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Abstract Groundwater resource estimates require the
calculation of recharge using a daily time step. Within
climate-change impact studies, this inevitably necessitates
temporal downscaling of global or regional climate model
outputs. This paper compares future estimates of potential
groundwater recharge calculated using a daily soil-water
balance model and climate-change weather time series
derived using change factor (deterministic) and weather
generator (stochastic) methods for Coltishall, UK. The
uncertainty in the results for a given climate-change
scenario arising from the choice of downscaling method
is greater than the uncertainty due to the emissions
scenario within a 30-year time slice. Robust estimates of
the impact of climate change on groundwater resources
require stochastic modelling of potential recharge, but this
has implications for groundwater model runtimes. It is
recommended that stochastic modelling of potential
recharge is used in vulnerable or sensitive groundwater
systems, and that the multiple recharge time series are
sampled according to the distribution of contextually
important time series variables, e.g. recharge drought
severity and persistence (for water resource management)
or high recharge years (for groundwater flooding). Such
an approach will underpin an improved understanding of
climate change impacts on sustainable groundwater

resource management based on adaptive management
and risk-based frameworks.
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Introduction

The recent Fourth Assessment Report of the Inter
Governmental Panel on Climate Change (IPCC 2007)
demonstrated that our climate is changing and that a
significant part of it is due to man’s activities. We are
committed to a degree of climate change even if major
emission reductions of greenhouse gases occur tomorrow.
Although the size and long residence times of many
groundwater systems provide a buffering function to
short-term climatic variability (Winter 2000), many
groundwater systems are potentially vulnerable to the
direct and indirect effects of climate change on recharge
(Holman 2006). Globally, as many as 2 billion people
depend directly upon aquifers for drinking water—over
half of the 23 megacities rely upon, or make significant
use of, local groundwater; almost one-third of Asia’s
drinking water supply comes from groundwater, and more
than 95% of the rural population of the USA depend on
aquifers to provide their drinking water (Morris et al.
2003). Despite both this importance and vulnerability,
there has been comparatively little research relating to the
impacts of climate change on groundwater (Kundzewicz
et al. 2007).

The sustainable future management of groundwater
resources requires a quantified understanding of the
impacts of climate change, primarily through changed
temperature and precipitation, on recharge (Jyrkama and
Sykes 2007). Rushton and Ward (1979) demonstrated that
accurate estimation of groundwater recharge depends on
the use of daily, as opposed to weekly or monthly
calculations. However, global climate model (GCM)
output is not directly suitable for use by hydrogeological
impact modellers, because it is often provided as monthly
time series or monthly averages, there is uncertainty in the
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output at a daily scale, particularly for precipitation
(Semenov 2007; Rivington et al. 2008) and because of the
coarse spatial resolution of the GCM. These limitations
necessitate the use of some form of downscaling technique.
Two fundamental approaches exist for downscaling of GCM
output:

– Dynamical downscaling: the use of regional climate
models (RCM) or limited-area models which use the
lateral boundary conditions from a GCM to produce
high resolution outputs (Mearns et al. 2003)

– Statistical downscaling: a range of methods which rely
on the fundamental concept that regional climate is
related to the large-scale atmospheric state, expressed
as a deterministic and/or stochastic function between
the large-scale atmospheric variables (predictors) and
local or regional climate variables (predictands; Wilby
et al. 2004). These methods range from simple methods
such as Loaiciga et al. (2000) and the change factor
(also known as the ‘perturbation’ or ‘delta-change’)
method (Prudhomme et al. 2002) to more sophisticated
methods such as regression models (e.g. Giorgi et al.
2001), weather typing schemes (e.g. Hewitson and
Crane 2002) and weather generators (e.g. Semenov
2007; Wilks and Wilby 1999).

It is not the intention of this paper to review the many
downscaling methods; the reader is referred to reviews by
Prudhomme et al. (2002) and Fowler et al. (2007) and
guidance on the use of statistical (Wilby et al. 2004) and
dynamical (Mearns et al. 2003) downscaling methods.
However, whilst a range of modelling techniques such as
soil-water balance models (e.g. Kruger et al. 2001;
Holman 2006; Jyrkama and Sykes 2007), empirical
models (e.g. Chen et al. 2002), conceptual models (e.g.
Cooper et al. 1995; Arnell 2004) and more complex
distributed models (e.g. Croley and Luukkonen 2003;
Kirshen 2002; Yusoff et al. 2002; van Roosmalen et al.
2007; Woldeamlak et al. 2007; Jyrkama and Sykes 2007)
have been used to look at climate change impacts
on groundwater under alternative emissions scenarios
(Nakicenovic and Swart 2000), the choice of downscaling
methods applied in hydrogeological studies have been
limited. In understanding the likely consequences of
possible future climate changes on groundwater systems
and the regional hydrological cycle, an important (but not
exclusive) component to understand is the influence that
the downscaling technique exerts on estimates of potential
recharge. Potential recharge is that water which has
infiltrated through the root zone but which may or may
not reach the water table because of unsaturated-zone
processes or the ability of the saturated zone to accept
recharge, as opposed to actual recharge which reaches the
water table (Scanlon et al. 2002).

This paper compares the results of using two statistical
downscaling techniques, the deterministic change factor
method and a stochastic weather generator, in estimating
potential groundwater recharge at Coltishall in East
Anglia, UK (Fig. 1), and further considers the implications

of the resultant uncertainties for future recharge assessment
and groundwater modelling studies. These two techniques
have been selected because of their practicality to the
hydrogeological community, owing to the simplicity and
familiarity of the change factor method and to the public
availability of weather generators (e.g. Kilsby et al. 2007).
Although the study relates specifically to an area of the UK,
the findings will have wider significance to the hydro-
geological community as the need to employ daily climate
change scenarios for impact modelling increases.

Study area

The study was performed at Coltishall (latitude 52.77°,
longitude 1.35°) in East Anglia (Fig. 1), the flattest part of
the UK. The climate of the region is influenced by its low
relief and proximity to the continent, with average annual
rainfall of 550–750 mm. Norfolk is largely underlain by
Cretaceous (chalk and greensand) or Pleistocene (crag)
aquifers. As such it is highly dependent on groundwater,
which provides much of the public water supply and
irrigation needs and supports river flows and internationally
important wetland areas such as The Broads.

Within the UKCIP02 scenarios, annual precipitation
for this area is expected to decrease by less than 10% by
the 2050s, although winters are likely to be wetter and
summers drier (Hulme et al. 2002). Annual average

Fig. 1 Locations of the Coltishall study site (triangle) and East
Anglia (grey shading) in Great Britain
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temperature will rise by between 1–2.5°C by the 2050s,
with increases in all seasons.

Methodology

A conventional climate impact assessment methodology
was followed to assess the influence of the choice of
downscaling approach on simulation of future potential
groundwater recharge for a site in East Anglia, UK.
Firstly, the change factor method and a weather generator
were each used to generate local precipitation and
potential evapotranspiration daily time series under future
(2020s and 2050s) climate scenarios. Secondly a daily
soil-water balance model (WaSim; Hess and Counsell
2000) was used to simulate daily potential recharge under
baseline (1961–1990) and each scenario for a loamy sand
and loam soil under permanent grass, which were finally
compared with those simulated for the baseline.

Climate change scenarios
The climate change scenarios used have been developed
on behalf of the United Kingdom Climate Impacts
Programme (UKCIP), known as the UKCIP02 scenarios
(Hulme et al. 2002). The UKCIP02 climate change
scenarios have become the standard reference for climate
change in the UK since their release in 2002 (Gawith et al.
2008). The output from the coupled ocean-atmosphere
HadCM3 model provided the boundary conditions to
drive the high resolution (~120 km) HadAM3H global
atmosphere model, whose outputs in turn provided the
boundary conditions to drive the high resolution (~50 km)
HadRM3 regional climate model. This ‘double-nesting’
approach improves the quality of the simulated European
climate and provides greater spatial detail.

A high and a low emissions climate change scenario,
equivalent to the A1F1 and B1 SRES scenarios (Nakicenovic
and Swart 2000) for the period 2040–2069 (termed the
2050s Low and High scenarios, respectively), have been
used in this study to characterise the lower and upper ends
of the expected temperature and precipitation changes,
whilst the 2020s High scenario was also simulated to
investigate the evolution of change within a single emissions
scenario.

Change factor method
The change factor method is the simplest statistical
downscaling method, which applies coarse-scale climate
change projections to a high-resolution observed climate
baseline. A ‘change factor’ is calculated for precipitation
and potential evapotranspiration for each month according
to the percentage change in the period monthly means of
the variable between the baseline (1961–1990) and the
30-year future simulations centred on the 2020s and
2050s. This series of twelve monthly change factors was
then applied to a time series of daily baseline precipitation
and potential evapo-transpiration. So for example, if the

period monthly mean January rainfall was 10% higher in
the 2050s High UKCIP02 simulation compared to the
UKCIP02 simulated baseline (i.e. a change factor of
+10%), each daily value of precipitation in January in the
baseline precipitation time series was increased by 10%.

To enable the true effects of the downscaling technique
to be observed, the change factors were applied to the
baseline time series of precipitation and potential evapo-
transpiration calculated by the weather generator, rather
than to the observed weather data recorded at Coltishall.

Climatic Research Unit daily weather generator
The Climatic Research Unit (CRU) daily weather gener-
ator was initially developed by Jones and Salmon (1995)
and modified by Watts et al. (2004a) during the “Built
EnvironmenT: Weather scenarios for investigation of
Impacts and eXTremes” (BETWIXT) project in order to
construct climate scenarios. Part of the aim on the
BETWIXT project was to provide high-resolution scenar-
ios for eleven case study sites (including Coltishall) in
order to overcome some of the limitations of the UKCIP02
data such as coarse spatial resolution, deficiencies in grid
square information, lack of climatic variables for future
scenarios and poor representation of extreme events (Watts
et al. 2004b; Herrera-Pantoja and Hiscock 2008).

Measurements of past meteorological observations at
Coltishall were used by Watts et al. (2004a) to estimate the
precipitation distribution functions and the regression
weights for the weather generator. The observed precip-
itation and temperature data were divided by Watts et al.
(2004a) into half-monthly blocks so that any seasonal
variation of the distribution functions and the regression
weights between the previous and the current day could be
allowed for. In addition, data for four transition types (dry
day–dry day; wet day–wet day; dry day–wet day; wet
day–dry day) are treated separately, as the correlation of
temperature between successive dry days is, for example,
distinctly different from successive wet days. Once
precipitation has been generated using a first-order
Markov chain model (Richardson 1981), the daily mean
temperature and temperature range are stochastically
generated using the seasonal and transition type regression
relationships. The remaining secondary variables (vapour
pressure, wind speed and sunshine duration) are determined
by regression analyses based on the previous day’s value and
the current day’s precipitation, mean temperature and
temperature range. Finally, relative humidity and reference
potential evapotranspiration using the FAO (Food and
Agricultural Organization) Penman-Monteith method (Allen
et al. 1998) are calculated from the generated variables.
Further detail on the CRU weather generator is provided in
Watts et al. (2004a) and Kilsby et al. (2007).

Validation by Watts et al. (2004b) during the BETWIXT
project has shown the performance of the CRU daily weather
generator to be very satisfactory, and robust across the range
of UK climate regimes for which it has been tested (i.e. from
wet northern sites in Scotland to dryer/warmer sites in
southern and eastern England. The derivation and application
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of the monthly change factors for the UKCIP02 climate
change scenarios for daily precipitation (mean, variance and
skewness of daily rainfall and proportion of dry days) and
temperature (mean and variance) for use in the weather
generator are described in Kilsby et al. (2007). The
regression weights within the weather generator were
assumed not to change.

WaSim soil-water balance model

Model description
WaSim is a one-dimensional daily soil-water balance
model that simulates the soil-water storage and rates of
input (infiltration) and output (evapotranspiration, runoff
and drainage) of water in response to weather. Although
developed as a teaching and learning tool (Hess and
Counsell 2000), its value as a research tool has been
demonstrated (e.g. Hirekhan et al. 2007). The unsaturated
zone is divided into three compartments, the upper 0.15-m
layer, the active root zone and layer below the root zone.
The thickness of the latter two layers varies as the active
root zone changes. The root development is assumed to
increase from the planting depth to the maximum depth
following a sigmoidal root growth curve between the
planting date and the date of maximum root depth (Borg
and Grimes 1986). The crop cover fraction on a particular
day is determined by linear interpolation between the
specified dates of emergence, 20% cover, maximum cover,
maturity and harvest. Senescence is simulated by a linear
reduction in crop cover fraction between maximum cover
at maturity and zero at harvest.

Surface runoff is comprised of two components; runoff
due to intense rainfall (infiltration excess) and runoff due
to saturated soil. As the rainfall data used to drive the
water balance model is only available on a daily time step,
daily surface runoff due to the intensity of rainfall is
estimated using the curve number method (Conservation
Engineering 1986) and any rain falling on saturated soil is
assumed to run off.

Any precipitation that does not run off is assumed to
infiltrate. Actual evapotranspiration from the soil is taken
as the area-weighted average of crop transpiration, soil
evaporation and evaporation of intercepted water from the
mulch cover (if present). Plant transpiration is assumed to
occur at a rate proportional to the reference evapotranspi-
ration (Allen et al. 1998) depending on the plant type and
soil-water content, but does not take into account the
effect of raised atmospheric CO2 concentrations (Gedney
et al. 2006). It occurs at the potential rate whilst the root-
zone soil-water content is between field capacity (here
defined as the soil-water content at a suction of 5 kPa) and
the limit of easily available water capacity (defined as the
soil-water content at a suction of 200 kPa). Under
restricted water supply, it decreases linearly to permanent
wilting point (defined as the soil-water content at a suction
of 1,500 kPa) and remains zero thereafter (Brisson 1998).
For soil-water contents above field capacity, it decreases
linearly to zero when the root-zone soil-water content

reaches saturation (0 kPa). Soil evaporation is estimated
using the method of Ritchie (1972).

Soil water moves from one layer to the layer below
only when its water content exceeds field capacity. The
rate of drainage is a function of the relative saturation of
the layer (Raes and van Aelst 1985) and the hydraulic
properties of the soil. Water draining out of the lower layer
is taken to be potential recharge.

WaSim model set-up
Freely draining loamy sand and loam-textured soils are the
dominant soil types in the area (Hodge et al. 1984) and
were selected for simulation by WaSim. These are
classified as being in ‘soil hydrological groups A’ (low
runoff potential and high infiltration rates even when
thoroughly wetted) and B (moderate infiltration rates
when thoroughly wetted), respectively, based on their
‘Hydrology of Soil Types’ class (Boorman et al. 1995).
Both soils have been assumed to be in ‘fair soil condition’
(Conservation Engineering 1986). Hydraulic conductivity
and volumetric water contents at suctions of 0, 5, 200 and
1,500 kPa were taken from Smedema et al. (2004).

Permanent grass was represented, with a crop coefficient
representing the ratio of crop potential evapotranspiration to
reference potential evapotranspiration of 1. A typical rooting
depth of 0.7 m was used. Based on the permanent grass land
cover and assumed fair soil condition, the loamy sand and
loam soils were assigned ‘curve numbers’ of 49 and 69,
respectively, as given by Conservation Engineering Division
Conservation Engineering (1986) for ‘antecedent moisture
condition II’.

Results

Weather time series
The CRU weather generator was previously set-up by
Watts et al. (2004a) using data from the Coltishall weather
station. The 30 years of simulated baseline weather data
(parameterised using 17 years of observed weather data)
were used as the current weather, as the simulated time
series have the same distribution and statistical character-
istics as the training period (Fig. 2), but the simulated
years do not correspond to a ‘real’ calendar year, i.e. there
is no day-by-day or year-by-year correspondence between
the observed and simulated time series. For each climate
change scenario, 100 realizations of 30 years of daily data
were created by the CRU weather generator, using
‘change factors’ calculated from the same HadRM3H
simulations as used to produce the UKCIP02 spatial
patterns parameters. Sensitivity studies by Watts et al.
(2004b) have indicated that similar variability is obtained
across 100 runs as across 1,000 runs. Overall, the future
weather time series show little change in the distribution
of annual average precipitation within the 100 runs, but
significant progressive increases in ‘potential (reference)
evapotranspiration’ (Fig. 3).
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Fig. 2 Comparison of observed and simulated weather variables for Coltishall (mean of 100 30-year weather generator runs ± 2 SD; data
provided by the BETWIXT project)
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Fig. 3 Cumulative frequency distributions for future annual average precipitation and potential evapotranspiration for Coltishall based on
100 30-year weather generator runs (data provided by the BETWIXT project)
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Groundwater potential recharge results

Baseline
The baseline estimates of average annual hydrologically
effective rainfall (AAHER), given as the sum of runoff
and potential recharge by WaSim, are 112 mm/year
(loamy sand soil of fair condition) and 85 mm/year
(loamy soil of fair condition). These agree well with the
estimate of AAHER of 102 mm/year given by the UK
Meteorological Office Rainfall and Evaporation Calculation
System (MORECS, v2.0; Hough and Jones 1997) for the
surrounding 40 km×40 km MORECS grid square (cited by
Herrera-Pantoja and Hiscock 2008).

Median annual potential recharge
All simulated hydrological (1 October–31 September)
years for the weather generator (2,900 model-years from
100 simulations of 29 hydrological years) and change
factor (29 model-years from 1 simulation of 29 hydrological
years) methods have been separately pooled. A consistent
pattern emerges in the overall median annual potential
recharge with the two downscaling approaches, as it
decreases slightly with time, the decrease being greater
for the high emissions scenario (Table 1). Taking the
2,900 model-years of annual potential recharge derived
using the weather generator data, the median annual
recharge for the loamy soil ranges from 45 mm/year

(for the 2050s High) to 58 mm/year (2020s High)
compared to the baseline of 71 mm/year. Similar, albeit
slightly higher, values are given by the change factor
method (based on only the 29 model-years).

Median annual potential recharge of individual
simulations
In contrast to Table 1 which pools all of the individual
simulations, Fig. 4 shows the distribution in the median
annual recharge values (from the 29 hydrological-years)
from each of the 100 individual simulations using the
weather generator data. There is a significant spread
between the lowest and highest median annual potential
recharge of individual simulations (Table 2) from, for
example, 28–85 mm/year in 2020s High to 19–72 mm/
year for 2050s High for the loamy soil. This variability
within the individual simulations for a single scenario time
slice is much greater than the difference between the
overall median annual recharge of the different scenario
time slices shown in Table 1, but it cannot be represented
by the single value derived using weather data from the
change factor method.

Annual potential recharge
Figure 5 shows the distribution of future annual values of
potential recharge for each scenario for the loamy and

Table 1 Median annual potential recharge using change factor and weather generator methods

Scenario Loamy soil Sandy soil
Change factora Weather generatorb Change factor Weather generator

Baseline 71 117
2020s High 63 58 105 100
2050s Low 61 50 99 91
2050s High 51 45 91 87

a Based on 29 hydrological years of simulated annual potential recharge
b Based on 2,900 hydrological years of simulated annual potential recharge
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Fig. 4 Cumulative frequency distributions of baseline and future median annual potential recharge at Coltishall for sandy and loamy soils
from 100 stochastic and one change factor (CF) simulation for each scenario
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sandy soils from the pooled 2,900 hydrological years (100
stochastic simulations) calculated using the weather
generator data and the 29 hydrological years calculated
using the change factor method data. It is apparent that
there is a slight reduction in annual potential recharge
across the whole probability distribution for both soils,
although the reduction is greater for the loamy soil for
both downscaling methods. The overall distribution is
similar for both methods, but smoother for the stochastic
method given the much larger number of years simulated
(2,900 against 29 model-years). The distribution of annual
potential recharge values for both soils for the 2050s Low
are between those of the 2020s High and 2050s High
scenarios.

At face value, Fig. 5 suggests that the effect of climate
change on annual recharge is limited, given the small

downward shifts in the distributions of annual potential
recharge. However, while the cumulative frequency
curves for the stochastic method are based on the 2,900
hydrological years of output (100 x 29 years), each of the
100 individual simulations that make up that distribution
are equally probable. Figure 6 shows the 100 individual
cumulative frequency distributions (as opposed to the
amalgamated or pooled distributions in Fig. 5) produced
by the 100 simulations for the loam soil in a 2020s High
and 2050s High scenarios, which span a wide range of
annual potential recharges for any given probability of
exceedance. So whilst the overall distribution in annual
potential recharge has shifted evenly downwards by 10–
20 mm (depending on scenario) in Fig. 5, individual
future simulations within the stochastic output in Fig. 6
can show significant differences of 20 mm to more than
80 mm for a given probability of exceedance which
cannot be captured using the change factor method.

Severity and frequency of recharge ‘drought’
and ‘flood’ years
To assess how the frequency of potential recharge
‘drought’ and ‘flood’ years might change, each of the

Table 2 Range of future median annual potential recharge within
100 simulations using the weather generator method

Scenario Loamy soil Sandy soil

2020s High 28–85 64–133
2050s Low 23–81 63–123
2050s High 19–72 49–114
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Fig. 5 Cumulative frequency distributions of baseline and future annual potential recharge at Coltishall for loamy and sandy soils using
(a) stochastic and (b) change factor methods
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hydrological years within the 100 stochastic simulations
has been classified as ‘very dry’ ‘dry’, ‘normal’, ‘wet’ and
‘very wet’ according to the quintiles of the baseline
recharge data. For example, a future ‘very dry’ year has an
annual potential recharge that lies in the lowest 20th
percentile of the baseline annual recharge data.

Figure 7 shows the distribution of very wet to very dry
years in each of the 100 simulations. It can be seen that
the number of each of the ‘types’ of years varies
significantly between each of the equally probable
simulations for the same climate change scenario. For
example, in the 2050s High, the number of very wet years
in a single simulation ranges from 1 to 12, whilst the
(more important) very dry years range from 4 to 16.

Persistence of recharge droughts
Because of their great volume and long residence times,
groundwater systems have a natural resilience to short
duration annual droughts. However, recharge droughts
which persist for longer than a single winter, can cause
problems for water supply, and lead to increased environ-
mental stress in groundwater dependent ecosystems. The

persistence of groundwater recharge droughts in each of
the 100 simulations has been assessed based on the
sequence of ‘very dry’ and ‘dry’ years within each
simulation. Figure 8 shows that the persistence of recharge
droughts (shown by consecutive horizontal white cells)
varies significantly within the simulations for the same
climate change scenario. For example there are 44
simulations out of 100 in which annual potential recharge
is dry or very dry for more than five consecutive years
under the 2050s High scenario, whilst there are also
equally probable simulations in which the longest consec-
utive dry or very dry period is only 2 or 3 years.

Discussion

Assessments of hydrologically effective rainfall (Holman
2006; Herrera-Pantoja and Hiscock 2008), potential
recharge (Holman et al. 2005) and actual recharge (Yussof
et al. 2002) have been previously derived for this part of
the UK. In common with many climate change scenarios,
the UKCIP02 and their predecessor UKCIP98 scenarios
(which were used in all of these studies) are provided as
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Fig. 6 Cumulative frequency distributions of annual potential recharge for 100 individual simulations of annual recharge for a loam soil
under (a) 2020s High and (b) 2050s High climate change scenarios
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period means, which require temporal downscaling to the
daily time scale needed for recharge estimation. All of the
aforementioned studies have been based on a single time
series for each 30-years time slice, and all have used the
change factor method with the exception of Herrera-Pantoja
and Hiscock (2008) who used only a single run from the
same CRU weather generator as used in this study.

The commonly used change factor method has the
advantage of simplicity but gives the impression of
apparent certainty about the nature of future weather
(even when different emissions scenarios are used)
because only a single time series of future weather with
similar natural inter-annual variability is created to
represent each given future scenario. The resultant time
series maintain the detail of the station record, but the
scaled and baseline data differ only in their respective
means, maxima and minima. The method ultimately
produces only a single deterministic scenario with the
variability unchanged, which implicitly assumes that the
future climate is a slightly perturbed version of the present
with future weather that has the variability characteristics
of the baseline weather, albeit slightly wetter/drier and/or
warmer/cooler in each month.

However, many studies suggest that the future variance
within climate parameters will change. For example, Schär

et al. (2004) show that the variance of European summer
temperature is expected to increase strongly in the twenty-
first century, whilst Vidale et al. (2007) show amplification
in surface temperature and precipitation variability. The
changed variances within the CRU weather generator
(described by Kilsby et al. 2007) aims to address this.
However, whilst the single simulation of the weather
generator used by Herrera-Pantoja and Hiscock (2008)
ensured a different sequencing of wet and dry periods
compared to the baseline, they fail to identify where their
single time series fits within the distribution of future time
series that the weather generator can create. It is not
therefore possible to determine whether the single simu-
lation is a representation of unduly dry, typical or
particularly wet conditions within the future probability
distribution.

The use of a stochastically generated series of weather
in this study has allowed a fuller understanding of the
consequences of the uncertainty in potential recharge
arising from the treatment of natural variability within the
choice of temporal downscaling method. It is apparent that
the uncertainty in the distribution of annual potential
recharge associated with the individual stochastically
generated weather time series of a single emissions
scenario/time slice (e.g. 2050s High in Fig. 6) are greater
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Fig. 7 Frequency of very wet to very dry potential recharge years at Coltishall under (a) 2020s High and (b) 2050s High for a loamy soil
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than the differences between the time slices in the
probability distribution from all emissions scenario/time
slice simulations (e.g. 2020s Low vs. 2050s High in
Fig. 5). Whilst no individual time series shown in Fig. 6
will be identical to that which eventually occurs, each of
the time series are statistically as probable as each other,
and, as importantly, as probable as the single time series
derived from the change factor method. The uncertainty
also differs between soil types, with the differences in
potential recharge between soil types being greater than
the differences within soil types, consistent with Schibek
and Allen (2006). In particular, there is less difference
between scenarios for the sandy soil compared to the

loamy soil, as the increased potential evapotranspiration is
not realised in many years because of the absolute soil
moisture deficit limit imposed by the lower water holding
capacity of the sandy soil.

Presenting the changing impacts of climate change
with time based on the results of a single set of
deterministic potential recharge estimations is failing to
capture the inherent natural variability in weather. As
such, the false impression of certainty might lead to
inappropriate designs of water resource management
systems. Although Dessai and Hulme (2007) found that
the local water resources plans in the east of England were
robust to climate change uncertainties, this partly arose
because the design of large-scale adaptation options (e.g.
extension of water treatment works) was based on the
outputs from the HadCM3 climate model, used in the
generation of the UKCIP02 scenarios, which is drier than
most other GCMs. Although water-resource planners may
perturb historical extreme droughts—the worst that’s been
known—by the climate scenarios, it is important to assess
whether such an approach is capturing the possible range
of future droughts. It is apparent from Figs. 7 and 8 that
extreme droughts might occur within climate scenarios
that do not represent extreme changes in period means.
For example, annual and winter (December–February)
precipitation changes by around –2 and +7%, respectively,
in the 2020s High scenario, but individual simulations
contain up to 22 out of 29 years (76%) in which annual
potential recharge is within the lowest 40% of baseline
values. The high levels of uncertainty in both potential
recharge variability and the magnitude and persistence of
recharge droughts demonstrated in this study suggests that
adaptive infrastructure and management systems (Pahl-
Wost et al. 2007) informed by risk-based frameworks
(Willows and Connell 2003), incorporating the twin-track
approaches of supply and demand management (Kirshen
2002), are needed which can cope with the future
uncertainty and range of possible outcomes.

Although it does not detract from the overall con-
clusions of this paper, it must be acknowledged that this
study has not included a complete representation of the
uncertainties arising from the use of RCM or GCM data.
In particular the UKCIP02 scenarios represent the outputs
from a single GCM/RCM, albeit it a ‘dry’ model which
represents a worst case for this region (Dessai and Hulme
2007). There are many sources of uncertainties in climate
impact studies in addition to those of the downscaling
uncertainty and emissions. These include uncertainties in
GCM initial conditions, model structure (GCM, RCM
structure and impact model) and impact model parameters
(Kay et al. 2009). Many authors have identified the
important uncertainties arising from the climate models
themselves (e.g. Wilby and Harris 2006; Markoff and
Cullen 2008; Vidal and Wade 2008). However, Kay et al.
(2009), Prudhomme and Davies (2008) and Wilby and
Harris (2006) all found downscaling uncertainty to be
significant, albeit less important than GCM uncertainty
but more important than uncertainty in emissions scenario
and impact model parameters.

Fig. 8 Persistence of dry/very dry years within 100 simulations of
potential recharge for a loam soil in a 2050s High climate (white =
dry or very dry potential recharge years)
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It is apparent that valuable insights into the uncertainty
of future potential recharge estimation can be gained from
stochastic, as opposed to change factor, methods. How-
ever, to both parameterise and validate weather generators
and to use the resultant stochastic weather or potential
recharge simulations within a groundwater modelling
study is a much more resource-intensive exercise than
using the simpler change factor method. Holman (2006)
suggests that the significance of future changes in
hydrologically effective precipitation should be assessed
within the context of exploitable groundwater resources,
and the impacts of any change for the aquatic environment
or for future groundwater quality. Diaz-Nieto and Wilby
(2005) further suggest that change factor methods are
most appropriate for broad-brush high-level assessments
rather than for detailed assessments. It is therefore
suggested that stochastic potential recharge estimates need
only be routinely incorporated into impact studies in
aquifers or areas which may be sensitive to changes in the
temporal magnitude, sequencing and persistence of recharge
droughts, e.g.:

– Aquifers with low residence times and limited resilience
to recharge droughts

– Aquifers or groundwater management units where
available groundwater resources are almost fully
exploited under current climatic conditions

– Areas where groundwater is the predominant water
resource for economically important human uses, e.g.
domestic/industrial water demand, high value irrigated
crops etc.

– Aquifers in which elements of the hydrogeological
system are vulnerable to changes in groundwater levels,
e.g. groundwater dependent terrestrial ecosystems (wet-
lands), chalk streams, or coastal aquifers

Where simpler potential recharge models, which can
easily be run stochastically, are combined with more
computationally intensive groundwater models, it may not
be feasible to run the groundwater model with the full
range of stochastic recharge data. In these cases, the
multiple recharge time series should be sampled according
to the distribution of contextually important time series
variables, e.g. recharge drought severity and persistence
(water resource management); high recharge years
(groundwater flooding) etc. However, fundamentally it is
recommended that the effects of different sequencing and
persistence within scenarios derived from multiple climate
models are examined on the hydrogeological output
variables in groundwater modelling studies, rather than
only carrying out a sensitivity analysis of changes to the
magnitude of events within the baseline sequencing.

Conclusions

Potential groundwater recharge has been estimated for a
site in East Anglia, UK, using daily time-series weather
derived by the stochastic Climatic Research Unit weather

generator and the deterministic change factor method
using UKCIP02 climate change scenarios of period
means. Whilst small changes in median annual potential
recharge are calculated between the 2020s High and 2050s
High scenarios, there is significant uncertainty given the
spread of median annual potential recharge across individual
stochastic simulations.

Analysis of the 100 29 hydrological-year simulations
shows that the numbers of very dry to very wet recharge
years varies significantly between simulations, given the
same climate change scenario. For the 2050s High scenario,
the number of very dry years (defined as having an annual
potential recharge below the 20th percentile of the baseline
simulation) ranges from 4 to 16 out of 29 years, whilst very
wet years (annual potential recharge greater than the 80th
percentile of the baseline simulation) range from 1 to 12.
There is similar uncertainty in the multi-year persistence of
such recharge droughts.

This study has shown that using stochastic weather
generators to provide daily time-series input for recharge
calculation provides a better estimation of the uncertainty
in potential recharge, compared to deterministic perturbation
(e.g. change factor) methods, which should be captured
within impact studies in aquifers or areas which may be
sensitive to changes in the temporal sequencing and
persistence of recharge droughts. The high levels of
uncertainty in both potential recharge and the magnitude
and persistence of recharge droughts suggests that adaptive
infrastructure and management systems informed by risk-
based frameworks, incorporating the twin-track approaches
of supply and demand management, are needed which can
cope with the future uncertainty and range of possible
outcomes.
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