test, and the sign test and stressed the value of significance
testing in IR [10]. Hull’s suggestion to compare the output
of the tests was part of the inspiration for our experimental
methodology. Hull also made the point that the t-test tends
to be robust to violations of its normality assumption.

Wilbur compared the randomization, bootstrap, Wilcoxon,
and sign tests for IR evaluation but excluded the t-test based
on its normality assumption [21]. Wilbur found the random-
ization test and the bootstrap test to perform well, but rec-
ommended the bootstrap over the other tests in part because
of its greater generality.

Savoy advocated the use of the bootstrap hypothesis test
as a solution to the problem that the normality assump-
tion required of the t-test is clearly violated by the score
distributions of IR experiments [18]. Sakai used bootstrap
significance tests to evaluate evaluation metrics [16], while
our emphasis was on the comparison of significance tests.

Box et al. stress that when comparative experiments prop-
erly use randomization of test subjects, the t-test is usually
robust to violations of its assumptions and can be used as
an approximation to the randomization test [1]. We have
confirmed this to be the case for IR score distributions.

Both Sanderson and Zobel [17] and Cormack and Ly-
nam [5] have found that the t-test should be preferred to
both the Wilcoxon and sign tests. We have taken the ad-
ditional step of comparing these tests to the randomization
and bootstrap tests that have been proposed by others for
significance testing in IR evaluation.

7. CONCLUSION
For a large collection of TREC ad-hoc retrieval system

pairs, the randomization test, the bootstrap shift method
test, and Student’s t-test all produce comparable signifi-
cance values (p-values). Given that an IR researcher will
obtain a similar p-value for each of these tests, there is no
practical difference between them.

On the same set of experimental data, the Wilcoxon signed
rank test and the sign test both produced very different p-
values. These two tests are variants of the randomization
test with different test statistics. Before affordable compu-
tation existed, both of these tests provided easy to com-
pute, approximate levels of significance. In comparison to
the randomization test, both the Wilcoxon and sign tests
can incorrectly predict significance and can fail to detect
significant results. IR researchers should discontinue use of
the Wilcoxon and sign tests.

The t-test is only applicable for measuring the significance
of the difference between means. Both the randomization
and bootstrap tests can use test statistics other than the
mean, e.g. the median. For IR evaluation, we recommend
the use of the randomization test with a test statistic that
matches the test statistic used to measure the difference be-
tween two systems.
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