ERIC

ED 082 489

AUTHOR
TITLT

INSTITUTION
SPONS AGENCY
REPORT NO

PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 011 458

Mir, Carol Loeb

A Comparison of String Handling in Four Programming
Languages. Technical Vrogress Eeport.

North Carolina Univ., Chapel Hill. Pept. of Computer
Science.

National Science Foundation, Washington, D.C.
UNC-TPR-CAI-5

Sep 72

108p.; Thesis submitted to the Department of Computer
Science, University of North Carolina

Mr-3$0.65 HC-%$6.58

*Comparative Analysis; Masters Theses; *Programing;
*Programing Languages; Technical Reports

APL; *Character String Handling; PL I; 3NOBOL 43
String Processing Langquages; TRAC

Characier string handling in the programing languages

SNOBOL 4, TRAC, APL, and PL/I are compared. The first two of these
are representatives of string processing languages, while the latter
two represent general purpose programing languages. A description of
each language is given and examples of string handling problems coded
in the four langquages are provided. Finally, the languages are
compared on the basis of their string handling abilities rather than
on the basis of implementation-dependent characteristics. (Author)

ZILMED FROM BEST AVAILABLE COPY

University of North Carolina

at Chapel Hill

Department of Computer Science

Em Ol 4$Q

ERIC

ED 082489

A COMPARISON OF STRING HANDLING
IN FOUR PROGRAMMING LANGUAGES

Carol Loeb Mir

September 1972

Technical Progress Report CAI-S
to the
National Science Foundation

under Grant GJ-755

U S DEPARTMENTOF MEALTH,
EQUCATION A WELFARE
NATIDONAL1.ISTITUTE OF

EDUCATION

THIS DOCUMENT HA5 BEEN REPRO
DUCED EXACTLY a% RLCEIvED FROA
THE PERSON OR ORGANIZAT'ON ORIGIN
ATING 1T POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OK POLICY

DEPARTMENT of COMPUTER SCIENCE

University of North Carolina at Chapel

Hill

A COMPARISON OF STRING HANDLING

IN FOUR PROGRAMMING LANGUAGES

by
Ccarol Loeb Mir

A thesis submitted to the faculty of
the University of ©North Carolina at
Chapel Hill in partial fulfillment of
the regquirements for the degree of
Master of Science in the Department of
Computer Science.

Chapel Hill

1972

e Ol
e B lidr

W Ol

Reader

ERIC

ERIC

CAROL LOEB MIR. A Comparison of String Handling in Four
Programming Languages. {(Under the direction of PETER
CALINGAERT.)

The thesis compares character string handling in the
prograsmirg 1lanquages SNOBOLY4, TRAC, APL, and PL/I. The
first two languages are representatives of string processing
languages, vhile the latter two represent general purpose
programming languages. A description of each language is
given. Also included are examples of string handling
prohlems coded in the four languages. The languages are
compared on the basis of their string handling abilities and
not on the basis of implementation-dependent

characteristics.

ERIC

ACKNOWLEDGEMENTS

I would 2ike toc thank bDr. Peter Calingaert for
suggesting the thesis and guiding me through its execution.
He painstakingly corrected many rough drafts. I an gratefal
to ny husband vVern for his suggestions and contributions to

the thesis.

ii

TABLE _OF CONTENTS

INTRODUCTION .

-

~~ro0 MM O ON ™=~ DO CON
e e NNONNNNNTTM
* o e o [[e e [} [} [} [} [} o [} . o e 0 e @ [) ¢ »
¢ @ @ e @ © e @ @0 g o ¢ ©® g o @ o o ¢ o e © o @ @
o o] e o o [) o e [) [. e o [) [I] e o 0 e o e [I]
o o e @ e e @ e o @ e e © @ © © ¢ o e @ o o o 0 o
¢ & 0 0 0 o 0 0 * @ 90 0 0 o o O 2 9 * 9 A e ¢ o
o 0 0 ¢ 0 0 ¢ o 0 0 o 0 9 o g 0 0 0 0 ¢ O e ® o o
] [[] [[] [L] [. [] [] [] * * [[] [] . o . [] . L] . L)
e 0 ¢ o9 0 o ® 9 0 0 0 0 o 0 o 0 0 ¢ 0 o 0 ¢ o o o
e ® @ e © @ ©®© @ © @ © @ ¢ © @ ©° o o O o & o © s o
¢ e o o [] * o [} [. ¢ e [} [) * e e o @ e o [] o 0
o o e e e e © @ o ¢ o T o 0 e @ e e @ g © e o o o
o o e o ® o 0 0 0 o o 0o 0 o & & 0 ¢ 2 0 0 0o 0
o os- e @ e @ o e o o & o o
Q n
e 0 o ©® o o o o o o o UNQY o e o o 9 0 ¢ s 0 o
- Q>
e o s o 9o o o o th o 4 Pl e e o 0 e k) ¢ o o e @
(=] Nl or & o}
® o 0 0 o ¢ s QN O B o o o} o4 o ¢ 0o o o
N AV dH-A B ™
Ul o o o o ¢ @ o4 p O Hr o o ot ofd o o o o
= %] Ol 5 Oy o fat H Q Qe
O . e ™ o= [S - e = o o ol
Lol nauv - e 2 O 0N - QO 4 -~
4 o QAU ©@ o B O~ t o QW oMo « @ o
[V} c e =0 N 2 @ s ovg 2y -
e QO QO O e 2 MM OOP 20 2 O XK o -~ Q
[--] =~ a8 s —Hoo .o O HHEHAAQOQOUS O
Q [+~ B = 20O o PP NYP»AE
wn M 0Q DU &AL Mo VDO AQ0o@
NP4 S8 et @l O@ e T OMNEEE
Al © W W D e » g @ a K-E -
OO HHR<OUL «QUKMKM™ M INO
[o] [8) e ° 9 s o @
VOeErNMITRNCrr A MAN O WLde-NMITIPITIFIIN
M Z o e o e ofXi e ¢ o o ¢ o L4 e © e © e © e e e =
DN emEHNONNNNNEMM MM MMM Mmm
[&/] e © o o @ e o o © 9 o e e o © o © o o o o
z - NANNANNANNMNMANNNNNNNNANN
T . .
AN o~ o~
™~

42
42
43
46
46
52
54
57
66
iid

.1.3 APL
1.4 TRAC

3.2 PROBLEY 2

2.3.4.7 Compress and Expand .
3.3 PROBLEM 3

2.3.5 Defipned Functions .

2.4 PL/I
2.4.4 sString Capabilities .

2.4.1 Data Types

2.4.2 Block Structure
2.4,3 Statement Types .
3.1.1 SNOBOLY

3.1.2 PL/I

3.3.1 SNOBOLY

3 SAMPLE STRING HANDLING PROBLEMS
3.1 PROBLEN 1

ERIC

30 302 PL/I . [} 3 e 3 . [} - - . .] .] 3 3 - [} L] 3 L] 70
]ojn.i APL LJ . e L] e [} e [}] [} . e] 3]] [}] - L] [}] 70

4 COMPARISONS AND DISCUSSION « 17

4.1 Data FoLmAtS o« o o o « o « o o o e« s s s o e 17
4,171 SNOBOLY & o o o o « o o s a o o o o o o o o » « 17
U,1.2 TRAC & o « o o o « 5 o s o o o o o s 3 « o o« o« 18
BoTo3 APL o ¢ o 4 o o o s 2 5 o s o s s s o s o = o o 18
Boeled PL/T & o ¢ o o « o o s s o @ s s s o« o s o « o« 18

4.2 Statement FOLMALS « ¢ o o« o 2 o o o o s « o o o o o 19
Uo2¢1 SNOBOLY o o o 2 « o 6 s o o o s s s o o o o « o« 19
U202 TRAC &« o o o o o o o s s s e o o a o o o o o« « 19
o203 APL o o« o o o o e o o o o o o o s s o« s s o o o« 19
4.2.4 PL/I e o s+ o s ® & s s s e 8 s e s e e s e o o 19

4.3 Storage Allocation . . « . e e« o e s s e s e . o 80
4o3.1 SNOBOLY & 4 o o o o o s s o o s o o s« o o o« « « 80
B,302 TRAC o o o o o o o o o s o o s s s o o o o o« o 80
4.3.3 APL o « o o o o o s o o s o o « o o o . « 80
Ba3al PL/L o o o o o o o o o o 8 o o o s s o o o o o B1

.4 Tnput/0utput o o o ¢ ¢ o o o o o o o o o s o » o o 81
4.U.7 SNOBOLY . o o o o o o o s = e o = s s o o o « o Bl
Boelle2 TRAC o o o o o« o o o s o o s s e s s = o« e o « 82
G.ho3 APL ¢ o o ¢ o o o o o &« e e s & 8 o o o o « 82
o, PL/T o o o o o o o o o o s o a o o s o o o o « B2

4.5 Subrcutine Capability « « ¢ ¢ ¢ o o o o o a « s o« o B3
B.5.1 SNOBOLY o o o 2 o o o o o o o o o o o o« o« o o« o 83
u.s-zTRaC ..II..I.I.O-..IO..IQI83
42503 APL o ¢ o o o o o o o s o s s s o s o o o s o « B3
BbeS5el PL/T o o o 2 o s o @ o o o o s o o a o o » o« « 83

4.6 Basic String Operations .« « -« ¢ o o« o o o o o« o o« o BU
.61 Concatenation « « « o « o« s © « o s o o« o o o+ o« 84
4.6.2 Insertion of a substring . « « o « o« ¢ ¢« o o« o 85
4.6.3 Deletion of a substring « ¢« « o« o « o« o « o « o 86
4.6. 4 Pattern matching .« ¢ « ¢« ¢« o o o 2 « o o« o« o« o« 87
b.6.5 Pattern matching with replacement . . « . « . o 87

4.7 Other String OperationsS « « o« o o o o o o o o o o« « 91

.8 DiSCUSSIO0ON o o o o o o s o s s o o » o s o s o o o 97

BIBLIOGRAPHY L] ©°] @ -] e] l.] [}] .] L] [}] e .o - [} .102

ERIC s

ERIC

The purpose of this thesis is to compare character
string handling in different programming lanquages. Of
particular concern aire string operations in text handling.
Saamet mentions (19, p. 385]

The +text nmaterial can be either natural language

of some kind (e.g., this =sentence), a string

composed o¢f a program in any language, or any

arbitrary sequence of characters from soma partic-

ular data area.

This thesis considers only natural language text material.
nf course, this could be generalized to other special_hses
of string handling.

String processing and 1list processing 1languages are
examples of symbol manipulation languages. The data vwhich
they manipulate are symbols, not numbers. Symbol mapipula-
tion languages are used in such areas as compiler writing,
theorem proving, formula manipulation, and text processinge.

Many accounts treat strings and lists together, but it
is important to differentiate between thewm. A string is a
sequence of characters; it is a data type in many progranm-

ming languages. A list, on the other hand, is a structure

of data, which may or may not be characters. “Sammet {19,

!

ERIC

p. 385] distinguishes between a string and a list by noting
that the list is a way of storing information rather than a
type of information to be represented.

String handling operations include concatenation of two
strings, searching for a pattern, and replacing one pattern
with another. Exanples of list processing operations are
putting information into a list, deleting information £fron a
list, and combining two lists.

Since only string operations are of concern 1in this
thesis, the following symbol manipulation languages are
excluded from consideration: {see reference 17]

list processors, such as LISP1.5 and IPL-V;

linked block languages, such as L®;

pattern-directed structure processors, like

CONVERT and FLIP.

The last group of languages perform string-like operations,
but they operate on LISP list sffﬁctures, not character
strings.

Text editors 1like TEXT360 are useful for publishing
documents. These editors include comrands £for line and
document updating, which are string handling tasks. For
exanmple, inserting a phrase in the middle of a sentence is
essentially a pattern wmatching task. However, their con-

mands do not give an insight into how string problems are

dealt with, so text editors are not included in the thesis.

ERIC

The thesis compares string handling in two kinds of
languages. These are string processing languages and gener-
al purpose programning languages with built-in string hand-
ling capabilities. String processing langquages can be
classified as pattern-directed string processors ;nd na§r0~
expander string processors,

Inciuded in pattern-directed string processors are all
versions of the PANON, cOMIT, and SNOBOL languages. These
languages use the generalized Markov algorithm as a way of
defining string processing operations. The Markov algorithm
consists of a series of transformation rules. The languages
performn substitutions on a string depending on the structure
of the stringﬁaccotding to £he transformation rules. (For
more information on the subject see [5].)

These 1languages, ip particular PANON, may be used
effectively to write the syntax analysis phase of compilers.
In such cases a program is regarded as a iong string to b)He
analyzed. PANON is not considered in the thesis since it is
more like a syntax-driven coapiler tham a string processor
{3} SNOBOLY4, which includes many of COMIT's features, is
discussed in detail. A main factor for using SNOBOLY4 for
comparison was the avajlability of an implementation. Also,
COMIT lacks sone desirable l1anguage features, such as the
ability to name strings, and facilities for easy arithimetic

operations.

ERIC

Two languages vhich are in the category of macro-
expander string processors are GPM and TRAC. To perform any
operation in these languages (input/output, arithnmetic,
assignaent, etc.), a macro must be called with the necessary
paranmeters. Since the TRAC language is so different fronm
other programming languages and does include several string
handling functions, it has been included.

PL/I, unlike most other general purpose prograsming
languages, provides good string handling capabilities and is
included in the discussion. APL, aléo considered, is an
example of a general purpose prograeming language that
provides for character data but Abes.not have good string
handling functions.

The four lanquages included in the thesis, then, are
SNOBOLY4, TRAC, PL/I, and APL. A brief summary of each
language is in Chapter 2.

In Chapter 3 two easy string problems are coded in each
language. Also inclqded in the chapter is a rather diffi-
cult string handling problem coded im SNOBOL4, PL/I, and
APL.

Chapter U4 includes comparisons of the languages on thé
bases of what string operations are primitive in each
language, and of wvays string operations that are not
primitive in a lanquage might be coded in that language.

The possible string handling problems for vhich the lan-

ERIC

guages are suited or nmot suited are discussed.

All comparisons of the languages in the thesis are made
on the basis of language features. Implementation-dependent
considerations, such as compilation time, execution speed,
and amount of storage used, have not been considered. A
good comparison based on these latter criteria would have
been extremely difticult for the following reasous. PL/I,
TRAC, and SNOBOL4 programs were batch processed, but APL
programs used an interactive time sharing system. TRAC,
SNOBOL4, and APL were execut2? interpretively, but PL/I was
compiled 1into an object deck for later execution. Thus,
these differences would tend to hide results that might be
evident from a coemparison of more sirilar implementations.

The 1languages are examined on the basis of the string
operations which are primitive in them, not string opera-
tions that can be added with a subroutine capability. A
good programmer can code any string handling operation that
he needs, but this should not figure in a language compari-
son, unless the languaye had no facilities for defining new
string functions.

SHOBOL4 programs were Tun interpretively on an IBN
3707165 in batch mode. TRAC programs were run interpretive-
ly on an IBM 360,75 in batch mode. PL/I programs wvere run
on an IBM 360/75 using the 1IBM PL/I F compiler. APL

programs were run interpretively on an IBM 370/165 in a time

fa
L8 4

sharing environment.

ERIC

LANGUAGE_DESCRIPTIONS

In this chapter a brief summary of each language is
given, The language features discussed include data types,

statenment types, and functioas.

2.1 SNOBOLY

SNOBOL is a string processing language which originated
at Bell Laboratories in 1964; SNOBOL4 is the latest refine-
rent. Its authors are D.J. Farber, R.E. Griswold, and
I.P. Polonsky. Many of SNOBOLu4's features, including its
basic statement format, are influenced by COMIT [13], an
earlier string handling lanquage. References for the SNOBOL

language are [8]}, [9], and ['0].

2.1.1 Data Types

There are several differe&t data types, the umost
important one being the string. Strings can be broken up
into components, operaﬁed upon, and then put together awain.
Unlike what is done in COMIT, an earlier string manipulating
language, strings may be assigned names. It Lis also

possible to assign names to matched and partially wmatched

substrings by the respective operations of conditional and

ERIC

inmediate value assignment. An example of a string in its

'literal form is *'I AM A STRING'., One may write

X = *I AM A STRING'
where2 X is a variable that is assigned the string value
'I AM A STRING'. X is considered to be of type string.

A string mwmust often be searched for a pattern. 1In
SNOBOLY4 a pattern is a structure that can be a string, a
number of strings Jjoiued by the concatenation operator (a
blank) , a number of strings separated by the alternation
operator (a | with at least one blank on each side of 1it),
or possibly a combination of all ‘three. The alternation
operator allovs matching of alternate patterns. Patterns
may be combinations of both litecai strings and variables
whose values are strings or pattecns. Exaaples are the
pattern

RIT® *HER' { *OR!

(whose first alternate is equivalent to 'EITHERY), and the
pattern

¢*B' VAR1 | *B' | VAR2
{(vhose first alternate 1is a 1literal concatenated with a
variabtie). The statement '

IT = 'QONE®t | °"TWO!
assigns to IT a pattern that matches either the string *ONE!
or the string *TwWO'. If Y = 'ONEY, then the pattern

Y | *TWO' is an equivalent pattern to the previous value of

ERIC

varjaible IT .

There are also the arithmetic data types INTEGER and
REAL, type ARRAY, and programmer~-defined data types.
Declarations of the data types of variables are .ut present
in SNOBOL4. Instead, the type of a variable is dependent on

the variable!'s last assigned value.

2.1.2 Statements

There are tour different statement types: assignment,
pattern matching (without replacement), replacemnent, and
END. Actrally all four statements follovw a basic statement
format consisting of five different fields, some of which

may be absent in a particular statement. This format is:

-

abel subject pattern = object go-to

————

Fields . aust Dbe separated by at least cne blauk. If the
label field is present, it nmust begin in Column 1. A
statement not having a label must start in other than Coluan
1. There are no other specifications for the beginning of
any of the other statement components. However, no ~<harac-
ters may appear after Column 71. Continnation cards may be
used, so fields may be as 1long as desired. No maximum
length of any field is specified. Labels pust begin with 1
letter or digit and extend to the first blank. The subject
or object may be either a literal string or the name of a

string. The pattern field way be any of the possibilities

ERIC

described pr=viously for a pattern. The go-to field is used
to indicate conditional and unconditional branching. In the
statement

START X = *ABC! : (NEXT)

the go-to field causes the statement whose label is NEXT to
be branched to after X 1is 1ssigned 'ABC’'. Branching
conditionally upon success or failure of a statemeat is done
with a :S(label) or :F(label), respectively, in the go-to

field. {Success or failure of a statement will be explained

shortly.)

The assignment statement has already been illustrated
in previous examples. Its format is

label subject = object gqo-to

|t—'

abel and go-to are optional. The value of the object is
assigned to the subject.

The pattern matching and replacenment statements are a
little nwore involved. The pattern matching statenentt's
format is:

label subject pattezn go-to

label and go=-to are optional. The entire subject is
searched for an occurrence of the first alternate of the
pattern; if it is not found, then the subject 1is searched
fcr the second alternate, etc. The statement is said to

succeed if the pattern is located in the subject; it fails

10

ERIC

ot herwise. For example, consider

STR = *CABABET'
FIRST STR *AD' | 'AB*

Statement FIRST s:tcceeds, matching pattern *AB*' with the
first AB in the subject. A pattern matching statement with
'AD* in place of 'AD' j 'AB' in the pattern field would
fail.

The result of a replacement statement is to substitute
an object for the first occurrence of the matched pattern
alternate in the subject. The basic format of a replacenment
statement is

label subject pattern = obiject go-to

label and go-to are optional. To replace the first B with
an R in statement FIRST, one would write:

STR = 'CABABET!
FIRST STR *B* = 'po

STR now has the value 'CARABET'. Suppose that it was
desired to replace the second B rather than the first B with
an R. Then it would be necessary to vrite:

STR = 'CABABET?®
FIRST STR *BE’ = *'RE!

An END statement is simply END in the label field and
signiries the end of a SNOBOL4 program.

The four kinds of statements and input/output are
illustrated in the following short program whose purpose is

to count the number of E's and I's in some input cards.

11

ERIC

START X = INPUT T F(END)

SuM = 0
LGop X 'I* | 'B* = t F(OUT)
suMd = suUM + 1 : (LOOP)
OuT QUTPUT = SUM : (START)
END

Input cards:
HE RECEIVED A GIFT.
A BEE STUNG THE BOY.
OUR PROGRAMS HAD FAULTS.

Output lines:

S wo

Execution of the statement labelled START cause.: one input
card to be read and assigns X the value of the card. The
go-to field :P (END) means that on failure (there are no more
input cards) he program is finished. Othervise the normal
sequential order of the program is followed, i.e. go to the
second statement. The second statement initializes SUM to
0. In the third statement X 1is searched for the first
occurrence of the letter *I'. 1If no I's are found, then *E*
is to be looked for. The lack of an object after the = sign
means that the *I* or 'E' is to be deiated from X. If an I
or E is found, one is added to SuUM, and X is searched again.
When an I or E can no longer be found, the program branches
to the statement labelled OUT, which causes the printing of
a line with the value of SUM. The program then branches to
START. The process continues until no more cards are in the

input file, vhereupon vhe program terminates. Notice that

12

ERIC

after all the I's and E's are found, X is the value of the
input card with all I's and E's removed. For exanmple, the
final value of X is 'H BRCVD A GFT*' for the first input card.

The following program segment finds the first E or I in
X; if either letter is found, it indicates which of the two
it was. This 1is easily done using conditional value
operation.

X = *RELIVE?®

X {*XI* | *E')} . FIND = s F {(QUT)

OUTPUT = FIND
The conditional value operator is a period ({.), separated on
both sides by at least one blank. In the above example,
conditional value assignment associates a variable, FIND,
vith a pattern (*'I*' | 'E'), such that when pattern alternate

'T* matches the I in *RELIVE', FIND is assigned 'I°.

2.1.3 Arithmetic

Arithmetic facilities are 1limited in SNUBOL4. Addi-
tion, subtraction, multiplication, division, and exponentia-
tion of integer and real numbers may be done. Version 3 of

SNOBOLY4 permits mixed-mode expressions and real exponents.

2.1.4 Functions

There are several built-in or primitive functiors in
CNOBOL4#. For example, SIZE(X) returns the number of charac-

ters in string X and TRIM(X) removes all trailing blanks in

13

ERIC

string X. REPLACE (X,Y1,Y¥2) replaces all occurrences of Y1
in striang X by Y2. sSeveral primitive functions are useful
for pattern matching. LEN(X), where X is an integer, has a
value of a pattern that matches any string of length X. The
statement

RELIVE' LEN(1) . A
results in A being assigned the value f‘RfY. SPAN (X) and
BREAK(X), where X is a string of characters, will aatch runs
of the <characters of Y in the subject. TAB(integer) and
RTAB (integer) allow matching attempts to be started at a
desired position in the subject. ARB (no argument) matches
an arbitrary number of characters in the subject. For
instance, in the pattern matching statement

'THE PICTURE ON THE WALL' PICTURE* ARB *'WALL®
ARB matches ' ON THE °'. There 1s also a cursor position
operator @ to assign the position in the subject where a
match occurred. After execution of the following statement
PTR will be assigned the value 4, the position Jjust before
'PICTURE",

THE PICTURE ON THE WALL @PTR *PICTURE' ARB 'WALL®

‘A second type of function in SNOBOLY4 is the predicate.
If the condition specified by the predicate is satisfied,
the predicate 1is replaced by the null string. If the
condition is not satisfied, the statement fails and no

operation is performed. The statement

14

ERIC

I = LE(X,9) I 4+ 1 : P{END)
will succeed, adding 1 to I, so long as I is less than or
equal to 9. The numeric predicates include LT, LE, GT, GE,
EQ, and NE, whose wmeanings are what one would expect.
INTEGER (X) determines whether X is an integer. Other
predicates compare two strings instead of two numbers. For
example, LGT {X,Y) succeeds if string X follows string Y in
lexical ordering.

The third type of function is a function defined by the
user. These functions may be redefined during program
execution. No special notation is required for recursive

function calls.

2.1.5 Other Features

Other features of the language include data type
conversion, indirect referencing, delayed evaluation of
expressions in patterns, and the possibility of changing the
way the subject is scanned for a pattern.

SNOBOL4 programs are translated into Polish prefix
object code, and then executed interpretively. This helps
explain the gqod trace facilities in the language.

sone of the differences betwecas SNOBOL4 and the earlier
SNOBOL and SNOBOL3 include improvements tc I/0 and arithmet-
ic capabilities. Also, the array data type was not present

in SNOBOL. There was no alternation operator in the earlier

15

ERIC

languages, so patterns had to be less intricate. A large
number of the primitive Efunctions which help in doing
complicated pattern matching problems were not present in

the earlier languages.

2.2 TRAC

TRAC is an entirely ditferent kind of string handling
language from SNOBOL4. It is a macrogenerator language
designed to be interactive. Wegner [21] says that a mécro
definition may be viewed as a function definition f such
that for every set of actual parameters af{ 1],...,afn] in the
alloved domain, a value string f(a[{1],...,a{n)) is deter-
mined which consists of the string generated as a result of
macro expansion. In macro assemblers the domain of actual
parameters consists of any strings that result in wvell-
formed 1lines of code, where the lines of code are the range
of the function. However in TRAC the domain and range of
arguments are to some extent arbitrary strings.

The two people responsible for the development of -TRAC
are Calvin Mooers and Peter Deutsch., The TRAC system wvas
designed for interactive text processing. Sources of the
TRAC concepts came from COMIT, LISP, and McIlroy's macro
assembly system [5). TRAC was developed independently from
Strachey's GPM [21], although the languages are very simi-

lar. TRAC is discussed in [S5], {14]), [15], [16], [20]), and

16

The basic instruction format is:

:(FCN,pP{V}spP[2])sece,pPlk])!

:{ indicates a call to PCN, where FCN is a two-letter TRAC
primitive (or evaluates to a two-letter TRAC primitive).
The arguments of FCN are p[1]),p{2]sece,p[k]; each p[i] is a
string of <characters. An activation symbol, usually the
apostrophe, indicates the end of input and ca.ves the
processor to execute what was just entered. FCN is also
referred to as a macro name,

Instructions are executed interpretively by consulting
a table in @aemory for the name of the primitive and then
transferring éo a subroutine for evecuting the primitive. A
nev primitive is added to the language by adding it to the
table. However no new primitive can be specified within a
-TRAC program. It must be entered before execution.

An instruction is executed by replacing the insiruction
with its value, which may be the null string. Instructions
may cause side effects in the memory, I/0 medium, or
information vhich determines the mode of operation of the

TRAC processor.

17

ERIC

2.2.2 TRAC Primitives

TRAC primitives include, first of all, primitives which
allow the lanyuage to be interactive.

:(RS)* indicates a string ot characters is to be read
from the typewriter unt‘l an end of string character is
found, and that this instruction is to be replaced with what
vas just read.

: (PS,string)!' prints the value of string. Por example,

:(PS,IT IS RAINING) ?
prints IT IS RAINING. After printing, the null string is
left as the value of the instruction.

Macro definition is accomplished with the define string
primitive., :(DS,name,string) says to evaluate name, evalu-
ate string, and define the value of string to have as its
name the value of name. FPor instance,

: {DS,A,: (BRS))*
causes a string to be read, evaluated, and the result named
A,

Miacros are called with the call primitive. :(CL,name)
says to call the name to which the name expression evaluates
and replace the instruction with the name's value, Thus,
the new string could be a newx instructione.

Parameters may be introduced in a defined string with
the seqment string primitive. :(SS,name,p{1),p[2),.0.,pP[k))

saYsS to evaluate name, evaluate the paranmeters p[i], and

18

ERIC

call the named string and replace each instance in it of
p[i] by a paramteter marker for i. The string is stored
back in memory. For exumple, consider

: (SS,A,RAIN)?
If L has the value IT IS RALNING, then RAIN is replaced by a
parameter marker. To =wee this new form for A, the print
forr primitive may be used. The value of :(PF,A)*' would bhe
IT IS <1>ING. Parameters may be replaced with actual para-
metercs. :(CL,name,a[1]},a[2])sc..,a[m]) replaces all occur-
rences of parameter markers with the corresponding actual
parameters af{1}),a[2),e..,a[m]J. If the number of actual
parameters is 1less than the number of parameter markers,
i.e. <k, then null strings replace the remaining parameter
ma rkers. If m>k, then p{k+1),...,p[@] are ignored. The
instruction

:(PS,: (CL,A,SNOW)) *

prints the value of :(CL,A,SNON) which is IT IS SNOWING.

2. 2.3 Evaluation_MNodes

TRAC has three different evaluation modes: active,
neutral, and quote.

The characters :{ initiate the active mode. These
symbols cause the interpreter to delay evaluation of the
current function (if there is one) and evaluate all argu-

ments following :(until the matching right parenthesis is

19

ERIC

found. Por instance, in evaluating :{PS,: (CL,A,SNOW))*,
execution of the print string function is delayed until
:(CL,A,SNOW) is executed. The string produced as a result
of evaluating the active function is evaluated again, unless
it is the null string.

The characters ::(initiate the neutral mode. The
difference between this and the active mode is that after
the characters betwveen ::(and matching) are evaluated once
and a resulting string produced, the resulting string is not
rescanned.

The quote mode, initi#ted by (, stops all evaluation of
wvhat is between the matching parentheses. Examples 1.,2.,
and 3. below show the differences anong the three modes.

Assume these definitions are made for X and Y:

(DS, X, BOOK) X has value BOOK
(DS, ¥, {: (CL,X)}) - Y has value : (CL,X)

Then
:(PSy: (CL,Y)} prints BOOK
2. :(PS,::(CL,Y)} prints :(CL,X)

3. = (PS,(:(CL,Y))} prints :(CL,Y)

Two stacks are necessary during evaluation, the active
string stack and the neutral string stack. Every instruc-
tion is copied to the top of the active string stack and
then scanned. Since parameters may also call TRAC func-
tioqs, a stack is needed in which to put intermediate

resitits of parameter evaluation, _Thus, the necessity arises

for the neutral string stack. A flowchart of TRAC evalua-

.

20

ERIC

tion (Figqure 2.1) follows [15].

.4 Arithmetic_Primitives

TRAC has primitives to handle the usual arithmetic
operations. For exaeple, :(AD,d1,d2)' returns the sum of 41

and d2, which are strings representing numbers.

2.2.5 Decision _Primjitives

Two primitives EQ (equals) and GR (greater) provide
decision facilities. The value of : (EQ,x1,x2,t.f) is t if
character string x1 1is equal to <character string x2,
otherwise the value is f. Similarly, :(GR,d1,d2,t,f) is t
if d1 1is greater than d2. GBR's operands d1 and d2 must be

strings representing numbers, not character strings.

2.2.6_Character Primitives

Each defined string (or form) has a form pointer
associated with it. Initially the form pointer points to
the first character of the string; it may be moved by £our
primitives: CC (call a character), CN (call a number of

characters), CS (call a segment), and IN {index). The value

of the instruction
: (CC,S,2) !
is the character in S pointed to by S's form pointer. As a

side effect, the form pointer of S is moved ahead one

21

ACTIVE STRING HAS A SCAN POINTER
CURRENT LOCATION IS IN NEUTRAL STRING
IDLING PROCEDURE IS :(DS,:(RS))

‘ ES
NO
EXAMINE CHAR.
UNDER SCAN
PTR.
(ES
N
YES

NO

DELETE NEUTRAL STRING (N.S.), INITIALIZE
ITS POINTERS

RELOAD A NEW COPY OF IDLING PROCEDURE
INTO ACTIVE STRING (A.S.)

RESET SCAN POINTER TO BEGINNING OF
IDLING PROCEDIRE

DELETE (

MOVE SCAN PTR. TO CHAR, FOLLOWING FIRST
MATCHING) ‘

DELETE)

ALL NON-DELETED CHARS. ARE PUT IN N.S.

DELETE COMMA
LOCATION FOLLOWING RIGHT HAND CHAR.
AT END OF THE N.S. (CURRENT LOCATION)
IS MARKED BY A PTR. TO INDICATE
END OF AN ARGUMENT SUBSTRING AND
BEGINNING OF A NEW ARGUMENT SUBSTRING

Figure 2.1 TRAC Algorithm.

ERIC

ERIC

TRANSFER CHAR.
TO RIGHT HAND
SIDE OF V.S,

MOVE SCAN PIR.
TO NEXT CHAR.

_Figure 2.1 (cont.)

DELETE)

MARK CURRENT LOCATION IN N,S5. TO
INDICATE END OF A FCN. AND END
OF ARG, SUBSTRING

RETRIEVE PTR. T0 BEGINNING OF
CURKRENT FCN.

PERFORM ACTION INDICATED

FCN,
HAS NULL
VALUE

ERIC

VALUE STRING IS INSERTED T0 LEFT OF
- 55 | FIRST UNSCANNED CHAR. IN A.S.
ICN. ACTIVE RESET SCAN PTR. TO LOCATION
PRECEDING FIRST CHAR. OF

NO NEW VALUE STRING

DELETE ARG. AND FCN. PTRS. BACK

TG BEGINNING-OF-FCN. PTR. FOR FCN.
JUST EVALUATED, RESETTING

CURRENT LOCATION TO THIS POINT

N
FCN. IS NEUTRAL
INSERT VALUE STRING IN N.S. WITH ITS FIRST CHAR.
BEING PUT IN LOCATION POINTED TO BY CURRENT
BEGINNING-OF-FCN. PTR.
DELETE ARG. AND FCN. PTRS. BACK TO BEGINNING-OF-FCW.
PTR.
DO NOT RESET SCAN PIR.

Figure 2.1 (cont.)

24

P)

INSPECT
NEXT
CHAR.
INDICATES BEGINNING OF AN ACTIVE FCN.
DELETE .
YES | MARK CURRENT LOCATION IN N.S. TO
INDICATE BEGINNING OF ARG. SUBSTRING
MOVE SCAN PTR. TO FIRST CHAR.
PAST
NO
INSPECT
YES § wEXT
CHAR.
No
(.. N (YES
ADD CHAR. INDICATES BEGINNING OF A
TO N.S. NEUTRAL FCN.
DELETE : :(

Figure 2.1 (cont.)

ERIC

MARK CURRENT LOCATICON IN N.S.
TO INDICATE BEGINNING OF A
NEUTRAL FCN. AND BEGINNING
OF AN ARGUMENT SUBSTRING

MOVE SCAN PTR. TC FIRST
CHAR. PAST ::(

character. 1f, before =:(CC,S5,2)' 1is executed, Qhé form
pointer of S points beyond the last character of S, the
value of the instruction is =z. Similarly, if the form
pointer 1s beyond the 1last character of S, the value of
:(CN,s,k!z)' is z. Othervwise the value returned is the next
k characters of S after the form pointer. The form pointer
is noved ahead (or back if k is negative) k places.
:(CS,S,2)' gives the segment of characters from the current
position of the form pointer to the next parameter marker.
:(IN,S,x,2)!' searches S for substring x. If the substring
is present, the value that is returned is the string between
the beginning position of the form pointer and the wmatched
;trinq; the form pointer is moved to the character after the
ratched string. If there is no match, Zz is returned. The
cursor-reset or call-restore function ;(CR,S) resets the
form pointer of S to the first character in S.

Sone other functions useful in string processing are
mentioned by van der Poel in [20). One is the yves there
function, : (YT,N,x,t,f). If string x is in N, then the
value oOf the function 1is t, cihervise the value ics f.
:(LP,N) and =:(BP.M) give, respectively, the number of
characters to the left of the form pointer and to the right
of the form pojanter. Another function, IL (in left), is
like IN but searches to the left in x. = (LG,x1,x2,t,f)

determines whether string x1 is 1lexically greater than

26

ERIC

string «x2. If so, the value returned is t; if not, the
value returned is f.

A character primitive combined with EQ can move the
form pointer ahead and return a null string as result. For
example,

: (EQ,: (CS,SENT) ,) *
moves the pointer after a segment of SENT. There are no

true-false exits, and a null string is returned.

2.3 APL

APL was originated by Kenneth Iverson. It was devel-
oped further in association with A.D. Falkoff. Discussions
of.APL may be found in [11] and [12].

APL is a general purpose programming language whose
concise notation’ is good for interactive use. APL is
partiﬁularly useful in dealing with vectors and multidimen-
sional arrays. The APL discussed in the thesis is the
implementation used in an APL/360 interactive system. The
inplementation provides a good repertoire of system action
commands; these will not be discussed.

The double arrow (<-->) will be used in the following
discussion to denote equivalence. This symbol is not part

of APL but merely a notational convenience.

27

ERIC

2.3.1 Data_Types

As 1in SNUBOL4, there are no declarations of type of a
variable. The only types are numbers and characters.

A scalar may be a number or a character. An array is
built from scalars of the same type. Thus, an array cannot
contain both numbers and characters.

A character string is a one~dimensional array of
characters. Thus, any operation on the string is performed
on each element individually. The importance of this
feature is illustrated in Chapter 4. There is no conversion

between characters and numbers.

2.3.2 Statements

The btranch and the specification statements are the two
basic statement types. Branch statements are used only in
user-defined functions. Their explanation will be deferred
until defined functions are discussed. Examples of specifi-
cation statements are:

X+5:2

Y«'T AM A STRING!

Z«1 2 3 4

41+3»5+2

22+(3x5)+2
Specification statements assign to the variable on the left
hand side of the arrow the result of evaluating the

expression on the right hand side of the arrow. 1In the

examples given previous *, X is assigned 2.5, Y is assigned

28

the character vector inside the apostrophes (each character
in the vector is an element of vector Y), and Z is assigned
a vector with the first four integers as elements. Two
elements of a vector of numbers, not a vector of characters,
are separated for input and output by at least one ‘blank.
The value of 21 is 21, not 17, because order of execution is
right to 1left. However, 22 does have value 17 since

parentheses are used.

2.3.3 Indexing_Arcays

[i] written after a vector, or [i;j] written after an
.array (i or j possibly omitted), are called indices or index
functions. Like subscripts in other 1anguages,.the indices
are used to reference elements of vectors and arrays. For

example, suppose

B«'I AM A STRING'
1 2

34

56

Then

Bl1let]?

Bl1 5 9l

C{1:21e2

Cl1;)1 2

Cl;2)+—2 4 6

CF2 3;21+4 6

cl1 2;1 271 2
K

VABCDE'[31!

As illustrated above, the indices (subscripts) inside the

brackets may be scalars, vectors, or arcrays.

29

ERIC

ot e e St e S e i st e

There are two kinds of functions (or operators):
primitive functions which are built into the system, and
defined functions which are defined by the user. Primitive
funztiorns will be considered first.

Every primitive function is either monadic {one arqu-
ment}) or dyadic (two arguments). Whether an argument may be
a scalar, a vector, or an array depends on the function
used. The form of function result, i.e. scalar, vector, or
arréy, depends on the type of arguments used. (A scalar is
not considered to be a vector of length one.)

Primitive functions are considered to be either scalar
or mixed. Scalar functions are those which return a scalar
result for scalar arquments. However, their arguments nmay
be arrays, which are operated on element by element by the
function. The shape of the result is the same as that of
one of the arguments. For example, suppose Si1+«1 2 3 4 and
S2¢5 678 . To evaluate S14s2, the addition opérator is
applied to <corresponding elements in the two Vvectors,
yielding the result 6 8 10 12, 1I1f S1 or S2 1is a scalar,
then the scalar is paired wvwith every element of the vector
in evaluating the function. 1If S53+5 then RESULT+S3+52 or
RESULT«S2+53 assigns to RESULT the vector value

10 11 12 13,

Many function symbols are used to represent twvo dif-

30

ERIC

ferent functions in APL. The meaning of the symbol depends

‘on the nuaber of arguments it has. For example, [is the

ceiling (next integer not less than) function ;hen used
monadically (with one argument) and the maximum function
vhen used dyadically (with ¢two arguments). For exanmple,
[3.5<>4 and 33.5¢>3.5

APL has relational operaﬁors wvhich take scalar argu-
ments and wvhose results are 1 if the relation holds for the
arquments and 0 otherwise. For exaaple,

3240 2<3¢1 *A'='B'<0
Scalar relation functions equals and not equals may be used
with character arguments, but the other relations cannot.
The logical functions or, and, etc. take logical arquments
(O*s and 1's) and return 0 or 1 as value. For example, if

A+1010 B+1100
then

AAB<*1000 AVB++1110 ~A+0101

Any dyadic scalar function synbol may be followed by a
reduction symbol /. This has the effect of applying the
function symbol between successive componants of the argu-~
ment. ' For example, /X says to add together every component
of vector X. Reduction may also be used along any coordi-
nate of an array.

Mixed functions may be defined on numbers or charac-

ters. The shape of the result is not necessarily the shape

3

ERIC

of one of the arquments, A mixed function must have a
non-scalar either as an arqument or as a result. An example
of a non-scalar or mixed dyadic function 1is catenate,
symbolized by a comma. This function says to concatenate
its two arguments. For example, 'AB','CD'«—'ABCD' , If X is
assigned *AB' and Y is assigned *'CD', then X, Y<'"4BCD' also.

Some of the more useful mixed functions will now be
explained. These explanations may need to be referenced

when reading later chapters.

22 3.4.1 Index generator
If N>0, "W is a vector vhose elements are the first N
integers. For example,
111 15+>1 2 3 4 5

10 jis the null vector; it prints as a blank.

The dyadic use of iota, 4B . is very important in
string %andling problems. 413 gives the least index of the
occurrence of each element of B in A, where A pust be a
vector. If an elenent of B does not occur in A, then the
function returns 1 plus the highest index of A. Suppose

Be'g S
A+'] AM A STRING'

Then

AViA'e]
A\j—3 2 8 \

ERIC

—— — - SO i < . S S >

If X is a vector, then pX gives the number of elements
in X. If X is an array, pX gives the dimensions of X in the

form of a vector result. For example, if X is array

Ul W
o EN

then pX<»3 2 , denoting three rows and two columns in X.

2.3.4.4 Reshape

The dyadic function p <can create an array. In such
usage the first argqument specifies the dimensions the array
is to have. The second argument specifies a vector of
elements to be in the array. The statement

A«2 3p1 23 4 568
defines A to be array
123
4 56

2. 3.4.5 Ravel

The comma (,) used monadically rewrites an array as a

vector. Hence, B+,A assigns B the value 1 2 3 4 5 6 .

2. 3.4.6 Membership

The membership function ¢ takes two arguments; it
rields a logical array that has the dimensions of the first
argument. The result has ones in the positions where

e)lements of the first argument are nmembers of the sacond

33

arguaent, and zeroes in all other positions. PFor example,

(15)e2+»01 0 0 0
an2
"I AM A STRING'€'AEIOU'+>1 010010000100

Parentheses are necessary around 5 in this example because

of the right to left rule for function evaluation.

223:4.7 Compress_and_ Expand

Conpress and expand operators used with two argurents
are represented by the forvard slash and the backward slash,
respectively. A logical vector may be used to compress or
expand a vector or array. In compressing character arrays,
characters in the second argqument are deleted at the
positions where there are zeroes in the first argument, No
chanées are pade 1in the positions in the second arqument
vhere there are ones in the first arqument. In expanding
character arrays, the result is the same as the second
arqgumrent but with blanks inserted in positions where zeroes
ap pear in the fi;st argument. For example, suppose
I«1 00 1 and A«'ROAM' B+'RM' |, Then I/A<>'RM! and

IN\B='R M .

2.3.5 Defined Functions

Defined functions are used to extend the language. The

ERIC | | 34

ERIC

following is an example of a function definition.

VDIM 1 FUNCTION HEADER
(1] SUM«(pA)+pB T
(2] AVER«SUM+2 | FUNCTION BODY
v 1

The ﬂel (v) character before DIM indicates the beginning of
the function definition mode. The last del ends function
definition. DIM is the name of the function to be defined;
[i]) stands for statement number i. The statements consti-
tute the function body. After function definitiom the body
is associated with function name DIM. DIM could be called
by:

A+'SIZE"

B+«'SIZE1' A

DIM

AVER
DIM calculates the average size of A and B. Since A
contains four characters and B contains nine characters, the
value 6.5 is printed. DIM can be rewritten to have two
argusents. The function header would be changed to

VA DIM B
The function miéht then be called by

- Z+'SIZE!
Z DIM 'SIZE1',2

Again 6.5 is the result.

The basic format of a branch statement is +I . If I is
é numrber or a label, the program branches to the correspond-
ing statement in the function definition. If I is the null

vector, the next instruction in statement number order |is

35

ERIC

executed. If I=0 the execution is ftinished.

Branch statements are wused in the following function
definition.

V Z+DOUBLE STR

(11 z«"?

[2] LOOP:2+«Z,2p14STR

ral STR+14STR

[l +(0<pSTR) /LOOP

v

The above function DOUBLE doubles every letter of STR. Z is
assigned the null string in statepent 1. In statement 2 2
is concatenated with tvo copies of 14STR o the first
character of STR. The first character of STR 1is dropped
from STR in statement 3.' Statement 4 causes a branch to the
statement labelled LOOP if there is at least one more
character in STR; otherwise the program stops.

Suppose DOUBLE is used in a statement, for exaemple,

STRING+(DOUBLE 'ABC'),(DOUBLE 'X'),'Y'
Then STRING will have the value 'AABBCCXX?'.

The previous example illustrates that a defined func-
tion does not have to be referred to any differently from a
primitive function. This means that a defined function may
also appear in other function definitions.

Some defined functions are included in libraries avail-
able to the user. Recursive function defiuitions are
allowed. Also, APL/360 allows functions to be traced as

they are being executed and function definitions to be

changed.

36

ERIC

2.4 PL/I

PL/I is a general purpose programming language that can
be used for a wide variety of probleas. The original
specificatiors for PL/I were written by the Advanced Lan-
guage Development Comnittee of the SHARE PORTRAN Project, a
group formed by SHARE and IBM.

PL/YI <contains many of the features of COBOL, FORTRAN,
and ALGOL. Also, to some extent, PL/I was influenced by
APL.

An important feature of PL/I is its modularity. The
language is such that a user need only learn that subset of
PL/I applicable to his problems.

PL/I is discussed in [2] and {18].

Data fall into the categories of problém data and
program control data. The 1latter caiegory vill not be
discussed. Problem data may be divided into arithmetic data
and string data. Attributes of a variable are declared in a
DECLARE statcment anywhere in the program. However, if any
attribute is not dsclared explicitly, a default attribute is
assigned.

Attributes of arithmetic variables are BASE (binary or
decipal), SCALE (fixed or floating point), MODE (real or

coaplex), aad precision.

37

ERIC

String data may be either <character or bit strings.
All string operations and functious may be performed on
either kind. Strings may be declared to be of fixed or
varying 1lengths. However, a maximum length must still be
specified for a varying length string.

Both arithmetic data and string data may be organized
into arrays and structures. A structure may contain both
arithmetic and string variables, whercas 21ll elements of an

array must have identical attributes.

2.4.2 Block Structure

An important characteristic of PL/I is its block
structure. Blocks are groups of statements that delimit the
scope of variables. There are two kinds of blocks, proce-
dures and BEGIN blocks.

Procedures are subroutines which are activated expli-
citly by being invoked. They may be passed paranmeters.
BEGIN block~ are activated implicitly by being reached. No

parameters are passed to BEGIN blocks.

2.4.3 Statement Types

PL/I has several different statement types. These
include descriptive statements, such as DECLARE; I/0 state-
ments, such as GET aud PUT; data movement and computational

statenents, such as assignment statenents; program structure

38

ERIC

statements, such as PROCEDURE, BEGIN; and coantrol state-
ments, such as GO To, IF, DO, CALL, RETURN. IF and GO TO
statemeats provide, respectively, conditional and uncondi-
tional oranching. IF statements can be quite complex. Do
groups, dJdelimited by DO and END statements, are used for
control purvoses; they can specify hovw many times and under
what conditions a group of statements is to be execuged.
Some of the statements will be illustrated in the program

follovwing the PL/I discussion.

——— —— o > — i o i e e

Since PL/I has been influenced by FORTRAN, COBOL, and
ALGOL, it is not usually c-onsidered a language in which to
do string manipulation problems. However, there are several
features of PL/I which permit fairly good string processing.
In this vespect PL/I differs from most general purpose
programming languages,

Rosin has discussed these useful string features in a
1967 article [18]. Strings may be declared to be of fixed
or varying length; fixed 1length is the default. String
constants are delimited by apostrophes, €.g.
*I AM A STRING'.

Strings may be concatenated using the operator J}. The
function LENGTH({string) returns the size of string. The

relation operator equals (=) may be used to compare two

39

ERIC

strings. Also, all ot the other relational operators can be
used on string operands. The result depends on the collat-
ing sequence of the character codes. A replication factor
may be placed before a character string constant, but not
before the name of a character string. The factor, which is
a constant, indicates how many times the character string
constant is to be repeated.

The two extremely useful built-in string functions are
SUBSTR and INDEX. <SUBSTR(string,i,n) gives the n character
long substring of string that begins in position i. If n is
absent, then the rest of string from character i on is
given. SUBSTR may also appear on the left hand side of
assignment statements as a pseudo-variable, thus allowing
values to be assigned to substrings. For example, the
statement

SUBSTR(STR,3,9) ='ABCDEFGHI';
replaces the third through eleventh positions of STR with
the first nine letters of the alphabet. The INDEX function
esseutially does SNOBOL-like matching of a simple pattern.
INDEX {string,substring) finds the left-most occurrence of
substring in string. The position of the first character in
the matched portion of string is returned, and 0 is returned
if substring is npot coantained in string. This is a
generalization of the iota operator of APL.

There are ot her string functions as ¥ell.

40

ERIC

REPEAT (string,N) does essentially the same thing as a
replication factor. However, string is nor restricted to
being a character string constant; it may be the name of a
string. TRANSLATE(string,tablel, table2) crauslates each
character in string which appears in tablel to the corre-
sponding character in table2. In the following example
tablel is *'IG* and table2 is 'aD‘.

A = TRANSLATE (*SING?!,'IG*',*4l?);
assigns *'SAND' to A. VERIFY(sti.ngl,string2) verities that
every character of stringl is present in string2. If so, O
is returned. If not, the position (index) of the first
character in stringl not present in string2 is returned.

A sample PL/I program follows that counts the number of

I's and E*s in amn input card.

PR:
PROCEDURE OPTIONS (MAIN) :
DECLARE X CHAR (25) VARYING,
SUM PIXED;
START:

GET LIST (X);

SUN = 0;

DO I=1 TO LENGTH(X);
IP SUBSTR(X,I,1):=*T1*' |

SUBSTR({(X,I,1)=*E?®

THEN SUM=SUM41;

END;

PUT LIST (SUY);

END PR;

41

ERIC

3_SAMPLE_STRING_HANDLING PROBLEMS

This chapter contains two examples of easy string

handling problems and one complex problem. These problens

help show the different ways that hasic string operations,

vhich are discussed in detail in Chapter 4, are done in each

language. Also, they wuse many

discussed in Chapter 2.

of the language features

Problem 1 is sorting N strings into alphabetical order.

Problem 2 involves listing all words

that begin with a vowel

that occur in a line of text. Problem 3 is a rather complex

text matching problen.

3.1 PROBLEF .

The following strings are to be

CATCH

THROW

OUTFIELD

BASEBALL

BASE

CATCHER

A bubble sort program will be
lanquages. In the ticst stage the
N-1st and the Nth, are compared; the
of the two strings is bubbled up and

string; thc earlier of the two is

sorted:

written in all four
bottom two strings, the
alphabetically earlier
compared with the N-2nd

bubbled up and compared

u2

ERIC

with the N-3rd, etc., until the proper string is at the top
of the sequence of strings. In the second stage the above
process is repeated; the top item is not checked. After the
saecond stage the top two strings are in order. The bubble
sort continues until a stage when no two strings are
interchanged.

The flowchart, w«hich applies to all four bubble sort
programs, is given in Figure 3.1. The algorithm is a common
form for a bubble sort and is found in reference [6]. It
was relatively easy on the basis of programming time to
wrcite the PL/I, SNOBOL4, and APL programs from the flow-
chart. The TRAC program took more time to code. A bubble
sort is not the best method for sorting in APL, so an

alternate method is also given in the chapter.

3.1.1_SHOBOLY

{Refer to Figure 3.2.)

The first input card contains N, the number of strings
to be sorted. Succeeding cards contain the strings them-
selves. A one-dimensional array A of N items is created by
the statement

A = ARRAY (N)

Fach string is a member of array A. Notice that the indices

of array elements are denoted by <>'s, not parentheses.

43

ERIC

START

.

RFEAD

T«1
I+0

TEMP<A(J)
A(T)<A(J+1)
A(J+1)<TEMP
T«1

Figure 3.1 Flowchart for Problem 1.

44

*

THIS PROGRAM IS SIMILAR TO THE ONE IN THE SNOBOL IV MANUAL
INITIALIZE STAGE NO. '
I =0

*

*

GET NUMBER OP TITEMS TO BE SCRTED

N
A

TRIM (INPUT) :P (ERROR)
ARRAY (N)

i un

[

* READ IN THE ITEMS
*
RE AD I =14 1
A<I> = TRIN (INPUT) :F (GO) S(READ)
*

* SORT THE LIST
*x

GO I =0
T = 1
SORT2 EQ (T, 0) +S {PR)
J =N
T =0
I =1+ 1
SORT 1 EQIT,d) :S (SORT2)
J = 6T(J,1) J - 1
LGT(A<ID> AL + 1>) :F (SORT1)
. _
SWITCH TENP = A<I>
ACI> = AKI + D
ACJ + 1> = TENMP
T = 1 : (SORT1)
*
*« ERINT SORTED LIST
™
PR Moo= 1
PRINT OUTPUT = A<MD :F (END)
M= M4 1 : (PRINT)
x
END
BASE
EASEBALL
CATCH
CATCEER
OUTFIELD
THROW

Figure 3.2 SNOBOL4 Program for Problem 1.

ERIC | s

ERIC

— ——— ——— . it

(Refer to Figure 3. 3.)

The PL/I and SNOBOLYW programs are very similar. Howev-
er, in PL/I a maximum length for an element of A must be
given (8 iu this example). 1In SNOBOLY it is not necessary

to specify maximum lengths of array elements.

(Refer to Figure 3.4.)

Since there 1is no coullating sequence in APL, it is
necessary to use a string S containing the letters of the
alphabet 1in order preceded by a blank for reference in
getting the proper lexical order.

The sequence of six strings to be sorted is stored as a
tvo-dimensional array A. J 1is the index of the array
element in A being considered, L indexes the position or
column of the array member, and I is the stage number of the
bubble sort process. In the previous examples in SNOBOLUY
and PL/I, A was a vector (one-dimensional array of character
strings), whereas 1in APL it is a tvo-dimensional array of
characters.

PL/I and SNOBOLY4, when comparing two strings of wnequal
lengths, left justify the shorter of the two strings ird pad
to the right with bianks. However, in APL a string 1is a

vector of characters. Since the dimensionality of two

46

ERIC

SORT: PROCEDURE OPTIONS (MAIN) ;
DECLARE (A (6) ,TEMF) CHARACTER (15) VARYING:
/* READ IN NUMHER OF ITF4S TO BE SORTED */
GET LIST (N)3
/% READ IN STKINGS TO BE SORTED %,
DO I=1 TO N3
GET SKIP EDIT (A(I)) (A(15),35KLP);

EHD:
/% INITIALIZE VARIABLES */
T=1:
I1=0;
SORT2: TP T=0 THEN GO TO PRINT;
ELSE DG,
T=0;
I=141;
J=N;
SORTY: IP J=I THEN GO TO SORT2;
LLSE DO;
J=J-1;
IF A{J) <= A{J+1) THEN GO TO SORT1;
ELSE DO; /% INTERCHANGE ITEUS */
TRuP = A(J)
A(I)=A(J+Y)
T=1; /7% INDICATE INTERCHANGE
A(J+1)=TENP;
T=1;
GO TO SORTI;
END;
END;
ENDg
PRINT: PUT EDIT (A) (SKIP,A(15));
END SORT;
BASE
EASEBALL
CATCH
CATCHER
OUTFIELD
THROY

Figure 3.3 PL/I ®rsgram fcr Problem 1.

*/

47

Vv SORT

(1] I+0

£2] S+«' ABCDEFGHIJXLMNOPQRSTUVWXYZ!
(31 A«

[4] +HERE

[5] T+1

[6]1 LOOP1:+(T=0)/0UT
[7) HERE:T+0
[8] T«I+1
[9] J+(pA)1]
[10) TEST:+(J=I)/LOOP1
[11] J+J-1
[12] L<0
[13]) LooP2:L«L+1
[18] +(L=(pA)[2]+1)/TEST
151 +((SVA[J;L]))2SALJ+1:L))/YES
[16] NO:+TEST -
[17] YES:+((S\ALJ;L])=514[J+1;L])/LOOP2
[1B] TEMP«A(J;]
{19] A(J;J«AlJ+1;]
[20] A[J+1;)«TEMP
[21] T«
(22] ATEST
(23] oUT:+0
v

SORT ,
CATCH - THROW OUTFIELDBASEBALLBASE CATCHER
D:

68

A
BASE
BASEBALL
CATCH
CATCHER
OUTFIELD
THROW

Figure 3.4 APL Program for Problem 1.

ERIC

ERIC

vectors must match to be compared, and since APL strings are
character vectors, two APL strings must be of the same
length to be compared. Therefore the programmer must
pcovide for padding.

The APL bubble sort program is similar to the SNOBOL#4
and PL/I versions. However, it 1is not the best way of
writing a sort invAPL. Since APL has such a wide variety of
primitives, there are more concise vays to code the sort
pctoblem. One of these ways is found in Katzan [12]. His
way uses the decode function 1 and transpose function & as
well as the size and index functions.

The expression Ri1X, where R is a radix and X is a
vector of digits, denotes the value of X evaluated in a
number system with radix R. For example, the value of
1011 2 3 is 123. Thus, if S+«' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
the value of 27.51'BC' would be (271x3)4{279x4) or 85.

The expression X, vhere X is an array, returns the
transpose of X. For exaample, if SMSTR+2 4p 'THEYCAME' then
851SMSTR is the array

2

oW
[%Y
o Fr N F

2

Now consider

STRING+6 8p'CATCH THROW OUTFIELDBASEBALLBASE CATCHER '

49

ERIC

Then the function

VR+«SORT STRING;,ALPH
[1]) ALPH+' ABCDEFGHIJKLMNOPQRSTUVWXYZ'
[2] R+STRINGI A(pALPH)LQALPH\STRING;]
v

will order the elements of STRING.
STRING is the array:

CATCH
THROW
OUTFIELD
BASEBALL
BASE
CATCHER

Tracing through the operation step by step:
Step 1

The value of

ALPH\STRING
is

4 2 21) 9 1 1 i

21 9 19 16 24 1 i 1
i6 22 21 ?7 10 6 13 5
3 2 20 6 3 2 13 13
3 2 20 6 1 1 1 1
4 2 21 4 9 6 19 1

Each row contains the indices of a rov of STRING in ALPH.
Step 2
The value of

RALPH\STRING

50

is

4 21 16 3 3 4
2 9 22 2 2 2
21 19 21 20 20 21
4 16 7 6 6 4
9 24 10 3 1 9
1 1 6 2 1 6
1 1 13 13 1 19
1 1 5 13 1 1

The function § transposes the matrix obtaimed in Step 1.
Step 3
The value of (pALPH)L\QALPH\STRING is

.291988451F10
.234358071F11
.761941507F11
.244612824E10
. 244608781E10
.291988864510

FwwekLr o F

The first number is equal to

(277x8) 4 (27¢x2) +(275x21) 4+ (27% x4}
(273x9) +(272x1) + (278x1) + (27°x 1)

The other nunmbers are calculated in the sane way.
Step 4

The function) assigns ranks to the elements of
(pALPH)AQALPH\STRING | « The value of A(pALPH)1RALPH 1STRING
is 541632
Step >

Finally indexing the rows, the value of

STRINGT ACpALPH)18ALPH\STRING;]

ERIC | 51

ERIC

is the sorted list
BASE
BASEBALL
CATCH
CATCHER

QUTPIELD
THROW

3:1.8 TRAC

(Refer to FPigure 3.5.)

The TRAC version of the ‘bubble sort provides many
contrasts vwith the previous programs. For instance, there
are no arrays in TRAC. However, there is a way to get
around this deficiency. The variables that need to be
array-like could be naned A1, A2, A3, etc. Then :(A:(J))
can be used to reference afj].

In TRAC, as in APL, character strings that need to be
compared must have the same length. Otherwise, when compar-
ing two strings of unegual lengths, the shorter of the two
will be right-justified and padded to the left with zerose.
This contrasts with the left-justification of character
strings done in SNOBGL4 and PL/I. Por alphabeti.ation,
therefore, the prograam must provide left justification.

There is no eguals operator that may be used'io compare
twvo numbers. In SORT1 of the TYRAC program GR must be used
tvice to test for equality.

The TRAC bubble sort is organized as a series of calls

to NEXT, SORTZ2, NEW, SORT1, LOOP1, LOOP2, and PRINT.

52

ERIC

+ (DS,N,6)?

: (DS, T,0)"

:(DS,J, H?

: (DS, NEXT, {: (DS,T,1): (DS,L,0):(SORT2)))"

: (DS,SORT2, (: (GR,: (T),0, (: (NEW)), (2 {DS,K,1)2(PRINT))))) "

: (DS, LOOP2, (: (DS, TEMP, s (A2 (J))):(DS,A:(J), 2 (Az (AD,2{J),1))) ¢
(DS,A2 (AD,2(Jd) »1),:(TEMP)): (DS,T,1): (SORT1))))))?

:$ (DS, SORT1, (2 {GH,: (J),: (L), (: (LOOPY)) ,(:(GR,: (I),3 (J), (s (LOO
P1)), (: (SORT2)))))))*

: (DS,LOOP1, (:(DS,J,:(SU,2(J), 1)) (LG,s(A2(J)) o2 (A: (AD,2 (J),1
)) ¢ (2 (LOOP2)), (: (SORTT)))))*

+ (DS, PRINT, (: (PS,s (A: {(K))):{DS,K,: (AD,=(K),1)) : {(GR,K,N,, (s (P
RINT))}))?

: {DS,NEW,{:z{(DS,T,0):(DS,L,: (AD,s (L), 1)) {DS,J,2(N))s (SORT1))
)|

¢ (DS,ASSIGN, (2 (D5,1,0): (ALOOP)))"

t (DS, ALOOP, (s (DS,I,:(AD,:(I),1)):(GR,s(I),2(N), {:(NEXT)),[={
DS,A: (I} ,2 (RS)) :(ALOOGRP)}})N)

: (ASSIGN) *CATCH STHROW 'OUTFIELD* BASEBALL® BASE *CATCH
ER ?
BASE BASEBALLCATCH CATCHER OUTFIELDTHROW

{
Figure 3.5 TRAC Program for Problem 1.

33

ERIC

SORT2 tests for T greater than 0, wvhich indicates that
more interchanges are necessary. If T is not greater than
0, K is initialized to 1 and the program branches to PRINT.
Wwhen T is greater than 0, NEW is called.

NEW resets T to 0, increments I by 1, sets J equal to
N, and calls SORT1.

In SORT! the GR primitive is used to compare J with I.
If J is greater tham I, lLOOP1 is called. Otherwise J and 1
must be compared again, using GR. If I is not greater than
J, then T and J nust be equal and the prograa branches to
SORT2.

LOOP1 decrements J by 1. FKext, a[j] and a[j+1] are
conpared using the lexical ordering primitive LG. If a[j}]
is 1lexically greater than afj+1], LOOP2 is «called to
interchange the two. Othervwise SOBT1 is called.

LOOP2 switches a[j] and a[j+t] and sets T to 1 to
indicate that an interch&nqe has taken place. SORT1? is
called.

PRINT is defined recursivelyf Each time PRINT is
called it prints a string, increments K, and calls itself,

When K exceeds N, the program stops.

3.2 PROBLENM 2

(See Pigllres 3-6, 3:7' 3-8' and 3-9.)

54

ERIC

TEXT = TRIM (INPUT)
TEXT1 = TEXT

LOOP TEXT BREAK(®* ') . WORD LEN(1) = .:F(END)

CHECK IT = SIZE(WORD) = 1
WORD ANY({*ATINU?®) LEN(TIT) sF(LOOP)
OUTPUT = WORD s (LOOP)

END

I

ALL

A

Figure 3.6 SNOBOL4 Program for Problem 2.

VOWEL: PROCEDURE OPTIONS (MAIN):
DECLARE WORD CHARACTER (15) VARY1NG,
TEXT CHARACTER (80) VARYING, -
TEXT1 CHARACTER (80) VARYING,
L CHARACTER (1)
GET EDIT (TEXT) (A(80)):
TEXT1=TEXT;
LOOP: PT=INDEX (TEXT," !);
IF PP = 0 THEN GO TO PRINT1; '
WORD = SUBSTR(TEXT,1,PT-1) ;
TEXT = SUBSTR (TEXT,PT+1) ;
L = SUBSTR{WORD,1,1);:
IF L=*A* | L='E¢* | L='I' |
L:!ol | L:OUO
THEN POUT EDIT (WORD) (A {15)):
GO TO LGOP;
PRINT1: END VOWEL;

I ALL A

Figure 3.7 PL/I Program for Problem 2,

55

ERIC

v VOW2
[1] TEXT"
[2] TEXT1«TEXT
3] TEXTe' ' TEXT,' !
[u] LIST«"!
5] VEC(TEXTe" ') /\pTEXT
(6 I+0
(7] INC:+((I+«I+1)=pVEC)/O0
[8) WORD«TEXTL VECTI)+\(VECLI+11-(VRCT{I]+1))]
[9) TEST:+(WORD[1]e'AEIOU')/PR
[10] =INC
{11 PR:LIST«LIST,' ',WORD
(121 -IWC
v

VOW?2
I WANT TO LIST ALL WDRDS THAT BEGIN WITH A VOWEL

LIST
I ALL A

Figure 3.8 APL Program for Problem 2,

: (DS, TEXT,I WANT TO LIST ALL WORDS BEGINNING WITH A VOWEL)'®
:(CS,TEXT1,2: (TEXT))"
: {S5,TEXT,)°*
s (DS, VOWEL,AEXIOU)*
: (DS, WORD, (2 {CS,TEXT)))*
.(DS CHAR, {z: (CC,HW)))?

: (DS, NEWWOED, (: (GR,: (RP, TEXT) ,0, (2 {DS,HW,: [WORD)): (DS, LET,: (C
HAR))'(COMFAR))))))‘
s {DS,CONPAR, (.(EQ..(LET\,..(CC VOWEL), (2 (PRIRT)), (: (GR, : (RP,
VOWEL) ,0, (: (COMPAR)), (z (TEST)))))))*
:(DS,PRINT,(:{CR.H):(PS,:(H))2 (TEST)))*
: (DS, TEST, (: (CR,VOWEL) : (NEWWORD)))}) ?*
: (NEWWORD) *
I ALL A

Figure 3.9 TRAC Program for Problem 2.

56

ERIC

The purpose of this problem is to list all the words in
a line of text that begin vith a vowel. For simplicity
there is no punctuation.

Words have to be isolated. In SNOBOLY4 the BREAK
function, in conjunction with a conditiopnal variable WORD,
does this. The ANY function of SNOBOLY4 is convenient for
matching'any of the vovels with the first character of WORD.
In PL/I each vowel must be cbnpated- individually. Again
SNOBOL4's pattern matching superiority is apparent. The
SNOBOL4 and PL/I programs dispose of a word in TEXT after it
is assigned to variable WORD.

A different approach is taken in APL since TEXT is an
arraye. The index of each blank character is placed in
vector VEC. Each word is isolated and checked.

The TRAC program is organized as a series of calls to
NEWWORD, COMPAR, PRINT, and TEST. The cursor of VOWEL must
be reset before comparisons with each word. W is the
current word under consideration. LET is the first letter

in the current vord.

3.3 PROBLEHN 3

An interesting problem that ijllustrates many of the
operations needed in string handling is the following.
Consider a student sitting at a terminal who is

ansvering gquestions in a foreign language drill. The

57

ERIC

interactive system types a question that the student is to
answer., If the student types the correct answer, the systen
responds with an R and types the next gquestion. If the
student naissed the answver, he must try another reply. It
would be helpful for the student to receive feedback that
sone of his answer was correct. For exanple, consider this
hypothetical drill in English. The student's answers are
preceded by a question nmark.

What is the capital of France?

?Marseilles

?paras

Par_s

?Paris
R

Wwhat are the three R's?
?reeding, riting, avrithmetick
re_ding, _riting, arithaetic
?reading, writing, arithaetic
R

The procedure for comparing the student’s ansver with
the correct answer is as follows. If the tvwo answvers are of
equal length, they are compared, and R is returned if they
are the same. If the tvo answers are not of equal length or
are of equal lquth and not the sanae, the student answer is
searched from left to right for n-character length sequences
of the correct ansver.

Assume that the the value of n is first 7, then 2. In
the second drill gquestion ‘reading? would be the first

segqueuce the student ansver is searched for, ‘eading,' is

58

the second seven character length seguence, *ading, * the
third, etc. No match cccurs until ?riting,t.

When a match occurs, the letters following the ‘matched
sequence in the correct ansver (M) and student answer (S)
are searched one by one until the letter in M and the
corresponding letter in S are not the same. For example,
after 'riting,' is found in S the characters * ' and ‘a¢
will also be @matched. 1In prograaming the problem, filler
characters, the asterisk and the slash, are substituted for
the mat<hed characters in M and S, respectively. Por
instance, in the previoqs example, after *riting, at* is
matched, M and S would be:

“

reading, v**®kx*xkxrithmetic

reeding, /////7///7/7¥cithmetick
In future match attenpts substrings with /'s and *'s are
ignored. The sequence 'rithmet' would match a substring in
M successfully, and the subsequent 'ic' would also match.
Thus, after all 7-length sequencas are tried, M and S would
be: |
M

reading, WEEERAEEAERERREKALE

reeding, ////7//7/7w//7777/77k

ERIC 9

ERIC

Next, M is searched for all possible 2-character length
sequences 1in S that match M substrings. ‘ret' matches, but
no additicnal characters do, so
M

**ading' P2 R PR EL RS L LS R LY

/7€48DG, /111777 /9007770777K

The process continues until all possible substrings have
been tried.

The M string is converted to an answer for the student,
Every asterisk now¥ in M will print as the character it
stands for. For example, the letter *'r' ¥ill be substituted
for the first letter in M ia the ansver, and ‘e’ for the
second. Any character, other than a blank, will be replaced
in the answer by the underline character {.) - Blanks are
given in the returned answer. In addition to an answer with
blanks and underlines, the student receives a percentage of
the letters in his answer that appear in the correct ansver.

The flowchart for the program (Figure 3.10) follows.

SNOBOL4 has wmany string manipulating functions that
vere useful in wvwriting the prograﬁ. . The SUBSTR and INDEX
functions of PL/I vere sufficient to do the necessary string
processing in that language. fHoxever, the prograam vas not

as easy to do in APL/360. Even though APL provides indexing

60

ERIC

READ
VALUES
FOR N

MAINLOOP

% STOP)

J+0
MCOUNT«NUMBER OF
CHARS. IN M
SCOUNT«NUMBER OF
CHARS. IN §

Figure 3.10 Flowchart for Problem 3.

61

PRINT ‘R

MAINLOOP

, KS+1
- SLOOP
YES
L<L+1

NO
ISOLATE ’
NEXT N(L) PREPARER
CHARS. IN

S) j

Figure 3.10 (cont.)

ERIC 2

ERIC

ANY YES

SLASHES IN

FILL IN x'S. FOR
MATCHED M CHARS.
FILL IN /'S FOR
MATCHED S CHARS.

I+0

SUBSTITUTE
* AND /
T«T+1

Figure 3.10 (cont.)

KS+KS+1

—% SLOOFP >

r__; KS<KS+N(L)+T

SLOOP

63

ERIC

PREPARER

EXAMINE NEXT
CHAR. IN M

JJ+1

GET NEXT CHAR. FROM M1
SUBSTITUTE IT FOR *

CATENATE CHAR. TO RESULT

CATENATE BLANK
TO RESULT

CATENATE
UNDERLINE
CHAR. -TO
RESULT

REMOVE FIRST
CHAR . FROM
M

Figure 3.10 (cont.)

64

ERIC

Figure 3.10

MORE
CHARS. IN
M

PREPARER

INSERT PERIOD AS
LAST CHAR. OF
RESULT

JJ+J tMCOUNT

(cont.)

MAINLOOP

PRINT
RESULT
AND JJ

65

ERIC

(the iota operator}), it lacks an equivalent of ¢the PL/I
INDEX fu;ction.

Some of the variable names used are the same in all the
programs. M is the correct answvwer; M1 is a copy of M. S is
the student's answer. M and S change as matches are found.
J counts the nunber of characters that match; JJ is - the
fraction of characters (J/(size of lﬂ)) that matched. N
indicates hou‘many characters are to be matched at once. N
must be less than or equal to the minimum of the sizes of M
and S. To be useful, however, the values of N should be
small. L indicates which value of N is currently being
used. RESULT is the string that is returned to the student.

As matches occur, asterisks replace the matched charac-
ters in M, and slashes replace the matched characters in S.

In the PL/I énd APL programs, KS is equal to the
position of the first chatﬁcter in the S-substring that is
about to be checked. However, in the SNOBOL4 program, KS is
equal to the current value of the cursor, the index of the

character in S before the one about to be checked.

3.3.1 SNOBOLY

(Refer to Pigure 3.11.)
The patterns MPADPAT and SPADPAT match N<1L> characters

in the patterns STARS and SLASHES, respectively. MPAD and

66

ERIC

*

* N= NO. OF CHARACTERS TO BE MATCHED

* J COUNTS NUMBER OF CHARACTERS THAT MATCHED
N = ARRAY(2)

MORER N<1> TRIM (INPUT)
N<2> TRIM (INPUT)

*
* PATTERNS TO BE USED IN PROGRAM
MPADPAT = LEN(*N<L>) . MPAD
SPADPAT = LEN(*N<L>) « SPAD
STARS = "¥%kkkkkk?
SLASUES = Y//////77!
S2 = LEN(*KS) *TAB(N<L> 4+ KS) . S3
S4 = *LEN(KK + I) *TAB(KK + I + 1) . S5

" .

*

MAINLOOP M = TRIM(INPUT) :P(THRU)
ouTeyT
ouTPOT
OUTPUT
S = TRIL
ouTPUT
J =20

COUNT NO. OF CHARACTERS IN ™ AND S
MCOUNT = SIZE (M)

SCOUNT = SIZE(S)

(INPUT) ‘ :F (THRU)

Ul 4 X

Hx it i

» -

EQ (MCOUNT,SCOUNT) . ' sP(SET)

x®

* IS M=-SUBSTRING EQUAL TO S~SUBSTRING?
IDEXRT (M, S) | tF(SET)
OUTPUT = 'R* ' : (KLAINLOOP)

*

* INITIALIZE VARIABLES
SET L =1
RESULT = ¢
* NFED A COPY OF M
M1 = 4 :
* KS POINTS TO CHARACTER BEFORE ONE TO BE MATCHED
SRESET KsS = 0
* SET MPADPAT TO -A PATTERN OF N<L> STARS AND
* SPADPAT TO A PATTERN OF N<KL> SLASHES
- STARS MPADPAT
SLASHES SPADPAT

Figure 3.11 SNOBOL4 Progiam for Problem 3.

67

ERIC

*

S5LcCP GT (KS + N<L>,SCOURT) tS(NEWN)
* ISOLATE NEXT N<L> CHARACTERS IN S .

S 82
* ZNY SLASHES IN S-SUBSTRING?
S3 ANY('/') +S (KSINC)

* CHECK FOR A MATCH; IF SUCCESSFUL, FILL IN *'S FOR MATCHED
* CHAARACTERS IN M AWD /'S FOR MATCHED CHARACTERS IN S
* K POINTS TO THE LAST MATCHED CHARACTER IN M
* KK POINTS TO THE LASYT MATCHED CHARACTER IN S
M $3 aK = MPAD TF(KSINC)
S S3 ®dKK = SPAD

*

CHECK FOR ADDITIONAL CHARACTERS THAT MATCH;
* FILL IN *'S AND /'S5

. I =0

AGAIN sS4
M TAB(K 4 I) . HEAD S5 = HEAD '*! :F (CALC)
S TAB{KK + I) . TAIL S5 = TAIL '/°
I =1+ 1

* AT LEAST ONE MORE CHAR. IN M AND S2?

GT (K + I,MCOUNT) ' +S (CALC)
GT (KK + I,SCOUNT) <F (AGAIN)
* YES, AT LEAST ONE MORE CHAR.
CALC KS = KK 4 I : (SLOOP)
*
NEKN L =L 4 1
EQ (L,3) :F (SRESET)
L 3
*®
N _
PREFARER M LEN(1) . TEMP = ' ¢F (PRECUT)
IDENT (TEMP, '*?) : :S (ZC)
ZA IDENT (TEMP, ' V) + ¥ (ZB)
RESULT = RESULT * ¢ : (ZD)
vA:] RESULT = RESULT *_°? : (2D)
A J=J+ 1
, M1 LEN(1) . ANSWER
- - RESULT = RESULT ANSWER
YA M1 LEN(1) = : (PREPARER)

*
*

* REPLACE LAST CHARACTER WITH A PERIOD
PREOUT _ RESULT KRTAB(1) . TEMP1 LEN(1) = TEMP1 '.°*

Figure 3.11 (cont.)

68

ERIC

onT OQUTPUT
OuUTPUT RESULT
* CCNVERT TO KEAL NUMBERS

L]

L]

AJ = CONVERT (J,'REAL")

AMCOUNT = CONVERT (MCOUNT, *REAL')

AJJ = AJ / ANCOUNT
ouTRPUT = AJJ

KSINC KS = KS 4 1

THRU
END

DAS HAUS IST MNICHT GROSS.
DAS VATERHAUS IS VERNICHTET.

DAS HAUS IS_ NICHT _____.
0.6399999

MA SOEUR EST MARIEE.

MA SIR ET MARREE,

MA S___R E_T MAR_EE.

0. 7500000

CETTE LECON EST DIFFICILE.
CET LECOK EST DIFISEAL.
CET__ LECON EST DIF______.
0.6538461

LA JEUNE FILLE EST JOLIE.
LA JEUNE FILLE FEST JOLIE.
R -

Figure 3.11 (cont.)

$ (MAINLOOP)

: (SLOOP)

+<CORRECT ANSWER
<STUDENT'S ANSWER

+<COMPUTER RESPONSE :
<PERCENTAGE OF CORRECT LETTERS

69

ERIC

SPAD are strings eqﬁal to the N<L> characters 1in the
gpatterns MPADPAT and SPADPAT, respectively. The pattern
STARS is used to replace matched characters in A. Similarc-
1y, SLASHES is used to replace matched characters in S.

S2 pmatches N<KL> characters in S, beginning with the
{KS41) st character; S3 is a string equal to those N L>
characters.

After a match of N<L> characters in M has occurred, KK
is set to one less than the position of the next character
in S. Similarly, K is set to one less than the position of
the next character in M. I indicates the number of the
character past KK that is being checked for a aatch.

S4 is a pattern which matches the (KK+I+1}st character
with a character in S. S5 is the string containing that
character. If S5 is the (K+I+1'st character, a star and

slash are substituted in M and S, respectively.

3.3.2_PL/T

(Refer to Pigure 3, 12.)
AA is the N(L)-length substring of S that starts in
position KS. M is searched for amn occurrence of AA. If

there is a match, then A is set to the index of the match,

3.3.3 APL

(Refer to Figure 3. 13.)

70

PRUBLEM:z PROCEDURE OPTIONS (MAIN); |

DCL RESULT CHARACTER (80) VARYING,
(M,M41,S) CHARACTER (80),
(MCOUNT ,SCOUNT, N{2) ,KS,L.B,A,ARA) FIXED,
AA CHAR (80) VARYINS,
JJ FLXED DECIMAL (6,9) 3

ON ENDFILE(SYSIN) GO TO THRU;

/% N IS NUMBER OF CHARACTERS TO BE MATCHED */

GET LIST ((N (L) DO L=1 T0 2));:

/% J IS THE PRACTION OF MATCHED CHARACTERS PER STRING %/

/* READ CHARACTERS INTO CHAR. STRING VAR.'S M AND S .*/

MAINLOOP: GET EDIT (M) (SKIP, A(80))
GET EDIT (S) (A (80));

/¥ PRINT THE STRINGS */

PUD SKIP(3) EDIT (M) (A(B0)):
pPUT EDIT (S) (SKIP,A(80));

/% INITIALIZE NO. OF MATCHED CHABACTERS */
J=0;

/% COUNT NO. OF CHARACTERS IN EACH ARRAY #/
MCOUNT=INDEX (M, '. '} ;
SCOUNT=INDEX{S,*."'):

IF MCOUNT=SCOUNT
THEN IF M=S THEN DO;
PUT SKIP LIST ('R');
GO TO MAINLOOP;
END;
/¥ COPY OF N *x/
o M1=H;
/% INITTALIZE RESULT */
RESULT = *1;
NEWN: DO L=1 TO 2;

/¢ KS IS EQUAL TO THE POSITION OF THE FIRST CHARACTER IN #*/

/* THE SUBSTRING OF S THAT IS BEING CHECKED . */
KS = 13

SLOOP: IF KS4N(L)>SCOUNT41 THEN GO TO NEWNEND;

/% ANY SLASHES IN S-SUBSTRING? */

/% AA IS THE N{L)-LENGTH SUBSTRING OF 5, BEGINNING */

/*¥ WITH THE THARACTER TN POSITION KS */
AA=SUBSTR(S,KS,N (L)) ;
AMA=INDEX (AR,' /")

/% IF A SLASH, GO TO NEWKS %/

I[F AAA-=0 THEN GO TO NEWKS;

/* IS S—SUBSTRING IN M? */

/* IF SO, A IS THE INDEX OF THE FIRST OCCURRENCE OF AA */ &8
A=INDEX(M,AA) 5 _ A e

Figure 3.12 'PL/I Program for Problem 3.

ERIC .

IP A-~=0
THEN DO:
/% YES, S-SUBSTHRING IS IN M */
DO B=0 TO N(L)-1;
SUBSTR (M,A4B,1)=1%"';
SUBSTR(S,KS¢8, 1) =t /0
END;
/% DO ANY ADDITLONAL CHARACTERS MATCH? */
DO I=0 BY 1
WHILE (A4N(L)4I<=MCOUNT & KS+N(L)+I<-SCOUNT).
IF SUBSTR (M,A4N (L)+4I,1) =
SUBSTR(S,KS+N(L)+I,1)
THEN DO;
SUBSTR (MyA4N(L)4+I,1)=1%¢
SUBSTR (S, KS4N(LY4+L,1)=0/";
END ;
ELSE DO;
KS=KS4+N (L) +1;
GO TO SLOOP;
END;
END;
ENDg
/* NO, S-SUBSTRIKG IS NOT IN H */
ELSE NEWKS: KS = KS+1;
GO TO SLOOP;
NEWNEND: - END NEWN;
/% PRINT PARTIALLY MATCHED STRING */
PREPARER: DO I=1 TO MCOUNT;
TF SUBSTR(M,I,1)="'%*
THEN DO;
RESULT = RESULT || SUBSTR(M1,I,1):
J = J41;
END;
ELSE IF SUBSTR(M1,I,1) =-~= * !
THEN RESULT RESULT 1{ '_°
ELSE RESULT RESULT (| * °
END PREPARER;
/* MAXE SURE LAST CHARACTER IS A PER[OD */
SUBSTR (RESULT,MCCUNT, 1)='.";
PUT EDIT (RESULT) (SKIP(2), A(80)):
JJI=J/UCOUNT ;
PUT SKIP LIST (JJ);
OUT: GO TO MAINLOOP;
THRU: END “ROBLEM;

"'l

o
'ﬁf Figure 3.12 (cont.)
Ler

FERIC .

ERIC

DAS HANS IST NICHT GROSS.

DAS VATERHAUS IS VERNICHTET.

DAS HAUS TS_ NICHT _____ .
0.613999

MA SOEUR EST MARIEE.
MA SIR ET MAREE.

MA S___R E_T MAR_EE.
0.75000

. CETTE LLECON EST DIFFICILE.

CFT LECON EST DIFISEAL.

CET__ LECON EST DIF -

——— -

0. 65383

LA JEONE FILLE EST JOLIE.
LA JEONE FILLE EST JOLIE.
R

Figure 3.12 (cont.)

73

[1]
(2]
(3]
fu]
[5]
(6]
£7]
(8]
[9]
[(10]
[11]
[12]
[13]
[14]
[15]
- [1s]
[17]
(18]
[19]
{20]
(211
[22]
[23]
(241
[25]
[26]
[27]
[28]
[29]
(303
[31]
[32]
[33)
[34)
[35]
[36]
371
£3s]
[39]
[u0]
[u1)]
(42]

9 STRINGS
N+
MAINLOOP: M«
S+M
M1+M
I+1
J+0
+((pM)=pS)/NEWN
I«
ITER:+(MLI1%S(I))/ NEWN
+((T«I+1)$pM)/ITER
[Jetp?
*MAINLOOP
NEWN: KS5+1
RESULT<"!
SLOOP: +((KS+NUL]1)>1+4pS)/NEWNEND
D+S SUBSTR KS,N L]
+((D "/ ")<1+pD)/NEWKS
HIGH+O
TEST1:+((HIGH+HICH+RICH 1+ / TEMP<MUHIGH 1 0MI\ D) =1+pM) /NEWKS
SUB«(TEMP\HIGH1) -1
+(((HIGH-SUB)+NLL 1-1)>pM)/NEWKS
TEST:+(M{(HIGH-SUBY+((1N(L]1)~-1)]=D)/TEST1
A«HIGH-SUB
B+0
ALOOP:MLA+Bl+" %'
SCxS+B1+5 /!
+>((B+«B+1)<N[L))/ALOOP
I+0
BLOOP: +(~((A+N{LI+I)spM)A((KS+NLL]1+I)3pS)) /OTHEE:
F+A+NLL]+I
P+KS+N[L1+T
+((M SUBSTR E,1)=(S SUBSTR F,1))/OTHER
MCA+NEL)4T 1«0 2!
SCXS+NLLI4I)< /!
J+T+1
+BLOOP
OTHER : KS+KS+NLL1+T
+SLOOP
NEWKS : KS+KS+1
+SLOOP .
NEWNEND :+((L<L4+1)=3)/NEWN
PREPARER : T+1

Figure 3.13 APL Program for Problem 3.

ERIC

74

ERIC

[(u3) CLOOP:»(M[I1u'w')/2A
(u4]) RESULT«RESULT ,MALI]
(45] J«S+1
[46] =+INC
(47] 2A:+(MALI]=" ')/2ZB
(48] RESULT«RESULT,'_'
(49 =INC
(50] Z2B:RESULT«RESULT,' '
[51] INC:+((I«I+1)spM)/CLOOP
(52] FINAL:RESULT pM]e? !
(53] [<RESULT
[54] [l«JJ«J2pM
[55] oUT:-MAINLOOP

v

STRINGS

72

DAS HAUS IST NICHT GROSS.
DAS VATERHAUS IS VERNICHTET,
DAS HAUS IS_ NICHT _____.
0.54

MA SOEUR EST MARIFE,
MA SIR ET MARREE.
MA S__R E_T MAR_FE.
0.75 ‘

CETTE LECON EST DIFFICILE.
CEY LECON EST DIFISEAL.
CET__ LECON EST DIF .
0.6538461538

LA JEUNE FILLE EST JOLIE,
LA JEUNE FILLE EST JOLIE,
R

Figure 3.13 (cont.)

75

ERIC

M is searched for an occurrence of the S-substring D.
HIGHY is set to the nmaximum of the indices of the occur-
rences in M of the letters contained in D. If HIGH, the sun
of HIGH1 and the previous value of HIGH, is equal to 1 4 the
size of M, then one or more of the letters in D does not
occur in ¥ and the program branches to NEWKS. SUB is
assigned one less than the position of HIGH1 in TEMP. The
substring in M of length N{L} beginning with the character
in the (HIGH-SUB)th position is compared with D. - The

program branches to TEST1 if the substrings do no¢t match.

76

ERIC

The first part of this chapter briefly mentions some of
the different features in each language: data fornmats,
statemnent formats, storage allocation, input/output, and
subroutine capability. Next follows a discussion of string
operations. Some string operatioans that are' primitive in
one language, but not in others, are coded in the other

languages.

4. 1 DATA FORMATS

4.1.1 SNOBOLY

The data of SNOBOL# include both character strings and
numbers, although operations on numbers are not an important
part of the language, Conversion is done automatically
between numbers and strings. For exanmple, ?'ABC' 3 is
equivalent to 'ABC3' and *12345' + 1 is/gahivalent to 12346.
Patterns are built from strings by using alternation and
concatenation. None of the other three languages has a

pattern data type.

77

ERIC

4.1.2_TRAC

In the TRAC language both instructions and data are
strings. 1If arithmetic primitives are called, the parane-
ters will be treated as numbers. Each instruction stringvis
evaluated and replaced with a value string, which méy itself

be evaluated in turn.

The data of APL are characters and numbers. A charac~
ter vecter, however, is a vector of single characters and
not a string of characters, as ié the case in SNOBOL4, PL/I,
and TRAC. Arrays may be formed using characters or numbers.
Conversion between nuabers and characters is not done, and

it is not permissible to mix the two data types.

4.1.4 PL/I

Data in PL/I consist nmainly of fixed and floating point
numbers and character and bit strings. Arrays and struc-'
tures can be made from the data. Each identifier or

variable is considered to have attributes which usually are
specified in DECLARE statements. Strings and their maximum
lenyths are not declared in the other three languages, but
this must be done expl;citly in PL/I. Conversion is done

automatically between numbers and strings.

78

ERIC

4,2 STATRMENT FORMATS

4.2.7 SNOBOLY4
All statements in SNOBOLY4 are of the foti
label subject pattern = object go-to

In various uses some of the five parts are onitted. This
statenent format permits pattern matching to be specified

easily.

All statements in TRAC are vwritten as

:(FCN,p[1)sP[2)se.crp[k])
wher2 FCN is a two-letter TRAC primitive and p{1),P[2]secer

p[k] are arguaments.

.2. h

There are two types of statements in APL, branch and
specification.' Specification statements are similar to
assignaent statements. Branch statements are used chiefly

in function definitions.

Unlike the other languages, there. are many different
statement types in PL/I. These inc;ude the DECLARE state-

ment, assignment statemeni, DO statement, IF statenment,

79

ERIC

input/output statements, and others.

4.3 STORAGE ALLOCATION

Storage allocation is done djnanically. When storage
space is filled, the storage is regenerated. That is, all
needed data are collectea. and all data inaccessible to the
SNOBOLY4 progran are deleted. The user is unaware of this
process. Such prograasming techniques as building patterns
in a loop use a lot of storage and ‘should be avoided to
prevent -freguent_ storage regenerations. The user does not

reserve space explicitly for variables, except for arrays.

Storage is dividea into several areas bf the TRAC
interpreter. User operations specified by the define string
primitive are kept in a form store. The active string stack
and ther neutral string stack contain only the parts of the

current instruction that is being evaluated.
4.3.3_APL

Storage reservation is done implicitly by the APL
systen. That 1is, the user does not have to declare any

variables explicitly. Storage in TRAC and SNOBOL4 is also

80

ERIC

implicit, When using the APL system, the user has his own
working stor#qe. called a workspace. An active workspace
has rooa for internal system needs, storage, and transient
information. When inactive, a workspace is put in a library

on secondary storage.
4.3.4 PL/T

Storage space for variables is allocated within begin
and procedure blocks., Usually the DECLARE stateament is used
to reserve the space. Unlike the other languages, the
maximum size of a character string must be specified in the

DECLARE statement.

4. 4 INPUT/OUTPUT
4,4.1 SNOBOLY

Input/output is done by “association“. The variable
INPUT is usualiy associated with the card reader, and the
variable QUTPUT is usually éssociated with the printer. For
example,

TEXT = INPOT
assigns to TEXT the data on the next input card.

OUTPUT = LINE
assigns to OUTPUT the information in variable LINE; numbers

are automatically converted to string characters for

81

ERIC

printinge.
4, 4,2 TRAC

Input/output operations are not given special treat-
ment; TRAC primitives handle these operations. RS reads a-

string from the iaput device and PS prints a given string.

¥henever an expression or variable is typed by itself,
the APL system responds by printing the value of that
expression or variable.

Within function definitions, if a quad character [is
written to the right of the specification zrrou, the system
types

0:
and waits for the user to type an expression. Also within
function definitions, if a quad character with a guote nmark
inside it [is wvritten to the right of the specification
arrow, the system stops and vaits for character input to be

typed.

4.4.4 PL/I

Input/output in PL/I may be stream-oriented. Data are
regarded as one continuocus stream of dinformation, not

constrained to physical record sizes. GET and PUT are

82

ERIC

associated with stream input/output.
However, the user does have the choice of using record

input-output. Data are organized into logical records which

are treated as a whola.

Q.S SUBROUTINE CAPABILITY

4,5.1 SNOBOLY

The user may define functions by using the DEFINE
function. After a function has been defined, it may be

invoked the same way as built-in SNOBOLY functions.

New operations can be defined wusing DS primitives.
Since there is no iteration in TRAC, recursion must be used

frequently in these operation definitions.
4.5.3 APL

Defined functions give subroutine capability. If they
have arguments and return a value, they may be defined as

either a binary or a unary operator.
4.5.4 _PL/I

PL/I permits both internal and external subroutines

(procedures) « Some procedures may be called as functions

83

ERIC

and return a value.

4.6 BASIC STRING OPERATIONS

From the many accouhts that I have read ({3] and [19)),
I regard the following as the most basic of all string
operations: |

concatenaiion of two strings

insertion of a substring

deletion of a substring

pattern matching or PL/I INDEX
Another operation, pattern nmatching with replacerent, is
often regarded as primitive (for vexanple, in SNOBOLY).
However, it is a combination of all the above. Pattern
matching with replacement involves finding the occurrence of
a substring im a string {pattern matching), replacing it
with eiﬁher a nonnull substring (insertion), or the null
string (deletion), and then putting the string together

again (concatenation).
4.6.1 Concatenation

Concatenation of two strings is the most basic of all
string operations. Concatenation is done in SNOBOL4 by
implication. For instance, coansider the SHOBOL statement

subj patl pat2 = objl obj2
In this example the pattern used is the concatenation of

patl and pat2. Similarly the object is the concatenation of

84

ERIC

obil and objz2.

In APL and PL/I, on the other hand, an explicit
operator for concatenation is used. In APL this operator is
the comma, and a restriction is impused that characters and
nuabers cannot be concatenated. The symbol J| joins two
strings to be concatenated in PL/I, and unlike APL, automat-
ic conversion to characters is done if a number is found.

TRAC, iike SNOBOLY4, does concatenation implicitly. The
results of evaluating two macro calls written next to each

cther are concatenated. Frequently one or L~ th of these

" calls returns a null value, even though side effects occur.

4.6.2 Insertion of a_substring

Suppose it is desired to insert the word *'THE® after
the tenth character of string STR. This could be done in
SNOBOLY4 as follows:

STR LEN({(10) . VAR1 = VAR1 'THE!

The above statement replaces the first tem characters of
STR, assigned to conditional variéble VAR1, with VARt
concatenated wvith the word *'THE'.

The same operation could be done in PL/I with the

staterent

STR = SUBSTR({STR,1,10) {1 'THE' |{ SUBSTR{STR,11);

85

ERIC

The following APL statement will do the insertion:
STR«+(104STR),'THE' ,10+STR
{See section 5.3.5 for an example of + and +.)
The following TRAC definition for STR will do the same
operation as the above three:

: (DS,STR, : (CN,STR,10) THE: (CS, STR))

D P 2 R

Consider the operation of deleting the eleventh through
thirteenth <rezacee™s of STR. The follovwing SNOBOLY4 state-
ment #3111 do this:

STR TAB(10) LEN(3) =
The following PL/I statement will do the deletion:

STR ; SUBSTR(STR,1,10) |} SUBSTR{(STR, 14);

In APL the operation could be-done as follows:

STR«+STR[110],1345TR
This operation is rather conplicated when writtepn in TRAC.
Consider

s (DS,STR, : (CN,STR, 10) = (EQ,: (CN,STR,3),) : (CS,STR))

The hard part is to move STR's form pointer ahead to the
fourteenth character from the tenth without getting the

characters in between. The above use of EQ does this.

86

ERIC

4.6.4 Pattern matching

SNOBOLY is really the only 1language of the four in
vhich it is easy to do complicated pattern wmatching tasks.
Considar the following task: replace the first occurrence
of PAT1 in the striag STR with *THE*, or if PAT1 is nect
present, replace the first occurrence of PAT2, or if PAT2 is
not present, replace the first occurrence of PAT3.

In SNOBOLY4 only one statement is needed to do this:

STR PAT1 | PAT2 | PAT3 = 'THE®
This operation requires more statements when done in PL/I:

A=INDEX (STR,PAT1) ;

B=INDEX (STR,PAT2)

C=INDEX{(STR,PAT3)

IF A=(Q THEN

IF B=0 & C~=0 THEN
STR=SUBSTR(STR,1,C~1) §]) *THE* ||
SUBSTR{STR,C+LENGTH{PAT3) };
ELSE IF B-~=0 THEN

STR=SUBSTR(STR,1,B-1) || *THE® ||
SUBSTR (STR,C+LENGTH (PAT2)) :

ELSE;
ELSE STR=SUBSTR (STR,1,A-1) {i *THE')|
SUBSTR(STR,A+LENGTH(PAT1)) ;

APL and TRAC code for this same problem would be extremely
longe. The same probleas in coding are shown in the

following examples of pattern matching with replacement.
4.6.5 Patterp matching with replacement
Consider a typical pattern natching problem such as

finding vhether the word 'THE' is preseant in a sentence and

87

ERIC

if so, deleting or replacing its first occurrence in the
sentence., The SNOBOL4 language is dedicated to doing jJust
this kind of problen.

The PL/I index function, INDEX(string,substring), finds
vhether an occurrence of substring is present in stringn
INDEX returns the index of the first character of the
ra tched portion of the string. If there is no match, a
value of 0 is returned. There is no way in PL/I to indicate
without an index value the success or failure of a pattern
na tch.

With its present string primitives, PL/I cannot answer
the question "Is a ;THE' present?" without also finding the
position in the sentence of the ﬁirst 'THE', because the
INDEX ¢function is the onIYVluay to deternmine whether a
substring is present in a string. For example, INDEX (SENT,
*THE') . . The pattern matching with replacement operation in
PL/I must knovw the index and would be done as follows:

SENT = SUBSTR (SENT, 1, INDEX(SENT,*THE')-1) 1]

replacenent ||
SUBSTR (SENT, INDEX (SEXT,'THE') 43) ;

SNOBOLY4 uses the cursor function @ to give the position
of the match. For example,

SENT @aPOSN ‘'THE"

POSN returns the index of the first *THE' in SENT.
TRAC takes a different approach to the problen. Like

SNOBOL4 and unlike PL/X, it may find whether a substring is

88

ERIC

present in a string without finding the ind2x f this
occurrence. This is done with the Yes There (YT) priuitive.
The same problem may also be solved using the IN primitive.
Tn that case everything in the string up to the substring to
be matched is returned as value. 1In either approach it is
unnecessary to know the index of the match.

Pattern matching with replacement is usually done with
the following sequence in TRAC: ga define string primitive
(DS) defines the string, the segment string (SS) lists the
substring(s) to be replaced, and the call (CL) primitive
calls the string with the indicated replacements.

The segquence, involving macro (string) definitior and
parameter calls, is inherent in the design of TRAC. If no
replacement for a parameter is given in the CL operation,
the null string is substituted for that parameter, thus
deleting it. However, this sequence is different from the

original problem because al

——

occurrences, not Jjust the
fiist, are changed.

To replace just the first occurrence, other primitives
must be used. For instance, consider the following. The
initial (IN) function finds the first occurrence of THE.
The resulting value is the portion of SENT preceding 'THE!'.
The form pointer npow points to the first character after
*TH:'. A :(CN,SENT,-3) instruction resets the form pointer

to the T of '"THE'. A left pointer primitive (LP) finds the

89

ERIC

number of characters to the left of the pointer and assigus
these characters to a variable LEFT with a DS primitive. An
instruction with :(EQ,::(CN,SENT,3,}) would move the form
pointer to the first letter after *THRE'* and would cive a
null result, Then the value of a call segment {CS) of SENT
would give the remainder of SENT.

Unfortunately APL does not have any readily available
functions to solve pattern matching problems. This defi-
ciency is the reason string problems are so difficult to
code in APL. The deficieucy is present because APL, which
regards strings as arrays, operates uniformly on these
strings. Thus string operations are dome character by
character; every character is treated the sane. For
example, using the index fuanction,

'HE MAS THE RIGHT ONE':\'THE'

examines the string ?'HE WAS THE RIGHT OBE' to find first,

the character T, then the character H, and finally character
E. The result is the vector 7 1 2. To allow scanning for
the string *THE', a fairly involved defined function must be
used, as in Chaptgr 3.

The replacement problem in APL is not difficult once
the substring is found. Suppose variable IND is <assigned
the index of the first 'THE' in string SENT and variable

WORD 1is to be inserted in place of *THR', Then an

90

ERIC

instruction
SENT<«((IND-1)+SENT) ,WORD,(IND-2)+SENT
would do the necessary replacement, assuming SENT has at

least one character.

4.7 OTHER STRING OPERATIONS

It is essential.in doing string problems to be able to
find the size of a string easily. Foc instance, consider
scanning a string for the occurrence of several copies of a
substring. It wonld be desirable to know the length of the
substring so that when an occurrence is found, the length
could be used in maintaining a cursor for the start of the
next scan. SNOBOLY4 has the SIZE function, PL/I the LENGTH
function, and APL the size function to do this operation.
Finding the length of a string is slightly harder in TRAC.
The form pointer must be set to the beginning of the string
by :{CR,string), and then ;(RP,string)‘ will return the
number of characters to the right of the form pointer, i.e.
the length of the string.

Another operation that should be readily available 1is
comparing two strings. 'Usually two functions are available
for this purpose - either to compare the strings for their
sameness or to compare them for their difference, namely
IDENT and DIFFER in SNOBOL4, = and ~= in PL/I, and equals

and not equals in APL. TRAC is different. :(EQ,X1,X2,t,f)

91

ERIC

tests X1 and X2 for equality and branches to t or £
accordingly. IDENT and DIFPER are said to return values of
success or failure and then a separate instruction in the
go-to field indicates the branch.

Two strings nmust be of the same length to be compared'
in APL. 1If strings X and Y are compared using the equals or
not equals operator, a vector the size of X (or Y) will be
returned. This vector indicates whether the characters in
the respective positions of X and Y matched. IYn SNCBOLY4 and
PL/I, if the strings are not of equal length, the shorter of
the tvwo is padded with blanks.

A lexical ordering operator is also quite useful.
SNOBOLY has LGT{X1,X2) to test whether X1 precedes X2 in the
coilating sequence of +the machine being used. A1l the
relationa: operators of PL/I may be used to compare two
strings for lexical order with respect to the maciine's

collating sequence. : (LG,X1,X2,t,f) in TRAC tests lexical

‘ordering depending on collating sequence aand, as above,

branches accordingly. APL does not consider a nmachire's
collating segquence and thus c¢an have no lexical ordering
operator. However, a user may define his own <collating
sequence. For exanmple,

ALPH+' ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Lie'C!

L2«'D!

Now any relational operator may be used in place of the > in

92

ERIC

the following:
(ALPHAL1)>(ALPH\L2)
The index of the occurrence of L1 and L2 in ALPH serves the
purpose of a lexical operator, but again only for single
characters, not strings. (The decode operator can be used -~
see Chapter 3.)
The SUBSTR operator of PL/I turns out to be useful in
the other three languages as well. To review,
X1 = SUBSTR(X,I1,I2)
assigns to X1 the I2 characters of X beginning with the I1
character. 1In SNOBOL4 one night use
X TAB(I1 - 1) LEN(I2) . X1
Similarly im APL
X1<X["1+I1+112]
More thought is necessary to 4o the operation in TRAC. The
following would do the SUBSTR operation in TRAC.
s {DS,SUBSTR, (
: (CR,<1>)
s (BEQ,2 (CN,<1>,: (S0,<2>,1)),)
2 (CN,<1>,<3>)))
Since it is permissible to eliminate the CL primitive,
SUBSTR could be invoked by : |
s {(SUBSTR,X,:(I1),:(I2))
instead of
: (CL,SUBSTR,X,:(11),:{I2))
({However, this SUBSTR function does not allow for the case

where argument <3> is omitted.)

93

ERIC

The following two tasks frequently occur in lower level
assenbler coding. One string handling task 1is take a
string, define two lists of characters, and then replace the
occurrences of the characters in the first list in the
string by the correspoanding members of the second list.

The BEPLACE function in SNOBOLY4 does this. Consider
the follovwing:

STRINGT? = *THE BEAR IS GONE' "

TABLE1 'B Al

TABLEZ *D;E!
STRINGZ2 = REPLACE(STRING1,TABLE1,TABLE2)

STRING2 has value 'THE;DEER;IS;:GONE?,

PL/I has the built-in function TRANSLATE to accomplish
this replacement. Assuming the previous definitions for
STRING1, TABLE1, TABLEZ2, the statement

STRING2 = TRANSLATE(STRING1,TABLE1, TABLE2)
assigns to STRING2 the value *THE; DEER:IS;GONE",

Using segment gaps, the problem may be coded in TRAC.
Procedure COMMA calls every character in its argument one at
a time. After execution of COMMA, every character except
the 1last in the argument is delimited on both sides by a
comma.

s {(DS,COuNA, (
(GR,z {BP,<1>),0,
(o) 23 ¢

1 CC,<1>) z:(CL,CONMA,<1>))),))

94

ERIC

Then
: (DS, TABLE1, (B A4))°
: (DS, TABLE2, (D;E))*
: (DS,STRING1,THE BEAR IS GONE)®
: (SS,STRING1,: (COMMA,TABLE1))*
s (DS,STRING2, (2 (STRING1: (COMMA,TABLEZ2))))?
: (PS,: (STRING2))*
The result *THE;DEER;IS;GONE? is printed.

The task may be done in APL with the following code.

STRING1+'THE BEAR IS GONE'
TABLE1+'B A"
TABLE2+'D;E"
I+1
STRING2+STRING1
LOOP: A«STRING2\TABLE1({I]
+(A=1+pSTRING2) /INC
STRING2LA1«TABLE2[I]
+LO0OP
INC:+((I*I+1)>pTABLE1)/OUT
+LOOP
ouT:»0
Cunsider the following problem in each langquage: find
the index of the first nonblank character in a stringe.
The SPAN function of SNOBOL4 in the statement
STRING SPAN(' ')
ma tches all blank characters in STRING up to the first
non-blank. SPAN mest match at least one character, or
failure is indicated. A function in PL/I very similar to
this in its effect is VERIPY, which in
VERIFY {STRING,? ?)
returns the index of the first non-blank imn STRING. It
returns zero if STRING contains only blanks.

The difference between SPAN and VERIPY reflects a basic

95

ERIC

difference in SENBOL4's and PL/I's approach to string
problems, SPAN is used in a pattern matching statement; the
statement is said to succeed or to fail. On the other hand
VERIFY returns zero if all characters of the first string
are present in the second string. Otherwise the index of
the first character in the first string which is not present
in the second string is returned. In SNOBOLY4 the cursor
operator # may be used to find the index of success. For
example, IND is assigned the index of the first nonblank in
the following statement:

STRING Sle@' ') BIND
Notice that two operators are necessary in SNOBOL4 to
perform the same function that one operator, VERIFY, does in
PL/I. Thus 1in a sense SPAN is a more primitive operation
than VERIFY. This shows a difference in the languages,
namely in SNOBOL4 the index of a pattern match is separate
from the pattern itself.

APL does not have a single primitive for this problen.

However, the operation may be done using the following:

(STRINGe' ‘)10

96

ERIC

The operation might be done in TRAC as follows:
: (DS,Lo0P, (
:{(EQ,s:(CC, <), ,
(:(DS,T,: (AD,:(I),1))
< (GR_,: (I), : (LEN) ,
(: (PS,ALL BLANKS)),
(: (LOGP,<1>)))))) !
: (DS,I,M)
: (DS,LEN, : (RP,STRING))*
: {LOOP,STRING)*

4,8 DISCUSSION

The 1languages exhibit strengths in differen: areas of
string handling. Clearly, SNOBOLY4 is superior for pattern
ma tching problenms. This 1is particuiarly evident in the
SNOBOL4 and PL/I pattern matching problem in section 4.6.04.

The SNOBOLY4 pattern data type gives great flexibility
in creating and referencing patterns. In SNOBOL4 it is
possihle to find wvhether a pattern match is successful or
unsuccessful without deternining an index value. If a match
is successful, replacement takes place; otherwise, no re-
clacement occurs. In PL/I, howvever, an index value must be
tested.

If a general purpose progranming language is needed for
a string problem, then PL/I is usually a good 1language to
use. Its INXDEX and SUBSTR primitives are very powerful.
However, there are restrictions. After all, PL/I 1is a
general purpose programBRing language and is not dedicated to

string bandling tasks. SNOBOL4, being dedicated to pattern

97

ERIC

matching problems, has its main statement form designed with
this in mind. PL/I does not, so it would require a languagye
extension to make this sort of problem easy in PL/I.

Rosin {18] has proposed modifications to PL/I to
improve string handling. First, he suggests that the
default for the character string type be VARYING, not FIXED.
Specification of a string's maximum length wculd be option-
al. Second, he feels that the SUBSTR notation, when SUBSTR
is used as a pseudo-vari able, is confusing. Y nstead he
suggests somcthing like XK(A,I:J4I-1) in place of
SUBSTR {(X{A) ,1,J); X(I:I) for SUBSTR(X,I,1); etcC. If B=
'wxyz*, I1=2, J=3, then B{I:J)='XY'.

Other modifications, modeled somnewhat afte; SNOBOLUY,
would make pattern matching and replacement easier. Rosin
defined five new operators to be used: UPTO, BEFORE, AFTER,
FROM, and 1IN. TIf X='ABCDEFG* and Y=*'DE*, then X UPTO Y is
'NBCDE*, X BEFOBE Y is 'ABC', X APTER Y is 'FG?*, X FRCM Y is
'DEFG', Y IN X is *DE'. Two or mote of these operators may
be used in the same expression. For example, X FROM Y BE-
FORE *G' is *DEP'.

Liké SKOBOLY4, if Y is not piesent in X for any of the
operations, the scan fails. Any expression involving any of
the five operations may be written on the left hand side of
a statement; Rosin refers to this as a pseudo-expression.

For exaaple,

98

ERIC

Z = 'CAT
A" IN Z = 'O

changes Z (o 'COT!?,

There are disadvantages to these suggestions which
Rosin hinmself brings up. The words UPTO, BEPORE, AFTER,
PROM, and IN might have to be reserved words in PL/I,
contradicting the PL/I design of no reserved words. Fur-
ther, pseudo~-expressions make the equéls sign ambiguous.
For example, consider:

DCL C BIT(2), D
D UPTO C = *1'B

In the above statements either of the two = signs could be a
comparisﬁn and the other an assignment operator.

APL does have some primitives useful in string hand-
ling, but it is in need of some sort of PL/I-like INDEX
function before it could be used extensively in pattern-type
problems. In any sort of string operation in APL, one aust
not lose sight of the fact that character strings are arrays
of characters. This feature in the APL design prevents good
string handling, as there 1is no string, just an array of
characters. This leads to problems when it 1is desired to
treat a group of characters non-uniformly. For example, it
would be nice to have the ability to find the index of the
first occurrence of a certain word in an APL character
vector. Unfuctunately, with the iota operator, the charac-

ter vector Wwill be searched for the first occurrence of each

99

ERIC

letter of the word individually. A vector result ¥ill be
returned, and further manipulation is necessary to get the
correct ansver. (Se2 third example in Chapter 3.)

Thus, for good striﬁg handling in APL, it is necessary
to be able to treat a sequence of character array elements
as a string. Possibly an operator could be introduced to
produce a string from a character array. Then the result
could be used 1in string operations like those of PL/I and
SNOBOL4. It would also be desirable to be able to operate
on sequences of differing lengths. This would facilitate
comparison of strings ot differing lengths.

TRAC may indeed be useful in text editing applications
vhen uwsged interactively, but any real uysefulness was not
evident from this investigation. Any operation that needs
tov be done more than once must be coded to be recursive
since there is no iteration operator. Errors caused by
mismatching parentheses -.nd choosing the wrong mode are hard
to find. Also, TRAC nmakes it difficult to structure a
program.

I feel that TRAC is much too difficult to 1learn . :d
even when learned, is still difficult to use. Unlike PL/I,
where a programmer has to knovw only a small subset of the
language to write programs, a novice TRAC programmer must be
aware of all the TRAC nuances before he can code in the

langquage.

100

ERIC

Faced with the problem of choosing one of the four
languages for a *texr editing system, system-implementation
questions aside, I would choose SNOBOL4. SNOBOLYU gives the
ability not only to perform pattern matching easily, a
necessity in text editing, bu’ also to perform many other
kinds of string operations easily. PL/I, APL, and TRAC do
not have good pattern matching facilities. These three
languages would of course be more useful for string handling

if additional string operators were added to the langquage.

101

ERIC

4.

S

7.

8.

9.

10.

BIBLIOGRAPHY

e ik i e i it . i S

Abrahams, P« He. Symbol Manipulation Languages. In
Advances _in _Computers, Vol. 9, Academic Press, New York,
1968, pp. .51-111

Bates, F. and Douglas, M. L. Prograzxming Lanquage/One.
Prentice~Hall, Inc., Englewood Cliffs, N.J., 1967.

Bobrow, D. G. (Ed.) Symbol Maripulation_ Languages__and
Techniques, _Proceedings _of the IFIP Horking Conference

on_Symbol Manipulation _Landuages. North-Holland Pub-
lishing Company, Amsterdam, 1968.

Bobrow, D. G. and Raphael, B. A Comparison of List-
Processing Conputer Languages. In Programming Systens
and Lancuages, Saul Rosen (Ed.), McGraw-Hiil, Nev York,

‘967, ppo 490-509-

Breme, H. J. An Analysis of the TRAC Languaqe. Report
Numper <CC-2200, Engineering Research Certer, Western
Electric, Princeton, N.J., 1967.

Brooks, F. P. and Iverson, K. E. Automatic _Data Pro-

cessind. John Wiley and Sons, Inc., New York, 1969, pp.

Jg3-u4,

Caracciolo Di Forino, A. String Processing Lanquages
and Generalized Markov Algorithms. In Symbol Manipula-
tion Languages _and Technigues, Proceedings of the IFIP
Horking Conference_ _on__Symbol Manipulation _Languages,
D. Bobrow ({Fd.), North-Holland Publishing Company, Am-
sterdam, 1968, pp. 191-202.

Farber, D. J., Griswold, R. E., and Polonsky, I. P.
SNOBOL, A String Hanipulating Language. Jourpal of the
ACM 11, 1 (1964), 21-30.

Forte, Allan. SNOBOL3 Primer: _An_Introduction to__the

Computer Programming__Language. BIT Press, Cambridge,
Mass., 1967.

Griswold, R. E., Poage, J. F., and Polonsky, I. P. The
SNOBOLY4 _Progqramming_Language. Prentice-Hall, Englewood
Cliffs, N.J., 1968.

102

ERIC

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

IBY Corporation. APL/360 User‘s _Manual. Form GH 20-
0683-1, 1970.

Katzan, He. Representation and Manipulation of Data
Structures in APL. In Proceedings of a Symposium on
Data_ _Structures _in__Programming _Languages, J. Tou and
P. Wegner (Eds.), SIGPLAN Notices 6, 2 (Feb. 1971),
366-97.

MIT Research Laboratory of Flectronics and the Computa-
tion Center. An Introduction to COMIT Programming. MIT
Press, Cambridge, Mass., 1961.

Mooers, C. N. How Some Fundamental Problems are Handled
in the Design of the TRAC Language. In Symbol Manipula-
tion_Lanquages_and_Techniques, Proceedings of _the_ IFIP
Working Conference on_ Symbol Manipulation Lanquages,
D. Bobrow (Ed.), North-Holland Publishing Company, An~
sterdam, 1968, pp. 178-88.

_— . TRAC, A Procedure-Describing language for the
Reactive Typevwriter. Communications__of _the ACM 9, 3
(4ar. 1966), 215-19.

_and Deutsch, L. P. TRAC, A Text Handling
Language. Proceedings ACM 20th Nationazl Conference,
1965, pp. 229-46.

Raphael, B. et al. A Brief Survey of Computer Lan-
guages and Algebraic Manipulation. 1In Symbol Manipula-
tion_Languages_and Technigques, Proceedings of_ _the IFIP
Horking .Conference on_ Symbol Manipulation Langquages,
D. Bobrow (Ed.), North-Hoiland Publishing Company, An-
sterdam, 1968, pp. 1-54.

Rosin, R. F. Strings in PL/I. PL/I Bu.letin No. 4.
Sponsured by Working Group U4 (WG4) of the Special
Interest Group on Programming Languages (SIGPLAN) of the
Los Angeles Chapter of the ACM, Sept. 1967, pp. 1-12.

Sammet, J. Programming Lanquages: _History and Funda-
mentals. Prentice-Hall, BEnclewood Cliffs, N.J., pp.
382-470.

van der Poel, W. L. The Programming Language TRAC and
Its Implementation. Presented at IBM Geriany Computer
Science Seminar, Stuttgart, Germany, Sept. 20-217, 1971.

103

21. Wegner, P. Prograpming _Langquages, _Information _Struc-
tures, and_#achine Organization. McGraw-Hill, New York,
1968, pp. 151-74.

ERIC 104

