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ADSTRACT 

Attribute grammars are a value-oriented, non-procedural extension to context-free grammars 

that facilitate the specification of translations whose domain is described by the underlying 

context-free grammar. Just a.s parsers for context-free languages can be automatically 

constructed from a context-free grammar, so can tra.nslators, called attribute evaluators, be 

automatically genera.ted from an attribute grammar. A major obstacle to generating efficient 

attribute evaluators is that they typically use large amounts of memory to represent the 

attributed parse tree. In this report we investigate the problem of efficient representation of 

the attributed parse tree by analyzing &nd comp&ring the strategies of two ~tems t.hat 

have been used to automatically generate a tr&nslator from &n attribute gramm&r: the 

GAG system developed at the Universitat de K&rlsruhe &nd the LINGUIST-86 ~tem 

written at Intel Corporation. Our analysis will ch&ra.cterize the two strategi~ &nd highlight 

their respective strengths and weaknesses. Drawing on the insights given by thi~ &nalysis, 

we propose a strategy for storage optimization In automatically generated attribute 

evaluators that not only incorporates the best features of both GAG &nd LINGUIST-S6, but 

also contains novel features that address aspects of the problem that &re h&ndled poorly by 

both systems. 



:\s the cost of r3.W computer power has r lummeted. It has become 3. cliche to observe tn:1t 

there is a "crisis" in our ability to produce the software needed to effectively Ilse th3.t 

power. It is not only that more programmers need to be trained; even with an unlimited 

supply o( programmers. the cost of prodUCing the needed software mounts astronomically. 

One response to this problem is to change the way we "program". Pr-ogramming by 

3TJtcification calls for solving problem.s by giving a ngorous specification of their solution. 

rather than by describing in detail how they are to be solved. Of course this puts a much 

larger burden on the computer s~tem, especially its software. to calculate this solution. and 

it is not always either possible or fe3.5ible. However, in some problem domains we know 

enough that this technique ca.n be used. One widely-a.ppreciated but non-trivial example of 

this is the use of parser-generator prograJll3 to automatically construct parsers from a 

context-free grammar that describes the strings to be recognized. The history of the 

development of these parser-generator prograrm shows that. even after context-free grammars 

were recognized as an effective description, much research was still needed before efficient, 

widely-usable parsers could be automatica.lly built. 

More recently, attribute grammars have been proposed as an appropriate means of describing 

still more of the t3.5ks of translat.ion and compilation. A3 W8.S the case for parser-generators 

based on context-free grammars, much research is needed in order to build efficient attribute 

evaluators that are competitive with band-coded translators. One of the most serious 

obstacles to implementing attribute evaluators is that they use enormous amounts of space 

to represent the attributed parse tree. Several optimizations have been proposed in the 

litera.ture and variations of some of these have been implemented in experimental translator

writing-systems based on AGs. In this paper we examine in detail the storage optimiza.tion 

strategies of two such s~tems that have been used to generate substantial compiler front

ends: GAG [10j developed a.t the University of Karlsruhe, and LINGUIST-86 [2j developed at. 

Intel Corp. 

Section contaiIl3 a brief introduction to attribute grammars, tree-walk evaluators and 

storage optimizat.ion for tree-wa.lk evaluators_ SectiOIl3 2 and 3 give an overview of GAG's 

and LI~GUIST-86's ston«e allocat.ion policies, respectively. Section 4 describes the effect of 

these two sets of storage optimizations on evaluators generat.ed from different attribute 

grammars for Pascal. Important similarities and differences between the twO systexm are 

noted. The differences between the two systems often suggest how the various optimiza.tions 

can be improved and some of these improvements are briefly described. We a.lso explore 

how the more effective techniques of one system can be incorporated into the other. 

Finally, section 5 contaiIl3 some suggestions (or new attribute storage optimizations that 



complement those done by GAG and LI:'-iGrrST-86 but that are not currently a.ddressed by 

either system. The appendix to this paper proves an important storage optImIzation 

problem to be NP-complete. 

1. Introduetlon to attribute 5torage optimization 

Many attribute grammar (AG) evaluators which have been developed employ a tree-walk 

evaluation strategy [181. For any source language input, this strategy builds an explicit 

semantic tree: a parse tree in which each node is labeled by its corresponding symbol X and 

each node contains fields (attribute-in,tance6) corresponding to the attributes of 

X. Translation into the target language is performed by walking over this explicit tree 

evaluating the attribute-instances. After all attribute-instances have been evaluated the 

translation resides in a distinguished attribute of the root. At any moment during the 

evaluation of the semantic tree, the IOCU6-o/-controi of the evaluator resides at some 

particular production-instance in the semantic tree. It can choose to execute either an 

EV ALX.att instruction or a VISIT k instruction. An EV ALx.att. instruction call:! for the 

evaluation of an instance of X.att of the current production-instance. A VISIT
k 

instruction 

calls for the evaluator to move its locu,-o/-control to an lldJdcent production-instanc&; i.e., if k 

> 0 then a VISITk instruction causes it to move to the kth son and if k - 0 it moves to 

its parent. Besides the EV ALX.att and VISITk instructions the only other instructions used 

by a tree-walk evaluator are those used to determine the flow of control. 

Many tree-walk evaluation strategies have been devised. One of the simplest 15 an 

alternating-pau strategy that makes depth-first left-to-right and depth-first right-to-Ieft passes 

over the semantic tree. A more flexible strategy is that of ordered evaluation, which tailors 

the traversal over the semantic tree to the particular attribute grammar at hand. Both of 

these strategies can be implemented by several different methods, such as: sets oC recursIve 

procedures, sets of coroutines, or stack automata [9J. 

As semantic trees can be very large, it is important Cor tree-walk evaluators to conserve as 

much storage as possible. Several techniques have been developed to accomplish this. First 

of all, the attribute-instance:s of the semantic tree :should contain only pointers to complex 

objects and not the value:s thexmelves [16, 13, 3, 141. We shall assume that every tree-walk 

evaluator does so and we shall not discu.s:s thi:s optimization further. 

Another technique is to implement the instances of an attribute as some separate data 

structure, rather than as components of semantic tree nodes. The two possibilities that are 

used by GAG and LINGUIST-86 are implementing the instances of an attribute as the 
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values on 3. "tack, and as the contents o( a single, statically-allocated variable. .3'lch 

attribute 3torage optimization3 are done extensively by GAG and L1NGUIST·88, a.nd they are 

quite effective. Our purpose herein is 3. detailed analysis of this variety of optimization. 

Saarinen first suggested [15j taking as many attributes 3.'! possible out of the semantic tree 

and putting them into a stack. To this end he distinguished between ,ignificant attributes 

and tran"irnt attributes 1 A tran,ient attribute is one whose lifetime consists of a single 

visit to a production-instance (rom its parent; all other attributes are ,ignifica.nt. Ir X.att is 

a tran5ient attribute it can be implemented as a stack, as will be illustrated later, 50 that 

storage need not be alloca.ted in the semantic tree for any instance of X.att. When another 

instance o( X.att i5 defined it i5 PUSHed onto the stack; it is POPped off the 5tack when it 

is no longer needed. Although an in5tance of X.att will take up stack 5pace, it will only do 

so for the duration of its lifetime. 

Another possibility is to implement instances of an attribute as the va.lue currently In a 

globa.l variable. Not all attribute5 can be implemented this way, but many can, thus 

further reducing the size of the 5emantic tree. This optimization W8.5 inve5tigated by 

Ganzinger in a formal setting [6J. He found that the problems involved were similar to 

those for register allocation . 

. -'.n especially common kind of semantic function are those of the form. [Y.attl =- Z.att2j. 

These are called copy rule". If Y.att1 and Z.att2 are merely different occurrences of the 

same attribute, say X.att, and if X.att is implemented as a global variable, then the copy 

rule just copies the value of the global variable onto itself. Such a semantic function can 

be eliminated. If X.att is implemented as a stack then the copy rule calls for duplicating 

the top of the stack and then later popping 0(( the second copy. Often these copy rules 

can be eliminated also, thus avoiding PUSH a.nd POP opera.tions on the stack and keeping 

the stack from growing as deep. When copy rules are eliminated like this we 5ay they have 

been 8ub,umea by the 5torage optimization policy. 

2. GAG 

GAG 1101 uses the ordered evaluation strategy which it implements using stack automata. 

GAG first compute5 the order in which the attributes of a symbol will be evaluated and 

uses this information together with each production's dependency graph to compute fli,it 

8equence, for each production. The fl"it ,eq1&ence VSp of a production p gives the order in 

1these were refered to In 115j 8.5 temporary attribute5 
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which a.ttributes of the production are eva.luated and right-part nodes .... isited. It consists of 

an ordered list of EVAL and VISIT instructions (for a tree-walk evaluator) that are to be 

executed for this production. Each production has one visit sequence that is used for any 

instance of that production in any semantic tree. 

After fixing an evaluation order GAG decides how to implement the attributes by choosing 

one of 3 possible storage mechanisms for each attribute; an attribute is either: implemented 

as a global variable, implemented as a global dacJe, or allocated space in the semantic tree. If 

the latter mechanism is used for the attribute X.a. then every instance of X.a In the 

semantic tree will be allocated i~ own :!torage cell. Otherwi3e all in~tances of X.a In the 

semantic tree will share either 1 storage cell (if X.a is implemented ~ a global variable) or 

1 stack (if X.a IS implemented ~ a global stack). An attribute is t.ransient only if all its 

occurrences are transient. An attribute-occurrence, Xi.att, i3 t.ransient only if there is no 

VISITO in the visit sequence for its production between any two EV AL instruction that 

define or reference Xi.att. For purposes of thi3 definition, if an inherited attribute X.a is 

defined before the jth visit to X, then the visit sequence for every production p having X as 

its left-part symbol is a.s.sumed to have an implicit reference to 1:o.a before the .• EV ALatt 

and VISIT
k 

instructions pertaining to the jth visit to p. Similarly, if a synthesized attribute 

X.a IS defined during the jth visit to X, then the visit sequence for every production p 

having a right-part occurrence of X, say ~, i3 assumed to have an implicit reference to 

Xm.a before the EVALatt and VISITk instructions following the jth visit to~. Only 

transient at.tributes are implemented ~ global variables or global staclcs by GAG. 

%.1. Global Variables and Global Staeb 

The Ii/dime of an attribute-instance 1D a semantic tree 15 the period of time between its 

computation (i.e. instantiation) and its last application (i.e. reference). For tree-walk 

evaluators, the lifetime of any attribute-instance N.att can be expressed &5 a pair of visit 

numbers (attinitial' attrinal)' where attinitial is the number of the vi3it to N during which 

N.att is first computed, &nd attfinal is the number of the visit to N during which N.att is 

last applied. After &n attribute-instance's last application we no longer need to save its 

value ~ its role in the translation process is completed. 

After the evaluat.ion st.rat.egy has been fixed GAG &nalyzes the lifetime of each transient 

attribute to see whether it can be a global variable or global stack. If it di3covers t.hat, in 

an~ sem&ntic tree, the lifetime of an, instance of an attribute X.a cannot overlap the 

lifetime of any other instance of X.a, then it implements X.a ~ a global variable. This 

means that X.a is not allocated space in the sem&ntic tree; rather, all X.a values are stored 
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in :l global variable. call it X a. Any copy rules between diHerent X.a. instances ~hen look 

like X_~ • x_,; these are all eliminated. 

If X.a cannot be made into 3. global variable but GAG discovers that, in any semantic tree, 

the lifetimes of any two instances of X.a are either di8joint (the requirement for a global 

variable) or properly ne3ted then GAG implements X.a as a global stack. :"l2.a's lifetime is 

properly ne3ted in Nl.a's lifetime if N2.a's entire lifetime is contained between two consecutive 

applications of :"ll.a when evaluating the semantic tree. If X.a is implemented as a global 

stack then, whenever a new instance of X.a is defined its value is pushed onto the top of 

the stack. Upon last application of that attribute-instance its value IS popped off the stack. 

Any use of the value of this attribute-instance is translated into a reference to the top 

element of the stack. In between 2 consecutive references to this instance of X.a, another 

instance of X.a may have its value pushed onto and popped off of the stacie. 

The way in which attri~utes are implemented 3-' a stack is different for inherited attributes 

than it is for synthesized attributes. At a.ny time during a.ttribute evaluation the inherited 

attributes that are on a stack are attributes of nodes tha.t ue ancestors of the CUlTent. node 

in the semantic tree. At the same time the synthesized attributes that are on a·"stack are 

attributes of nodes that are siblings of ancestors, rather than the ancestors themselves. 

Figure 2-1 illustrates the difference. This is similar to the different stack-contents of a top

down parser ver5US a bottom-up parser. 

XO ::. Xl lO. 
Xl.I • XO.I • 2. 
Xl.I • XO.I - XI.S, 
XO.S • 2oXI.S • lO.S 

X ::- TDI l. 
X.S • X.I ... IJ 

I I I 

X ::- TDI I. 
X.S • X.I 11M II 

_ ~~t~==~~~ __ ~~ ____ _ 
I C _ ----.--. __ .. 

I S I I I 

~)~ 
I I 1 I 

c;:3'-) ..... -~ __ _ 
I S I I I I 

~i~ ~ i~------' 
I I I I I I I I I • I 

--'G~"'" I Q' QI 'c¥ CYJ I c:;" 

Figure 2-1: Wba.t attributes are on the stack! synthesized vs. inherited. 

The path indicates evaluation order; labelled a.ttribute-instances are on the 

stacie when the evaluators locul 0/ control is at the tip of the path. 

GAG assumes that no production contains a reference to a right-part inherited attribute

occurrence for any potentially stacleable attribute X.I. Consequently, the last reference to 
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such an X.I is during the VISIT to that X-node and hence must correspond to a rerereoce 

to a left-part occurrence of X.I in some other production. Thus, X.I is pushed onto the 

stack in one production, where it is a right-part occurrence, and popped oU the stack in a. 

diUerent production, where it is a left-pa.rt occurrence. In order for this work correctly, all 

productions that have X as their left-part symbol must pop X.I before finishing that VISIT. 

When a right-part X.I is defined by a copy rule from a left-part X.I (i.e. X [1] . I • X[O]. I) we 

would like to not duplicate the current top of the stack; i.e. not push a new value onto the 

stack and then not pop it aU later. This would save some code and keep the stack from 

growmg. Unfortunately, this copy rule can be only be eliminated in some cases: when the 

production that contains the copy rule makes no reference to the left-part occurrence X[OI.I 

after VISITing X[I]. The reason for this restriction is that the VISIT to X[II will pop the 

X.I stack and if X[Ij.I was not pushed onto the stack before the VISIT then the value that 

gets popped will be the value corresponding to X[O].I. This can be allowed only if X[O].1 

will not be used again. 

:.:. Flndlng global vulables and global stacks 

To decide whether a transient attribute X.a can be implemented as a global variable or a -, 
global stack GAG checks whether each production that contains an occurrence of X.a 

satisfies certain sufficient conditions concerning how X.a is used in that production. If the 

appropriate conditions are satisfied for all the productions then X.a is implemented as a 

global variable or global stack, accordingly. Otherwise X.a is allocated space in the semantic 

tree. The sufficient conditions are given below, together with some illustrations. 

:.:.1. Sumelent conditions for global vulables 

We consider inherited and synthesized attributes separately. First, let X.a be an inherited 

transient attribute, defined before the i
th 

visit. to X and neVer referenced after that visit. 

Suppose production p has X as its left-part. X.a will not be implemented as a global 

variable only if, between the first attribute evaluation of the ith visit and the last reference 

to Xo.a, either: 

1. a right-part occurrence of X.a is defined, or 

2. some right-part node Y is visited and Y derives X. 

In the first ca.se, X.a certainly cannot be implemented a.s a glob&.! variable since the value of 

the right-part occurrence would overwrite the value of the left-part occurrence and the left

part occurrence still needs to be referenced. In the second case, GAG assumes that the visit 

to Y will result in a nested visit to X (in Y's subtree) and the evaluation of its attribute 

X.a. This also would overwrite the previous value of the global variable although it still 

needs to be referenced. This last assumption ma.de by GAG can be overly pessimistic; often 

global analysis can determine that even though Y is visited and Y derives X, no new 
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occurrence of X.3. will be evaluated. 

p : • Xo o I 1 • I 

~.)~ 
111.1 1 111. 

I 

'~ 
I 

_----- X 
1 I • I 

'9 
hr. 

Figure 2-2: GAG implement3 X.i as a global variable 

Synthesized transient attribute3 are examined in a similar fashion. Let X.a be an 

synthesized transient attribute, defined during the ith VISIT to X and never referenced after 

executing :::; VISIT
O 

to X's parent. For each production p having a right.-part occurrence of 

X, say X" X.a will not be implemented as a global variable only if, between the first 
J -

attribute evaluation following the i
th 

visit to Xj and the last reference to Xj .30, either: 

1. a left-part occurrence of X.a is defined. or 

2. some right.-part node Y is visited and either Y ... X or Y derives X. 

Figure 2-2 gives an example of an attribute, X.i, that GAG implement3 as a. global variable. 

An examination of the sequence VS pO in conjunction with the dependency giiph DpO' 

reveals that after evalua.ting XI.i, Xo.i is never referenced again. Alter examining all of the 

productions of the attribute grammar GAG concludes that. any two instances of X.i in any 

semantic tree will have disjoint lifetimes and X.i can be implemented as a global variable. 

[n figure 2-3, however, an examination of VS qO reveals that the lifetime of X1.i is nested in 

the lifetime of Xo.i. This makes it impossible to implement X.i as a global variable; XI.i·s 

value would overwrite the value of Xo.i although the latter value i3 still needed to compute 

Y.i. 

%.:.2. Sumelent eondltlon. for ,Iobal staeks 

Again we consider inherited attributes separately from synthesized ones. Let X.a be an 

inherited tran3ient attribute defined before the ith VISIT to X and never referenced after 

that 'I1S[T. and suppose production p bas X a.s it3 left-part. X.a can !!2l be made into a 

global stack only if there is a right-part occurrence of X in p, say Xj (j >0), and after 

defining Xj.a but before visiting Xj' Xo.& is referenced. In such 3. c~e the lifetime of Xj.a 

is not properly included in the lifetime of Xo.a; their lifetimes are intertwined. However, if 

Xj is visited before Xo.& is referenced then Xj.a's lifetime is properly included in Xo.a.'s 

lifetime; upon returning from the visit to Xj , the value of Xj.a is no longer needed since X.a. 

is transient. 

In figure 2-3, X.i can be implemented a.5 a global stack. Upon visiting the production ~, 
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X1·i would be evaluated by uSing the value on top of the X.i stack as the value of X
O

'I. 

XI·i's value would then be pushed onto the top of the X.i stack, where it will be referenced 

during the visit to Xl' Before returning from that visit the top of the stack is popped, 

once aga.in revealing the value of Xo.i. Upon returning to Qo this va.lue is used to compute 

the value of Y.i. The value of Xo.i can then also be popped off the top of the stack as it 

IS no longer needed to compute any other attribute-instances. 

<\0: I 1 I • i Xc, ----... X 
1 I • I 

----... y 
1 I • I 

· c?~. 
I 1 I • I I 

• • , 
.. I Y 

1 I • I 

Ten 

• 
VSqO • CEYAL X

l
.1) (VISIT Xl) (!;VAL Y.1) (VISIT Y) CEYAL Xo.,) (VIS ITo) 

VS
ql 

• CEYAL X •• ) (vISIT
o

) VS
p2 

• ClYAL X.I) (vISIT
O

) 

Figure 2-3: GAG implements X.i ~ a. global stack: 

On the other hand, figure 2-4 shows a production with transient attribute X.il that GAG 

does not stack. The problem is that XI.il is defined, and pushed on top of the stack, 

before the reference to Xo.il is used to define XI .i2, which in turn h&ppens ~~fore the 

VISIT to Xl that pops the X.il stack. 

; 11 I • I 12 i Xo 

:f3;l:x 
I 11 I • I 12 I 1 

• 

Figure 2--': A transient attribute GAG does not stack 

GAG's sufficient conditions for stacking synthesized attributes are a. little more lenient than 

for inherited ones. Sometimes these attributes are stacked even though their lifetimes are 

intertwined. The rule that a production must satisfy is that a synthesized attribute can not 

be stacked only if there a.re two distinct attribute-occurrences of X.s, Xi.s and Xj.s, such 

that 

1. Xi.s is defined before Xj.s, and 

2. the last reference to Xi.s occurs after the definition of Xj.s, and 

3. the last reference to Xi.s occurs before the last reference to Xj.s 

Note that for the purpose of this analysis the VISIT a that ends this VISIT to the 

production counts as the last reference to a left-part Xo.s. Notice further that, unlike the 

case for inherited attributes, there can be a reference to Xi.s between the definition of Xj.s 
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3.nd the last reference to Xj.s; figure 2·5 illustr3.tes such 3. case. GAG Implements X.5 >.S 3. 

global stack even though both XI.s and X2.s need to be referenced in order to define Yl 

d 'L To make these evaluations. GAG r~ferences the top _two values on the stack. an -i)'s, 

r: • Xo 
I 1 I • I 

.~-~-+.x, 
111.1 1 111.1 111.1 

I 

Figure 2-5: GAG allows reference to value within stack 

GAG does not implement all synthesized tr~ient attributes a.s stacks. In figure 2·6, for 

example, GAG does not implement XA.sl as a global stack. This IS becalUle after the 

computation of XAo.sl and XAo.s2, XAL .sl would no longer be on the top of the stack and 

could therefore not be popped orf the stack. 

figure 2-7. 

.: I Do 
I 1 I .1 I 12 I 

:f !?f XA 
I 1 I .1 I .2 I 1 
I I 

The same is true for the example in 

Figure 2-e: An example of GAG not stacking a synthesized attribute 

,: I 1 I • ; Xo 

.~k:=~,,-
111.1 1 I 1.1 111.1' 
• I I I I' 

~ • C!:VAL X
1

.1HYIIIT X1)(r:tAL X,.lHYIIIT X,)(EVAL fa· 1)(YIIIT fa) 
u.YAl. Xo.,) CV lIT Xol 

A second example of GAG not stacking a synthesized attribute 

!.3. Combining Global Variables and Global Stacks 

Once GAG has determined which attributes are to be implemented as global variables and 

global stacks it further attempt.! to optimize stol'3ge by combining several global variables 

into a single global variable and combining several global stacks into a single global stack. 

This policy can produce some startling effective optimizations. For example, figure 
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2-2 shows a grammar in which the two attributes (X.i and X.s) interact to slmuiJ,te 

updating a global variable during a left-to-right evaluation pass. After GAG determines that 

both X.i and X.s can be implemented as global variables, it decides that they can be 

combined into a single global variable. The evaluator generated by GAG uses a single 

global variable to store all the attributes of the semantic tree and this variable gets updated 

during the traversal of the tree. Combining global stacks can also have beneficial effects: if 

X.i and Y.i are both being implemented as global stacks and there exists a production 

p: X::=- Y with a semantic function ! Y.i - X.i I then we may be able to eliminate this 

copy rule by combining the X.i and Y.i stach. The elimination of this copy rule means 

that for every instance of p in the semantic tree, one less storage cell is needed. Similarly, 

combining X.i and Y.i global variables eliminates copy rules of this form. 

Not any two global stacks can be combined into one. For example, if X.i and Y.il of figure 

2-8 were being implemented as global stach they could not be combined into a single global 

stack a.s X.i needs to be referenced to evaluate Y.i2 after Y.il ha.s already been placed on 

the top of the stack. If Y.i2 were being implemented a.s a global stack a.s well, it could be 

combined with X.i. Similar comments apply to global variables. 

_--_IX 
r: 1 I • I 

.~z oY 
I 11 I • I 12 I 

I 

VS
r 

• erOJ .. Y.l1)(EVAL Y.12)(VISIT Y)(EVAL X •• )(VISIT
O

) 

Figure 2-8: X.i and Y.il stacks cannot be combined 

Furthermore, no 2 inherited or synthesized attributes of the same symbol can be 

implemented as the same global stack or variable, a.s demonstrated by figure 2-9. In this 

case, the X.il and X.i2 global stacks cannot be combined as upon visiting this production 

both X.il and X.i2 need to be referenced. In general, if X.i, Y.il, and Y.i2, are global 

stacks or variables, we can combine the X.i stack with Y.il or with Y.i2 but not with both. 

This gives quite a bit of choice on how to combine global stach together. Any combination 

gives rise to a partition of the global stach, where all the global stach in the same 

partition element will be made into one glob&! stacie. There are several criteria by which 

the efficacy of a partition could be judged: the total number of global variables and global 

staclcs needed, the number of copy rules eliminated, or the total amount of space used to 

implement all of the stacks and global variables. This la.st criterion would be good to use if 

storage optimization is our chief concern, but the space used will genera.lly depend on the 
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•• X 
11 I • I 12 I 

~JJ" 
1 I • I 1 I • I 

Figure 2-Q: No two attributes of the same symbol can share a global stack 

structure of the individual sema.ntic trees, which can only be approximated when building an 

evaluator. The other two criteria are static criteria that can be determined when building 

the evaluator. A partition that eliminates the grea.test number oC copy rules will not 

necessarily result In the least number of global variables and global stacks, as illustrated by 

rigure 2-10. 

The number of stacks used is not a. very important measure of storage efficiency since there 

will be at most some constant number of stacks anywa.y, &nd each one will contribute only 

a consta.nt amount of overhead. The key measure is the total number or stora.ge cells these 

stacks will use. Eliminating a copy rule {rom a production means that (or eaeA occurrence . 
of that production in a semantic tree one less storage cell will be used. Hence total number 

of copy rules eliminated is a better measure. Unfortunately it is an NP-complete problem 

to determine the optimal wa.y to combine the global stacks and vars so to eliminate as 

many copy rules as possible, as shown in the a.ppendix. 

To determine how to combine global variables and global stacks GAG uses a lir8! lit 

strategy that combines together any two stacks or variables that can be combined. It does 

no analysis of any expected savings gained by doing this combination ve~us some other, 

incompatible, combination. 

'1: X ::- Y "n1. 
Y.a - X.a; 
Y.' - cou\aat: 

«X .... Y.a>. (I.a.X .• >. U.'.Y.'» 

A partition eliminating flU 9 copy rule8 flnd u8ing 9 global variable., 

'2: X ::- Z \.r.2. 
Z.a - X.,: 
Z.' - cou\aa\; 

'I: Y ::- Z t.raa. 
Z.a - oou\&&t.: 
Z.' • Y.'; 

({X.a.Y .... Z.&). <X.'.Y.II.Z.IIH 

A pflrtition eliminating onlr e copy rulu, but u8ing e global variable., 

Figure 2-10: Two different partitions of global variables X.a, Y.a, Z.a., X.b, Y.b and Z.b 
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3. LINGCIST-8~ 

LINGUIST-86 IS an AG-based translator-writing-system that generates attribute evaluators 

that use the alternating pass evaluation strategy [7). These evaluators store a linearized 

version of the semantic tree in intermediate files on secondary storage, and so they avoid 

using la.rge amounts of main memory to represent the semantic tree. LINGUIST-88 

attempts to further improve the use of storage by its evaluators through an optimization 

called .!tatic .!ub"umption. This eliminates copy-rules and decreases both the stack space 

needed to evaluate an attribute grammar and the size of the intermediate files. 

3.1. LINGUIST-8ft evaluation paradIgm 

The basic idea of LINGUIST-88's evaluation paradigm is that when a semantic tree node, N, 

is VISITed during attribute evaluation it is read from the intermediate file onto the top of a 

stack in memory. N is kept on the stack while the sub-tree descended from N is visited. 

The nodes of this sub-tree get stacked on top of N and attribute-instances in that subtree 

are assigned values. The evaluation of the sub-tree may use the values of some attribute

instances of N and may define other attribute-instances of N. When the evaluation pass over 

N's subtree is finished N is written to the intermediate file and popped off .t.he stack. 

Because of the the evaluation order, the nodes of N's subtree will have already been written 

out and removed from the stack. LINGUIST-86's paradigm for semantic tree traversal and 

attribute evaluation in a left-to-right pass is given in figure 3-1, which describes the process 

of VISITing a sub-tree whose root is an instance of XO. 

rtad ,11 ,ttrib. ot Xl tro. In,Qt tl1. onto .tack 
tyal inhtrittd ,ttrib. ot Xl for t~i. , ... 
Yi.lt t~t 'Q~tr •• I~O" root 1. Xl 
.rit. ,11 ,ttrlb. ot Xl to OQt,.~ fll. 

rlad all attrlb. of X2 fro. lap.t fll. oato .tack 
tyal inh.rit.d attrib. of X2 for t~. , ... 
• i.it tal 'Q~tr'l lao •• root 1. X2 
Irit, all ,ttrib. of X2 to o.tp.~ fll. 

rlad all ,ttrib. ot xa fro. 1.p.~ tll. o.to .tack 
I.al 1".rlt.4 ,ttrib. of xa for t~. , ... 
yl.tt tal •• ~tr' ...... root i. xa 
.rlt, all attrib. of xa to o.~", fll. 

1 .. 1 'rata,.11.4 ,ttrib. of XO 

,0, all ,ttrlb. of Xl ... xa off top of .tack 

r.t.,. fro. Yi.ltl" •• ~~r •• rooted at XO 

Figure 3-1z Attribute Evaluation Paradigm of LINGUIST-86 

This evaluation paradigm calls for reading nodes in prefix order and writing them tn postfix 

order. Two intermediate files are used per pass: semantic tree nodes are read from one 

intermediate file and written to the other intermediate file. The output file of a left-to

right pass is a left-t<?right, postfix ordering of the nodes of the semantic tree. The input 

file for a right-to-left pass IS a right-to-left, prefix ordering of the semantic tree nodes. 
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Thus. if the output file of a. left-to-right pa.ss is read backwards it can be used a.s the l:lput 

file for a right-to-Ieft pa.ss. The same is true for a right-to-Ie!t pass followed by a left-to

right pass. This trait is illustrated by the diagram below. 

1.tt-to-r1,~t ---) 
pretu 

(--- rl,~t-to-l.tt 

po.uu 

• , B l C E DeL 8 r I J 

I 

I , 
I 
I I 

I I 
B E 
I I 

I I 
I I I 
A C D 

• I 
I 

I 
a 

I 
H 

I 
L 
I 

I 
r 
I 
I I 

I 
J 

LINGUIST-86 generates in-line code to read &nd write sem&ntic tree nodes and to evaluate 

sem&ntic functions. This code is organized as a set of mutually recursive "production-

procedures" . 

procedure. 

For each production &nd for each pa.ss, there is a separate production-
.' 

These are partitioned into: the set of production-procedures that are used for 

pass 1, the set used for pa.ss 2, the set used for pa.ss 3, etc. Each production-procedure has 

one value/result parameter. a semantic tree node, that corresponds to the left-part of the 

production. Space for the production's right-part semantic tree nodes are allocated a.s local 

variables a! its production-procedures. Thus, the stack of semantic tree nodes is intermixed 

with the system run-time stack that suppor~ procedure call/return, parameter pa.ssing, and 

recursion. The body of each production.procedure does the following: 

- read right-part semantic tree nodes from the input intermediate file, 

- compute values by evalua.ting semantic functions and use these to define attribute-

instances, 

. call production-procedures to VISIT right-part sub-trees, and 

. write right-part semantic tree nodes to the output intermediate file. 

This organization is similar to that of ~ recursive descent compiler. A simple production 

and the corresponding production-procedure for a left-to-right pa.ss is shown in figure 3-2. 

In this scheme transient attributes are dealt with quite ea.sily by just not reading them from 

or writing them to the intermediate file. The attributes of each symbol are pa.rtitioned into 

significant and transient attributes depending on whether or not the a.ttribute will be used 

in a later pa.ss than the one during which it is defined. Only the values of significant 
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XO ::. Y XI. 
X1.I • XO.I, 
Y. I • XO.1. 
XO.S • Xl.S, 
X1.PU: • U1I1ollS't.otCY.aBJ,XO.PW, 
XO.POST. IlIcrltTrll,(I.IlI(Y.I,Xl.PW,Xl.POST); 

proc.dllr, P14 PP1 (VAl XO : X ~TPI); 
,. ~1l1. i'lI r1,U-to-ht\ PUt ., 

VAl Y : Y_~TPI; 
Xl : X_ ~TPI: 

b'Cia 

G,Uoct, (X) ; 

X1.1 • XO.I: 
X1.PU. UlIio.slt.otCY.aa.z,XO.PW; 

P?i( X ); ,- Vi.i" Xl ., 
"'\toct, 00; 

G,Uoct, CY) ; 
Y.I • XO.I; 

P?1( Y ); 

"'\toct, m ; 

XC.! • XL!; 

,. VlI1\ Y ., 

Xl.POST • IlIcrltT~.(I.I.CY.I,Xl.PIlJ,Xl.POIt): 

.. 4 PU_P?1: 

Fisure 3-2: A production-procedure generated by LINGUIST-86 

attribute~ are tran~fered between the intermediate file~ and the ~tack. In a LINGUIST-8&

generated a.ttribute evaluator all tran~ient attributes a.re implemented on a single stack. 

'. 
Being a.ble to keep the semantic tree on secondary storage and not in malO memory IS an 

important, integral part of LINGUIST-86's evaluation paradigm. However, there are other 

aspects of LINGUIST-86's storage optimization strategy that we wish to analyze and 

compare with GAG's strategy, such a.s static subsumption and the stack-implementation of 

transient attributes. Thus it is useful to notice that LINGUIST-86's pa.radigm could easily 

be modified so that the semantic tree was kept in main memory; simply ~e a large buffer 

rather than the intermediate file. 

3.2. Statle SubsumptioD 

In LINGUIST-86's ba.sic pa.radigm, the varIous production-procedures communicate with one 

another by pa.ssing a pointer to the stack-re~ident ~tructure~ that hold the values of 

attribute-instances. The principle behind static subsumption is that this communication can 

be achi~.!.ed just as well by copying the value~ of attribute--instances from the stack to 

specific global variables. Consider the production-procedure for a production with symbol X 

a.s its left-part. Suppose that the value of any instance of inherited attribute X.I ~ always 

copied to global variable X_I just before VISITing an X-node. Instead of acce~ing the 

value of X.I as a field of its V AR parameter, the production-procedure can now access 

global variable X _ I for the value of th~ left-part attribute--instance. Similarly, if the 

production-procedure define~ left-part ~ynthesized attribute X.S by assigning a value to global 

variable X_ 5, then any production-procedure containing X in its right-part can use this 
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global va.ri~ble. either to copy it into the local. stack-resident structure ror a node. or to use 

it in the evaluation or semantic functions. 

In most cases, copying attribute-instances back and forth is more expensive than passing a 

pointer and making indirect references through it. However. if the semantic function that 

defines an attribute-instance IS a. copy-rule whose right.-part is a diUerent instance or the 

same attribute then no explicit code is required to implement this semantic function. The 

proper value is already in the global variable. We say that such a. copy-rule is "subsumed" 

by the static allocation of the attribute, Figure 3-3 shows a simple example of how copy

rules can be subsumed; the subsumed copy-rules are commented out. 

10 ::. T Xl. 
X1.I • XO.I. 
T.I • 10.1. 
XO.S - Xl.S. 
X1.!"U • Ua1o..s.t.otCY.CDIJ,XO.PW. 
XO.POST • IacrltTra.(I.IaCX1.S,Xl.PIE).Xl.POST): 

procedar. P14 PP1 (VAl xo : X tnl): '0 \U. 1. & r1p\-w-ht\ ,.81 0/ 
VAl T : T _ \JJe: 

Xl : X_\nl: 

~'C1. 

C.UocI, CX) : 
'-X1.I:- XO.I: 0/ 

Xl-PRE :- UaiO.slt.otCY.CDIJ .XO.PIE): 
PP1( X ): 
hU04I. CX) : 

G.U04lm; 
T 1:- X I; 

PP1ry); -
Pnlod, CY) ; 

'0 XO.S :_ XI.S; 0' 
XO.POST • IacrIfTral(I.IaCX S.XI.PI!).XI.POST): 

lad P14 _"1: 

Figure 3-3: An example of static subsumption. X.I, Y.I a.nd X.S are statically allocated. 

The penalty for eliminatins this explicit cOPYlDg IS paid at thO!e points where the static 

~ttributes are not defined by subsumable copy-rules. In these cases a new value must be 

assigned to the global variable for propagation to the sub-tree. However, the previous value 

of the global vuiable is not. "dead"; it may still be used later by this production-procedure. 

or by a production-procedure at some ancestor node. Hence the old value must be saved in 

a temporary variable in the production-procedure's stack-frame. Sometime after VISITing 

the subtree but before exiting this production-procedure the saved value must be restored to 

the global variable. Figure 3-4 shows the production-procedure of the earlier example 

modified as would be required if attributes X.PRE and X.POST were statically allocated to 

global variables X PRE and X POST. 
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I at.t.riIlTTP'; 
I: at.t.riIlTTP'; 
S at.t.rtIlTTP'; 
P«t at.t.rthTTP'; 
POSf'"_ at.t.r1I1TTP'; 

,ro~,dur_ P14 "1 (VAl XO : X t.TP'); 
/. t.1ai. i' a r1,IIt,-t.o-hlt. pa ... , 

VAA 
Y : Y_t.n'; 
Xl : X t.n-; 
X Pili: W : '"Pili: aUriIlT",; /. IU, oop, of hft.-,a" nl .. of X Pili: ./ 
X:PIU::f" ZijP : PlIE-at.t.riUTP'; ,. holcl ~op, of r1,1lt.-,art. nl .. of X:PlIE ., 
X_PCSU-_ZijP : POSf"_at.t.riIlT",; ,. kolcl 00" of r1tllt.-,U't. nl .. of X_POST 0' 

b"b 

G.Uod.O(1) ; 
,. Xl.1 • XO.l 0' 

X pm ZijP. UalollS.tot CY. Q!J, X PI!!:); 
X - PI!! ~ • X PI!!; X PI!!' X '"Pac ZQP; 

P!'1rXl ); - - --

X PI!!' X PIE W; ,. rutol'l nl .. ot XO.PRE 0' 
X-POST2 %fit."} POST; ,. Cla,ta,.. .u .. of X1.1'05T '0 1t. 1 .. ', lo.t. .k .. VISITtac Y 0' 

puf"od.O(1); -

G.Uod.m; 
Y I' X I; 

P!'1ry ); -
P",.od. CY) ; 

'0 XO.S • Xl.S; 0' 
X _1'CII1 • I.GrIt (II Ia ex _ S,X _PII2 _ZlilP) ,x _I'CII12 _ZlilP): 

.. 4 P14_"1: 

Figure 3-4: An example of the cost." of static subsumption. 

. . 
The need to save/restore the global variable of a statically allocated attribute is especially 

burdensome in the Ca.:5e of synthesized attributes, and LINGUIST-86 is not very good about 

subsuming copy rules between synthesized attributes. Even if synthesized attribute X.S is 

statically allocated, a copy rule [XO.S - XI.S] will be subsumed only if: 

- it is evaluated during a left-to-right pass and Xl is the right-most symbol of the 

production, or 

- it is evaluated during a right-to-Ieft pass and Xl is the left-most symbol; 

I.e. only if no other sub-tree is VISITed after VISITing Xl. This is because LINGUIST-86 

does no global analysis to determine whether a particular VISIT will a.:5Sign to the global 

variable, hence any useful value in that variable must be saved before the VISIT and 

restored alter it. Only when no VISIT intervenes between the definition of the global 

variable (during a VISIT) and the use of that variable (to define a left-part attribute 

allocated to the same global va.riable) will the varia.ble not be saved/restored a.nd hence be 

eligible for subsumption. 

Static subsumption can be even more widely applied by allocating several different attributes 

to the same global variable. The major restriction is that two different attributes of the 

same symbol can not be allocated to the same global variable. Ma.ny more copy-rules are 

subsumabie by such a. strategy and hence can be eliminated. In the example above, X.I a.nd 

Y.I could be allocated to the same variable, thereby ena.bling us to eliminate the copy-rule 
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N.I • X.I]. On the other hand. global variables may have to be saved/restored more 

frequently. In general. the extra code necessary to save/restore a global variable is as much 

as the code saved by subsuming several copy-rules. 

Static subsumption can also reduce the amount of space needed to store attribute-instances. 

When an attribute X.A is statically allocated no field is needed for it in X nodes. This can 

result in significant decrease both in the stacie space needed for semantic tree nodes and in 

the size of the semantic tree file. However. stacie space will be needed whenever a right

part occurrence of X.A is not defined by a subsumable copy-rule because then the global 

value must be saved in a local variable on the stacie. 

3.:.1. DeterminIng stade aUoeation ot attributes 

LINGUIST-86's static allocation paradigm calls for us to decide, for each attribute, whether 

the attribute should be statically allocated, and if so then with which other statically 

allocated attributes should it be combined. In making these decisions LINGUIST-86 tries to 

save as much code space as it can by eliminating copy-rules; it tries to maximize the net 

code space savings of subsumed copy rules minus extra code necessary to save and restore 

global variables. This is a combinatorial problem that. is infeasible to solve exactly (or any 

realistic number of attributes. Instead, LINGUIST-86 uses a heuristic in order to narrow 

the search space and then uses a polynomial-time approximation on the resulting, smaller. 

problem. The heuristic is that if two attributes with the same name, say X.FOO and 

Y.FOO, are each statically allocated then they will be statically allocated to the same global 

variable. This substantially reduces the complexity of the problem: (or each attribute 

X.FOO LINGUIST-86 only needs to decide whether it should be static. If it is static then 

it will sh3re storage with all the other attributes Y.FOO that are also static. 

This reduced problem is still NP-complete and the way LINGUIST-86 solves it depends on 

how many a.ttributes there are with a given name. The attributes are partitioned into 

classes with the same name and the member.! of each cl~ are analyzed independently from 

the member.! of any other cl~. If there are 13 or fewer attributes in a class then 

LINGUIST-86 examines each of the 213 possible combinations looking for the "best" one. 

Otherwise, the polynomial-time approximation described below is used. The "best" solution 

IS the one that saves the most code space. 

If there are more than 13 attributes in a given cl~ then LINGUIST-86 stam by assuming 

that all attributes in the class are statically allocated. Each attribute is then checleed to see 

if it cos~ more in code size for it to be static than it would if it were normally allocated. 

This check is based on how many copy rules would no longer be subsumed if the attribute 
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were not sta.tic, versus how many times the attribute would no longer have to be saved and 

restored. LINGUIST-86 assumes that it t:lkes three subsumed copy rules to offset a single 

save and restore, even though this assumption is overly pessimistic in many cases. 

If so indicated, the attribute is removed from the statically allocated set. When an 

a.ttribute is changed from being statically allocated to being allocated in the semantic tree 

node it can become more expensive for other attributes to be statically allocated. Hence, all 

remaining static attributes must be reexamined until the process stabilizes. This is an 0(n3) 

algorithm and it does not alwa~ find an optimal set of attributes to statically alloca.te. 

3.:.:. Static alloeatioD ot slgnlneant attributes 

The static subsumption paradigm does not require that the static attributes be transient; 

LlNGUIST-86 can statically allocate signirica.nt attributes. A significant, static attribute does 

not take up space in the sema.ntic tree except at those places where the value of a.n instance 

of the attribute is changed, i.e. where an instance is defined by other tha.n a. copy rule. 

There the previous value of the static v&riable is saved !:1 the sema.ntic tree as a. temporvy 

value that is associated with the production, rather tha.n associated with the symbol (i.e. 

node). eo 

The implementation of a significant, static attribute is the same as that of a transient static 

attribute for the pass during which the attribute is defined. On later passes the treatment 

is similar in that, upon entry to a production-procedure, the value in the global variable is 

saved in a stack-resident temporary whenever the static attribute is r.:;defined by a non-copy 

rule. However, the treatment is different in later passes in that the global variable is 

redefined with the value that was computed earlier a.nd W8.'5 saved in the semantic tree. 

Figure 3-5 shows the situation of figure 3-4 if X.PRE were a significant attribute. The 

production-procedure PP14 _ PPj shows the implementation of X.PRE on passes after X.PRE 

is computed. 

This strategy will only save code space, i.e., eliminate enough copy rules, if the value of the 

attribute is not changed very often. For a significant attribute the code needed to save and 

restore the global variables must be generated in several passes, whereas t.he copy rules that. 

can be eliminated still occur in only one pass - the one during which the attribute is 

deCined. Thus, a significant attribute will be statically allocated only when the subsumable 

copy rules greatly outnumber the non-subsumable definitions. For instance, in the Pascal 

AG written for LINGUIST-86, only three a.ttributes (out of 892) are both statically allocated 

and sign ifican t. 
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1 &~~rnT",: 
1- &ur1bT",: 
S-'~tribTTP': 
P~ ,"r1bT",: 
POSf"_"'r1~TTP': 

proc.clu, P14 "1 (VAl XO : X,,,,): '0 ~k1. 1. a rlp,-w-let' pu. 0' 
VAl 

Y Y_,,.,.: 
Xl X_ t.".: 
X PIlE QZJ' : ~ auribT".: '0 un COPJ ot lett.-part. ftl .. ot X_I'U 0' 
x:nd"_zQP : 1'U:&Url~TTP'; '0 Mld OIIPJ ot rl.~'..,art. ftl .. ot X_I'U 0' 

hru 
a,UM,O(1) : 

,- Xl.! • m.I 0' 
X l'IC ZQP. lJa1o",t.ot CY. aaJ. X !'!IE) : 

X-PIE ~ • X PIlE; X PIE' X"u:z v;,: 
"1rXl J: - - --

X PIE' X !'lIZ QZ1; "dOoi. OCl) ; - -

Gnloum: 
Y I' X 1; 

PP1ry): -
"UM.cy): 

"',Upin.,. OC _ PII:Z _ zaP) : 
.... P14_"1; 

~'rU 
~.t.S1p1n.,. OC _ PII:Z _ ZII') : 

anlo4. OCl) : 
X PIE QZ1. X I'U; X pu. X PII:Z ~: 

PP1rX1 J: - - --
X PIE. X I'U QZP; ,- r ..... ,. ~ •• ot XO.PIZ ., 
X-POST2 %Qp."I POIT; ,- Cla,uJ'e ~ .. ot X1.POIT .. 1\ 1 .. ', 10., .~ .. VIIlT1a( Y 0/ 

ht."'ocI. OCl J: -

a'UM' CY); 
"iC y ); 
hUM' CY) ; 

,- m.s • Xl.l; -, 
X_POST' IacrUChIaa_I,X_J'IZI_Zlr).X_POIT2_ZII'); 

, .. P14 PP1; 

Fisure 3-51 Static allocation of significant attributes. 

4. ComparlDI the emeaey of GAG and LINGUIST-8ft 

In order to see how well the va.rio~ storage optimizatio~ work, and to compare their 

effectiveness, we would ideally like to take several attribute gramm~ &nd generate attribute 

evaluato~ (rom them with both systems &nd then compa.re the results. Unfortunately. the 

two ~tems accept quite different input (arms with respect to such features a.s: type 

structure, built-in functions, special default and ,horl .. l&tind notation, etc; SO much so that the 

existing attribute gramm~ (or each system would have to be substantially rewritten in 

order to be accepted by the other system. 
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The next best form of comparison would be to take a pair of attribute grammars tha.t 

describe the same (or very similar) translations and look at how much c:a.ch system ca.n 

Improve the time-efficiency and space-efficiency of the attribute evaluators it generates over 

the efficiency of unoptimized versions of those evaluators. However, it can be misleading to 

compare these figures for GAG and LINGUIST-86 because the two systems are targeted to 

such widely diUerent computer systems. GAG generates evaluators for large main-fra.me 

computers with 32-bit words, multi-megabyte address spaces, and virtual memory. 

LINGUIST-86 generates evaluators for micro-computers with ll>bit words, address space in 

the range of 100-500 kilobytes, and no virtual memory. For example, when we find that 

LINGUIST-86's storage optimizations have no perceivable eUect on running time, is it 

because too few instructions were savedr or because LINGUIST-8l>generated a.ttribute 

evaluators run in an environment where they are I/O bound anyway and have no 

mechanism for trading space for time (i.e. a virtual memory system)r 

The comparLSOn we do think meaningful is to relate the effec~ of storage optimization in 

tel'IIl3 of the input attribute grammar, i.e. the attributes and semantic functions. Shown 

below are such statistics for two attribute grammars for P~cal, one designed to be input to 

GAG and the other designed for LINGUIST-86. Keep in mind that these are different 

attribute gramm~. Although other attribute gramma.rs have been written for both 

systems, these two are the ones that describe most nearly the same translation and for 

which reasonably compatible figures are available. The figures for GAG's grammar are from 

[10, 11; those for LINGUIST-86's grammar are from [51.2 

~ LIICUIST-88 

t4t&l • aUr1h all a_ 

• attri~. 1a 104 •• 52 (111) 1M un) 
(i .•. .0' opti.il.4) 

• a'tr1~. .. ,lo~&l Yar 211 ml) 
• a'tri~. .. .taokl .. Ull) 

• tr&&li.,t attr1~. 712 (m) 

• .t,Uo aUriN 117 (411) 

t4tal • • .... t10 rtl •• - 2OaO 

• coprnl .. 727 (741) 1147 (671) 

• coprnl .. tl1a1aatM 172 7" 
I of all ..... t10 nl •• aft a71 
I of con-nl .. III 861 

This data immediately sugges~ two observations: 

- the strategies of each system are reasonably effective, 

2The GAG figures reflect the options of expanding INCLUDINGs, and uniting a stack 
together with a global variable. These are the choices most nearly compatible with what 
LINGUIST-86 does. 
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the degree of optimiza.tion performed IS quite similar between the two systems. 

This second point should not be too surprising for both systems have much the same 

underlying philosophy. The essentials of this philosophy, as contrasted to other approaches 

suggested in the literature, are: 

- Both GAG and LINGUIST-S6 systems are satisfied to mlOlmlZe storage 

requirements even if they ca.nnot find the best solution to the problem. Contrast 

this to the exhaustive analysis of global storage allocation presented in [61. 

Neither system will evaluate any attribute-insta.nce twice, hence there is no 

space/time tradeoff. On the contrary, some of t.he opt.imizing t.echniques (static 

subsumption of copy rules) also eliminate the need to copy duplica.te values 

around the tree. Compare t.his to the algoritlum given by Reps 1141 which bound 

the number of at.tributes ever needed to be stored a.nd accessed simultaneously 

but which may require multiple evaluation of attribute-i~ta.nces. 

- Both GAG a.nd LINGUIST-S6 build "static" tree-walk evaluato~, with the 

evaluation order at each production completely determined. Contrast this with 

the attribute evaluation paradigm described by Katayama [Ill. or with the similar 

paradigm implemented by Jourda.n lSI. This paradigm also calb (or transient 

attributes to be allocated on a stack in much the same way as for LINGUIST-ge. 

However, this paradigm deals with significant att.ributes by re-evaluating t.hem on 

each VISIT during which they are used. Furthermore, this is a more "dynamic" 

paradigm that does much less analysis of ultimate evaluation order, a.nd hence 

does not do as much storage optimization; nothing similar to copy rule 

sUbsumption is done, for example. 

- The optimizations used in GAG and LINGUIST-S6 are precompiled into the code 

of the evaluator and are tree-independent; no extra run-time analysis of a 

semantic tree is needed to apply the opt.imizatio~. 

- Both approaches are flexible: they &lIow at.tributes to share storage celb even if 

not Gil of their occurrences will have the same value or disjoint lifetimes. 

- Both. although GAG moreso than LINGUIST-Se, take their evaluation strategy 

into consideration when deciding upon which attribut.es should share storage. 

Despite these similarities 10 underlying strategy, GAG and LINGUIST-S6 are different in 

many respects. Most of these differences are incidental and contribute little to the total 

effectiveness of the ~tems. However, there are a few substa.ntive differences that suggest 

how one or the other, or both, systems can be improved. These will be discussed in 

section 4.2. But fi~t. let us examine the important features of storage optimization as 

performed by both GAG and LINGUIST-86. 
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4.1. Analysis or storage optlmlzntlons 

For both GAG and LINGUIST-86 the issues for storage optimization can be characterized as: 

1. Whether insta.nces of an attribute should be implemented as: 

a. components of semantic tree nodes, or 

b. elements of a stack, or 

c. values assigned to a global, static variable. 

2. For attributes implemented a.:5 !5tacb, how deep will the !5tach grow, I.e. how 

much memory will they require. 

3. Which of the attributes that are implemented a.:5 stacb or variable!5 can be 

combined together in order to: 

eliminate copy rules, or 

- reduce the number of stach and variables. 

The!5e optimizations affect how much memory is needed for the evaluator's data, a! well 8.!5 

the code size of the evaluator (eliminated copy rules, pushinS and popping !5tach, etc.). It 

:s our oplDlon that the effects on data storage are far more important than the effects on 

the evaluator's code, either the memory needed to store this code, or the time nees.ed for its 

execution. 

The evaluator's code IS independent of the !5ize of the semantic tree; it does not grow with 

the size of the input string being proce~ed. Experience with both GAG and LINGUIST-86 

is that memory needed for the evaluator'!5 code is much less a problem than the memory 

needed for the semantic tree. 

The time !5aving!5 of eliminated copy rules i!5 a130 not !5ignificant; in [21 the effect on running 

time of not eliminating any copy-rules is reported 8.!5 being too !5mall to notice. The GAG 

researchers also report [1], [101. p.67 that the effect on run-time of GAG's attribute storage 

optimizatioD3 W8.!5 minimal. 

The most important goal for the!5e optimizations IS to keep attribute" from being component" of 

lerrtantic tree nodu. The big savings in spa.ce comes from not having to keep all instances of 

an attribute simultaneou!5ly allocated in the semantic tree. 

Next in importance is to keep the stach from growing too large. This is especially 

important if the generated evaluator processes lists of elements (e.g., lists of statements) by 

recursively VISITing the elements on the list rather than iteratively VISITing them. The 

best way to keep stach !5mall is to implement an attribute 8.!5 a global variable rather tha:l 

as a !5tack. Eliminating copy rules also helps to keep stach small since a copy rule that 
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ca.n be elimina.ted is pushing 3. [redundantl value onto some stack. By this re:l.Soning, 

eliminating copy rules whose source and target are both the same global variable is not very 

useful. 

Combining global variables and combining stacks is not very effective except when it 

eliminates copy rules between stacks. The storage overhead for uSing one more global 

variable or one more stack is quite small - a couple of words at most. The number of 

different attributes is quite small, relative to the number of attribute-instances in a. semantic 

tree. The decrease in storage possible by combining stacks and global va.riables is probably 

no more than 400-S00 wor&, and is likely much less. Combining stacks is only useful when 

it allows us to eliminate copy rules; combining global variables does not save much storage. 

Thus, we feel that the following should be the major goab of an attribute storage 

optimization strategy, listed in order of importance. 

1. allocate as few attributes as pos:sible in the semantic tree nod~, 

2. implement as many attributes as pos:sible as glob&! variables, 

3. keep attribute stacks shallow, 

4. combine attributes implemented as stacks so as to eliminate redundant PYSH 

operations, and so help keep stacks shallow. 

Let us now consider how GAG and LINGUIST-86 differ from one another in achieving these 

goals. We will also consider how one system may be able to borrow more effective ideas 

and techniques from the other. 

4.%. Substantlve dlrrerenees between GAG and LINGUIST-8ft 

4.%.1. Transient attributes. 

The most important goal is to keep attributes from being implemented as components of 

semantic tree nodes. The attributes GAG will implement as either stach or global variables 

must be transient, but not all transient at.tribut.es can be so implemented. On the other 

hand, LINGUIST-86 implements all transient attributes either on the stack or as static 

variables, and can also do so for a few significant. attributes. Thus one might t.hink that 

LINGUIST-86 would allocate fewer attributes in the semantic tree. Nonetheles:s, GAG 

optimizes 87% of its attributes, versus 82% for LINGUIST-86. We believe this is because 

GAG's strategy of ardered attribute evaluation is much more flexible than LINGUIST-86's 

alternating-pass evaluation. An a.ttribute that is 'igni/icant under a.lternating-pass evaluation 

can be tranlient under ordered evaluation. For example, in figure 4-1, since Y.i references 

X.i but must be defined on a later pass than X.i, X.i is not a transient attribute under 

alternating pass evaluation. An ordered evaluator could visit first Xl' then ~ and then y, 
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Figure 4-1: X.i is transient only using an ordered evaluation strategy 

and so make X.i into a transient attribute. 

".2.2. Global variables. 

GAG can implement a transient attribute as a global variable rather than as a stack. 

LINGUIST-86 only uses stacks; it does not implement attributes as global variables. Even 

when an attribute could be implemented as a global variable the best LINGUIST-86 does IS 

to statically allocate it. This results in saving and restoring attribute-iIUltances needlessly. 

LINGUIST-86 should implement attributes a.s global variables. Th~ would substantially 

improve LINGUIST-86's stack requirements, especially for I~t cOIUltructs that are VISITed 

recu~ively. One way to do this within LINGUIST-86's framework ~ to determine when a 

statically-allocated variable need not be saved and restored. However th~ wou1d require 

that information describing how attributes are used be propagated from one production to 

another and LINGUIST-86 does not do this. An alternative is to incorporate GAG's 

algorithm for finding global variables into LINGUIST-86. This would also be a non-trivia.l 

change to LINGUIST-86 since the evaluation order at a production would need to be 

computed before storage optimization is done. Either way, LINGUIST-86 needs to do more 

global analysis. 

".2.3. Popping from abo~ versus popping from below. 

LINGUIST-86 allocates and de allocates space for attribute-instances in the same procedure, 

and saves and restores static variables in the same procedure; GAG pushes values onto an 

attribute stack in one production and pops values off the stack in a different production. 

Let us refer to th~ difference as popping from above ve~us popping from belO1fJ. Each strategy 

has advants.ges and disadvantages. Popping from below, implemented by GAG, can save a. lot 

of stack space a.s illustrated by figure 4-2. In this example, GAG implements X.i a.s a. 

stack. Since X can derive itself, the stack could grow a.s the height of the tree. By 

popping Xo.i off the stack {rom "below" before visiting Xl' the stack will have height I 

whenever Xl is VISITed. However, "popping from below" can cause many attributes not to 

be implemented a.s a stack that could be so implemented if GAG would pop from above 

instea.d. Figure 4-3 illustrates such a ca.se. In this example, GAG would not make X.i into 

a stack as XI.i'g value is needed after the visit to Xl. Furthermore, a.s wa.s discussed in 
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section '2.1. this stra.tegy also Inhibits the elimina.tion of many copy rules. 

• • Xc p: I 1 I • I 

~)~ 
1 I • I I 1 I • 

_________ I 

Figure 4-2: An example where 1'C1J'ping from bdow IS advantageous 

I • Xo 
q: I 1 I • I 

~~.Y 
11.1 1 111.1 

• 

Figure 4-3: An example where 1'07lping from dove is advantageous 

On the other hand, t.he rea.son that LINGUIST-88 is able to stack all transient attributes is 

because it keeps t.hose attribute-i~tances on the stack for a relatively long time. For 

instance, LINGUIST-86 allocates stack space for a synthesized attribute-instance before 

VISITing t.he sub-t.ree that will define that attribute-instance, even though that value will 

not be defined until just before the end of t.hat VISIT. In the interim, which can be quite 

a long time, that place on the stack is not being used. GAG would avoid pushing that 

value onto the sta.ck until just prior to finishing the VISIT, if it was able to stack the 

att.ribute in the first place. 

The diagra.m of figure 2·1 showed which attribute-i~tance!5 would be on a stack when GAG 

was visiting a node. It is reproduced below in figure 4-4, changed to show which at.tribute

instances LINGUIST-88 would have on it" stack when visiting t.ha.t node. There are many 

more stacked nodes for LINGUIST-88. 

For GAG there is ,. simple addition t.ha.t get" the best of both techniques: use a fourth way 

of implementins attributes, global stacks that are POfIPe4 from (lbm/e. If an attribute can not 

be implemen ted a.s a stack if it is PC1J'1'ed from OdOV1 then check to see if it can he stacked if 

the 1'C1J' from above convention is used. This does not increa.se the stack space needed by any 

a.ttribute that is etacked by GAG's current policy, but it does allow more attributes to be 

stacked. 
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Figure 4-4: What attributes are on the stack for LINGUIST·86 ! 

The path indicates evaluation order; labelled attribute-instances are on the 

stack when the evaluators locul 01 control is at the tip of the path . 

•. ! .•. Comblnlns attributes to eliminate eop1 rules. 

GAG combines attribute stacks and global va.riables (section 2.3); LINGUIST·86 statically 

allocates diUerent attributes to the S&IIle nriable (section 3.2.1). Both of these optimizations 

allow copy rules between diUerent attributes to be subsumed. GAG's policy" for such 

combinations is a simple lirlt lit, wherea.s LINGUIST·8~ analyzes how many copy rules ca.n 

be subsumed by various combinations, and combines only attributes with the same name. 

Because it does more analysis LINGUIST·8~ subsumes more of these copy rules. Of course, 

since LINGUIST·86 only subsumes copy rules between attributes with the same name, it 

would never subsume one such as [X.A - Y.BI and GAG could. Looking at the figures for 

the two Pascal attribute grammars, though, GAG subsumed 51% of its copy rules and 

LINGUIST·86 subsumed 65% of its copy rules; thus indicating that this latter situation is 

relatively rare. 

GAG decides how to group stacks together without considering how many copy rules will be 

eliminated as a result of this grouping. LINGUIST-86 analyzes many different possibilities 

looking for one that saves the most code in the evaluator. By ignoring copy rules in its 

strategy for grouping attributes together, GAG misses ma.ny opportunities to subsume copy 

rules and hence to conserve stack space. However LINGUIST-86's strategy or optimizing the 

code size of the evaluator ca.n also cause it not to subsume copy rules and hence to use 

more stack space. 

Ideally, both systems should combine a.ttributes so !1.'5 to minimiZe the space needed for 

stacks, however this is an intractable problem. The difficulty is that the number of times a 

copy rule is executed depends on the structure of the semantic tree (i.e. input program) and 
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so the "best" copy rule to eliminate may vary (rom one input to another. ~oc!!the'<!s~. 

both systems can be improved. GAG should combine a.ttributes only if it will elimtn3.te 

some copy rules. LI:"lGlJIST·86 should combine attributes based on how much stack space 

is saved, ra.ther than the amount of code saved. 

-C.!.5. More thorough global anal)'sls using evaluation order. 

GAG does storage optimiza.tion a.nalysis after the evaluation order has been determined and 

it uses this information in its analysis. LINGUIST·86 does its analysis (i.e. which a.ttributes 

to statically allocate [together!) before the complete evaluation order has been fixed. As a. 

result, LINGUIST·86 is too pessimistic about the c~t of statically allocating some attributes 

and so misses out on potential optimizations. LINGUIST·86 should decide how to statically 

allocate attributes after the evaluation order IS hown. This would also make it easy to 

incorporate GAG's strategy for finding attributes that can be global variables. 

Still more global information could be efrectively used by both systems for storage 

optimization. In particular, it would be useful to eollect summary information about the 

ef(eet on attributes of VISITing non· terminals. 

information: 

We suggest eomputing the following 

for eaeh non-terminal, X 
for each visit to X, VISIT l(X) 

(or each attribute Y.A 
USE(X,i,Y.A) - true if( 

a VISIT 1 to an X·node ean ever referenee 
or define some instance of Y.A 

.' 

Such USE information eould be used by GAG to implement more attributes as global 

variables. In section 2.1, we saw that. GAG would not. implement an inherited transient 

attribute X.a as a global variable if, in a production where X is the left-part, there is a 

visit to a. right-part node Y before the last reference to X.a, and Y derives X. This is out 

of recognition that. the visit to Y could eause a nested visit to X whieh eould overwrite the 

value of the left-part oceurrence of X.a. With USE information GAG eould determine more 

precisely whether or not this part.icular visit. to Y could actually overwrite X.a. if it were 

implemented as a. global variable. Figure 4-5 illustrates such a case. In production rl' X.i 

is referenced after the fi~t visit to Y and therefore GAG would not implement it as a 

global variable. Global analysis leads to the realizat.ion, however, that. any oceurrenee of X.i 

in Y's subtree will not. be evaluat.ed until the seeond visit. to y, when the former value of 

X.i is 110 longer needed. 

LINGUIST·86 could exploit USE information to statically allocate more attributes. Recall 

that LINGUIST·86 will subsume a eopy rule between between different. occurrenees of a 
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Figure 4-5: X.i could be implemented as a global va.riable 

statically-allocated synthesized attribute only if the source occurrence belongs to the right

part node that is visited last during this p~. This is because a visit to a right-part node 

after the source of the copy rule is defined could cause some other attribute that IS 

statically-allocated to the same variable to be defined. This would overwrite the contents of 

that variable and so destroy the source of the copy rule. USE information would enable 

LINGUIST-86 to tell that this could not happen, which would allow this copy rule to be 

subsumed, which would make it less expensive to statically allocate this attribute, which 

would cause more attributes to be statically-allocated. 

Finally, if USE information were available GAG could implement some significant <,attributes 

as stacks or global variables. Recall that ror an attribute to be a stack it is necessary that 

all instances of that attribute have lifetimes that are either disjoint or properly nested. The 

sufficient condition that GAG uses includes the restriction that no lifetime can contain a 

VIS ITO' This is because GAG doesn't know enough about what happens "a.bove" the 

current locus of control in the semantic tree; the worst-case is ~umed to happen and so no 

such a.ttributes are stacked. However, it can happen that all attribute-instance lifetimes are 

either disjoint or properly nested even though the attribute is not transient. For example, 

attribute X.a of figure 4-6 is not stacked by GAG as it is not transient; X.a is defined 

before visiting X for the first time, but is referenced during the second visit to 

X. Nonetheless, the lifetimes of instances of ~.a and XI.a are disjoint and X.a can be 

implemented as a stack or global variable. 

,: 10 ::- Xl 

Xo·~ - tCXo·&): 

Xl'· • 'CXo· •• Xo·c): 

Xl·o • k CXl • ~) : 

10.4 • lCX1·4l; 

VI, • ClYAL Io.~) (vISITo) ClYAL Xl'.) (VISIT Xt) ClYAL X
t
·.) (VIIIT Xl) CDAL Xo.4)(YIIITO) 

Figure 4-8: X.a is a significant attribute but can be implemented as a stack 

Situations like the one shown in figure 4-6 would be correctly detected if GAG's sufficient 
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conditions (or stacking attributes were modified to a.llow a. VISITO in the lifetime of :l left

part a.ttribute-occurrence, say X.A, but to trea.t visits to any right-part node Y
J 

(in the 

same or other productions) a.s a reference to a right-part occurrence of X.A if during that 

visit any instance of X.A could be referenced. This latter information would be supplied by 

the USE computation. 

5. SuggestIons for Improvement 

Several suggestions for improving GAG and LINGUIST-86 were presented 10 section 4. 

Briefly, these were: 

- In LINGUIST-86, implement attributes as global variables, 

- In GAG, implement attributes as stacks that are popped from above, 

- In both GAG and LINGUIST-86, combine attributes so as to minimize the space 

requirement,., for stacks, 

- in both GAG and LINGUIST-86 (but especially LINGUIST-88), use more thorough 

global information to determine the applicability of the optimitations. 

In this section we show how both GAG and LINGUIST-Be, by considering storage 

optimizations at an earlier time in the generation cycle, can create an evaluation paradigm 

explicitly designed to optimize storage. 

5.1. Computlnc the evaluation order for !to~meleney. 

We have shown several examples where the order or evaluation or semantic functions wa.s 

crucial In being able to implement a storage optimization. However, 10 neither 

LINGUIST-86 nor In GAG do potential storage optimizations influence the choice of 

evaluation order. This is p&rticularly unfortunate because in both ordered evaluation and in 

alternating p~ evaluation there are many arbitrary choices that go into computing the 

evaluation order, choices that could be made so as to facilitate storage optimizations. 

Because a major source of storage savings is &Chieved by implementing transient attributes 

as global variables or global st&cks, we suggest that. appropriate heuristics be used when the 

evaluation order is computed in order to increase the number of transient attributes. 

For mO!t evaluation strategies, one c&n view the proce~ of fixing visit sequences (VSp) (or 

the productions of the grammu as a two stage process: Fil'3t, for e&ch nonterminal X or 

the grammar, each attribute X.a is assigned a visit number i, indicating that any occurrence 

of X.a in any semantic tree will be evaluated on the ith visit to X. Secondly, each 

production p is examined and a final evaluation order VS
p 

is decided upon. This evaluation 

order must be consistent with both the dependencies given by the semantic functions or p 
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and with the visit numbers a.ssigned to the attributes of p. Both of these steps usually m3.ke 

some arbitrary choices. 

First we examine the second stage of the process. After visit numbers are assigned to all 

the attributes, each production p must be assigned a visit sequence VSp' This entails 

completing into a total order the partial order given by the semantic functions of p and the 

visit numbers assigned to the attributes of p. The partial order IS represented by an 

augmented dependency graph [12J, having the attributes of p a.-s vertices and an edge (Xj.a, 

Xk.b) if Xj.a is an argument to the semantic function defining Xk.b or if j := k and Xj.a 

has a lower visit number than Xj.b. This partial order is completed into a total order by 

adding edges to this graph. We suggest replacing some of the arbitrary choices of this 

process by heuristics that increa.-se the number of transient attributes. In particular, one 

element of choice involves the order in which the inherited attributes of a right-part node 

and the synthesized attributes of a left-part node are evaluated before visiting the node. 

GAG often arbitrarily decides to evaluate one attribute before another, preventing the 

attribute from being implemented a.-s a stack. This was illustrated by figure 2-4, where 

GAG chose to evaluate X I .il before X1.i2, and by figure 2-6, where GAG chose ~ evaluate 

XAo.sI before XAo.s2. We suggest substituting this arbitrary choice by the read be/ore next 

write heuristic, given by Sethi in [17J. 

The read be/ore next write heuristic is illustrated 10 figure 5-1. If A is needed to define both 

Band C, and we wish for A to share storage with C, and B and C are unrelated (i.e. 

neither depends on the other), then this heuristic calls for adding an edge from B to 

C. This makes it appear as though B is needed to define C and will call for the evaluation 

of B before C. Since A will not be referenced after the computation of C, A and C can 

share storage. 

• ..... 
,.-" ... ---.. 

Figure 5-1: The retJd be/ore write heuristic 

This heuristic can be applied to our ca.-se as follows: Say that we have a. production of the 
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iorm [p: Xo ;;= ... xi ... J where Xo = Xi a.nd the inherited a.ttribute Xo·Jl IS used to 

define the inherited a.ttributes Xi.il and X
i
.i2. In this case Xo.il plays the role of A. Xii::! 

plays the role of B. and X
j
.il plays the role of C. As Xj.i2 would be evaluated before Xj.il. 

X.il can be made into a sta.ck. Simila.rly. if the synthesized attribute Xj .Sl is used to define 

the synthesized attributes Xc.sI and =<0.52. then Xj.sl plays the role of A. Xo.s2 plays the 

role of B. and Xc.sl plays the role of C. This heuristic will allow GAG to implement many 

more attributes ~ global stacb. Note, however, that thi!! heuristic will not allow 30\1 

transient attributes to be implemented as global stacks; if both Xc.il and Xo.i2 are used to 

define both Xj.il and Xj.i2 then application of this heuristic could add either the edge 

(Xj.iI. Xj.i2) or (Xj.i2, Xj.iI) but not both. 

Now we return to the first stage of determining an evaluation order, assigning visit !lumbers 

to attributes, and we show how heuristics can operate even at this early stage to increase 

the number o( transient attributes. In order to determine an a.ssignment o( visit numbers to 

the attributes o( X, a graph G
X 

is (ormed. This graph has the attributes of X ~ vertices 

and an edge (X.&, X.b) if X.b is directly or indirectly dependent upon X.a in some sema.ntic 

tree. This graph will result in a partial ordering on the attributes of X. In order to make 
'. 

an assignment o( visit numbers to the attributes of X, this partial order must be extended 

so that for every inherited attribute X.i and synthesized attribute X.!!, either (X.i. X.!!) or 

(X.s, X.i). DiCferent evaluation strategie:! u!!e difrerent strategies to extend this partial order. 

A "greedy" strategy call!! for evaluating attributes on the earliest visit possible. This 

strategy is u5ed by LINGUIST·86 in a.!ISigning p~ numbers to attributes. A "lazy" 

strategy calls (or evaluating attributes on the la.st visit p~ible. This method is inherent in 

GAG's ordered evaluation strategy. Each or these strategies will sometimes make an 

attribute transient where the other fails to do so. In rigure 5-2. the dotted lines indicate 

the graph Gy. This graph give!! a partial order <Y.il, Y.!!l, Y.i2, Y.s2> and <Y.i. 

Y.s2>. This partial order must be extended so that either (Y.i, Y.5l) or (Y.sI, Y.i). The 

greedy strategy enluates Y.i a.s early a.s p~ible, extending the order to include (Y.i. Y.sI) 

and resulting in the vi!!it sequence VSp' The luy strategy evaluates Y.i a.s late a.s possible. 

extending the order to include (Y.sI, Y.i) and resulting in the visit sequence VSp'. Where&!! 

Y.i is a tra.n:sient a.t.t.ribute using VSp', it i!! a significa.nt attribute using VSp' 

Figure 5-3 gives another attribute grammILl' rragment. Here also the two strategies result in 

different visit numbers being ~igned to X.i3. Wherea.s the greedy strategy results in the 

visit sequence VSp and X.iI being a traruient attribute, the lazy strategy results in the visit 

sequence VSp' and X.il being a significant attribute. Hence we see that each stra.tegy can 

make some attributes tra.n:sient that the other makes significant. 
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Figure 5-2: The &dvantage of using a lazy strategy 
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Figure 5-3: The advantage of uSing a greedy strategy 

Instead of adopting a purely greedy strategy or a purely lazy strategy, we suggest that 

heuristics be designed to increa.se the number of transient &ttributes. These heuril5tics would 

describe how to extend the partial order of the GX graph3, thereby a.sl5igning vil5it numbers 

to the attributes of X, and would use the information contained in the GX graphs and the 

dependency graphs of -the productions. In [4J Farrow describes how such heuristics could be 

integrated into an algorithm for computing the evaluation order. 

Figures 5-4 a.nd 5-5 graphically illustrate one p~ible heuril5tic for adding edges to the GX 

graphs, designed to make a.ttributes transient. To use thil5 heuril5tic we need to distinguish 

between two different kinds of edges that may occur in a GX graph, trlln,itive clO6Ure edges 

and defining edges. A defining edge (X.a, X.h) in a GX graph indicates that in some 

production X.a is an argument to the semantic function defining X.h. A transitive closure 

edge (X.a, X.b) indicates that X.a can indirectly define X.h. A defining edge in a GX graph 
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IS distinguished from a transitive closure edge by the word "def" which a.ppears over t~e 

a.rrow. An arrow without a "def" marker may be either a. transitive closure edge or~ 

defining edge. 

CA.SE i: ~ u.4 0 ar. ITUll1l1nd ~t.triht.lI. 11 &ad d ~rt 1u.rihd ~t.trunll. 
~ LD4 II ~r. c.rr.at.1T .. r.lat.ed: ad4 (a. II) 

CASE ii: c ...... ar •• ,.t.1l1111Id ~t.triht.lI. ~ u.4 II .,1 i.-nihd at.tr1ht. ... 
11 ...... arl c.rr.at.1T ..,Ilat..d: ad4 (11. .) 

• I:> 11 l ~ I c 

1 1 '~ 1 

------~'~~~ --------X~ ""I~~----~ 
, . -.1 ---~ 

, 1 ~ 
,I II I ) I I 

~ I _1----__ 

A heuristic for adding edges, ca.ses and II 

CASE iii: ...... c .n iUlrUM .t.t.riht. ... 11 u.t II ..,.. .,.U .. UH .t.t.r1ht. ... 
c ..... II are c.rr,at.l, .."lat.e4: ad4 (4. c) 

• ') 11 ~ • 
,-, 

;:r 
,-, 

II I" '" I 

Figure 5-5: A heuristic for adding edges, case III 

Case i of the heuristic states that if a a.nd e are synthesized attributes, band dare 

inherited attributes, (a, b) and (b, e) &re edges in Gx 3, (d, e) i" a defining edge in GX' 

and there is no relationship in G
X 

between a and d, then add the edge (a, d) to G
X

' In 

order to understand the logic behind thi" heuri"tic, cOn3ider the COn3equence of adding the 

"opposite" edge (d, a) to GX' Any a:!:5ignment of vi"it numbers to the attributes of X 

based on thi" gnph will necessarily a.ssign an earlier visit number to d then to b, SlOce 

there exist.3 a path from d to b. Hence d's lifetime must start on a vi"it prior to the one 

in which b is defined. Yet since there exLst.3 an edge from b to e, e must be defined after 

b, and since there i.s a definins edge from d to e, d's lifetime must extend into the visit. 

defining c. Hence d would have to be a significant attribute. To prevent this from 

ha.ppening, the edge (a, d) is added. A similar logic applies to cases ii and iii of the 

3when we say that (x,y) is an edge without specifying it.3 type, then it can be either a 
defining or tra.nsitive closure edge 
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heuristic. 

Let us attempt to add edges to the graph Gy of figure 5-2 usmg this heuristic. We find 

that case i can be applied to this graph, with Y.sl playing the role of a, Y.i2 the role of b. 

Y.s2 the'l'ole of c, and Y.i the role of d. This causes the addition of the edge (Y.sl. Y.i), 

resulting in the same visit sequence as produced by the lazy strategy and making all 

attributes transient. If we apply the heuristic to the example of figure 5-3, once again all 

the attributes are made transient. This time, however, it is the greedy visit sequence which 

is produced. In this example cases ii and iii of the heuristic are found to be applicable. In 

case ii, X.il plays the role of d, X.sl plays the role of e, X.i3 plays the role of b. and X.s3 

plays the role of c. causing the addition of the edge (X.i3, X.sl). In case iii, X.il plays the 

role of a, X.sl plays the role of b, X.i2 plays the role of e, and x.sa plays the role of d, 

causing the addition of the edge (X.s3, X.i2) and completing the G
X 

graph. 

Given any GX graph which can be completed so as to make all inherited attributes 

transient, this heuristic, unlike the greedy and lazy strategies, will not add any edges forcing 

an inherited attribute to be significant. However, it does not guarantee to !lecessarily 

complete the GX graph at all. Therefore, it may still be necessary to a.pply one of the 

other strategies or another heuristic after applying this heuristic. Nonetheless, a final 

example, given in figure 5-6 illustra.tes the power of method. In this example, both the 

greedy and lazy strategies result in the visit sequence VSp, making Z.i3 significant. The 

heuristic results in the visit sequence VSp', making all attributes transient. 

U .. pnt.d d'pndney ,n,~ for & ,nMhcrt.1oa [,: Zo ::. Zl~ (.ken l". aM. Z1- u. 2 wtaacII 
of Ut ..... aob.rauu) 

~----------------------------_I Zo 11 1 11 1 12112 1111111141 •• 1 

:t *:i t~ fa.} t, 
1 11 1 11 I 12 I .2 1 11 1 .1 1 14 I •• 1 1 
• t ,', "'\. ., ), " ,:;;1 '. ~ - -') . ~." '"'f. --y..:y. ~7 

'IS, • C!YAL Zt.U) ClYAL Zl.UHVISn Zl) C!YAL Zo .• 1) C!YAL Zo.") (VIS nO) ClYAL Zl.12) GREEDY / LAZY 

ClYAL Zl.14) (VIsn Zl)CEVAL Zo .• 2)C!YAL Zo.'.) (vIsno) 

'IS,' • (EVAL Zt.to(VIsn Zl)(DAL 10 .• 0 (VII ITo) CDAL 'l· 12)(DAL Zl'U) (VIln 'I) HEURISTIC 

(EVAL Zo·I2)(!YAL Zo·") (VIS ITo) CEVAL 't· 14) (VII IT 't) CEVAL 10·'.) (VII no) 

Figure 5-8: The advantage of using the heuristic 

Finally, we contemplate the following basic organization of the evaluator-generator to make 

better use of heuristics for increasing storage optimizations: 
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1. partition the attributes into equivalence classes based on whether X .. -\ is copied to 

Y.B in any production. The membe~ of an equivalence class will be candidates 

to share storage for the heuristics of this section, 

2. assign visit numbers to attributes using the heuristics of this section to make as 

many attributes as possible transient, 

3. determine the final visit sequence {or each production using the heuristics of thi!! 

section to increase the number of attributes that can be implemented as global 

variables and stach, and 

4. finally, carry out the current storage optimizations, using the improvements 

suggested in section 4. 

~. ConeluslolU 

In this paper we have examined in depth the storage optimization!! performed by two 

significant AG-based translator-writing systems: GAG and LINGUIST-86. This examination 

has been iIl~trated by many small, but concrete, examples showing how each system 

performs. We have seen that, although there are significant differences between the two, 

there are abo very basic similarities tha.t unite their approaches. We have argued that both 

strategies would benefit by: 

.. 
1. taking storage optimization into cOn!!ideration when determining evaluation order, 

2. using global analysis to increase the number of attributes that are implemented as 

global variables, implemented as global stace, and statically subsumed, and 

3. combining attributes implemented by t;lobal variables or stace based on whether 

there are any copy rules between them and on how much stack: space would be 

saved by combining them . 
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I. APPE:--':DlX 

In this a.ppendix we show that combining global variables and global stacks so a.s to 

optimize the number of copy rules eliminated is an NP-complete problem. Since the 

problem of combining global variables and global stacks are the same, we will focus our 

attention on combining global stacks, bearing in mind that the analysis i3 equally valid for 

global variables. Recall (rom section 2.3 that the main restriction on combining global 

stacks is that no two inherited attributes nor two synthesized attributes o( the same 

context-free symbol are allowed to share the same stack. In a.ddition, if X is the left-part 

of some production p, Y is on the right-hand side, and the inherited attribute X.i is 

referenced after defining the inherited attribute Y.i but before visiting Y, then the X.i and 

Y.i globaf stacks cannot be combined . 

Let us phrase the problem of combining global stacks as one of partitioning a set: Given a 

set S of attributes, each which can be made into a globa.l stack, we wish to find a partition 

of the set such that all the attributes in any subset of the partition can be made into one 

global stack. We call such a. partition valid. We would like to find an optimal valid 

part it ion- one which eliminates as many copy rules as possible. We shall now prove the 

following theorem: 

Theorem 1: Given an attribute grammar G and a set S of attributes, each which 

can be made into a global stack, finding whether there exists a valid 

partition of the attributes into global stacks such that at lea.st K 

copy rules are eliminated is NP-complete. 

Proof: Certainly the problem is in NP (Guess a partition. Verification can be done In P

time). 

To show that it is NP-complete, we shall reduce 3-satisfiability to it. This shall be done as 

follows: given any instance of 3-satisfiability, we shall create an attribute grammar for that 

instance in p-time and show that for a certain K, we can eliminate K copy rules from the 

a.ttribute grammar ill the given clause is satisfiable. T,o this end let U - {uI""'~} and 

C =- {cI""'cm} be any instance of 3-satisfiability. (U i3 the set of literals, C of clauses). 

Let the conte~free symbob of our gr&IIlIIl&l' be {X, ul' u2' "0' un' cI' c2' ... , cm} U { S } 

U {TermAI , ... , TermAl(X)m} U {TermS1, ... , TermBU)Om} U {AttA1,···,AttASOm} U 

{AttB1, ... ,AttBSOm} U {(i,j) I 1 ~ ~ m, 1 ~ j ~ lO} 

The TermAj , TermBj , AttAj' AttBj' a.nd (i,j) context-free symbob do not have any 

attributes and are used only to distinguish between different productions. The symbol S i3 

the distinguished start symbol. The a.wxiated attributes of each symbol and the 
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productions of the attribute gnmmar are given in figure 1-1. The context-free symbols 

which do not have any attributes are not listed. Let A TTRIBVTES be the set of all of 

these attributes. (There are 3n + m + 1 attributes). Note that individually, each attribute 

in this set can be made into a global stack: and that any two attributes of different context

free symbols ca.n share the same stack:4. This attribute grammar doesn't have any 

synthesized attributes. This is not very realistic but they not needed for the proof. It 

would be a simple matter to augment this attribute grammar with synthesized attributes. 

X 

'1 (1 ~ 1 ~ a) 

oJ (1 ~ J ~ .) 

ex.1. X.2 •...• X.a, X.a") 

<'l'PO" 'l· a.,) 

<oJ' a"} 

Th.re will ~. 4 'n" 01 ,r04,atio&l ia ad41'lo1 to a 'ilele .,~ ,r04lat10. 01 \7)1 0: 

Tne 0: S ::. X. 

X.1 • ooaeha'l; 
X.2 • 00&1" .. '2; 

x ••• cou',,' ; 
X.a" • cou"iI'a.l; 

TJ?' a: X::' '1 TlrMJ' 1 ~ 1 ~ a; 1 ~ J ~ 100.. 

'1'''' • X.1; 
'1' at, • cou',,'; 

Tn' 111: X::' 11 TIna,. 1 ~ 1 ~ I; 1 S j S 100.. 

'i'poI • 00 •• ' .. '; 
'l.at, • X.1; 

1 ~ i S a; 1 S J S iOII. 

'1.poe • X.aU; 
'1' II, · cout .. t; 

Tn' 3: X ::. '1 At~,. 1 ~ S I; 1 S J ~ 5Oti. 

'1'po. • coa.' .. '; 
'i.lI, • X.aU; 

Tne S: X ::. 01 (1.,). 

0l.au • X.l: 

Tne 4: '1 ::. 01' 

Figure 1-1: The attribute grammar constructed from an 'Inst"'nce U - {u u} 
Q 1'· .. · n ' 

C - {cl""'cm} of satisfiability 

The basic idea behind the proof will be a.s follo~: we will attempt to partition the 

attributes into n + 1 subsets corresponding to n + 1 global stacks. For i - 1, ... ,n if ui IS 

4:\ctually. in the attribute grammar as given, each attribute could be made into a global 
va.r.lable. ~~t by adding one pro~uction for each of these attributes the grammar can be 
e8.5lly mo~Ifled so ~hat these a.ttrlbute.s lI!~st be glob&! stacks, not global variables. The 
grammar IS left 8.5 IS to show the applicability of the theorem to global vviables 8.5 well a.s 
global stacks. 
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true, ui'poS will be in the i
th 

subset with X.i along with the clause attributes cl. att 

corresponding to the clauses which ui satisfies. If ui is false, ui.neg will be in the jth subset 

with X.i along with the clause attributes cl.att corresponding to the clauses which u/ 

satisfies. All the remaining attributes will be in the {n + l)st subset along with the 

attribute X.att. There will exist such a partition eliminating the proper number of copy 

rules iff C is satisfied. 

Formally, we claim that C is satisfiable ill there exists a valid partition of ATTRIBUTES 

into subsets SI,S2, ... ,St corresponding to t global stacks such that at least 150mn + 11m 

copy rules are eliminated. 

150mn copy rule eliminations will come from productions of type 1 and 2 &Ild will insure a 

partition into n + 1 subsets with, for each i (1 SiS n), either ui'pos in Sj and ui.neg in 

• • 
S (~Sn+l) or uj.neg in Sj and ui'pos in S. 10m copy rules will come from productiorus 

of type 3 and will insure that each clause attribute cl.att (1 SIS m) is in some Si' 1 S i 

S n. m copy rules will come from productions of type .. and will irusure that if cl.att is in 

Si then . either ui'pos is in Si and ui is in cl or ui·neg IS In Si and u{ is in cl". \Ve can 

define a truth assignment r to be such that r(ui) ". T if ui'pos is in Si and r(ui) == F if 

ui.neg is in Si' In this way we will develope a 1-1 correspondance between valid partitions 

eliminating 150mn + 11m copy rules and truth assignments which satisfy U. 

Hence if the copy rule elimination problem were solvable in p-time, 50 would be the 

satisfiability problem. Given U and C, create the AG as above, containing 3n + m + 1 

attributes and 300nm + 33m + 1 productions with 300mn + 33m copy rules. This 

reduction can be done in p-time. The attributes of the attribute grammar make up a set of 

inherited transient attributes, each which can be made into a global stack. Then find 

whether a valid partition of the 3n + m + 1 attributes exists such that. at least 150mn + 

11m copy rules are eliminat.ed. If one can be found t.hen there exists a t.ruth assignment 

satisfying U, otherwise not. 

Proof of claim: 

For the proof, it helps to keep the following in mind: 

1. If ui'pos and X.i are In the same subset. (st.ack), then we can eliminate 100m copy rules 

from productions of type 1A. 

2. If ui.neg and X.i &re In the same subset, then we C&Il eliminate 100m copy rules from 
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productions of type lB. 

3. If ui. pos and X.att are ID the same subset, then we can eliminate SOm copy rules from 

productions of type 2A. 

4. If ui.neg a.nd X.att are ID the same subset, then we can eliminate SOm copy rules from 

productions of type 2B. 

5. If X.i and cl.att a.re In the same subset, where ui or u{ IS In cl' then we can eliminate 

10 copy rules from productions of type 3. 

6. I( ui.pos and cl.att are in the same subset, where U· 
I 
~ In cl then we can eliminate 1 

copy rule from a prod of type 4. 

7. IC ui.neg and c\.att are in the same subset, where u.l 
I 

~ In cl' then we can elimina.te 1 

copy rule from a production of t.ype 4. 

8. X.i and X.j cannot be in the same subset if i ;- j and similiarly X.i cannot. be in the 

same subset with X.att. Also, ui'pos a.nd ui.neg cannot be in the same subset since they are 

attributes of the same context-free symbol. 

_) Say there exist.3 a truth assignment r to U satisfying C. The following partition of 

ATTRIBUTES eliminates 150mn + 11m copy rules: 

To each clause cl associate a.n integer int( cl) =- i such tha.t either ui or u{ satisfies cl under 

r, and if Uj or u{ satisfies cl under r, then j > i. (If int( cl) - i then ui or u{ is the 

smallest numbered literal satisfying cl under r) . 

• 
Let our partition be SI' ... , Sn.S where Sj - {X.i} U {cl·att I int(cl) - i} U {ui' pos I if 

• 
7( ui) - T} U {uj.neg I if r(ui) - F}. S - {X.att} U {ui.pos I if 7(ui) - F} U {ui· neg I 

ii 7(ui) =- T}. 

Certainly this partition is valid &S it doesn't violate having 2 attributes of the same context

free symbol in the same subset. To see that the required number of copy rules are 

eliminated, note that since X.i and ui.pos or ui.neg are in the same subgroup, we can 

eliminate 100m copy rules from productions of type 1 (or each I, 1 SiS n. This totals 

100010 copy rule eliminations. Furthermore, since each c).att is In the partition Si' where i 

=- int(cl)' cl.att is in the same partition with X.i and ui.pos (if ui is in cl) or in the same 

partition with X.i and and ui.neg (if u{ IS in cl)' Hence each cl eliminates 10 copy rules of 
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type 3 and I of type 4. All m clauses therefore cause an elimination of 11m copy r'l!-!s. 

* 
Finally, as 5 contains X.att and either Uj'pos or uj.neg for each i, 1 ~ i ~ n, we cao 

eliminate 50mn copy rules from productions of type 2. for an elimination of an additional 

SOmn copy rules. So a total of 150mn + 11m copy rule eliminations is achieved. Figure 

1-2 gives a set of clauses C, a truth assignment r, and the attribute partition induced by the 

above method. For the attribute grammar derived from C and U, this partition would 

result in the elimination of 150*4 8 3 + 11 8 3 copy rules. 

The truth a&&ignment rCa
1

• ~ • .,. a4) * (T.T.F.T). 

= 
(X.2.~.pod 

!a !& s· 

{X.a.as· •• "C.} {X.4.a4·po •• ~} {X .• tt.al' •• I'~' •• ".s·PO.'.4· •• '} 

Figure 1-2: A partition of attributes induced by r 

_) If there exists a partition of ATTRIBUTES into subsets Sl,S2, ... ,St such that at le&.'5t 

150mn + 11m copy rules are eliminated, then there exists a truth assignment r to U 

satisfying C. 

By means of the fact that 150mn + 11m copy rules were eliminated we can deduce what 

form the_partition has. Out of the 200mn copy rules in productions of type I, we can 

eliminate at most loomn of them, as both ui'Pas and ui.neg cannot be in the same partition 

as X.i. Similiarly, at most 50mn of the loomn copy rules in productions of type 2 can be 

eliminated as we cannot have ui'poS and ui.neg in the same partition as X.att. So at most 

150mn copy rules were eliminated from productions of types 1-2. If the partition did not 

eliminate all of these 150mn copy rules it would not be able to achieve 150mn + 11m copy 

rule eliminations. To see why this is true, note that for 1 ~ i ~ n, each ui'poS and lii.neg 

has associated with it either 100m, 50m, or 0 copy rule eliminations from productions of 

types 1-2, depending whether it is in the partition with X.i, X.att, or neither of these, and 

that the total number of eliminations can be found by summing the number of eliminations 

associated with each individual ui'poS and ui.neg. Since the partition achieving the 

maximum number of copy rule elimination!! from the!!e production!! achieves 150mn 

eliminations, any partition wh:ch causes leS!! elimination!! achieves at mod 150mn - 50m 

eliminations; i.e., any ui'PO!! or ui.neg which eliminates fewer copy rules than it does in the 

maximum partition eliminates at le3.!lt 50m fewer copy rule!!. But then the non-maximum 

partition achieves at most 150mn - 50m + 33m = 150mn - 17m < 150mn + 11m copy 

rule eliminations, as the remaining productioIl!! of types 3 - 4 contain only 33m copy rules. 

Hence, we see that to achieve 150mn + 11m copy rule eliminations, the partition must 
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achieve 150mn copy rule elimlO3.tions (rom productions of types 1 - I) 

Achieving lOOmn copy rule eliminations from productions o( type 1 implies that (or each I. 1 

< i < n, X.i is in the same subset with either ui'poS or uj,neg. Achieving SOmn copy rule 

eliminations (rom productions of type 2 implies that X.att is in a subset with II, 12, .. " In 

where Ii =- ui.neg i( ui'poS is in the subset with X.i and Ii =- ui'poS if ui.neg is in the 

subset with X.i. 50 we know that the partition consists of at lea.st n + 1 subsets, 

5 l,5
2

, ..... 5
n
,5· where for each i, 1 ~ i ~ n, 5i contai~ X.i and either ui.neg or ui'pos, 5· 

contains X.att and 11. "'1 In. The only remaining question is what subset each of the clause 

attributes. cl.att, 1 ~ I ~ m, fall' into. As we must still find 11m copy r'Jle eliminations, 

this choice is also already made for us. Note that each clause attribute cl.att can appear in 

a subset with at most one X.i (it cannot appear in a subset with X.i and X.i if i Fa j), 

hence at most lam copy rules can be eliminated from productions of type 3 (10 for each 

clause cI)' To get 11m copy rule eliminations, each clause attribute must also contribute 

one copy rule elimination from productions of type 4. For th~ to occur we mwst have each 

clause attribute cl.att (1 ~ I ~ m) meet the following condition: c).att IS 10 the subset Sj 

and either i) ui'pos is in Si and ui is in c) or ii) ui.ne& is in Si and u/ IS In cl' To 

summarize, we have found that if a valid partition achieves 150mn + 11m ~'opy rule 

• • 
eliminations it must be of the form SI' .... Sn'S with either Uj.pos in Sj and uj.neg in 5 or 

• 
ui·neg in 5 j and ui'poS 10 S Each clause attribute cl.att js in some Sj' 1 ::5 j ::5 nand 

the (ollowing property holds: if cl.att is in 5 j then either Uj'pos is jn 5
i 

and ui IS 10 ci or 

ui,neg IS In 5i and u/ is in ci' \Ve can now define r to be: 

I T 11 51 eoa\&ia. '1'po •. 
rell1) • I 

I , 11 51 eoa\~ '1'.'" 

This satisfies C. as (or any clause cl' i) cl.att is in Sj (or some i. 1 ::5 i ~ n. and ii) if 

ui'poS is in Si then Uj ~ in ci and t( Uj) - T and if uj.neg is in Sj then u/ IS in ci and 

t(ui) - F. 

End of proof 
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