
CUCS-165-85

A CompuUoll of Sto OptimIsation.

lD

AutomatlcallJ-GellerMed Attribute EYaluato ...

RoclMJ Farro.' ud Duiti YeW.

Comp.wr Sei .. ~ IHp.nm .. ,

Columbia UDiYtni~y

N •• Yon. N •• Yori 10027

lEECS. Com, Sci.1ft Diy" •.
Uliymil7 01 Cl1itonia., Btri.I.y

Bert ... ,. CA 04120

. ..

Tb1a f'WSI'C~ ... pa.rUaD7 .. ,pon.d by tbe Na&.IouJ Sci.lct FOllldaiiol IUlder &rU~ OCR-&3-10930. &l1d

paniaUJ ..".wd b, t_. o.t._ AftUHCI _atC~ P?ojtdl Ac •• q uad" eol,"" number

NIll1DJ 14 C41S1

Table or Contents

1. Introduction to attribute storage optimization

'l GAG

2.1. Global Variables and Global Stacks

2.2. Finding global variables and global stacks

2.2.1. Sufficient conditions for global variables

2.2.2. Su(ficien t condition3 for global 3tacks

2.3. Combining Global Variable3 and Global Stacks

3. LINGUIST-B6

3.1. LINGUIST-B6 evaluation paradigm

3.2. Static Subsumption

3.2.1. Determining static allocation of attributes

3.2.2. Static allocation of significant attributes

4. Comparing the e{{jcacy of GAG and LINGUIST-86

4.1. Analysis of storage optimizations

4.2. Substantive differences between GAG and LINGUIST-B6

4.2.1. Transient attributes.

4.2.2. Global variables.

4.2.3. Popping from above ver.sus popping from below.

4.2.4. Combining attributes to eliminate copy rules.

4.2.5. More thorough global analysis using evaluation order.

5. Suggestions for Improvement

5.1. Computing the evaluation order for storage-efficiency.

6. Conclu3ions

I. APPENDIX

.")

3

4

6

6

i

9

12

12

14

11

18

19

22

23

23

24

24

26

27

29

29

35

36

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-"':

Figure 2-5:

Figure 2-6:

Figure 2-1:

Figure 2-8:

Figure 2-9:

Figure 2-10:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-"':

Figure 3-5:

Figure 4-1:

Figure 4-2:

Figure 4-3:

FilJure 4-"':

FilJure 4-5:

Figure 4-6:

Figure 5-1:

Figure 5-2:

FilJure 5-3:

Figure 5-"':

Figure 5-5:

Figure 5-6:

Figure 1-1:

Figure 1-2:

List or figures

What attributes are on the stack? synthesized vs. inherited.

GAG implements X.i as a global variable

GAG implements X.i as a global stack

A transient attribute GAG does not stack

GAG allows reCerence to value within stack

An example oC GAG not stacking a synthesized attribute

A second example of GAG not stacking a synthesized attribute

X.i and Y.il stacks cannot be combined

No two attributes of the same symbol can share a global stack

Two different partitions oC global variables X.a, Y.a, Z.a. X.b. Y.b

and Z.b

Attribute Evaluation Paradigm oC LINGUIST-86

A production-procedure generated by LINGUIST-8~

An example of static subsumption, X.I, Y.I and X.S are statically

allocated.

An example oC the cost.! oC static subsumption.

Static allocation of significant attributes.

X.i ill transient only UlIing an ordered evaluation strategy

An example where porrping from bda1l1 ill advantageous

An example where porrping from above ill advantageoUll

What attributes are on the stack Cor LINGUIST-86 !

X.i could be implemented a!! a global variable '.
X.a ill a significant attribute but can be implemented as a sta.ck

The read before write heuristic

The advantage of using a lazy strategy

The advantage oC using a greedy strategy

A heuristic Cor adding edges, case!! i and II

A heuristic Cor adding edges. ca:se iii

The advantage of using the heurilltic

The attribute grammar constructed Crom an instance U

{ul.· ... un}. C - {cl cm} oC satisfiability

A partition of attributes induced by r

II

=

7

8

8

9

9

9

10

11

11

12

14

15

16

19

24

25

2S

26

28

28

30

32

32

33

33

34

37

40

ADSTRACT

Attribute grammars are a value-oriented, non-procedural extension to context-free grammars

that facilitate the specification of translations whose domain is described by the underlying

context-free grammar. Just a.s parsers for context-free languages can be automatically

constructed from a context-free grammar, so can tra.nslators, called attribute evaluators, be

automatically genera.ted from an attribute grammar. A major obstacle to generating efficient

attribute evaluators is that they typically use large amounts of memory to represent the

attributed parse tree. In this report we investigate the problem of efficient representation of

the attributed parse tree by analyzing &nd comp&ring the strategies of two ~tems t.hat

have been used to automatically generate a tr&nslator from &n attribute gramm&r: the

GAG system developed at the Universitat de K&rlsruhe &nd the LINGUIST-86 ~tem

written at Intel Corporation. Our analysis will ch&ra.cterize the two strategi~ &nd highlight

their respective strengths and weaknesses. Drawing on the insights given by thi~ &nalysis,

we propose a strategy for storage optimization In automatically generated attribute

evaluators that not only incorporates the best features of both GAG &nd LINGUIST-S6, but

also contains novel features that address aspects of the problem that &re h&ndled poorly by

both systems.

:\s the cost of r3.W computer power has r lummeted. It has become 3. cliche to observe tn:1t

there is a "crisis" in our ability to produce the software needed to effectively Ilse th3.t

power. It is not only that more programmers need to be trained; even with an unlimited

supply o(programmers. the cost of prodUCing the needed software mounts astronomically.

One response to this problem is to change the way we "program". Pr-ogramming by

3TJtcification calls for solving problem.s by giving a ngorous specification of their solution.

rather than by describing in detail how they are to be solved. Of course this puts a much

larger burden on the computer s~tem, especially its software. to calculate this solution. and

it is not always either possible or fe3.5ible. However, in some problem domains we know

enough that this technique ca.n be used. One widely-a.ppreciated but non-trivial example of

this is the use of parser-generator prograJll3 to automatically construct parsers from a

context-free grammar that describes the strings to be recognized. The history of the

development of these parser-generator prograrm shows that. even after context-free grammars

were recognized as an effective description, much research was still needed before efficient,

widely-usable parsers could be automatica.lly built.

More recently, attribute grammars have been proposed as an appropriate means of describing

still more of the t3.5ks of translat.ion and compilation. A3 W8.S the case for parser-generators

based on context-free grammars, much research is needed in order to build efficient attribute

evaluators that are competitive with band-coded translators. One of the most serious

obstacles to implementing attribute evaluators is that they use enormous amounts of space

to represent the attributed parse tree. Several optimizations have been proposed in the

litera.ture and variations of some of these have been implemented in experimental translator

writing-systems based on AGs. In this paper we examine in detail the storage optimiza.tion

strategies of two such s~tems that have been used to generate substantial compiler front

ends: GAG [10j developed a.t the University of Karlsruhe, and LINGUIST-86 [2j developed at.

Intel Corp.

Section contaiIl3 a brief introduction to attribute grammars, tree-walk evaluators and

storage optimizat.ion for tree-wa.lk evaluators_ SectiOIl3 2 and 3 give an overview of GAG's

and LI~GUIST-86's ston«e allocat.ion policies, respectively. Section 4 describes the effect of

these two sets of storage optimizations on evaluators generat.ed from different attribute

grammars for Pascal. Important similarities and differences between the twO systexm are

noted. The differences between the two systems often suggest how the various optimiza.tions

can be improved and some of these improvements are briefly described. We a.lso explore

how the more effective techniques of one system can be incorporated into the other.

Finally, section 5 contaiIl3 some suggestions (or new attribute storage optimizations that

complement those done by GAG and LI:'-iGrrST-86 but that are not currently a.ddressed by

either system. The appendix to this paper proves an important storage optImIzation

problem to be NP-complete.

1. Introduetlon to attribute 5torage optimization

Many attribute grammar (AG) evaluators which have been developed employ a tree-walk

evaluation strategy [181. For any source language input, this strategy builds an explicit

semantic tree: a parse tree in which each node is labeled by its corresponding symbol X and

each node contains fields (attribute-in,tance6) corresponding to the attributes of

X. Translation into the target language is performed by walking over this explicit tree

evaluating the attribute-instances. After all attribute-instances have been evaluated the

translation resides in a distinguished attribute of the root. At any moment during the

evaluation of the semantic tree, the IOCU6-o/-controi of the evaluator resides at some

particular production-instance in the semantic tree. It can choose to execute either an

EV ALX.att instruction or a VISIT k instruction. An EV ALx.att. instruction call:! for the

evaluation of an instance of X.att of the current production-instance. A VISIT
k

instruction

calls for the evaluator to move its locu,-o/-control to an lldJdcent production-instanc&; i.e., if k

> 0 then a VISITk instruction causes it to move to the kth son and if k - 0 it moves to

its parent. Besides the EV ALX.att and VISITk instructions the only other instructions used

by a tree-walk evaluator are those used to determine the flow of control.

Many tree-walk evaluation strategies have been devised. One of the simplest 15 an

alternating-pau strategy that makes depth-first left-to-right and depth-first right-to-Ieft passes

over the semantic tree. A more flexible strategy is that of ordered evaluation, which tailors

the traversal over the semantic tree to the particular attribute grammar at hand. Both of

these strategies can be implemented by several different methods, such as: sets oC recursIve

procedures, sets of coroutines, or stack automata [9J.

As semantic trees can be very large, it is important Cor tree-walk evaluators to conserve as

much storage as possible. Several techniques have been developed to accomplish this. First

of all, the attribute-instance:s of the semantic tree :should contain only pointers to complex

objects and not the value:s thexmelves [16, 13, 3, 141. We shall assume that every tree-walk

evaluator does so and we shall not discu.s:s thi:s optimization further.

Another technique is to implement the instances of an attribute as some separate data

structure, rather than as components of semantic tree nodes. The two possibilities that are

used by GAG and LINGUIST-86 are implementing the instances of an attribute as the

2

values on 3. "tack, and as the contents o(a single, statically-allocated variable. .3'lch

attribute 3torage optimization3 are done extensively by GAG and L1NGUIST·88, a.nd they are

quite effective. Our purpose herein is 3. detailed analysis of this variety of optimization.

Saarinen first suggested [15j taking as many attributes 3.'! possible out of the semantic tree

and putting them into a stack. To this end he distinguished between ,ignificant attributes

and tran"irnt attributes 1 A tran,ient attribute is one whose lifetime consists of a single

visit to a production-instance (rom its parent; all other attributes are ,ignifica.nt. Ir X.att is

a tran5ient attribute it can be implemented as a stack, as will be illustrated later, 50 that

storage need not be alloca.ted in the semantic tree for any instance of X.att. When another

instance o(X.att i5 defined it i5 PUSHed onto the stack; it is POPped off the 5tack when it

is no longer needed. Although an in5tance of X.att will take up stack 5pace, it will only do

so for the duration of its lifetime.

Another possibility is to implement instances of an attribute as the va.lue currently In a

globa.l variable. Not all attribute5 can be implemented this way, but many can, thus

further reducing the size of the 5emantic tree. This optimization W8.5 inve5tigated by

Ganzinger in a formal setting [6J. He found that the problems involved were similar to

those for register allocation .

. -'.n especially common kind of semantic function are those of the form. [Y.attl =- Z.att2j.

These are called copy rule". If Y.att1 and Z.att2 are merely different occurrences of the

same attribute, say X.att, and if X.att is implemented as a global variable, then the copy

rule just copies the value of the global variable onto itself. Such a semantic function can

be eliminated. If X.att is implemented as a stack then the copy rule calls for duplicating

the top of the stack and then later popping 0((the second copy. Often these copy rules

can be eliminated also, thus avoiding PUSH a.nd POP opera.tions on the stack and keeping

the stack from growing as deep. When copy rules are eliminated like this we 5ay they have

been 8ub,umea by the 5torage optimization policy.

2. GAG

GAG 1101 uses the ordered evaluation strategy which it implements using stack automata.

GAG first compute5 the order in which the attributes of a symbol will be evaluated and

uses this information together with each production's dependency graph to compute fli,it

8equence, for each production. The fl"it ,eq1&ence VSp of a production p gives the order in

1these were refered to In 115j 8.5 temporary attribute5

3

which a.ttributes of the production are eva.luated and right-part nodes isited. It consists of

an ordered list of EVAL and VISIT instructions (for a tree-walk evaluator) that are to be

executed for this production. Each production has one visit sequence that is used for any

instance of that production in any semantic tree.

After fixing an evaluation order GAG decides how to implement the attributes by choosing

one of 3 possible storage mechanisms for each attribute; an attribute is either: implemented

as a global variable, implemented as a global dacJe, or allocated space in the semantic tree. If

the latter mechanism is used for the attribute X.a. then every instance of X.a In the

semantic tree will be allocated i~ own :!torage cell. Otherwi3e all in~tances of X.a In the

semantic tree will share either 1 storage cell (if X.a is implemented ~ a global variable) or

1 stack (if X.a IS implemented ~ a global stack). An attribute is t.ransient only if all its

occurrences are transient. An attribute-occurrence, Xi.att, i3 t.ransient only if there is no

VISITO in the visit sequence for its production between any two EV AL instruction that

define or reference Xi.att. For purposes of thi3 definition, if an inherited attribute X.a is

defined before the jth visit to X, then the visit sequence for every production p having X as

its left-part symbol is a.s.sumed to have an implicit reference to 1:o.a before the .• EV ALatt

and VISIT
k

instructions pertaining to the jth visit to p. Similarly, if a synthesized attribute

X.a IS defined during the jth visit to X, then the visit sequence for every production p

having a right-part occurrence of X, say ~, i3 assumed to have an implicit reference to

Xm.a before the EVALatt and VISITk instructions following the jth visit to~. Only

transient at.tributes are implemented ~ global variables or global staclcs by GAG.

%.1. Global Variables and Global Staeb

The Ii/dime of an attribute-instance 1D a semantic tree 15 the period of time between its

computation (i.e. instantiation) and its last application (i.e. reference). For tree-walk

evaluators, the lifetime of any attribute-instance N.att can be expressed &5 a pair of visit

numbers (attinitial' attrinal)' where attinitial is the number of the vi3it to N during which

N.att is first computed, &nd attfinal is the number of the visit to N during which N.att is

last applied. After &n attribute-instance's last application we no longer need to save its

value ~ its role in the translation process is completed.

After the evaluat.ion st.rat.egy has been fixed GAG &nalyzes the lifetime of each transient

attribute to see whether it can be a global variable or global stack. If it di3covers t.hat, in

an~ sem&ntic tree, the lifetime of an, instance of an attribute X.a cannot overlap the

lifetime of any other instance of X.a, then it implements X.a ~ a global variable. This

means that X.a is not allocated space in the sem&ntic tree; rather, all X.a values are stored

4

in :l global variable. call it X a. Any copy rules between diHerent X.a. instances ~hen look

like X_~ • x_,; these are all eliminated.

If X.a cannot be made into 3. global variable but GAG discovers that, in any semantic tree,

the lifetimes of any two instances of X.a are either di8joint (the requirement for a global

variable) or properly ne3ted then GAG implements X.a as a global stack. :"l2.a's lifetime is

properly ne3ted in Nl.a's lifetime if N2.a's entire lifetime is contained between two consecutive

applications of :"ll.a when evaluating the semantic tree. If X.a is implemented as a global

stack then, whenever a new instance of X.a is defined its value is pushed onto the top of

the stack. Upon last application of that attribute-instance its value IS popped off the stack.

Any use of the value of this attribute-instance is translated into a reference to the top

element of the stack. In between 2 consecutive references to this instance of X.a, another

instance of X.a may have its value pushed onto and popped off of the stacie.

The way in which attri~utes are implemented 3-' a stack is different for inherited attributes

than it is for synthesized attributes. At a.ny time during a.ttribute evaluation the inherited

attributes that are on a stack are attributes of nodes tha.t ue ancestors of the CUlTent. node

in the semantic tree. At the same time the synthesized attributes that are on a·"stack are

attributes of nodes that are siblings of ancestors, rather than the ancestors themselves.

Figure 2-1 illustrates the difference. This is similar to the different stack-contents of a top

down parser ver5US a bottom-up parser.

XO ::. Xl lO.
Xl.I • XO.I • 2.
Xl.I • XO.I - XI.S,
XO.S • 2oXI.S • lO.S

X ::- TDI l.
X.S • X.I ... IJ

I I I

X ::- TDI I.
X.S • X.I 11M II

_ ~~t~==~~~ __ ~~ ____ _
I C _ ----.--. __ ..

I S I I I

~)~
I I 1 I

c;:3'-) -~ __ _
I S I I I I

~i~ ~ i~------'
I I I I I I I I I • I

--'G~"'" I Q' QI 'c¥ CYJ I c:;"

Figure 2-1: Wba.t attributes are on the stack! synthesized vs. inherited.

The path indicates evaluation order; labelled a.ttribute-instances are on the

stacie when the evaluators locul 0/ control is at the tip of the path.

GAG assumes that no production contains a reference to a right-part inherited attribute

occurrence for any potentially stacleable attribute X.I. Consequently, the last reference to

5

such an X.I is during the VISIT to that X-node and hence must correspond to a rerereoce

to a left-part occurrence of X.I in some other production. Thus, X.I is pushed onto the

stack in one production, where it is a right-part occurrence, and popped oU the stack in a.

diUerent production, where it is a left-pa.rt occurrence. In order for this work correctly, all

productions that have X as their left-part symbol must pop X.I before finishing that VISIT.

When a right-part X.I is defined by a copy rule from a left-part X.I (i.e. X [1] . I • X[O]. I) we

would like to not duplicate the current top of the stack; i.e. not push a new value onto the

stack and then not pop it aU later. This would save some code and keep the stack from

growmg. Unfortunately, this copy rule can be only be eliminated in some cases: when the

production that contains the copy rule makes no reference to the left-part occurrence X[OI.I

after VISITing X[I]. The reason for this restriction is that the VISIT to X[II will pop the

X.I stack and if X[Ij.I was not pushed onto the stack before the VISIT then the value that

gets popped will be the value corresponding to X[O].I. This can be allowed only if X[O].1

will not be used again.

:.:. Flndlng global vulables and global stacks

To decide whether a transient attribute X.a can be implemented as a global variable or a -,
global stack GAG checks whether each production that contains an occurrence of X.a

satisfies certain sufficient conditions concerning how X.a is used in that production. If the

appropriate conditions are satisfied for all the productions then X.a is implemented as a

global variable or global stack, accordingly. Otherwise X.a is allocated space in the semantic

tree. The sufficient conditions are given below, together with some illustrations.

:.:.1. Sumelent conditions for global vulables

We consider inherited and synthesized attributes separately. First, let X.a be an inherited

transient attribute, defined before the i
th

visit. to X and neVer referenced after that visit.

Suppose production p has X as its left-part. X.a will not be implemented as a global

variable only if, between the first attribute evaluation of the ith visit and the last reference

to Xo.a, either:

1. a right-part occurrence of X.a is defined, or

2. some right-part node Y is visited and Y derives X.

In the first ca.se, X.a certainly cannot be implemented a.s a glob&.! variable since the value of

the right-part occurrence would overwrite the value of the left-part occurrence and the left

part occurrence still needs to be referenced. In the second case, GAG assumes that the visit

to Y will result in a nested visit to X (in Y's subtree) and the evaluation of its attribute

X.a. This also would overwrite the previous value of the global variable although it still

needs to be referenced. This last assumption ma.de by GAG can be overly pessimistic; often

global analysis can determine that even though Y is visited and Y derives X, no new

6

occurrence of X.3. will be evaluated.

p : • Xo o I 1 • I

~.)~
111.1 1 111.

I

'~
I

_----- X
1 I • I

'9
hr.

Figure 2-2: GAG implement3 X.i as a global variable

Synthesized transient attribute3 are examined in a similar fashion. Let X.a be an

synthesized transient attribute, defined during the ith VISIT to X and never referenced after

executing :::; VISIT
O

to X's parent. For each production p having a right.-part occurrence of

X, say X" X.a will not be implemented as a global variable only if, between the first
J -

attribute evaluation following the i
th

visit to Xj and the last reference to Xj .30, either:

1. a left-part occurrence of X.a is defined. or

2. some right.-part node Y is visited and either Y ... X or Y derives X.

Figure 2-2 gives an example of an attribute, X.i, that GAG implement3 as a. global variable.

An examination of the sequence VS pO in conjunction with the dependency giiph DpO'

reveals that after evalua.ting XI.i, Xo.i is never referenced again. Alter examining all of the

productions of the attribute grammar GAG concludes that. any two instances of X.i in any

semantic tree will have disjoint lifetimes and X.i can be implemented as a global variable.

[n figure 2-3, however, an examination of VS qO reveals that the lifetime of X1.i is nested in

the lifetime of Xo.i. This makes it impossible to implement X.i as a global variable; XI.i·s

value would overwrite the value of Xo.i although the latter value i3 still needed to compute

Y.i.

%.:.2. Sumelent eondltlon. for ,Iobal staeks

Again we consider inherited attributes separately from synthesized ones. Let X.a be an

inherited tran3ient attribute defined before the ith VISIT to X and never referenced after

that 'I1S[T. and suppose production p bas X a.s it3 left-part. X.a can !!2l be made into a

global stack only if there is a right-part occurrence of X in p, say Xj (j >0), and after

defining Xj.a but before visiting Xj' Xo.& is referenced. In such 3. c~e the lifetime of Xj.a

is not properly included in the lifetime of Xo.a; their lifetimes are intertwined. However, if

Xj is visited before Xo.& is referenced then Xj.a's lifetime is properly included in Xo.a.'s

lifetime; upon returning from the visit to Xj , the value of Xj.a is no longer needed since X.a.

is transient.

In figure 2-3, X.i can be implemented a.5 a global stack. Upon visiting the production ~,

7

X1·i would be evaluated by uSing the value on top of the X.i stack as the value of X
O

'I.

XI·i's value would then be pushed onto the top of the X.i stack, where it will be referenced

during the visit to Xl' Before returning from that visit the top of the stack is popped,

once aga.in revealing the value of Xo.i. Upon returning to Qo this va.lue is used to compute

the value of Y.i. The value of Xo.i can then also be popped off the top of the stack as it

IS no longer needed to compute any other attribute-instances.

<\0: I 1 I • i Xc, ----... X
1 I • I

----... y
1 I • I

· c?~.
I 1 I • I I

• • ,
.. I Y

1 I • I

Ten

•
VSqO • CEYAL X

l
.1) (VISIT Xl) (!;VAL Y.1) (VISIT Y) CEYAL Xo.,) (VIS ITo)

VS
ql

• CEYAL X ••) (vISIT
o

) VS
p2

• ClYAL X.I) (vISIT
O

)

Figure 2-3: GAG implements X.i ~ a. global stack:

On the other hand, figure 2-4 shows a production with transient attribute X.il that GAG

does not stack. The problem is that XI.il is defined, and pushed on top of the stack,

before the reference to Xo.il is used to define XI .i2, which in turn h&ppens ~~fore the

VISIT to Xl that pops the X.il stack.

; 11 I • I 12 i Xo

:f3;l:x
I 11 I • I 12 I 1

•

Figure 2--': A transient attribute GAG does not stack

GAG's sufficient conditions for stacking synthesized attributes are a. little more lenient than

for inherited ones. Sometimes these attributes are stacked even though their lifetimes are

intertwined. The rule that a production must satisfy is that a synthesized attribute can not

be stacked only if there a.re two distinct attribute-occurrences of X.s, Xi.s and Xj.s, such

that

1. Xi.s is defined before Xj.s, and

2. the last reference to Xi.s occurs after the definition of Xj.s, and

3. the last reference to Xi.s occurs before the last reference to Xj.s

Note that for the purpose of this analysis the VISIT a that ends this VISIT to the

production counts as the last reference to a left-part Xo.s. Notice further that, unlike the

case for inherited attributes, there can be a reference to Xi.s between the definition of Xj.s

8

3.nd the last reference to Xj.s; figure 2·5 illustr3.tes such 3. case. GAG Implements X.5 >.S 3.

global stack even though both XI.s and X2.s need to be referenced in order to define Yl

d 'L To make these evaluations. GAG r~ferences the top _two values on the stack. an -i)'s,

r: • Xo
I 1 I • I

.~-~-+.x,
111.1 1 111.1 111.1

I

Figure 2-5: GAG allows reference to value within stack

GAG does not implement all synthesized tr~ient attributes a.s stacks. In figure 2·6, for

example, GAG does not implement XA.sl as a global stack. This IS becalUle after the

computation of XAo.sl and XAo.s2, XAL .sl would no longer be on the top of the stack and

could therefore not be popped orf the stack.

figure 2-7.

.: I Do
I 1 I .1 I 12 I

:f !?f XA
I 1 I .1 I .2 I 1
I I

The same is true for the example in

Figure 2-e: An example of GAG not stacking a synthesized attribute

,: I 1 I • ; Xo

.~k:=~,,-
111.1 1 I 1.1 111.1'
• I I I I'

~ • C!:VAL X
1

.1HYIIIT X1)(r:tAL X,.lHYIIIT X,)(EVAL fa· 1)(YIIIT fa)
u.YAl. Xo.,) CV lIT Xol

A second example of GAG not stacking a synthesized attribute

!.3. Combining Global Variables and Global Stacks

Once GAG has determined which attributes are to be implemented as global variables and

global stacks it further attempt.! to optimize stol'3ge by combining several global variables

into a single global variable and combining several global stacks into a single global stack.

This policy can produce some startling effective optimizations. For example, figure

9

2-2 shows a grammar in which the two attributes (X.i and X.s) interact to slmuiJ,te

updating a global variable during a left-to-right evaluation pass. After GAG determines that

both X.i and X.s can be implemented as global variables, it decides that they can be

combined into a single global variable. The evaluator generated by GAG uses a single

global variable to store all the attributes of the semantic tree and this variable gets updated

during the traversal of the tree. Combining global stacks can also have beneficial effects: if

X.i and Y.i are both being implemented as global stacks and there exists a production

p: X::=- Y with a semantic function ! Y.i - X.i I then we may be able to eliminate this

copy rule by combining the X.i and Y.i stach. The elimination of this copy rule means

that for every instance of p in the semantic tree, one less storage cell is needed. Similarly,

combining X.i and Y.i global variables eliminates copy rules of this form.

Not any two global stacks can be combined into one. For example, if X.i and Y.il of figure

2-8 were being implemented as global stach they could not be combined into a single global

stack a.s X.i needs to be referenced to evaluate Y.i2 after Y.il ha.s already been placed on

the top of the stack. If Y.i2 were being implemented a.s a global stack a.s well, it could be

combined with X.i. Similar comments apply to global variables.

_--_IX
r: 1 I • I

.~z oY
I 11 I • I 12 I

I

VS
r

• erOJ .. Y.l1)(EVAL Y.12)(VISIT Y)(EVAL X ••)(VISIT
O

)

Figure 2-8: X.i and Y.il stacks cannot be combined

Furthermore, no 2 inherited or synthesized attributes of the same symbol can be

implemented as the same global stack or variable, a.s demonstrated by figure 2-9. In this

case, the X.il and X.i2 global stacks cannot be combined as upon visiting this production

both X.il and X.i2 need to be referenced. In general, if X.i, Y.il, and Y.i2, are global

stacks or variables, we can combine the X.i stack with Y.il or with Y.i2 but not with both.

This gives quite a bit of choice on how to combine global stach together. Any combination

gives rise to a partition of the global stach, where all the global stach in the same

partition element will be made into one glob&! stacie. There are several criteria by which

the efficacy of a partition could be judged: the total number of global variables and global

staclcs needed, the number of copy rules eliminated, or the total amount of space used to

implement all of the stacks and global variables. This la.st criterion would be good to use if

storage optimization is our chief concern, but the space used will genera.lly depend on the

10

•• X
11 I • I 12 I

~JJ"
1 I • I 1 I • I

Figure 2-Q: No two attributes of the same symbol can share a global stack

structure of the individual sema.ntic trees, which can only be approximated when building an

evaluator. The other two criteria are static criteria that can be determined when building

the evaluator. A partition that eliminates the grea.test number oC copy rules will not

necessarily result In the least number of global variables and global stacks, as illustrated by

rigure 2-10.

The number of stacks used is not a. very important measure of storage efficiency since there

will be at most some constant number of stacks anywa.y, &nd each one will contribute only

a consta.nt amount of overhead. The key measure is the total number or stora.ge cells these

stacks will use. Eliminating a copy rule {rom a production means that (or eaeA occurrence .
of that production in a semantic tree one less storage cell will be used. Hence total number

of copy rules eliminated is a better measure. Unfortunately it is an NP-complete problem

to determine the optimal wa.y to combine the global stacks and vars so to eliminate as

many copy rules as possible, as shown in the a.ppendix.

To determine how to combine global variables and global stacks GAG uses a lir8! lit

strategy that combines together any two stacks or variables that can be combined. It does

no analysis of any expected savings gained by doing this combination ve~us some other,

incompatible, combination.

'1: X ::- Y "n1.
Y.a - X.a;
Y.' - cou\aat:

«X Y.a>. (I.a.X .• >. U.'.Y.'»

A partition eliminating flU 9 copy rule8 flnd u8ing 9 global variable.,

'2: X ::- Z \.r.2.
Z.a - X.,:
Z.' - cou\aa\;

'I: Y ::- Z t.raa.
Z.a - oou\&&t.:
Z.' • Y.';

({X.a.Y Z.&). <X.'.Y.II.Z.IIH

A pflrtition eliminating onlr e copy rulu, but u8ing e global variable.,

Figure 2-10: Two different partitions of global variables X.a, Y.a, Z.a., X.b, Y.b and Z.b

11

3. LINGCIST-8~

LINGUIST-86 IS an AG-based translator-writing-system that generates attribute evaluators

that use the alternating pass evaluation strategy [7). These evaluators store a linearized

version of the semantic tree in intermediate files on secondary storage, and so they avoid

using la.rge amounts of main memory to represent the semantic tree. LINGUIST-88

attempts to further improve the use of storage by its evaluators through an optimization

called .!tatic .!ub"umption. This eliminates copy-rules and decreases both the stack space

needed to evaluate an attribute grammar and the size of the intermediate files.

3.1. LINGUIST-8ft evaluation paradIgm

The basic idea of LINGUIST-88's evaluation paradigm is that when a semantic tree node, N,

is VISITed during attribute evaluation it is read from the intermediate file onto the top of a

stack in memory. N is kept on the stack while the sub-tree descended from N is visited.

The nodes of this sub-tree get stacked on top of N and attribute-instances in that subtree

are assigned values. The evaluation of the sub-tree may use the values of some attribute

instances of N and may define other attribute-instances of N. When the evaluation pass over

N's subtree is finished N is written to the intermediate file and popped off .t.he stack.

Because of the the evaluation order, the nodes of N's subtree will have already been written

out and removed from the stack. LINGUIST-86's paradigm for semantic tree traversal and

attribute evaluation in a left-to-right pass is given in figure 3-1, which describes the process

of VISITing a sub-tree whose root is an instance of XO.

rtad ,11 ,ttrib. ot Xl tro. In,Qt tl1. onto .tack
tyal inhtrittd ,ttrib. ot Xl for t~i. , ...
Yi.lt t~t 'Q~tr •• I~O" root 1. Xl
.rit. ,11 ,ttrlb. ot Xl to OQt,.~ fll.

rlad all attrlb. of X2 fro. lap.t fll. oato .tack
tyal inh.rit.d attrib. of X2 for t~. , ...
• i.it tal 'Q~tr'l lao •• root 1. X2
Irit, all ,ttrib. of X2 to o.tp.~ fll.

rlad all ,ttrib. ot xa fro. 1.p.~ tll. o.to .tack
I.al 1".rlt.4 ,ttrib. of xa for t~. , ...
yl.tt tal •• ~tr' root i. xa
.rlt, all attrib. of xa to o.~", fll.

1 .. 1 'rata,.11.4 ,ttrib. of XO

,0, all ,ttrlb. of Xl ... xa off top of .tack

r.t.,. fro. Yi.ltl" •• ~~r •• rooted at XO

Figure 3-1z Attribute Evaluation Paradigm of LINGUIST-86

This evaluation paradigm calls for reading nodes in prefix order and writing them tn postfix

order. Two intermediate files are used per pass: semantic tree nodes are read from one

intermediate file and written to the other intermediate file. The output file of a left-to

right pass is a left-t<?right, postfix ordering of the nodes of the semantic tree. The input

file for a right-to-left pass IS a right-to-left, prefix ordering of the semantic tree nodes.

12

Thus. if the output file of a. left-to-right pa.ss is read backwards it can be used a.s the l:lput

file for a right-to-Ieft pa.ss. The same is true for a right-to-Ie!t pass followed by a left-to

right pass. This trait is illustrated by the diagram below.

1.tt-to-r1,~t ---)
pretu

(--- rl,~t-to-l.tt

po.uu

• , B l C E DeL 8 r I J

I

I ,
I
I I

I I
B E
I I

I I
I I I
A C D

• I
I

I
a

I
H

I
L
I

I
r
I
I I

I
J

LINGUIST-86 generates in-line code to read &nd write sem&ntic tree nodes and to evaluate

sem&ntic functions. This code is organized as a set of mutually recursive "production-

procedures" .

procedure.

For each production &nd for each pa.ss, there is a separate production-
.'

These are partitioned into: the set of production-procedures that are used for

pass 1, the set used for pa.ss 2, the set used for pa.ss 3, etc. Each production-procedure has

one value/result parameter. a semantic tree node, that corresponds to the left-part of the

production. Space for the production's right-part semantic tree nodes are allocated a.s local

variables a! its production-procedures. Thus, the stack of semantic tree nodes is intermixed

with the system run-time stack that suppor~ procedure call/return, parameter pa.ssing, and

recursion. The body of each production.procedure does the following:

- read right-part semantic tree nodes from the input intermediate file,

- compute values by evalua.ting semantic functions and use these to define attribute-

instances,

. call production-procedures to VISIT right-part sub-trees, and

. write right-part semantic tree nodes to the output intermediate file.

This organization is similar to that of ~ recursive descent compiler. A simple production

and the corresponding production-procedure for a left-to-right pa.ss is shown in figure 3-2.

In this scheme transient attributes are dealt with quite ea.sily by just not reading them from

or writing them to the intermediate file. The attributes of each symbol are pa.rtitioned into

significant and transient attributes depending on whether or not the a.ttribute will be used

in a later pa.ss than the one during which it is defined. Only the values of significant

13

XO ::. Y XI.
X1.I • XO.I,
Y. I • XO.1.
XO.S • Xl.S,
X1.PU: • U1I1ollS't.otCY.aBJ,XO.PW,
XO.POST. IlIcrltTrll,(I.IlI(Y.I,Xl.PW,Xl.POST);

proc.dllr, P14 PP1 (VAl XO : X ~TPI);
,. ~1l1. i'lI r1,U-to-ht\ PUt .,

VAl Y : Y_~TPI;
Xl : X_ ~TPI:

b'Cia

G,Uoct, (X) ;

X1.1 • XO.I:
X1.PU. UlIio.slt.otCY.aa.z,XO.PW;

P?i(X); ,- Vi.i" Xl .,
"'\toct, 00;

G,Uoct, CY) ;
Y.I • XO.I;

P?1(Y);

"'\toct, m ;

XC.! • XL!;

,. VlI1\ Y .,

Xl.POST • IlIcrltT~.(I.I.CY.I,Xl.PIlJ,Xl.POIt):

.. 4 PU_P?1:

Fisure 3-2: A production-procedure generated by LINGUIST-86

attribute~ are tran~fered between the intermediate file~ and the ~tack. In a LINGUIST-8&

generated a.ttribute evaluator all tran~ient attributes a.re implemented on a single stack.

'.
Being a.ble to keep the semantic tree on secondary storage and not in malO memory IS an

important, integral part of LINGUIST-86's evaluation paradigm. However, there are other

aspects of LINGUIST-86's storage optimization strategy that we wish to analyze and

compare with GAG's strategy, such a.s static subsumption and the stack-implementation of

transient attributes. Thus it is useful to notice that LINGUIST-86's pa.radigm could easily

be modified so that the semantic tree was kept in main memory; simply ~e a large buffer

rather than the intermediate file.

3.2. Statle SubsumptioD

In LINGUIST-86's ba.sic pa.radigm, the varIous production-procedures communicate with one

another by pa.ssing a pointer to the stack-re~ident ~tructure~ that hold the values of

attribute-instances. The principle behind static subsumption is that this communication can

be achi~.!.ed just as well by copying the value~ of attribute--instances from the stack to

specific global variables. Consider the production-procedure for a production with symbol X

a.s its left-part. Suppose that the value of any instance of inherited attribute X.I ~ always

copied to global variable X_I just before VISITing an X-node. Instead of acce~ing the

value of X.I as a field of its V AR parameter, the production-procedure can now access

global variable X _ I for the value of th~ left-part attribute--instance. Similarly, if the

production-procedure define~ left-part ~ynthesized attribute X.S by assigning a value to global

variable X_ 5, then any production-procedure containing X in its right-part can use this

14

global va.ri~ble. either to copy it into the local. stack-resident structure ror a node. or to use

it in the evaluation or semantic functions.

In most cases, copying attribute-instances back and forth is more expensive than passing a

pointer and making indirect references through it. However. if the semantic function that

defines an attribute-instance IS a. copy-rule whose right.-part is a diUerent instance or the

same attribute then no explicit code is required to implement this semantic function. The

proper value is already in the global variable. We say that such a. copy-rule is "subsumed"

by the static allocation of the attribute, Figure 3-3 shows a simple example of how copy

rules can be subsumed; the subsumed copy-rules are commented out.

10 ::. T Xl.
X1.I • XO.I.
T.I • 10.1.
XO.S - Xl.S.
X1.!"U • Ua1o..s.t.otCY.CDIJ,XO.PW.
XO.POST • IacrltTra.(I.IaCX1.S,Xl.PIE).Xl.POST):

procedar. P14 PP1 (VAl xo : X tnl): '0 \U. 1. & r1p\-w-ht\ ,.81 0/
VAl T : T _ \JJe:

Xl : X_\nl:

~'C1.

C.UocI, CX) :
'-X1.I:- XO.I: 0/

Xl-PRE :- UaiO.slt.otCY.CDIJ .XO.PIE):
PP1(X):
hU04I. CX) :

G.U04lm;
T 1:- X I;

PP1ry); -
Pnlod, CY) ;

'0 XO.S :_ XI.S; 0'
XO.POST • IacrIfTral(I.IaCX S.XI.PI!).XI.POST):

lad P14 _"1:

Figure 3-3: An example of static subsumption. X.I, Y.I a.nd X.S are statically allocated.

The penalty for eliminatins this explicit cOPYlDg IS paid at thO!e points where the static

~ttributes are not defined by subsumable copy-rules. In these cases a new value must be

assigned to the global variable for propagation to the sub-tree. However, the previous value

of the global vuiable is not. "dead"; it may still be used later by this production-procedure.

or by a production-procedure at some ancestor node. Hence the old value must be saved in

a temporary variable in the production-procedure's stack-frame. Sometime after VISITing

the subtree but before exiting this production-procedure the saved value must be restored to

the global variable. Figure 3-4 shows the production-procedure of the earlier example

modified as would be required if attributes X.PRE and X.POST were statically allocated to

global variables X PRE and X POST.

15

I at.t.riIlTTP';
I: at.t.riIlTTP';
S at.t.rtIlTTP';
P«t at.t.rthTTP';
POSf'"_ at.t.r1I1TTP';

,ro~,dur_ P14 "1 (VAl XO : X t.TP');
/. t.1ai. i' a r1,IIt,-t.o-hlt. pa ... ,

VAA
Y : Y_t.n';
Xl : X t.n-;
X Pili: W : '"Pili: aUriIlT",; /. IU, oop, of hft.-,a" nl .. of X Pili: ./
X:PIU::f" ZijP : PlIE-at.t.riUTP'; ,. holcl ~op, of r1,1lt.-,art. nl .. of X:PlIE .,
X_PCSU-_ZijP : POSf"_at.t.riIlT",; ,. kolcl 00" of r1tllt.-,U't. nl .. of X_POST 0'

b"b

G.Uod.O(1) ;
,. Xl.1 • XO.l 0'

X pm ZijP. UalollS.tot CY. Q!J, X PI!!:);
X - PI!! ~ • X PI!!; X PI!!' X '"Pac ZQP;

P!'1rXl); - - --

X PI!!' X PIE W; ,. rutol'l nl .. ot XO.PRE 0'
X-POST2 %fit."} POST; ,. Cla,ta,.. .u .. of X1.1'05T '0 1t. 1 .. ', lo.t. .k .. VISITtac Y 0'

puf"od.O(1); -

G.Uod.m;
Y I' X I;

P!'1ry); -
P",.od. CY) ;

'0 XO.S • Xl.S; 0'
X _1'CII1 • I.GrIt (II Ia ex _ S,X _PII2 _ZlilP) ,x _I'CII12 _ZlilP):

.. 4 P14_"1:

Figure 3-4: An example of the cost." of static subsumption.

. .
The need to save/restore the global variable of a statically allocated attribute is especially

burdensome in the Ca.:5e of synthesized attributes, and LINGUIST-86 is not very good about

subsuming copy rules between synthesized attributes. Even if synthesized attribute X.S is

statically allocated, a copy rule [XO.S - XI.S] will be subsumed only if:

- it is evaluated during a left-to-right pass and Xl is the right-most symbol of the

production, or

- it is evaluated during a right-to-Ieft pass and Xl is the left-most symbol;

I.e. only if no other sub-tree is VISITed after VISITing Xl. This is because LINGUIST-86

does no global analysis to determine whether a particular VISIT will a.:5Sign to the global

variable, hence any useful value in that variable must be saved before the VISIT and

restored alter it. Only when no VISIT intervenes between the definition of the global

variable (during a VISIT) and the use of that variable (to define a left-part attribute

allocated to the same global va.riable) will the varia.ble not be saved/restored a.nd hence be

eligible for subsumption.

Static subsumption can be even more widely applied by allocating several different attributes

to the same global variable. The major restriction is that two different attributes of the

same symbol can not be allocated to the same global variable. Ma.ny more copy-rules are

subsumabie by such a. strategy and hence can be eliminated. In the example above, X.I a.nd

Y.I could be allocated to the same variable, thereby ena.bling us to eliminate the copy-rule

16

N.I • X.I]. On the other hand. global variables may have to be saved/restored more

frequently. In general. the extra code necessary to save/restore a global variable is as much

as the code saved by subsuming several copy-rules.

Static subsumption can also reduce the amount of space needed to store attribute-instances.

When an attribute X.A is statically allocated no field is needed for it in X nodes. This can

result in significant decrease both in the stacie space needed for semantic tree nodes and in

the size of the semantic tree file. However. stacie space will be needed whenever a right

part occurrence of X.A is not defined by a subsumable copy-rule because then the global

value must be saved in a local variable on the stacie.

3.:.1. DeterminIng stade aUoeation ot attributes

LINGUIST-86's static allocation paradigm calls for us to decide, for each attribute, whether

the attribute should be statically allocated, and if so then with which other statically

allocated attributes should it be combined. In making these decisions LINGUIST-86 tries to

save as much code space as it can by eliminating copy-rules; it tries to maximize the net

code space savings of subsumed copy rules minus extra code necessary to save and restore

global variables. This is a combinatorial problem that. is infeasible to solve exactly (or any

realistic number of attributes. Instead, LINGUIST-86 uses a heuristic in order to narrow

the search space and then uses a polynomial-time approximation on the resulting, smaller.

problem. The heuristic is that if two attributes with the same name, say X.FOO and

Y.FOO, are each statically allocated then they will be statically allocated to the same global

variable. This substantially reduces the complexity of the problem: (or each attribute

X.FOO LINGUIST-86 only needs to decide whether it should be static. If it is static then

it will sh3re storage with all the other attributes Y.FOO that are also static.

This reduced problem is still NP-complete and the way LINGUIST-86 solves it depends on

how many a.ttributes there are with a given name. The attributes are partitioned into

classes with the same name and the member.! of each cl~ are analyzed independently from

the member.! of any other cl~. If there are 13 or fewer attributes in a class then

LINGUIST-86 examines each of the 213 possible combinations looking for the "best" one.

Otherwise, the polynomial-time approximation described below is used. The "best" solution

IS the one that saves the most code space.

If there are more than 13 attributes in a given cl~ then LINGUIST-86 stam by assuming

that all attributes in the class are statically allocated. Each attribute is then checleed to see

if it cos~ more in code size for it to be static than it would if it were normally allocated.

This check is based on how many copy rules would no longer be subsumed if the attribute

17

were not sta.tic, versus how many times the attribute would no longer have to be saved and

restored. LINGUIST-86 assumes that it t:lkes three subsumed copy rules to offset a single

save and restore, even though this assumption is overly pessimistic in many cases.

If so indicated, the attribute is removed from the statically allocated set. When an

a.ttribute is changed from being statically allocated to being allocated in the semantic tree

node it can become more expensive for other attributes to be statically allocated. Hence, all

remaining static attributes must be reexamined until the process stabilizes. This is an 0(n3)

algorithm and it does not alwa~ find an optimal set of attributes to statically alloca.te.

3.:.:. Static alloeatioD ot slgnlneant attributes

The static subsumption paradigm does not require that the static attributes be transient;

LlNGUIST-86 can statically allocate signirica.nt attributes. A significant, static attribute does

not take up space in the sema.ntic tree except at those places where the value of a.n instance

of the attribute is changed, i.e. where an instance is defined by other tha.n a. copy rule.

There the previous value of the static v&riable is saved !:1 the sema.ntic tree as a. temporvy

value that is associated with the production, rather tha.n associated with the symbol (i.e.

node). eo

The implementation of a significant, static attribute is the same as that of a transient static

attribute for the pass during which the attribute is defined. On later passes the treatment

is similar in that, upon entry to a production-procedure, the value in the global variable is

saved in a stack-resident temporary whenever the static attribute is r.:;defined by a non-copy

rule. However, the treatment is different in later passes in that the global variable is

redefined with the value that was computed earlier a.nd W8.'5 saved in the semantic tree.

Figure 3-5 shows the situation of figure 3-4 if X.PRE were a significant attribute. The

production-procedure PP14 _ PPj shows the implementation of X.PRE on passes after X.PRE

is computed.

This strategy will only save code space, i.e., eliminate enough copy rules, if the value of the

attribute is not changed very often. For a significant attribute the code needed to save and

restore the global variables must be generated in several passes, whereas t.he copy rules that.

can be eliminated still occur in only one pass - the one during which the attribute is

deCined. Thus, a significant attribute will be statically allocated only when the subsumable

copy rules greatly outnumber the non-subsumable definitions. For instance, in the Pascal

AG written for LINGUIST-86, only three a.ttributes (out of 892) are both statically allocated

and sign ifican t.

18

1 &~~rnT",:
1- &ur1bT",:
S-'~tribTTP':
P~ ,"r1bT",:
POSf"_"'r1~TTP':

proc.clu, P14 "1 (VAl XO : X,,,,): '0 ~k1. 1. a rlp,-w-let' pu. 0'
VAl

Y Y_,,.,.:
Xl X_ t.".:
X PIlE QZJ' : ~ auribT".: '0 un COPJ ot lett.-part. ftl .. ot X_I'U 0'
x:nd"_zQP : 1'U:&Url~TTP'; '0 Mld OIIPJ ot rl.~'..,art. ftl .. ot X_I'U 0'

hru
a,UM,O(1) :

,- Xl.! • m.I 0'
X l'IC ZQP. lJa1o",t.ot CY. aaJ. X !'!IE) :

X-PIE ~ • X PIlE; X PIE' X"u:z v;,:
"1rXl J: - - --

X PIE' X !'lIZ QZ1; "dOoi. OCl) ; - -

Gnloum:
Y I' X 1;

PP1ry): -
"UM.cy):

"',Upin.,. OC _ PII:Z _ zaP) :
.... P14_"1;

~'rU
~.t.S1p1n.,. OC _ PII:Z _ ZII') :

anlo4. OCl) :
X PIE QZ1. X I'U; X pu. X PII:Z ~:

PP1rX1 J: - - --
X PIE. X I'U QZP; ,- r ,. ~ •• ot XO.PIZ .,
X-POST2 %Qp."I POIT; ,- Cla,uJ'e ~ .. ot X1.POIT .. 1\ 1 .. ', 10., .~ .. VIIlT1a(Y 0/

ht."'ocI. OCl J: -

a'UM' CY);
"iC y);
hUM' CY) ;

,- m.s • Xl.l; -,
X_POST' IacrUChIaa_I,X_J'IZI_Zlr).X_POIT2_ZII');

, .. P14 PP1;

Fisure 3-51 Static allocation of significant attributes.

4. ComparlDI the emeaey of GAG and LINGUIST-8ft

In order to see how well the va.rio~ storage optimizatio~ work, and to compare their

effectiveness, we would ideally like to take several attribute gramm~ &nd generate attribute

evaluato~ (rom them with both systems &nd then compa.re the results. Unfortunately. the

two ~tems accept quite different input (arms with respect to such features a.s: type

structure, built-in functions, special default and ,horl .. l&tind notation, etc; SO much so that the

existing attribute gramm~ (or each system would have to be substantially rewritten in

order to be accepted by the other system.

19

The next best form of comparison would be to take a pair of attribute grammars tha.t

describe the same (or very similar) translations and look at how much c:a.ch system ca.n

Improve the time-efficiency and space-efficiency of the attribute evaluators it generates over

the efficiency of unoptimized versions of those evaluators. However, it can be misleading to

compare these figures for GAG and LINGUIST-86 because the two systems are targeted to

such widely diUerent computer systems. GAG generates evaluators for large main-fra.me

computers with 32-bit words, multi-megabyte address spaces, and virtual memory.

LINGUIST-86 generates evaluators for micro-computers with ll>bit words, address space in

the range of 100-500 kilobytes, and no virtual memory. For example, when we find that

LINGUIST-86's storage optimizations have no perceivable eUect on running time, is it

because too few instructions were savedr or because LINGUIST-8l>generated a.ttribute

evaluators run in an environment where they are I/O bound anyway and have no

mechanism for trading space for time (i.e. a virtual memory system)r

The comparLSOn we do think meaningful is to relate the effec~ of storage optimization in

tel'IIl3 of the input attribute grammar, i.e. the attributes and semantic functions. Shown

below are such statistics for two attribute grammars for P~cal, one designed to be input to

GAG and the other designed for LINGUIST-86. Keep in mind that these are different

attribute gramm~. Although other attribute gramma.rs have been written for both

systems, these two are the ones that describe most nearly the same translation and for

which reasonably compatible figures are available. The figures for GAG's grammar are from

[10, 11; those for LINGUIST-86's grammar are from [51.2

~ LIICUIST-88

t4t&l • aUr1h all a_

• attri~. 1a 104 •• 52 (111) 1M un)
(i .•. .0' opti.il.4)

• a'tr1~. .. ,lo~&l Yar 211 ml)
• a'tri~. .. .taokl .. Ull)

• tr&&li.,t attr1~. 712 (m)

• .t,Uo aUriN 117 (411)

t4tal • • t10 rtl •• - 2OaO

• coprnl .. 727 (741) 1147 (671)

• coprnl .. tl1a1aatM 172 7"
I of all t10 nl •• aft a71
I of con-nl .. III 861

This data immediately sugges~ two observations:

- the strategies of each system are reasonably effective,

2The GAG figures reflect the options of expanding INCLUDINGs, and uniting a stack
together with a global variable. These are the choices most nearly compatible with what
LINGUIST-86 does.

20

the degree of optimiza.tion performed IS quite similar between the two systems.

This second point should not be too surprising for both systems have much the same

underlying philosophy. The essentials of this philosophy, as contrasted to other approaches

suggested in the literature, are:

- Both GAG and LINGUIST-S6 systems are satisfied to mlOlmlZe storage

requirements even if they ca.nnot find the best solution to the problem. Contrast

this to the exhaustive analysis of global storage allocation presented in [61.

Neither system will evaluate any attribute-insta.nce twice, hence there is no

space/time tradeoff. On the contrary, some of t.he opt.imizing t.echniques (static

subsumption of copy rules) also eliminate the need to copy duplica.te values

around the tree. Compare t.his to the algoritlum given by Reps 1141 which bound

the number of at.tributes ever needed to be stored a.nd accessed simultaneously

but which may require multiple evaluation of attribute-i~ta.nces.

- Both GAG a.nd LINGUIST-S6 build "static" tree-walk evaluato~, with the

evaluation order at each production completely determined. Contrast this with

the attribute evaluation paradigm described by Katayama [Ill. or with the similar

paradigm implemented by Jourda.n lSI. This paradigm also calb (or transient

attributes to be allocated on a stack in much the same way as for LINGUIST-ge.

However, this paradigm deals with significant att.ributes by re-evaluating t.hem on

each VISIT during which they are used. Furthermore, this is a more "dynamic"

paradigm that does much less analysis of ultimate evaluation order, a.nd hence

does not do as much storage optimization; nothing similar to copy rule

sUbsumption is done, for example.

- The optimizations used in GAG and LINGUIST-S6 are precompiled into the code

of the evaluator and are tree-independent; no extra run-time analysis of a

semantic tree is needed to apply the opt.imizatio~.

- Both approaches are flexible: they &lIow at.tributes to share storage celb even if

not Gil of their occurrences will have the same value or disjoint lifetimes.

- Both. although GAG moreso than LINGUIST-Se, take their evaluation strategy

into consideration when deciding upon which attribut.es should share storage.

Despite these similarities 10 underlying strategy, GAG and LINGUIST-S6 are different in

many respects. Most of these differences are incidental and contribute little to the total

effectiveness of the ~tems. However, there are a few substa.ntive differences that suggest

how one or the other, or both, systems can be improved. These will be discussed in

section 4.2. But fi~t. let us examine the important features of storage optimization as

performed by both GAG and LINGUIST-86.

21

4.1. Analysis or storage optlmlzntlons

For both GAG and LINGUIST-86 the issues for storage optimization can be characterized as:

1. Whether insta.nces of an attribute should be implemented as:

a. components of semantic tree nodes, or

b. elements of a stack, or

c. values assigned to a global, static variable.

2. For attributes implemented a.:5 !5tacb, how deep will the !5tach grow, I.e. how

much memory will they require.

3. Which of the attributes that are implemented a.:5 stacb or variable!5 can be

combined together in order to:

eliminate copy rules, or

- reduce the number of stach and variables.

The!5e optimizations affect how much memory is needed for the evaluator's data, a! well 8.!5

the code size of the evaluator (eliminated copy rules, pushinS and popping !5tach, etc.). It

:s our oplDlon that the effects on data storage are far more important than the effects on

the evaluator's code, either the memory needed to store this code, or the time nees.ed for its

execution.

The evaluator's code IS independent of the !5ize of the semantic tree; it does not grow with

the size of the input string being proce~ed. Experience with both GAG and LINGUIST-86

is that memory needed for the evaluator'!5 code is much less a problem than the memory

needed for the semantic tree.

The time !5aving!5 of eliminated copy rules i!5 a130 not !5ignificant; in [21 the effect on running

time of not eliminating any copy-rules is reported 8.!5 being too !5mall to notice. The GAG

researchers also report [1], [101. p.67 that the effect on run-time of GAG's attribute storage

optimizatioD3 W8.!5 minimal.

The most important goal for the!5e optimizations IS to keep attribute" from being component" of

lerrtantic tree nodu. The big savings in spa.ce comes from not having to keep all instances of

an attribute simultaneou!5ly allocated in the semantic tree.

Next in importance is to keep the stach from growing too large. This is especially

important if the generated evaluator processes lists of elements (e.g., lists of statements) by

recursively VISITing the elements on the list rather than iteratively VISITing them. The

best way to keep stach !5mall is to implement an attribute 8.!5 a global variable rather tha:l

as a !5tack. Eliminating copy rules also helps to keep stach small since a copy rule that

22

ca.n be elimina.ted is pushing 3. [redundantl value onto some stack. By this re:l.Soning,

eliminating copy rules whose source and target are both the same global variable is not very

useful.

Combining global variables and combining stacks is not very effective except when it

eliminates copy rules between stacks. The storage overhead for uSing one more global

variable or one more stack is quite small - a couple of words at most. The number of

different attributes is quite small, relative to the number of attribute-instances in a. semantic

tree. The decrease in storage possible by combining stacks and global va.riables is probably

no more than 400-S00 wor&, and is likely much less. Combining stacks is only useful when

it allows us to eliminate copy rules; combining global variables does not save much storage.

Thus, we feel that the following should be the major goab of an attribute storage

optimization strategy, listed in order of importance.

1. allocate as few attributes as pos:sible in the semantic tree nod~,

2. implement as many attributes as pos:sible as glob&! variables,

3. keep attribute stacks shallow,

4. combine attributes implemented as stacks so as to eliminate redundant PYSH

operations, and so help keep stacks shallow.

Let us now consider how GAG and LINGUIST-86 differ from one another in achieving these

goals. We will also consider how one system may be able to borrow more effective ideas

and techniques from the other.

4.%. Substantlve dlrrerenees between GAG and LINGUIST-8ft

4.%.1. Transient attributes.

The most important goal is to keep attributes from being implemented as components of

semantic tree nodes. The attributes GAG will implement as either stach or global variables

must be transient, but not all transient at.tribut.es can be so implemented. On the other

hand, LINGUIST-86 implements all transient attributes either on the stack or as static

variables, and can also do so for a few significant. attributes. Thus one might t.hink that

LINGUIST-86 would allocate fewer attributes in the semantic tree. Nonetheles:s, GAG

optimizes 87% of its attributes, versus 82% for LINGUIST-86. We believe this is because

GAG's strategy of ardered attribute evaluation is much more flexible than LINGUIST-86's

alternating-pass evaluation. An a.ttribute that is 'igni/icant under a.lternating-pass evaluation

can be tranlient under ordered evaluation. For example, in figure 4-1, since Y.i references

X.i but must be defined on a later pass than X.i, X.i is not a transient attribute under

alternating pass evaluation. An ordered evaluator could visit first Xl' then ~ and then y,

23

:=:J ~
.s __ V_J-++

1
~

I 1 I • I

Figure 4-1: X.i is transient only using an ordered evaluation strategy

and so make X.i into a transient attribute.

".2.2. Global variables.

GAG can implement a transient attribute as a global variable rather than as a stack.

LINGUIST-86 only uses stacks; it does not implement attributes as global variables. Even

when an attribute could be implemented as a global variable the best LINGUIST-86 does IS

to statically allocate it. This results in saving and restoring attribute-iIUltances needlessly.

LINGUIST-86 should implement attributes a.s global variables. Th~ would substantially

improve LINGUIST-86's stack requirements, especially for I~t cOIUltructs that are VISITed

recu~ively. One way to do this within LINGUIST-86's framework ~ to determine when a

statically-allocated variable need not be saved and restored. However th~ wou1d require

that information describing how attributes are used be propagated from one production to

another and LINGUIST-86 does not do this. An alternative is to incorporate GAG's

algorithm for finding global variables into LINGUIST-86. This would also be a non-trivia.l

change to LINGUIST-86 since the evaluation order at a production would need to be

computed before storage optimization is done. Either way, LINGUIST-86 needs to do more

global analysis.

".2.3. Popping from abo~ versus popping from below.

LINGUIST-86 allocates and de allocates space for attribute-instances in the same procedure,

and saves and restores static variables in the same procedure; GAG pushes values onto an

attribute stack in one production and pops values off the stack in a different production.

Let us refer to th~ difference as popping from above ve~us popping from belO1fJ. Each strategy

has advants.ges and disadvantages. Popping from below, implemented by GAG, can save a. lot

of stack space a.s illustrated by figure 4-2. In this example, GAG implements X.i a.s a.

stack. Since X can derive itself, the stack could grow a.s the height of the tree. By

popping Xo.i off the stack {rom "below" before visiting Xl' the stack will have height I

whenever Xl is VISITed. However, "popping from below" can cause many attributes not to

be implemented a.s a stack that could be so implemented if GAG would pop from above

instea.d. Figure 4-3 illustrates such a ca.se. In this example, GAG would not make X.i into

a stack as XI.i'g value is needed after the visit to Xl. Furthermore, a.s wa.s discussed in

24

section '2.1. this stra.tegy also Inhibits the elimina.tion of many copy rules.

• • Xc p: I 1 I • I

~)~
1 I • I I 1 I •

_________ I

Figure 4-2: An example where 1'C1J'ping from bdow IS advantageous

I • Xo
q: I 1 I • I

~~.Y
11.1 1 111.1

•

Figure 4-3: An example where 1'07lping from dove is advantageous

On the other hand, t.he rea.son that LINGUIST-88 is able to stack all transient attributes is

because it keeps t.hose attribute-i~tances on the stack for a relatively long time. For

instance, LINGUIST-86 allocates stack space for a synthesized attribute-instance before

VISITing t.he sub-t.ree that will define that attribute-instance, even though that value will

not be defined until just before the end of t.hat VISIT. In the interim, which can be quite

a long time, that place on the stack is not being used. GAG would avoid pushing that

value onto the sta.ck until just prior to finishing the VISIT, if it was able to stack the

att.ribute in the first place.

The diagra.m of figure 2·1 showed which attribute-i~tance!5 would be on a stack when GAG

was visiting a node. It is reproduced below in figure 4-4, changed to show which at.tribute

instances LINGUIST-88 would have on it" stack when visiting t.ha.t node. There are many

more stacked nodes for LINGUIST-88.

For GAG there is ,. simple addition t.ha.t get" the best of both techniques: use a fourth way

of implementins attributes, global stacks that are POfIPe4 from (lbm/e. If an attribute can not

be implemen ted a.s a stack if it is PC1J'1'ed from OdOV1 then check to see if it can he stacked if

the 1'C1J' from above convention is used. This does not increa.se the stack space needed by any

a.ttribute that is etacked by GAG's current policy, but it does allow more attributes to be

stacked.

25

XO : :. XI X2.
X1.IaXO.I+2.
X2.I • XO.I - XI.S.
XO.S • 2oX1.S + X2.S

X ::a TDtI A.
X.SaX.I8OdlS

+---+
I I I S I

X::. TDUI B.
X.S • X.I .oa 6

----->
c:;-------------7)~-~~--_

I I S I I I I S I

I?)~ ,e) "_,
I I I I I I I I I I I I I I S I

.~, +~ I I ~ ~..---.',
I I I I I I I I I I I I I I I I I S I I I I S I

'y' '0/' 'C;P;' 'Y' 'Q' 'Q' 41' ''V'
Figure 4-4: What attributes are on the stack for LINGUIST·86 !

The path indicates evaluation order; labelled attribute-instances are on the

stack when the evaluators locul 01 control is at the tip of the path .

•. ! .•. Comblnlns attributes to eliminate eop1 rules.

GAG combines attribute stacks and global va.riables (section 2.3); LINGUIST·86 statically

allocates diUerent attributes to the S&IIle nriable (section 3.2.1). Both of these optimizations

allow copy rules between diUerent attributes to be subsumed. GAG's policy" for such

combinations is a simple lirlt lit, wherea.s LINGUIST·8~ analyzes how many copy rules ca.n

be subsumed by various combinations, and combines only attributes with the same name.

Because it does more analysis LINGUIST·8~ subsumes more of these copy rules. Of course,

since LINGUIST·86 only subsumes copy rules between attributes with the same name, it

would never subsume one such as [X.A - Y.BI and GAG could. Looking at the figures for

the two Pascal attribute grammars, though, GAG subsumed 51% of its copy rules and

LINGUIST·86 subsumed 65% of its copy rules; thus indicating that this latter situation is

relatively rare.

GAG decides how to group stacks together without considering how many copy rules will be

eliminated as a result of this grouping. LINGUIST-86 analyzes many different possibilities

looking for one that saves the most code in the evaluator. By ignoring copy rules in its

strategy for grouping attributes together, GAG misses ma.ny opportunities to subsume copy

rules and hence to conserve stack space. However LINGUIST-86's strategy or optimizing the

code size of the evaluator ca.n also cause it not to subsume copy rules and hence to use

more stack space.

Ideally, both systems should combine a.ttributes so !1.'5 to minimiZe the space needed for

stacks, however this is an intractable problem. The difficulty is that the number of times a

copy rule is executed depends on the structure of the semantic tree (i.e. input program) and

26

so the "best" copy rule to eliminate may vary (rom one input to another. ~oc!!the'<!s~.

both systems can be improved. GAG should combine a.ttributes only if it will elimtn3.te

some copy rules. LI:"lGlJIST·86 should combine attributes based on how much stack space

is saved, ra.ther than the amount of code saved.

-C.!.5. More thorough global anal)'sls using evaluation order.

GAG does storage optimiza.tion a.nalysis after the evaluation order has been determined and

it uses this information in its analysis. LINGUIST·86 does its analysis (i.e. which a.ttributes

to statically allocate [together!) before the complete evaluation order has been fixed. As a.

result, LINGUIST·86 is too pessimistic about the c~t of statically allocating some attributes

and so misses out on potential optimizations. LINGUIST·86 should decide how to statically

allocate attributes after the evaluation order IS hown. This would also make it easy to

incorporate GAG's strategy for finding attributes that can be global variables.

Still more global information could be efrectively used by both systems for storage

optimization. In particular, it would be useful to eollect summary information about the

ef(eet on attributes of VISITing non· terminals.

information:

We suggest eomputing the following

for eaeh non-terminal, X
for each visit to X, VISIT l(X)

(or each attribute Y.A
USE(X,i,Y.A) - true if(

a VISIT 1 to an X·node ean ever referenee
or define some instance of Y.A

.'

Such USE information eould be used by GAG to implement more attributes as global

variables. In section 2.1, we saw that. GAG would not. implement an inherited transient

attribute X.a as a global variable if, in a production where X is the left-part, there is a

visit to a. right-part node Y before the last reference to X.a, and Y derives X. This is out

of recognition that. the visit to Y could eause a nested visit to X whieh eould overwrite the

value of the left-part oceurrence of X.a. With USE information GAG eould determine more

precisely whether or not this part.icular visit. to Y could actually overwrite X.a. if it were

implemented as a. global variable. Figure 4-5 illustrates such a case. In production rl' X.i

is referenced after the fi~t visit to Y and therefore GAG would not implement it as a

global variable. Global analysis leads to the realizat.ion, however, that. any oceurrenee of X.i

in Y's subtree will not. be evaluat.ed until the seeond visit. to y, when the former value of

X.i is 110 longer needed.

LINGUIST·86 could exploit USE information to statically allocate more attributes. Recall

that LINGUIST·86 will subsume a eopy rule between between different. occurrenees of a

27

·-----------. x
I 1 I • I

~.
.=" . Y

1 I • I 12 I 12 I

VS
r1

• (EVAL Y.12)(VISIT Y) (EVAL Y.iHVISIT Y) (EVAL X .•)(VISIT
O

)

VS
r2

• (EfAL Y .• 2)(VISIT
O

) (EVAL X.1)(VISIT X) (EfJ.L Y .•)(VISIT
O

)

.-----------------------. y
I 1 I • I 12 I .2 I

. ~~~.
1 I •

Figure 4-5: X.i could be implemented as a global va.riable

statically-allocated synthesized attribute only if the source occurrence belongs to the right

part node that is visited last during this p~. This is because a visit to a right-part node

after the source of the copy rule is defined could cause some other attribute that IS

statically-allocated to the same variable to be defined. This would overwrite the contents of

that variable and so destroy the source of the copy rule. USE information would enable

LINGUIST-86 to tell that this could not happen, which would allow this copy rule to be

subsumed, which would make it less expensive to statically allocate this attribute, which

would cause more attributes to be statically-allocated.

Finally, if USE information were available GAG could implement some significant <,attributes

as stacks or global variables. Recall that ror an attribute to be a stack it is necessary that

all instances of that attribute have lifetimes that are either disjoint or properly nested. The

sufficient condition that GAG uses includes the restriction that no lifetime can contain a

VIS ITO' This is because GAG doesn't know enough about what happens "a.bove" the

current locus of control in the semantic tree; the worst-case is ~umed to happen and so no

such a.ttributes are stacked. However, it can happen that all attribute-instance lifetimes are

either disjoint or properly nested even though the attribute is not transient. For example,

attribute X.a of figure 4-6 is not stacked by GAG as it is not transient; X.a is defined

before visiting X for the first time, but is referenced during the second visit to

X. Nonetheless, the lifetimes of instances of ~.a and XI.a are disjoint and X.a can be

implemented as a stack or global variable.

,: 10 ::- Xl

Xo·~ - tCXo·&):

Xl'· • 'CXo· •• Xo·c):

Xl·o • k CXl • ~) :

10.4 • lCX1·4l;

VI, • ClYAL Io.~) (vISITo) ClYAL Xl'.) (VISIT Xt) ClYAL X
t
·.) (VIIIT Xl) CDAL Xo.4)(YIIITO)

Figure 4-8: X.a is a significant attribute but can be implemented as a stack

Situations like the one shown in figure 4-6 would be correctly detected if GAG's sufficient

28

conditions (or stacking attributes were modified to a.llow a. VISITO in the lifetime of :l left

part a.ttribute-occurrence, say X.A, but to trea.t visits to any right-part node Y
J

(in the

same or other productions) a.s a reference to a right-part occurrence of X.A if during that

visit any instance of X.A could be referenced. This latter information would be supplied by

the USE computation.

5. SuggestIons for Improvement

Several suggestions for improving GAG and LINGUIST-86 were presented 10 section 4.

Briefly, these were:

- In LINGUIST-86, implement attributes as global variables,

- In GAG, implement attributes as stacks that are popped from above,

- In both GAG and LINGUIST-86, combine attributes so as to minimize the space

requirement,., for stacks,

- in both GAG and LINGUIST-86 (but especially LINGUIST-88), use more thorough

global information to determine the applicability of the optimitations.

In this section we show how both GAG and LINGUIST-Be, by considering storage

optimizations at an earlier time in the generation cycle, can create an evaluation paradigm

explicitly designed to optimize storage.

5.1. Computlnc the evaluation order for !to~meleney.

We have shown several examples where the order or evaluation or semantic functions wa.s

crucial In being able to implement a storage optimization. However, 10 neither

LINGUIST-86 nor In GAG do potential storage optimizations influence the choice of

evaluation order. This is p&rticularly unfortunate because in both ordered evaluation and in

alternating p~ evaluation there are many arbitrary choices that go into computing the

evaluation order, choices that could be made so as to facilitate storage optimizations.

Because a major source of storage savings is &Chieved by implementing transient attributes

as global variables or global st&cks, we suggest that. appropriate heuristics be used when the

evaluation order is computed in order to increase the number of transient attributes.

For mO!t evaluation strategies, one c&n view the proce~ of fixing visit sequences (VSp) (or

the productions of the grammu as a two stage process: Fil'3t, for e&ch nonterminal X or

the grammar, each attribute X.a is assigned a visit number i, indicating that any occurrence

of X.a in any semantic tree will be evaluated on the ith visit to X. Secondly, each

production p is examined and a final evaluation order VS
p

is decided upon. This evaluation

order must be consistent with both the dependencies given by the semantic functions or p

29

•

and with the visit numbers a.ssigned to the attributes of p. Both of these steps usually m3.ke

some arbitrary choices.

First we examine the second stage of the process. After visit numbers are assigned to all

the attributes, each production p must be assigned a visit sequence VSp' This entails

completing into a total order the partial order given by the semantic functions of p and the

visit numbers assigned to the attributes of p. The partial order IS represented by an

augmented dependency graph [12J, having the attributes of p a.-s vertices and an edge (Xj.a,

Xk.b) if Xj.a is an argument to the semantic function defining Xk.b or if j := k and Xj.a

has a lower visit number than Xj.b. This partial order is completed into a total order by

adding edges to this graph. We suggest replacing some of the arbitrary choices of this

process by heuristics that increa.-se the number of transient attributes. In particular, one

element of choice involves the order in which the inherited attributes of a right-part node

and the synthesized attributes of a left-part node are evaluated before visiting the node.

GAG often arbitrarily decides to evaluate one attribute before another, preventing the

attribute from being implemented a.-s a stack. This was illustrated by figure 2-4, where

GAG chose to evaluate X I .il before X1.i2, and by figure 2-6, where GAG chose ~ evaluate

XAo.sI before XAo.s2. We suggest substituting this arbitrary choice by the read be/ore next

write heuristic, given by Sethi in [17J.

The read be/ore next write heuristic is illustrated 10 figure 5-1. If A is needed to define both

Band C, and we wish for A to share storage with C, and B and C are unrelated (i.e.

neither depends on the other), then this heuristic calls for adding an edge from B to

C. This makes it appear as though B is needed to define C and will call for the evaluation

of B before C. Since A will not be referenced after the computation of C, A and C can

share storage.

•
,.-" ... ---..

Figure 5-1: The retJd be/ore write heuristic

This heuristic can be applied to our ca.-se as follows: Say that we have a. production of the

30

iorm [p: Xo ;;= ... xi ... J where Xo = Xi a.nd the inherited a.ttribute Xo·Jl IS used to

define the inherited a.ttributes Xi.il and X
i
.i2. In this case Xo.il plays the role of A. Xii::!

plays the role of B. and X
j
.il plays the role of C. As Xj.i2 would be evaluated before Xj.il.

X.il can be made into a sta.ck. Simila.rly. if the synthesized attribute Xj .Sl is used to define

the synthesized attributes Xc.sI and =<0.52. then Xj.sl plays the role of A. Xo.s2 plays the

role of B. and Xc.sl plays the role of C. This heuristic will allow GAG to implement many

more attributes ~ global stacb. Note, however, that thi!! heuristic will not allow 30\1

transient attributes to be implemented as global stacks; if both Xc.il and Xo.i2 are used to

define both Xj.il and Xj.i2 then application of this heuristic could add either the edge

(Xj.iI. Xj.i2) or (Xj.i2, Xj.iI) but not both.

Now we return to the first stage of determining an evaluation order, assigning visit !lumbers

to attributes, and we show how heuristics can operate even at this early stage to increase

the number o(transient attributes. In order to determine an a.ssignment o(visit numbers to

the attributes o(X, a graph G
X

is (ormed. This graph has the attributes of X ~ vertices

and an edge (X.&, X.b) if X.b is directly or indirectly dependent upon X.a in some sema.ntic

tree. This graph will result in a partial ordering on the attributes of X. In order to make
'.

an assignment o(visit numbers to the attributes of X, this partial order must be extended

so that for every inherited attribute X.i and synthesized attribute X.!!, either (X.i. X.!!) or

(X.s, X.i). DiCferent evaluation strategie:! u!!e difrerent strategies to extend this partial order.

A "greedy" strategy call!! for evaluating attributes on the earliest visit possible. This

strategy is u5ed by LINGUIST·86 in a.!ISigning p~ numbers to attributes. A "lazy"

strategy calls (or evaluating attributes on the la.st visit p~ible. This method is inherent in

GAG's ordered evaluation strategy. Each or these strategies will sometimes make an

attribute transient where the other fails to do so. In rigure 5-2. the dotted lines indicate

the graph Gy. This graph give!! a partial order <Y.il, Y.!!l, Y.i2, Y.s2> and <Y.i.

Y.s2>. This partial order must be extended so that either (Y.i, Y.5l) or (Y.sI, Y.i). The

greedy strategy enluates Y.i a.s early a.s p~ible, extending the order to include (Y.i. Y.sI)

and resulting in the vi!!it sequence VSp' The luy strategy evaluates Y.i a.s late a.s possible.

extending the order to include (Y.sI, Y.i) and resulting in the visit sequence VSp'. Where&!!

Y.i is a tra.n:sient a.t.t.ribute using VSp', it i!! a significa.nt attribute using VSp'

Figure 5-3 gives another attribute grammILl' rragment. Here also the two strategies result in

different visit numbers being ~igned to X.i3. Wherea.s the greedy strategy results in the

visit sequence VSp and X.iI being a traruient attribute, the lazy strategy results in the visit

sequence VSp' and X.il being a significant attribute. Hence we see that each stra.tegy can

make some attributes tra.n:sient that the other makes significant.

31

,

.\II aQPutod dopudtl1C1 Cnpll tor a production [p: Yo ::. Y 11 (Illerl Yo. ud Y Ut 2 lutuclI
of thl .La' IOltlrailil) 1

VS •
p

CtVAL YO,.2) (vISIT
O

)

I
VS

p
• (!VAL Y1,il> (VISIT Y1)(!VAL Y

O
,I1)(VISITe)(!VAL T

1
,1) (!VAL T

1
,12) (VISIT T

1
)

CEVAL T
O

,.2) (vISIT
O

)

GREEDY

LAZY

Figure 5-2: The &dvantage of using a lazy strategy

Aa auraelt.d dlpeade'C7 (rap' for a prodaetioa [p: Xc ::' Xt) (,'ere ~ aa4 XlllZe 2 tLltLace.
of "e aoltera1&)

I il I .1 I 12 I .2

'.

vs , , GREEDY

(VISIT Xl) (!VAL Xc' .2) (vISITe)

vs,' • (!VAL X1,11> (VISIT Xl) aYAL Xc,.1) (vISITe) CEVAL Xl' 12) aYAL Xl ,11) (VISIT Xl)

(!:VAL Xc' .2) (!:VAL Xc,d) (vISITe)

LAZY

Figure 5-3: The advantage of uSing a greedy strategy

Instead of adopting a purely greedy strategy or a purely lazy strategy, we suggest that

heuristics be designed to increa.se the number of transient &ttributes. These heuril5tics would

describe how to extend the partial order of the GX graph3, thereby a.sl5igning vil5it numbers

to the attributes of X, and would use the information contained in the GX graphs and the

dependency graphs of -the productions. In [4J Farrow describes how such heuristics could be

integrated into an algorithm for computing the evaluation order.

Figures 5-4 a.nd 5-5 graphically illustrate one p~ible heuril5tic for adding edges to the GX

graphs, designed to make a.ttributes transient. To use thil5 heuril5tic we need to distinguish

between two different kinds of edges that may occur in a GX graph, trlln,itive clO6Ure edges

and defining edges. A defining edge (X.a, X.h) in a GX graph indicates that in some

production X.a is an argument to the semantic function defining X.h. A transitive closure

edge (X.a, X.b) indicates that X.a can indirectly define X.h. A defining edge in a GX graph

32

IS distinguished from a transitive closure edge by the word "def" which a.ppears over t~e

a.rrow. An arrow without a "def" marker may be either a. transitive closure edge or~

defining edge.

CA.SE i: ~ u.4 0 ar. ITUll1l1nd ~t.triht.lI. 11 &ad d ~rt 1u.rihd ~t.trunll.
~ LD4 II ~r. c.rr.at.1T .. r.lat.ed: ad4 (a. II)

CASE ii: c ar •• ,.t.1l1111Id ~t.triht.lI. ~ u.4 II .,1 i.-nihd at.tr1ht. ...
11 arl c.rr.at.1T ..,Ilat..d: ad4 (11. .)

• I:> 11 l ~ I c

1 1 '~ 1

------~'~~~ --------X~ ""I~~----~
, . -.1 ---~

, 1 ~
,I II I) I I

~ I _1----__

A heuristic for adding edges, ca.ses and II

CASE iii: c .n iUlrUM .t.t.riht. ... 11 u.t II ..,.. .,.U .. UH .t.t.r1ht. ...
c II are c.rr,at.l, .."lat.e4: ad4 (4. c)

• ') 11 ~ •
,-,

;:r
,-,

II I" '" I

Figure 5-5: A heuristic for adding edges, case III

Case i of the heuristic states that if a a.nd e are synthesized attributes, band dare

inherited attributes, (a, b) and (b, e) &re edges in Gx 3, (d, e) i" a defining edge in GX'

and there is no relationship in G
X

between a and d, then add the edge (a, d) to G
X

' In

order to understand the logic behind thi" heuri"tic, cOn3ider the COn3equence of adding the

"opposite" edge (d, a) to GX' Any a:!:5ignment of vi"it numbers to the attributes of X

based on thi" gnph will necessarily a.ssign an earlier visit number to d then to b, SlOce

there exist.3 a path from d to b. Hence d's lifetime must start on a vi"it prior to the one

in which b is defined. Yet since there exLst.3 an edge from b to e, e must be defined after

b, and since there i.s a definins edge from d to e, d's lifetime must extend into the visit.

defining c. Hence d would have to be a significant attribute. To prevent this from

ha.ppening, the edge (a, d) is added. A similar logic applies to cases ii and iii of the

3when we say that (x,y) is an edge without specifying it.3 type, then it can be either a
defining or tra.nsitive closure edge

33

heuristic.

Let us attempt to add edges to the graph Gy of figure 5-2 usmg this heuristic. We find

that case i can be applied to this graph, with Y.sl playing the role of a, Y.i2 the role of b.

Y.s2 the'l'ole of c, and Y.i the role of d. This causes the addition of the edge (Y.sl. Y.i),

resulting in the same visit sequence as produced by the lazy strategy and making all

attributes transient. If we apply the heuristic to the example of figure 5-3, once again all

the attributes are made transient. This time, however, it is the greedy visit sequence which

is produced. In this example cases ii and iii of the heuristic are found to be applicable. In

case ii, X.il plays the role of d, X.sl plays the role of e, X.i3 plays the role of b. and X.s3

plays the role of c. causing the addition of the edge (X.i3, X.sl). In case iii, X.il plays the

role of a, X.sl plays the role of b, X.i2 plays the role of e, and x.sa plays the role of d,

causing the addition of the edge (X.s3, X.i2) and completing the G
X

graph.

Given any GX graph which can be completed so as to make all inherited attributes

transient, this heuristic, unlike the greedy and lazy strategies, will not add any edges forcing

an inherited attribute to be significant. However, it does not guarantee to !lecessarily

complete the GX graph at all. Therefore, it may still be necessary to a.pply one of the

other strategies or another heuristic after applying this heuristic. Nonetheless, a final

example, given in figure 5-6 illustra.tes the power of method. In this example, both the

greedy and lazy strategies result in the visit sequence VSp, making Z.i3 significant. The

heuristic results in the visit sequence VSp', making all attributes transient.

U .. pnt.d d'pndney ,n,~ for & ,nMhcrt.1oa [,: Zo ::. Zl~ (.ken l". aM. Z1- u. 2 wtaacII
of Ut aob.rauu)

~----------------------------_I Zo 11 1 11 1 12112 1111111141 •• 1

:t *:i t~ fa.} t,
1 11 1 11 I 12 I .2 1 11 1 .1 1 14 I •• 1 1
• t ,', "'\. .,), " ,:;;1 '. ~ - -') . ~." '"'f. --y..:y. ~7

'IS, • C!YAL Zt.U) ClYAL Zl.UHVISn Zl) C!YAL Zo .• 1) C!YAL Zo.") (VIS nO) ClYAL Zl.12) GREEDY / LAZY

ClYAL Zl.14) (VIsn Zl)CEVAL Zo .• 2)C!YAL Zo.'.) (vIsno)

'IS,' • (EVAL Zt.to(VIsn Zl)(DAL 10 .• 0 (VII ITo) CDAL 'l· 12)(DAL Zl'U) (VIln 'I) HEURISTIC

(EVAL Zo·I2)(!YAL Zo·") (VIS ITo) CEVAL 't· 14) (VII IT 't) CEVAL 10·'.) (VII no)

Figure 5-8: The advantage of using the heuristic

Finally, we contemplate the following basic organization of the evaluator-generator to make

better use of heuristics for increasing storage optimizations:

34

1. partition the attributes into equivalence classes based on whether X .. -\ is copied to

Y.B in any production. The membe~ of an equivalence class will be candidates

to share storage for the heuristics of this section,

2. assign visit numbers to attributes using the heuristics of this section to make as

many attributes as possible transient,

3. determine the final visit sequence {or each production using the heuristics of thi!!

section to increase the number of attributes that can be implemented as global

variables and stach, and

4. finally, carry out the current storage optimizations, using the improvements

suggested in section 4.

~. ConeluslolU

In this paper we have examined in depth the storage optimization!! performed by two

significant AG-based translator-writing systems: GAG and LINGUIST-86. This examination

has been iIl~trated by many small, but concrete, examples showing how each system

performs. We have seen that, although there are significant differences between the two,

there are abo very basic similarities tha.t unite their approaches. We have argued that both

strategies would benefit by:

..
1. taking storage optimization into cOn!!ideration when determining evaluation order,

2. using global analysis to increase the number of attributes that are implemented as

global variables, implemented as global stace, and statically subsumed, and

3. combining attributes implemented by t;lobal variables or stace based on whether

there are any copy rules between them and on how much stack: space would be

saved by combining them .

. 4J<NOWLEDGEMENI'

We would like to thank Phillip Garrison of the University of California, Beri:ely for helping

us run the exa.mpl~ through GAG and Ron Farrer of Intel Corporation for helping ~ run

the examples through LINGUIST-8ft.

35

•

I. APPE:--':DlX

In this a.ppendix we show that combining global variables and global stacks so a.s to

optimize the number of copy rules eliminated is an NP-complete problem. Since the

problem of combining global variables and global stacks are the same, we will focus our

attention on combining global stacks, bearing in mind that the analysis i3 equally valid for

global variables. Recall (rom section 2.3 that the main restriction on combining global

stacks is that no two inherited attributes nor two synthesized attributes o(the same

context-free symbol are allowed to share the same stack. In a.ddition, if X is the left-part

of some production p, Y is on the right-hand side, and the inherited attribute X.i is

referenced after defining the inherited attribute Y.i but before visiting Y, then the X.i and

Y.i globaf stacks cannot be combined .

Let us phrase the problem of combining global stacks as one of partitioning a set: Given a

set S of attributes, each which can be made into a globa.l stack, we wish to find a partition

of the set such that all the attributes in any subset of the partition can be made into one

global stack. We call such a. partition valid. We would like to find an optimal valid

part it ion- one which eliminates as many copy rules as possible. We shall now prove the

following theorem:

Theorem 1: Given an attribute grammar G and a set S of attributes, each which

can be made into a global stack, finding whether there exists a valid

partition of the attributes into global stacks such that at lea.st K

copy rules are eliminated is NP-complete.

Proof: Certainly the problem is in NP (Guess a partition. Verification can be done In P

time).

To show that it is NP-complete, we shall reduce 3-satisfiability to it. This shall be done as

follows: given any instance of 3-satisfiability, we shall create an attribute grammar for that

instance in p-time and show that for a certain K, we can eliminate K copy rules from the

a.ttribute grammar ill the given clause is satisfiable. T,o this end let U - {uI""'~} and

C =- {cI""'cm} be any instance of 3-satisfiability. (U i3 the set of literals, C of clauses).

Let the conte~free symbob of our gr&IIlIIl&l' be {X, ul' u2' "0' un' cI' c2' ... , cm} U { S }

U {TermAI , ... , TermAl(X)m} U {TermS1, ... , TermBU)Om} U {AttA1,···,AttASOm} U

{AttB1, ... ,AttBSOm} U {(i,j) I 1 ~ ~ m, 1 ~ j ~ lO}

The TermAj , TermBj , AttAj' AttBj' a.nd (i,j) context-free symbob do not have any

attributes and are used only to distinguish between different productions. The symbol S i3

the distinguished start symbol. The a.wxiated attributes of each symbol and the

36

productions of the attribute gnmmar are given in figure 1-1. The context-free symbols

which do not have any attributes are not listed. Let A TTRIBVTES be the set of all of

these attributes. (There are 3n + m + 1 attributes). Note that individually, each attribute

in this set can be made into a global stack: and that any two attributes of different context

free symbols ca.n share the same stack:4. This attribute grammar doesn't have any

synthesized attributes. This is not very realistic but they not needed for the proof. It

would be a simple matter to augment this attribute grammar with synthesized attributes.

X

'1 (1 ~ 1 ~ a)

oJ (1 ~ J ~ .)

ex.1. X.2 •...• X.a, X.a")

<'l'PO" 'l· a.,)

<oJ' a"}

Th.re will ~. 4 'n" 01 ,r04,atio&l ia ad41'lo1 to a 'ilele .,~ ,r04lat10. 01 \7)1 0:

Tne 0: S ::. X.

X.1 • ooaeha'l;
X.2 • 00&1" .. '2;

x ••• cou',,' ;
X.a" • cou"iI'a.l;

TJ?' a: X::' '1 TlrMJ' 1 ~ 1 ~ a; 1 ~ J ~ 100..

'1'''' • X.1;
'1' at, • cou',,';

Tn' 111: X::' 11 TIna,. 1 ~ 1 ~ I; 1 S j S 100..

'i'poI • 00 •• ' .. ';
'l.at, • X.1;

1 ~ i S a; 1 S J S iOII.

'1.poe • X.aU;
'1' II, · cout .. t;

Tn' 3: X ::. '1 At~,. 1 ~ S I; 1 S J ~ 5Oti.

'1'po. • coa.' .. ';
'i.lI, • X.aU;

Tne S: X ::. 01 (1.,).

0l.au • X.l:

Tne 4: '1 ::. 01'

Figure 1-1: The attribute grammar constructed from an 'Inst"'nce U - {u u}
Q 1'· .. · n '

C - {cl""'cm} of satisfiability

The basic idea behind the proof will be a.s follo~: we will attempt to partition the

attributes into n + 1 subsets corresponding to n + 1 global stacks. For i - 1, ... ,n if ui IS

4:\ctually. in the attribute grammar as given, each attribute could be made into a global
va.r.lable. ~~t by adding one pro~uction for each of these attributes the grammar can be
e8.5lly mo~Ifled so ~hat these a.ttrlbute.s lI!~st be glob&! stacks, not global variables. The
grammar IS left 8.5 IS to show the applicability of the theorem to global vviables 8.5 well a.s
global stacks.

37

a

true, ui'poS will be in the i
th

subset with X.i along with the clause attributes cl. att

corresponding to the clauses which ui satisfies. If ui is false, ui.neg will be in the jth subset

with X.i along with the clause attributes cl.att corresponding to the clauses which u/

satisfies. All the remaining attributes will be in the {n + l)st subset along with the

attribute X.att. There will exist such a partition eliminating the proper number of copy

rules iff C is satisfied.

Formally, we claim that C is satisfiable ill there exists a valid partition of ATTRIBUTES

into subsets SI,S2, ... ,St corresponding to t global stacks such that at least 150mn + 11m

copy rules are eliminated.

150mn copy rule eliminations will come from productions of type 1 and 2 &Ild will insure a

partition into n + 1 subsets with, for each i (1 SiS n), either ui'pos in Sj and ui.neg in

• •
S (~Sn+l) or uj.neg in Sj and ui'pos in S. 10m copy rules will come from productiorus

of type 3 and will insure that each clause attribute cl.att (1 SIS m) is in some Si' 1 S i

S n. m copy rules will come from productions of type .. and will irusure that if cl.att is in

Si then . either ui'pos is in Si and ui is in cl or ui·neg IS In Si and u{ is in cl". \Ve can

define a truth assignment r to be such that r(ui) ". T if ui'pos is in Si and r(ui) == F if

ui.neg is in Si' In this way we will develope a 1-1 correspondance between valid partitions

eliminating 150mn + 11m copy rules and truth assignments which satisfy U.

Hence if the copy rule elimination problem were solvable in p-time, 50 would be the

satisfiability problem. Given U and C, create the AG as above, containing 3n + m + 1

attributes and 300nm + 33m + 1 productions with 300mn + 33m copy rules. This

reduction can be done in p-time. The attributes of the attribute grammar make up a set of

inherited transient attributes, each which can be made into a global stack. Then find

whether a valid partition of the 3n + m + 1 attributes exists such that. at least 150mn +

11m copy rules are eliminat.ed. If one can be found t.hen there exists a t.ruth assignment

satisfying U, otherwise not.

Proof of claim:

For the proof, it helps to keep the following in mind:

1. If ui'pos and X.i are In the same subset. (st.ack), then we can eliminate 100m copy rules

from productions of type 1A.

2. If ui.neg and X.i &re In the same subset, then we C&Il eliminate 100m copy rules from

38

productions of type lB.

3. If ui. pos and X.att are ID the same subset, then we can eliminate SOm copy rules from

productions of type 2A.

4. If ui.neg a.nd X.att are ID the same subset, then we can eliminate SOm copy rules from

productions of type 2B.

5. If X.i and cl.att a.re In the same subset, where ui or u{ IS In cl' then we can eliminate

10 copy rules from productions of type 3.

6. I(ui.pos and cl.att are in the same subset, where U·
I
~ In cl then we can eliminate 1

copy rule from a prod of type 4.

7. IC ui.neg and c\.att are in the same subset, where u.l
I

~ In cl' then we can elimina.te 1

copy rule from a production of t.ype 4.

8. X.i and X.j cannot be in the same subset if i ;- j and similiarly X.i cannot. be in the

same subset with X.att. Also, ui'pos a.nd ui.neg cannot be in the same subset since they are

attributes of the same context-free symbol.

_) Say there exist.3 a truth assignment r to U satisfying C. The following partition of

ATTRIBUTES eliminates 150mn + 11m copy rules:

To each clause cl associate a.n integer int(cl) =- i such tha.t either ui or u{ satisfies cl under

r, and if Uj or u{ satisfies cl under r, then j > i. (If int(cl) - i then ui or u{ is the

smallest numbered literal satisfying cl under r) .

•
Let our partition be SI' ... , Sn.S where Sj - {X.i} U {cl·att I int(cl) - i} U {ui' pos I if

•
7(ui) - T} U {uj.neg I if r(ui) - F}. S - {X.att} U {ui.pos I if 7(ui) - F} U {ui· neg I

ii 7(ui) =- T}.

Certainly this partition is valid &S it doesn't violate having 2 attributes of the same context

free symbol in the same subset. To see that the required number of copy rules are

eliminated, note that since X.i and ui.pos or ui.neg are in the same subgroup, we can

eliminate 100m copy rules from productions of type 1 (or each I, 1 SiS n. This totals

100010 copy rule eliminations. Furthermore, since each c).att is In the partition Si' where i

=- int(cl)' cl.att is in the same partition with X.i and ui.pos (if ui is in cl) or in the same

partition with X.i and and ui.neg (if u{ IS in cl)' Hence each cl eliminates 10 copy rules of

39

..

type 3 and I of type 4. All m clauses therefore cause an elimination of 11m copy r'l!-!s.

*
Finally, as 5 contains X.att and either Uj'pos or uj.neg for each i, 1 ~ i ~ n, we cao

eliminate 50mn copy rules from productions of type 2. for an elimination of an additional

SOmn copy rules. So a total of 150mn + 11m copy rule eliminations is achieved. Figure

1-2 gives a set of clauses C, a truth assignment r, and the attribute partition induced by the

above method. For the attribute grammar derived from C and U, this partition would

result in the elimination of 150*4 8 3 + 11 8 3 copy rules.

The truth a&&ignment rCa
1

• ~ • .,. a4) * (T.T.F.T).

=
(X.2.~.pod

!a !& s·

{X.a.as· •• "C.} {X.4.a4·po •• ~} {X .• tt.al' •• I'~' •• ".s·PO.'.4· •• '}

Figure 1-2: A partition of attributes induced by r

_) If there exists a partition of ATTRIBUTES into subsets Sl,S2, ... ,St such that at le&.'5t

150mn + 11m copy rules are eliminated, then there exists a truth assignment r to U

satisfying C.

By means of the fact that 150mn + 11m copy rules were eliminated we can deduce what

form the_partition has. Out of the 200mn copy rules in productions of type I, we can

eliminate at most loomn of them, as both ui'Pas and ui.neg cannot be in the same partition

as X.i. Similiarly, at most 50mn of the loomn copy rules in productions of type 2 can be

eliminated as we cannot have ui'poS and ui.neg in the same partition as X.att. So at most

150mn copy rules were eliminated from productions of types 1-2. If the partition did not

eliminate all of these 150mn copy rules it would not be able to achieve 150mn + 11m copy

rule eliminations. To see why this is true, note that for 1 ~ i ~ n, each ui'poS and lii.neg

has associated with it either 100m, 50m, or 0 copy rule eliminations from productions of

types 1-2, depending whether it is in the partition with X.i, X.att, or neither of these, and

that the total number of eliminations can be found by summing the number of eliminations

associated with each individual ui'poS and ui.neg. Since the partition achieving the

maximum number of copy rule elimination!! from the!!e production!! achieves 150mn

eliminations, any partition wh:ch causes leS!! elimination!! achieves at mod 150mn - 50m

eliminations; i.e., any ui'PO!! or ui.neg which eliminates fewer copy rules than it does in the

maximum partition eliminates at le3.!lt 50m fewer copy rule!!. But then the non-maximum

partition achieves at most 150mn - 50m + 33m = 150mn - 17m < 150mn + 11m copy

rule eliminations, as the remaining productioIl!! of types 3 - 4 contain only 33m copy rules.

Hence, we see that to achieve 150mn + 11m copy rule eliminations, the partition must

40

achieve 150mn copy rule elimlO3.tions (rom productions of types 1 - I)

Achieving lOOmn copy rule eliminations from productions o(type 1 implies that (or each I. 1

< i < n, X.i is in the same subset with either ui'poS or uj,neg. Achieving SOmn copy rule

eliminations (rom productions of type 2 implies that X.att is in a subset with II, 12, .. " In

where Ii =- ui.neg i(ui'poS is in the subset with X.i and Ii =- ui'poS if ui.neg is in the

subset with X.i. 50 we know that the partition consists of at lea.st n + 1 subsets,

5 l,5
2

, 5
n
,5· where for each i, 1 ~ i ~ n, 5i contai~ X.i and either ui.neg or ui'pos, 5·

contains X.att and 11. "'1 In. The only remaining question is what subset each of the clause

attributes. cl.att, 1 ~ I ~ m, fall' into. As we must still find 11m copy r'Jle eliminations,

this choice is also already made for us. Note that each clause attribute cl.att can appear in

a subset with at most one X.i (it cannot appear in a subset with X.i and X.i if i Fa j),

hence at most lam copy rules can be eliminated from productions of type 3 (10 for each

clause cI)' To get 11m copy rule eliminations, each clause attribute must also contribute

one copy rule elimination from productions of type 4. For th~ to occur we mwst have each

clause attribute cl.att (1 ~ I ~ m) meet the following condition: c).att IS 10 the subset Sj

and either i) ui'pos is in Si and ui is in c) or ii) ui.ne& is in Si and u/ IS In cl' To

summarize, we have found that if a valid partition achieves 150mn + 11m ~'opy rule

• •
eliminations it must be of the form SI' Sn'S with either Uj.pos in Sj and uj.neg in 5 or

•
ui·neg in 5 j and ui'poS 10 S Each clause attribute cl.att js in some Sj' 1 ::5 j ::5 nand

the (ollowing property holds: if cl.att is in 5 j then either Uj'pos is jn 5
i

and ui IS 10 ci or

ui,neg IS In 5i and u/ is in ci' \Ve can now define r to be:

I T 11 51 eoa\&ia. '1'po •.
rell1) • I

I , 11 51 eoa\~ '1'.'"

This satisfies C. as (or any clause cl' i) cl.att is in Sj (or some i. 1 ::5 i ~ n. and ii) if

ui'poS is in Si then Uj ~ in ci and t(Uj) - T and if uj.neg is in Sj then u/ IS in ci and

t(ui) - F.

End of proof

41

Rererene~

[I] B. Ashrock, U. Kastens, and E. Zimmermann.

Generating an Efficient Compiler Front-End.

Technical Report 11/81, Universita.t Karlsruhe, Fakultat Fur lnformatik, 1981.

[2] Rodney Farrow.

LINGUIST-86 Yet another translat.or writing system baged on attribute grammars.

In Proceeding6 0/ the SIGPLAN 8£ Symp06ium on Compiler Con6truction. ACM, June,

1982.

[3] Rodney Farrow.

Experience with a.n attribute grammar based compiler.

In Conference Record of the Ninth ACM Symp06ium on Principle~ 0/ Programming Language6.

ACM, January, 1982.

[4] Rodney Fa.rrow.

Covera of Attribute Grammara and Sub-Protocol Attribute Evaluatora.

Technical Report, Department of Computer Science, Columbia University, New York,

. -New York 10021, September, 1983.

[51 Rodney Farrow.

Generating a Production Compiler Crom an Attribute Grammar.

IEEE Software 1(4), October, 1984.

[6] H. Ganzinger.

On storage optimization for automatically generated compilers.

In K. Weirauch (editor), Theordical Computer Science - Fourth GI Conference,. Springer

Verlag, Berlin-Heidelberg-New York, 19i9.

[7] ~. Jazayeri and K.G. Walter.

Alternating semantic evaluator.

In Proceeding6 0/ ACM 1915 Annual Conference. ACM, 1975.

[8] Martin Jourdan.

Strongly Non-Circular Attribute Grammars and their Recursive Evaluation.

In Proceedinga of the SIGPLAN '8-l Sympoaium on Compiler Con"truction. ACM-SIGPLAN,

June, 1984.

Publ~hed as Volume 19, Number 6, of SIGPLAN Notice".

[91 U. Ka.stens.

Ordered attribute grammars.

Acta Informatica 13:229-256, 1980.

[101 Uwe Kastens, Brigitte Hutt, and Erich Zimmerm&lln.

GAG:A Practical Compiler Generator.

In Lecture Notea in Computer Science 141,. Spring-Verlag, Berlin-Heidelberg-New York,

1982.

[11] T. Katayama.

Translation of Attribute Grammars into Procedures.

ACMTOPLAS 6(3), July, 1984.

42

[1'21 K. Kennedy and S. K. Warren.

Automatic genera.tion of efficient evaluators for attribute grammars.

In Con/errnce Record 0/ the Third AC.\{ 8ympo"ium on Principle8 0/ Programming Language".

ACM. 1976.

[131 Kari-Joulco Raiha.

Dynamic allocation of space for a.ttribute-instances in multi-pass evalua.tors of a.ttribute

grammars.

(n Proceeding8 0/ the SIGPLAN 19 Sympollium on Compiler Con8trudion. ACM, 1979.

[141 Thomas W. Rep~.

Grnerating lAnguage-Ba8ed Environmrntll.

PhD thesis, Cornell University, Ithaca., New York, December, 1983.

[151 M. Saarinen.

On constructing efficient evaluators for attribute grammars.

In C. Ausiello and C. Bohm (editor), AutomatG, LAnguGgu, and Programming: 5th

Colloquium. Springer-Verlag, Springer-Verlag, New York, 1978.

[161 W.A. Schulz.

SemGntic an41y,i, and target IGnguage ,ynthui, in a tran,lator.

PhD thesis, University of Colorado, Boulder, Colorado, July, 1976.

[171 Ravi Sethi.

Pebble Game:! For Studying Stonge Sharing.

TheordicalComputerScirnce 19, 19S2.

pp. 69-S4.

[lSI Daniel M. Yellin.

A Survty of Tree-Walk Evaluation Strategiel for Attribute Grammar,.

. .

Technical Report, Department of Computer Science, Columbia. University, New York.

~ew York 10027, September, 19S4.

43

