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Abstract

Many solution techniques for discrete location-allocation problems make use of a sorted
distance strings data structure in order to speed processing time. Such data structures are
commonly used, for example, within interchange heuristics and lagrangian relaxation codes. The
primary drawback to distance strings is that in a standard computer architecture they require
approximately 50% additional memory storage in comparison to a standard distance matrix. This
is due to the fact that distance strings must store not only distances, but also the order of the
nodes sorted by increasing distance. To reduce the additional memory requirements of distance
strings, researchers such as Hillsman [1980] and Densham and Rushton [1992a] have proposed a
strategy for cutting the distance strings to include only sets of relatively close neighbor nodes.
This has become an important implementation issue for solving relatively large location-
allocation problems. In fact, the new Location-Allocation module of the ARC/Info GIS system
uses a distance string structure and a string cutoff option to save storage and processing time.
The danger in employing only partial distance strings is that if too few distance entries are stored
in the distance strings, heuristic or algorithmic performance may be compromised in that the
quality of the solutions generated may be less than desirable. This paper tests the effects on
solution quality of imposing different distance string definitions and sizes. The goal is to
establish guidelines concerning the degree to which the distance strings data structure may be
reduced for memory savings without adversely affecting solution quality. The paper proposes
and compares two alternative methods to that of Hillsman and of Densham and Rushton for the
selection of nodes to be included within the distance strings data structure. We show that the two
new alternative methods for defining distance strings appear to outperform the earlier approach.
The results of this paper can be used to aid users in determining the extent that distance string
cutoffs should be employed in application as well as aid in the development of location modeling
software.



Introduction

Location-allocation problems may be characterized generally as follows: given a set of
demand nodes and a set of potential facility sites (the sets may be partially or entirely
overlapping), select some number of facilities and allocate service from the chosen set of
facilities to the demand nodes in a manner that optimizes the given objective function. Usually,
the objective function will include some measure of the distance or transportation cost (referred
to hereafter simply as distance) between the demand nodes and the facilities to which their
demand has been allocated. For example, in the p-Median location-allocation problem (refer to
Hakimi [19641, Teitz and Bart [1968], and ReVelle and Swain [ 1970]), the goal is to select p
facilities and assign each demand node to its nearest facility in order to minimize the total
weighted service distance (demand multiplied by distance to nearest facility) of all demand
nodes.

Because of the integral role of internodal distance information, solution techniques for
location-allocation problems require the storage of internodal distance information for all
potential facilities and demand nodes. A simple and memory efficient data structure for storing
such information is a standard distance matrix. Each entry in the matrix corresponds to the
distance between a demand node and a potential facility. If there are M potential facilities and N
demand nodes, the size of the distance matrix is given as M*N.

While a standard distance matrix is efficient in terms of memory storage requirements, it
is not always the most efficient data structure to support heuristic and optimal location
algorithms. The processing speed of many solution methods for location-allocation problems can
be greatly increased if internodal distance information can be retrieved in sorted order. The
sorted distance strings data structure is commonly used to provide this type of access to distance
information. A distance string is essentially comprised of a base node with a list of other nodes
and corresponding distances to the base node stored in order of increasing distance (Hillsman
[1980]). In practice, distance strings are often constructed as two separate matrices, one listing
distances and one listing node indices. For example, consider a hypothetical distance string for
node 1: distance 0.0 to node 1, distance 5.2 to node 2, distance 5.4 to node 6, distance 5.8 to node
3, distance 6.1 to node 5, etc. In this example, the distance matrix for row I would read: 0.0, 5.2,
5.4, 5.8, 6.1, etc.; the node index matrix for row I would read: 1, 2, 6, 3, 5, etc. In the distance
strings data structure, one string exists for each demand node and/or each potential facility
(depending on the implementation strategy). The sorted distance strings data structure has been
used in algorithms proposed by numerous location-allocation researchers; examples may be
found in Erlenkotter [1976], Weaver and Church [1983], Hillsman [1980] and Goodchild and
Noronha [1983].

While distance strings may be used to increase the processing speed of some solution
methods, they regrettably do so only at the cost of increased memory requirements. Whereas a
distance matrix requires only distance information to be stored (the node indices are implicit in
the position of the entry in the matrix), distance strings require both a distance measure and a
node index for each distance entry in the distance string. In a typical computer architecture, this
will result in a 50% increase in storage requirements. (This calculation assumes that distances are
stored as floating point numbers and node indices are stored as integers. In the Intel 486
processor, for example, floating points require 4 bytes and integers require 2 bytes. Therefore,
each entry in a distance string requires a total of 6 bytes, whereas each distance matrix entry
requires only 4.)



In computer platforms with large memory resources available, such additional memory
requirements may be of little concern, unless the problem data set consists of thousands of nodes.
On computers with less available memory (such as many personal computers), though, additional
memory usage can be problematic, particularly for large problems. In order to reduce the
memory requirements of the distance strings data structure, several researchers (see, for example,
Densham and Rushton [ I 992a] and Hillsman [ 1980]) have proposed a strategy for cutting the
distance strings in a manner such that for each node, distance information is only stored for other
nodes in relatively close proximity. The rationale for this type of cut is that in many location-
allocation models (such as the p-  -  Median), demands are unlikely to be served by facilities
located at a great distance; therefore, greater internodal distances need not be represented in the
data structure.

The attraction in using distance string cutoffs is readily apparent. As fewer nodes are
stored in each string, the memory savings for the data structure continues to increase. The danger
that must be considered, though, is that if too few distance entries are stored, the quality of
location-allocation solutions generated by various solution methods may be degraded due to
insufficient distance data. The reason for this is as follows. When distance strings are reduced or
cut in length, all internodal distances not falling within the cut are generally assumed to be
arbitrarily large numbers (Densham and Rushton [ 1992a]). This effectively prevents the
assignment of any demand to a facility that is not included within its reduced distance string; the
service distance for any such assignment would be calculated as an arbitrarily large number, and
this would cause the resulting solution to be inferior to any in which all assignments fell within
the partially cut distance strings. As a result, the optimal solution for a given problem may not be
attainable simply because the optimal configuration may involve an assignment which lies
beyond the distance cutoff for the demand and potential facility.

An example of this potential problem is shown in Figure 1. This figure represents a small
p-  Median problem in which only one facility is to be sited. The goal is to minimize the average
weighted service distance. In Figure I a, no distance cutoff is imposed. The optimal single
facility locates close to the cluster of high demand nodes, thereby minimizing the average
weighted distance. In Figure 1b, a distance cutoff is imposed. The distance cutoff forces the
facility to move to the candidate in the middle, in order that the relatively low demand node on
the left can be served within the cutoff distance. This move, however, results in an increase in
average weighted distance.



While the problem illustrated in Figure 1 is for a very small data set, the same problem
can occur in much larger data sets as well. Given the potential for such a problem to occur, a
natural question to investigate concerns the appropriate level at which to cut distance strings for
a given problem in order to maximize memory savings without adversely affecting solution
quality. Without such guidelines, the use of distance string cutoffs in such location packages as
LADSS (Densham [1992]) and ARC/Info (ESRI [1994]) may be ill-  advised. In this paper a
series of tests are presented which are designed to help suggest guidelines to address this issue.
We also propose two alternative methods for determining distance string lengths, both of which
appear to be superior to that used by others in the literature.

Determining the Length of Individual Distance Strings

When the distance strings data structure is cut in order to conserve memory, it is possible
to cut the individual distance string for each candidate and/or facility to be the same length. It is
also possible, however, to cut the individual strings at varying lengths. As an example, the
method for cutting distance strings within LADSS and ARC/Info involves a maximal distance
cutoff and results in strings of varying lengths. Considering such alternatives, a natural question
to ask is as follows: if a given memory savings level is required, what is the best manner of
determining the length of each of the individual distance strings in order to achieve the overall
memory savings?

As an example, consider a 1000 node problem in which each node is both a demand and a
potential facility. Suppose that sorted distance strings are to be used and that one wishes to cut
the strings in a manner that requires only 25% of the memory for full distance strings. Given that
each node is both a demand and a potential facility, there would be 1,000,000 entries in the full
distance strings data structure: 1000 entries in each string for 1000 nodes. In order to achieve the
desired level of memory savings, the cut-off distance strings can only include 250,000 of the
1,000,000 potential entries. In other words, each of the 1000 individual distance strings must
hold on average only 250 entries.

Once the average desired size of the distance strings has been determined, the next
question to address is the method of selecting the entries to be included in each individual
distance string in order that the average distance string length goal is achieved. Barring
additional constraints (constraints prohibiting, for example, the service of a given demand by a



given potential facility), it is assumed that if a particular distance string is to be of length q, then
that distance string will hold the q closest entries to the base node. With this in mind, the
problem to be solved becomes essentially this: choose q for each distance string such that the
sum of all q’s divided by the total number of distance strings equals the average desired distance
string length.

There are, of course, several approaches for solving this problem; three intuitively
appealing alternatives are considered here. The first approach is to establish a fixed service
distance. Any entry falling within the fixed service distance should be included in a distance
string. Any entry greater than the service distance is to be discarded. This method was originally
defined by Hillsman [ 1980] and subsequently used by Densham and Rushton [ 1992a]. With
such an approach, the distance string length for different nodes will of course vary; isolated
nodes will have relatively small distance strings, since fewer nodes will fall within the service
distance, whereas nodes located in highly clustered areas will have longer distance strings.
Because the lengths of different distance strings will vary, the challenge in this approach is to
select the service distance in such a manner that the goal for the average string length is
preserved. In practice, this may be accomplished through a trial and error selection of service
distances or through a procedure that exhaustively checks all distances and continues to increase
the service distance until the correct number of entries is included. It should be noted that for the
p-Median model, the imposition of distance strings cut by a fixed service distance is equivalent
to the p-  Median with maximum service distance constraints as formulated by Khumawala
[1975]. This approach has been implemented within the LADSS location-allocation package
(Densham [1992]) as well as in the new location-  allocation module of the widely-  used
ArcInfo Geographic Information System (ESRI [1994]). In subsequent testing, this approach will
be referred to as the fixed service distance (FSD) approach.

The second and perhaps most obvious alternative is to fix the number of distance entries
in each string to equal the average string length required by the total number of permissible
entries. In the above 1000 node example, this would entail including within each distance string
the 250 closest nodes and excluding 0 others. This approach is straightforward and easy to
compute. One notable characteristic of this approach is that the maximum distance entry stored
within each string will be different. Relatively isolated nodes will by nature include some entries
that are located a great distance away, whereas nodes located in areas of high clustering may
only include nearby entries. In subsequent testing, this approach will be referred to as the fixed
string length (FSL) approach.

The third approach considered in this paper is termed the demand-varied string length
(DVSL) approach. It is based on the following observation. In the p-Median model, due to the
fact that the objective function is based on minimizing the average weighted service distance,
facilities are likely to locate at or near nodes of high demand (thus reducing weighted service
distance). For this reason, it would seem likely that the distance strings for nodes of high demand
need not be as long as the distance strings for nodes of low demand. Under this approach, then,
distance strings are set up so that high demand nodes have fewer entries than the goal average
string length, and low demand nodes have more entries than the goal average string length.

Specifically, the demand-varied string length technique works as follows. Establish a
goal length and a percent spread (for example, goal length is 25% of all possible entries and goal
spread is 5%). Next, sort the nodes by decreasing demand. Then, assign the length of the distance
string for each node, based on its position in the sorted demand list, so that the node with the



highest demand has not fewer than goal length minus goal spread percent of the potential entries
(in the above example this would be 25% - 5% 20%) and the node with the lowest demand has
not more than goal length plus goal spread percent of the potential entries (25% + 5% = 30%).
The string length of all intermediate demand levels will vary accordingly between the longest
string and the shortest string based on the relative demand. In implementing this approach, some
care is required to ensure that the average distance string length works out to be the goal length.
In all tests performed in this study, the spread has been set at 5%, a level which, from
preliminary testing, appeared to provide the best results.

Figure 2 gives a graphical depiction of the DVSL approach. In Figure 2, it can be seen
how the string length increases as the demand level decreases, while the average string length
remains at the target level.

It should be noted that of the three alternatives to distance string cutoff methods
discussed, only the fixed service distance (FSD) approach has been discussed or proposed in the
literature (Hillsman [1980] and Densham and Rushton [1992a, 1992b]). The FSL and the DVSL
methods were both developed as a part of the research reported here.

Using the P-Median Model for Testing the Viability of Reduced Distance Strings

The p-Median model serves as a representative location-allocation model for use in the
testing performed in this research. The primary reason for the choice of the p-Median is based on
the strong theoretical links that have been shown to exist between it and a host of other location-
allocation models (Church [1974]; Hillsman [1984]). Essentially, through straightforward
mathematical transformations, the p-Median can be converted into a large number of other
specialized location-allocation problems.

As a method for generating solutions for the p-Median, the recently introduced
interchange heuristic referred to as GRIA (the global-regional interchange algorithm, Densham
and Rushton [1992b]) is employed. GRIA begins with a randomly selected set of facilities and
seeks to improve the solution by iteratively swapping out marginal existing facilities and
swapping in promising candidate facilities. Specifically, the GRIA process searches for two



distinct types of swaps: global swaps, in which the best global drop facility (that which would
have the least adverse effect on the objective function if dropped from the current solution) can
be replaced by any candidate facility; and regional swaps, in which any current facility can be
replaced by a candidate facility within its service region. Essentially, at each stage GRIA
evaluates a set of potential swaps, either global or regional, and performs the most beneficial
swap identified (i.e., the swap within a service region or the swap involving the most marginal
site that results in the greatest improvement in the objective function). Thus, the quality of the
solution improves with each iteration until no further beneficial swaps can be identified, at which
point the algorithm terminates.

GRIA was selected for this study because in test runs it has proven to be capable of
finding consistently good p-Median solutions in rapid time. In numerous test comparisons with
the Teitz and Bart [1968] heuristic, well known for its robustness in solving p-Median problems
(see, for example, Rosing, Hillsman, and Rosing [19791), GRIA proved capable of generating
solutions of comparable quality in substantially reduced time (Sorensen [1994]). However, as
with all heuristics, including that of Teitz and Bart, GRIA does not always find the optimal
solution. Furthermore, it may generate different solutions (i.e., different local optima) based on
different starting configurations. For this reason, in each test performed in this study, GRIA is
run with 10 different initial starting configurations in order to provide data on the average
performance of the heuristic for a given cutoff level of the distance strings.

Testing Design

At this juncture, the basic issues to be addressed in this study have been outlined. First, to
what degree can distance strings be cut in order to preserve memory while not adversely
affecting solution quality? Second, if a given memory savings level is required, what is the most
promising strategy for selecting the length of each individual distance string within the data
structure in a manner designed to preserve the integrity of the remaining distance data: FSL,
FSD, or DVSL? For the purpose of this study, a test has been devised which is capable of
addressing both issues simultaneously. To facilitate discussion of the testing strategy, however, it
is first necessary to introduce a new term: the matrix representation percentage (MRP). When
distance strings are cut, some subset of the total distance information (that which is contained
within the strings rather than that which is discarded) remains available for analysis. The term
MRP is used to refer to the amount of available information within the reduced distance strings
as a percentage of the total distance information which would appear in a full distance matrix.
Thus, an MRP of 25% would designate that 25% of all distance information is contained within
the distance strings and 75% has been cut.

Having introduced the MRP concept, it is now possible to discuss the details of the
testing strategy. For a given problem (a specific data set with a specific number of facilities to be
sited), begin by generating 10 random starting configurations (recall that GRIA may generate
different solutions based on different starting configurations; thus it is beneficial to perform
multiple trials for any given problem). Solve each of these starting configurations with full
distance strings (in other words, solve the problems with all distance information available).
Track the best, average, and worst solutions found. In addition, track a measure of the amount of
work performed (in this case, the number of swaps or interchanges evaluated and performed) by
GRIA for each of the trials. These initial results represent a benchmark measure of the best
possible results.



Next, test the same problem with varying MRPs for each of the cutoff methods, FSD,
FSL, and DVSL. Begin with FSD. Set the cutoff in such a manner that the MRP equals 10%.
Solve each of the 10 random configurations, again tracking the best, average, and worst case
solutions as well as the work measure. Increase the MRP to 15% and solve the 10 trials again.
Continue to increase the MRP by 5% at a time, in each case solving all 10 trials and tracking all
results. At each stage, compare the best, average, and worst case solution values along with the
work value to the benchmark measures. For low MRP values, it may not be possible to find any
feasible solutions (solutions in which all demands are allocated to facilities included in their
distance strings). For slightly higher MRP values, the solutions may be feasible but relatively
poor in comparison to the benchmark measures. At some point, however, the MRP will reach a
level at which the solutions and work measures are equivalent to those of the benchmark with
full distance strings. This MRP level represents the critical cutoff level at which the GRIA
solution process is unaffected by the distance string cutoffs. This process is repeated for the FSL
and the DVSL methods.

Critical Cutoff Levels

Before proceeding with the test results, it is necessary to comment further on the critical
distance cutoff levels. For any of the cutoff strategies, as the MRP is increased, at some point it
will reach a level at which the results of the tests with the cut distance strings will be exactly
identical to those of the benchmark tests (i.e., those with full distance strings). When this point is
reached, the best, average, and worst case objective values AND the average work value will be
identical to the benchmark measures. At this MRP level, it is evident that the reduction in the
distance strings does not at all alter the performance of GRIA. At each step of the heuristic, the
exact same swaps are evaluated and performed; hence, the objective values as well as the
average work measure are identical to those of the benchmark.

In many of the tests, however, the MRP level yielding results that mirror the benchmark
measures is not the only cutoff level of concern. Often, in fact, the following situation occurs. As
the MRP is increased, at some point a level is reached at which the best, average, and worst case
results are as good, but not identical, to those of the benchmark. Alternatively, the objective
results may be identical to the benchmark measures but the work value will differ.

When either of these two circumstances occur, it may be inferred that the current distance
cutoffs have caused GRIA to alter the series of swaps performed but have still provided enough
distance information to allow GRIA to find good or optimal solutions. In practice, this type of
situation would occur if one of the swaps performed in the trials with full distance strings was
prevented in the cutoff distance strings tests because it would have led, at least temporarily, to a
solution in which one or more demand nodes was assigned to a facility not located within the
cutoff. As a result, GRIA would opt for a different swap at that particular iteration. Even with
making the alternate swap, however, GRIA could eventually find the same local optima or
perhaps an alternate local optima that was as good as or better than the original.

As a result, there are two important MRP levels to track for each test. The first is that in
which the solution quality of the 10 trial runs is at least as good as that of the benchmark runs. In
other words:



Best objective with cutoff ≥ best benchmark objective, and
Average objective with cutoff ≥ average benchmark objective, and
Worst objective with cutoff ≥ worst benchmark objective.

This MRP level represents the optimal point at which memory savings is maximized
without adversely affecting the quality of the solutions. The second critical MRP level occurs
when the best, average, and worst objective values and the average work measure are identical to
the benchmark measures. In other words:

Best objective with cutoff = best benchmark objective, and
Average objective with cutoff = average benchmark objective, and
Worst objective with cutoff = worst benchmark objective, and
Average work measure with cutoff = average benchmark work objective.

The second MRP level represents the point at which the actual performance of the
algorithm (the step-by-step series of swap evaluations and performances) remains unaltered by
the distance string cutoffs. In practice, both MRP level 1 and level 2 may occur at the same
cutoff percentage. Many times, however, MRP level 1 will occur at a lower percentage than
MRP level 2.

In addition to MRP 1 and 2, a third important MRP value will also be tracked throughout
the tests. The third important MRP, designated MRP 0, represents the MRP level at which GRIA
is first able to generate all feasible solutions. MRP 0 does not, of course, represent a good MRP
level for generating solutions of high quality (in general, at MRP 0 all of the solutions, though
feasible, will be of rather poor quality). MRP 0 is useful, however, in subsequent calculations
aimed at estimating the appropriate MRP for various problems.

Before proceeding further, it should be noted that although the desired MRP levels to be
tested are 10%, 15%, 20%, 25%, etc., in practice it is not always possible to establish cutoffs
with each of the methods that exactly match these desired MRP goals. With the Swain data set
with 55 nodes, for example, it is not possible to establish a fixed string length (FSL) cutoff that
will store exactly 25% of the distance information. A fixed string length of 13 will yield a
percentage of 23.64% (13/55 = .2364) while a fixed string length of 14 will yield a percentage of
25.45%. In cases such as this, the actual feasible MRP closest to the goal percent will be used (in
the example, the FSL would be set at 14). In the results of the testing given later, the actual
percents rather than the goal percents are listed.

Data Sets and Problems Tested

Before presenting the results of the testing, comments on the data sets used are necessary.
To provide adequate testing for the various distance string cutoff strategies and levels, it is useful
to use several data sets which vary in size as well as in spatial layout. (In this context, the term
spatial layout refers to the relative distribution of demands within the problem - for example, are
the nodes of highest demand clustered in a small area within the node set, or are they relatively
spread out). To serve this goal, four data sets were selected: the Swain data set (see Swain
[1971]), the reversed Swain data set, the London data set (see Goodchild and Noronha [1983]),
and the Aztec data set (see Ruggles and Church [1994]). The Swain and reversed Swain data set
contain 55 nodes. The London data set contains 150 nodes. The Aztec data set contains 366
nodes. The Swain data set was included as a representative small problem. The London data set
was included as a representative medium problem. The Aztec data set was included as a



representative large problem. No very large problems (> 500 nodes) were included because of
the excessive amounts of computer time required to test such problems for multiple runs. The
reversed Swain data set was included to facilitate the goal of testing data sets with varying spatial
layouts. In the Swain data set, most of the high demand nodes are clustered in the center of the
region. In the reversed Swain data set, in contrast, most of the high demand nodes are scattered
around the fringe of the region.

For each of these data sets, the following values of p (the number of facilities to be
located) are tested:

Swain: p = 4, 5, 6, 7, 8, and 9
Reversed Swain: p = 4, 5, 6, 7, 8, and 9
London: p = 6, 9, 12, 15, 18, 21, and 24
Aztec: p = 10, 20, 30, and 40

Testing Results

The basic goal of the testing described above is to find, for each specific test (each value
of p for each data set), the critical MRP levels for each of the three methods for cutting distance
strings discussed earlier. Before summarizing the findings for all of the tests, it is useful to study
in detail the results of a single test in order to see how the critical MRP levels are determined.
Table 1 lists the results for p = 6 for the London data set.

In Table 1, the first column lists the method used for cutting the distance strings. The
second column lists the actual MRP of the distance strings information stored within the cutoff
strings. The third and fourth columns give the objective value and penalty value of the best
solution out of the 10 trials. The penalty value represents the amount of demand that could not be
served within the distance cutoff; when a penalty value is present, the objective value is not
meaningful and therefore has not been listed. The fifth and sixth columns list the average
objective and penalty value for the 10 trials. The seventh and eighth columns list the worst
objective and penalty value found during the 10 trials. The ninth column gives the average work
measure performed by GRIA during the course of the 10 trials. Recall that this measure is
helpful in determining the second critical MRP level - that in which the GRIA algorithm is
entirely unaffected by the restriction of the distance strings. The tenth column shows the points at
which MRP 0, 1, and 2 are reached.

The base row in Table 1 shows the results of the 10 trials in the absence of distance
cutoffs. It is against these values that the results of all subsequent tests in the table are compared.
Following the base row, the next set of tests listed are for the fixed service distance (FSD)
method of cutting distance strings. For the first four tests (10.00% - 25.07%), only infeasible
solutions can be found. For 30.04% and 34.92%, some, but not all, of the solutions are infeasible;
this can be noted by the average and worst case results. MRP 0 occurs at 39.96%, the first point
at which all solutions are feasible. For 39.96% through 64.97%, progressively better feasible
solutions are found, though they are still not as good as the base results. At 69.98%, the results
are actually slightly better than the base results. Thus, 69.98% represents MRP level 1, the first
MRP at which the results are at least as good as the base results’. Because some of the objective
values along with the work measure are different from the base results, though, it is clear that
MRP level 2 has still not been reached. MRP level 2, in fact, is not reached until 80.01 %, at
which all of the objective values as well as the work value are identical to the base measures.
From similar analysis of the fixed string length (FSL) method it can be seen that the critical MRP



levels are MRP 0 = 20.00%, MRP I = 35.33%, and MRP 2 = 45.33%. For the demand-varied
string length (DVSL) method, MRP 0 = 25.00%, MRP I = 30.00% and MRP 2 = 45.00%.

Based on similar analyses of all the tests performed, a summary of the critical MRP
levels has been compiled in Table 2. The first column in Table 2 lists the name of the data set
tested. The second column lists the value of p for each specific test. The third, fourth, and fifth
column list the MRP level 0 for each of the cutoff methods: fixed service distance (FSD), fixed
string length (FSL), and demand-varied string length (DVSL). The sixth, seventh, and eighth



columns list the MRP level 1 for each of the methods. The ninth, tenth, and eleventh columns list
the MRP level 2 for each of the methods.

For each test, the lowest MRP level 0, level 1, and level 2 for all of the methods has been
shown in bold. In cases of ties, each of the best methods are shown in bold. It should be noted
that in determining ties, the goal percentages (though not shown) rather than the actual
percentages are considered. For example, for MRP level 1 in the Swain data set with p = 7, the
critical MRPs are 60.00% for FSD, 34.55% for FSL, and 35.01 % for DVSL. Because 34.55%
and 35.01 % both correspond to a goal of 35%, FSL and DVSL are considered to tie for the best
cutoff level I for this test.

Conclusions Drawn from the Testing

From examination of the results in Table 2, the demand-varied string length cutoff
approach appears to be the most successful. The fixed string length method is also fairly robust.
In contrast, with the exception of a few tests, the fixed service distance method performs rather
poorly for all problems. Table 3 quantifies these results. Note that Table 3 deals explicitly with
MRP level 1 and MRP level 2, the two MRP levels which are important in determining the



appropriate amount of information to include within reduced distance strings in order to
maximize memory savings without adversely affecting solution quality.

The first column in Table 3 designates the MRP level to which the summary applies. The
second column lists the cutoff approach used. The third column gives the number of times that
the cutoff method gave the single lowest critical MRP value. The fourth column lists the number
of times that the method tied for the best critical MRP value. The fifth column shows the number
of times that the cutoff method did not yield the best results. Note that in each row, the sum of
the values in columns three, four, and five is equal to 23, the total number of test problems. The
sixth column lists the greatest difference between the critical MRP found by the method for a
particular test and the best critical cutoff found by either of the other methods for the same test.
The results in table 3 clearly indicate the inferiority of FSD in comparison to FSL and DVSL.
They also show the slight but none-the-less existing edge that DVSL enjoys over FSL.

Based on these results, it may be argued that when distance strings are to be reduced, the
most promising strategy to employ is either FSL or DVSL. While DVSL is likely to be the most
effective, FSL is also quite reasonable and is easier to implement (it does not require a
complicated algorithm to sort the nodes by demand and vary the string lengths according to the
sorted order in a method that will preserve the overall desired cutoff level).

The first goal stated in this study was to establish guidelines for appropriate cutoff levels
for distance strings: cutoffs that would maximize memory savings without adversely affecting
solution quality. Regrettably, deriving such guidelines is a rather difficult task. Ideally, a simple
formula based on the number of facilities to be sited relative to the total number of nodes could
be derived which would be capable of giving consistently good results. After all, as the
proportion of facilities to demands increases, the average service distance will decrease; hence,
the critical MRP values should decrease as well. A close examination of the results in Table 2,
however, indicates that such a simple formula may not exist. As one would expect, MRP level 0
decreases consistently as p increases for any given data set. MRP level 1 and level 2 do not,
however, show such consistent results. For example, in the Aztec data set under the DVSL
approach, the critical MRP level 1 for p = 20 is 20.00% while the critical cutoff level 1 for p = 30
is 25.00%. Intuitively, one would expect the opposite to occur.

To add to this inconsistency, the appropriate cutoff levels appear to vary based on the
spatial distribution of the demands within each data set. This can be seen by contrasting the
results for the Swain and the Reversed Swain data sets. In these two data sets, though the number
as well as the location of the nodes is the same (only the demand levels at each node are



different), the critical MRP levels for tests with the same number of facilities to be sited vary by
as much as 10% for MRP level 1 and by as much as 35% for MRP level 2.

Based on the observation of these inconsistencies, it is difficult to develop a general -
purpose set of guidelines for appropriate distance cutoff levels. This is not to say, however, that
distance cutoffs should be avoided. Clearly they can be very effective in reducing the required
memory. In fact, out of all the tests, the largest MRP level 1 for FSL was 60.00%, and for DVSL
it was 55.01 %. These MRP levels ranged as low as 10.00% for FSL and as low as 15.00% for
DVSL. These numbers correspond to highly desirable levels of memory savings. They also
represent computational savings associated with the generation and processing of a reduced set
of distance information. In order to take advantage of the potential memory and computational
savings without adversely affecting solution quality, though, it appears that preliminary testing
will be required for any given data set and number of facilities in order to determine the
appropriate MRP levels.

One of the primary reasons for reducing distance strings is to eliminate the need, due to
memory requirements, of generating a full set of distance strings. Obviously, however, the tests
outlined and performed earlier require the initial generation of full distance strings for the
purpose of establishing benchmark measures. In using reduced distance strings for an untested
dataset and value of p, though, it would be beneficial to be able to estimate the appropriate MRP
without having to generate a full set of distance strings, particularly if the problem to be solved is
very large. Two alternative methods through which the estimation of an acceptable MRP level
may be obtained are presented here.

The first method works as follows. For a given data set and value of p, generate some
number of trials. With whatever cutoff method is to be used, begin with a low MRP value and
solve for all of the trials. Increase the MRP value and solve for all trials again. Continue to
increase the MRP value until all trials yield feasible results - solutions in which all demands are
served within the partial distance strings. In other words, establish the MRP level 0. Then,
estimate what the difference between MRP level 0 and MRP level 1 should be. Add this
difference to MRP level 0, and use the result as approrpiate MRP value to use in the tests.

How may the difference between MRP 0 and MRP1I be estimated? To provide insight
into this question, Table 4 shows the difference between MRP level 1 and MRP level 0 for each
of the 23 problems tested in this study. In Table 4, the first column lists the data set. The second
column gives the value of p tested. The third column gives the difference between MRP 1 and
MRP 0 for the FSD method. The fourth column lists the difference for the FSL method. The fifth
column lists the difference for the DVSL method.



From the results of Table 4, it is evident that there does not exist a simple formula that
can accurately predict the difference between MRP 0 and MRP 1. For FSD, the difference varies
between 10% and 40%. For FSL, the difference varies between 0% and 35%. For DVSL, the
difference varies between 5% and 30%. Unfortunately, however, the differences do not vary
consistently based on the value of p. Therefore, the safest approach would be to use a fixed
estimate of the difference and add this to the established MRP level 0. Based on the results of
these tests, the safe estimates would be 40% for FSD, 35% for FSL, and 30% for DVSL. These
estimates will lead to the establishment of a new MRP that is at least as large as MRP level 1 in
all of the cases tested, though in many instances the new MRP will be far greater than the actual
MRP level 1.



The second method for establishing an appropriate MRP level is as follows. Again,
beginning with a data set and a number of facilities to site, generate some number of test trials.
With whatever cutoff method is to be used, establish a relatively low MRP level and solve for all
trials, tracking the best, average, and worst results. Increase the MRP level by 5% and repeat all
tests. Continue to increase the MRP level 5% at a time until the best, average, and worst case
solution values are not any better than those at the prior 2 MRP levels. When this point occurs,
the first of the prior 2 MRP levels can be used as an estimate of MRP level 1. (Note that the prior
2 MRP levels are both checked because at times the results may stay the same with the first 5%
increase and then improve again with the second 5% increase.) This method appears to be quite
successful based on an analysis of the data, similar to that in Table 1, used in the compilation of
Table 2. Unlike the method for estimating the difference between MRP 0 and MRP 1, this
method will never lead to a gross overestimate of the appropriate MRP for use with the data set.
It does, however, require more test runs to establish the MRP value. It continues to run tests all
the way until the estimated MRP level 1 is encountered, whereas the estimated difference
method only runs tests until MRP level 0 is determined and then adds a fixed increment.

Summary

In implementations of location-allocation algorithms, the sorted distance string data
structure may be cut-  off in order to reduce the required memory. In performing such a
reduction, the goal is to maximize memory savings and minimize computational time associated
with generating and processing shortest distance information without adversely affecting solution
quality. This paper has addressed two issues surrounding the use of the cut-off distance strings
data structure. First, what is the best strategy for cutting individual strings within the overall
distance string data structure in order achieve a given level of memory savings. Second, to what
extent can distance strings be reduced without degrading the quality of solutions generated by the
algorithm.

In relation to the first question, three different strategies were tested: the fixed service
distance method (FSD) of Hillsman [1980] and Densham and Rushton [1992a], the fixed string
length method (FSL) proposed in this paper, and the demand-varied string length method
(DVSL) proposed in this paper. Of these, FSD was by far the least successful. In contrast, both
FSL and DVSL performed rather well. DVSL did have a slight edge in performance over FSL.
FSL, on the other hand, is much easier to implement. Based on these findings, if a string cutoff
method is to be implemented, it is easy to recommend FSL or DVSL and not consider FSD.

In relation to the second question, the results of the testing suggested that it would be
difficult to derive a general formula for determining the appropriate cutoff level for a given data
set and number of facilities to be sited. Unfortunately, the critical MRP levels appear to vary
inconsistently with the data set as well as with the number of facilities to be sited. As such, some
care is required in using distance string cutoffs; preliminary testing should be performed for any
given data set and number of facilities in order to determine the appropriate cutoff levels at
which memory savings may be maximized without adversely affecting solution quality. Two
viable methods for estimating the appropriate MRP levels without generating full distance strings
have been presented.

As a final comment, all testing performed in this paper involved the p-Median location-
allocation problem (selected for its theoretical similarity to many other location-allocation
problems) and the GRIA heuristic. Distance string cutoffs may, of course, be used with other



algorithms and other location-allocation problems, though the results of such usage may not
correspond exactly to the results reported in this paper. It is considered likely, however, that the
results would be similar.
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