
DOCUMENT RESUME

ED 082 489 EM 011 458

AUTHOR Mir, Carol Loeb
TITLT A Comparison of String Handling in Four Programming

Languages. Technical Progress Report.
INSTITUTION North Carolina Univ., Chape3 Hill. Dept. of Computer

Science.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO UNC-TPR-CAI-5
PUB DATE Sep 72
NOTE 108p.; Thesis submitted to the Department of Computer

Science, University of North Carolina

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Comparative Analysis; Masters Theses; *Programing;

*Programing Languages; Technical Reports
IDENTIFIERS APL; *Character String Handling; PL I; SNOBOL 4;

String Processing Languages; TRAC

ABSTRACT
Character string handling in the programing languages

SNOBOL 4, TRAC, APL, and PL/I are compared. The first two of these
are representatives of string processing languages, while the latter
two represent general purpose programing languages. A description of
each language is given and examples of string handling problems coded
in the four languages are provided. Finally, the languages are
compared on the basis of their string handling abilities rather than
on the basis of implementation-dependent characteristics. (Author)

TILN1ED FROM BEST AVAILABLE COPY

University of North Carolina

at Chapel Hill

Department of Computer Scienee

A COMPARISON OF STRING HANDLING
IN FOgR PROGRAMMING LANGUAGES

Carol Loeb Mir

September 1972

Technical Progress Report CAI-5
to the

National Science Foundation

under Grant GJ-755

U S DEPARTMENT OF HEALTH,
EDUCATION A WELFARE
NATIONAL IASTITUTE OF

EDUCATION
THIS DOCUMENT HAS [IT LN REPRO
DUCED ExAcTL y AS RECF.,:ED FRO..
THE PERSON OR ORGANIZAT,ON ORIGIN
ACING IT POINTS OF viEV4 OR OPINIONS
STATED DO NO1 NECESSARILY REPRE
SENT 01 I ICIAL NATIONAL INSTITUTE 0,
EDUCATION POSITION OR POLICY

DEPARTMENT of COMPUTER SCIENCE

University of North Carolina at Chapel Hill

A COMPARISON OF STRING HANDLING

IN FOUR PROGRAMMING LANGUAGES

by

Carol Loeb Mir

A thesis submitted to the faculty of
the University of North Carolina at
Chapel Hill in partial fulfillment of
the requirements for the degree of
Master of Science in the Department of
Computer Science.

Chapel Hill

1972

Ap ved

Adv

Rea

Reader

CAROL LOEB MIR. A Comparison of String Handling in Four
Programming Languages. (Under the direction of PETER
CALINGAERT.)

The thesis compares character string handling in the

programming languages SNOBOL4, TRAC, APL, and PL/I. The

first two languages are representatives of string processing

languages, while the latter two represent general purpose

programming languages. A description of each language is

given. Also included are examples of string handling

problems coded in the four languages. The languages are

compared on the basis of their string handling abilities and

not on the basis of implementation-dependent

characteristics.

ACKNOWLEDGEMENT

I mould Like to thank Dr. Peter Calingaert for

suggesting the thesis and guiding me through its execution.

He painstakingly corrected many rough drafts. I am grateful

to my husband Vern for his suggestions and contributions to

the thesis.

ii

2

INTRODUCTION

LANGUAGE DESCRIPTIONS

2.1 SNOBOL4 .

TABLE OF CONTENTS

t

1

72.1.1 Data Types 7

2. 1. 2 Statements 92.1.3 Arithmetic 132. 1. 4 Functions 13
2.1.5 Other Features 15

2.2 TRAC 16
2.2.1 TRAC Instructions 17
2.2.2 TRAC Primitives 18

2.2.3 Evaluation Modes 19

2.2.4 Arithmetic Primitives 21
2.2.5 Decision Primitives 4, 21
2.2.6 Character Primitives 21

2. 3 APL . . 27
2.3.1 Data Types 28
2.3.2 Statements 28
2.3.3 Indexing Arrays 29
2.3.4 Functions
2.3. 4. 1 Index generator . . 322.3.4. 2 index of o 32
2. 3. 4. 3 Size 33
2.3. 4. 4 Reshape 33
2.3. 4. 5 Ravel 33
2. 3. 4. 6 Membership 33
2.3. 4. 7 Compress and Expand 34
2. 3. 5 Defined Functions 34

2. 4 PL/I 37
2.4.1 Data Types 37
2.4.2 Block Structure . . 38
2. 4. 3 Statement Types 38
2.4.4 String Capabilities . 39

3 SAMPLE STRING HANDLING PROBLEMS 42
3. 1 PROBLEM 1 42

3.1.1 SNOBOL4 43
3. 1. 2 PL/I 46
3. 1. 3 APL 46
3.1.4 TRAC 52

3.2 PROBLEM 2 54
3. 3 PROBLEM 3 57

3. 1. 1 SNOBOL4 66

iii

3.3.2 PL/I

1.3.1 APL .

4 COMPARISONS AND DISCUSSION

70

70

77

4.1 Data Formats 77

4.1.1 SNOBOL4 77

4.1.2 TRAC 78

4.1.3 API, 78

4.1.4 PL/I 78

4.2 Statement Formats 79

4.2.1 SNOBOL4 79

4.2.2 TRAC .. 79

4.2.3 APL . . 79

4.2.4 PL/I . . 79

4.3 Storage Allocation . 80

4.3.1 SNOBOL4 80

4.3.2 TRAC . 80

4.3.3 APL 80

4.3.4 PL/I 81

4.4 Input/Output 81

4.4.1 SNOBOL4 81

4.4.2 TRAC 82

4.4.3 APL 62

4.4.4 PL/I 82

4.5 Subroutine Capability 83

4.5.1 SNOBOL4 83

4.5.2 TRAC 83

4.5.3 APL 83

4.5.4 PL/I 83

4.6 Basic String Operations 84

4.6.1 Concatenation 84

4.6.2 Insertion of a substring 85

4.6.3 Deletion of a substring . . 86

4.6.4 Pattern matching 87

4.6.5 Pattern matching with replacement 87

4.7 Other String Operations 91

4.6 Discussion . . . 97

BIBLIOGRAPHY 102

iv

1 INTRODUCTION

The purpose of this thesis is to compare character

string handling in different programming languages. Of

particular concern are string operations in text handling.

Sammet mentions [19, p. 385]

The text material can be either natural language
of some kind (e.g., this sentence), a string
composed of a program in any language, or any
arbitrary sequence of characters from some partic
ular data area.

This thesis considers only natural language text material.

Of course, this could be generalized to other special uses

of string handling.

String processing and list processing languages are

examples of symbol manipulation languages. The data which

they manipulate are symbols, not numbers. Symbol manipula

tion languages are used in such areas as compiler writing,

theorem proving, formula manipulation, and text processing.

Many accounts treat strings and lists together, but it

is important to differentiate between them. A string is a

sequence of characters; it is a data type in many program

ming languages. A list, on the other hand, is a structure

of data, which may or may not be characters. Sammet (19,

1

p. 385] distinguishes between a string and a list by noting

that the list is a way of storing information rather than a

type of information to be represented.

String handling operations include concatenation of two

strings, searching for a pattern, and replacing one pattern

with another. Examples of list processing operations are

putting information into a list, deleting information from a

list, and combining two lists.

Since only string operations are of concern in this

thesis, the following symbol manipulation languages are

excluded from consideration: (see reference 17]

list processors, such as LISP1.5 and IPL-V;
linked block languages, such as L6;
pattern-directed structure processors, like

CONVERT and FLIP.

The last group of languages perform string-like operations,

but they operate on LISP list structures, not character

strings.

Text editors like TEXT360 are useful for publishing

documents. These editors include comrands for line and

document updating, which are string handling tasks. For

example, inserting a phrase in the middle of a sentence is

essentially a pattern matching task. However, their com-

mands do not give an insight into how string problems are

dealt with, so tent editors are not included in the thesis.

2

The thesis compares string handling in two kinds of

languages. These are string processing languages and gener-

al purpose programming languages with built-in string hand-

ling capabilities. String processing languages can be

classified as pattern-directed string processors and macro-

expander string processors.

Included in pattern-directed string processors are all

versions of the PANON, COMIT, and SNOBOL languages. These

languages use the generalized Markov algorithm as a way of

defining string processing operations. The Markov algorithm

consists of a series of transformation rules. The languages

perform substitutions on a string depending on the structure

of the string according to the transformation rules. (For

more information on the subject see [5].)

These languages, in particular PANON, may be used

effectively to write the syntax analysis phase of compilers.

In such cases a program is regarded as a long string to be

analyzed. PANON is not considered in the thesis since it is

more like a syntax-driven compiler than a string processor

[3). SNOBOL4, which includes many of COMIT's features, is

discussed in detail. A main factor for using SNOBOL4 for

comparison was the availability of an implementation. Also,

COMIT lacks some desirable language features, such as the

ability to name strings, and facilities for easy arithimetic

operations.

3

Two languages which are in the category of macro-

expander string processors are GPM and TRAC. To perform any

operation in these languages (input/output, arithmetic,

assignment, etc.), a macro must be called with the necessary

parameters. Since the TRAC language is so different from

other programming languages and does include several string

handling functions, it has been included.

PL/I, unlike most other general purpose programming

languages, provides good string handling capabilities and is

included in the discussion. APL, also considered, is an

example of a general purpose programming language that

provides for character data but does not have good string

handling functions.

The four languages included in the thesis, then, are

SNOBOL4, TRAC, PL/I, and APL. A brief summary of each

language is in Chapter 2.

In Chapter 3 two easy string problems are coded in each

language. Also included in the chapter is a rather diffi-

cult string handling problem coded in SNOBOL4, PL/I, and

APL.

Chapter 4 includes comparisons of the languages on the

bases of what string operations are primitive in each

language, and of ways string operations that are not

primitive in a language might be coded in that language.

The possible string handling problems for which the lan-

4

guages are suited or not suited are discussed.

All comparisons of the languages in the thesis are made

on the basis of language features. Implementation-dependent

considerations, such as compilation time, execution speed,

and amount of storage used, have not been considered. A

good comparison based on these latter criteria would have

been extremely difficult for the following reasoils. PL/I,

TRAC, and SNOBOL4 programs were batch processed, but APL

programs used an interactive time sharing system. TRAC,

SNOBOL4, and APL were execut3a interpretively, but PL/I was

compiled into an object deck for later execution. Thus,

these differences would tend to hide results that might be

evident from a comparison of more s:-.x llar implementations.

The languages are examined on the basis of the string

operations which are primitive in them, not string opera-

tions that can be added with a subroutine capability. A

good programmer can code any string handling operation that

he needs, but this should not figure in a language compari-

son, unless the language had no facilities for defining new

string functions.

SNOBOL4 programs were run interpretively on an IBM

370/165 in batch mode. TRAC programs were run interpretive-

ly on an IBM 360/75 in batch mode. PL/I programs were run

on an IBM 360/75 using the IBM PL/I F compiler. APL

programs were run interpretively on an IBM 370/165 in a time

5

sharing environmer).t.

6

2 LANGUAGE DESCRIPTIONS

In this chapter a brief summary of each language is

given. The language features discussed include data types,

statement types, and functions.

2.1 SNOBOL4

SNOBOL is a string processing language which originated

at Bell Laboratories in 1964; SNOBOL4 is the latest refine-

ment. Its authors are D.J. Farber, R.E. Griswold, and

I.P. Polonsky. Many of SNOBOL4's features, including its

basic statement format, are influenced by COMIT [13], an

earlier string handling language. References for the SNOBOL

language are [By, [9], and [10].

2.1.1 Data_Types

There are several differ44t data types, the most

important one being the string. Strings can be broken up

into components, operated upon, and then put together, aqain.

Unlike what is done in COMIT, an earlier string manipulAting

language, strings may be assigned names. It is also

possible to assign names to matched and partially Aatched

substrings by the respective operations of conditional and

7

immediate value assignment. An example of a string in its

literal form is 'I AM A STRING'. One may write

X = 41 AM A STRING'

where X is a variable that is assigned the string value

'I AM A STRING'. X is considered to be of type string.

A string must often be searched for a pattern. In

SNOB01.4 a pattern is a structure that can be a string, a

number of strings by the concatenation operator (a

blank) , a number of strings separated by the alternation

operator (a) with at least one blank on each side of it),

or possibly a combination of all three. The alternation

operator allows matching of alternate patterns. Patterns

may be combinations of both literal strings and variables

whose values are strings or patterns. Examples are the

pattern

' EIT' 'HER' I 'OR'

(whose first alternate is equivalent to IBITHER4), and the

pattern

' B' VAR1 I 'B' I VAR2

(whose first alternate is a literal concatenated with a

variable) . The statement

IT = 'ONE' I 'TWO'

assigns to IT a pattern that matches either the string 'ONE'

or the string 'TWO'. If Y = 'ONE', then the pattern

Y I 'TWO' is an equivalent pattern to the previous value of

8

variable IT .

There are also the arithmetic data types INTEGER and

REAL, type ARRAY, and programmer-defined data types.

Declarations of the data types of variables are .0t present

in SNOBOL4. Instead, the type of a variable is dependent on

the variable's last assigned value.

2.1.2 Statements

There are tour different statement types: assignment,

pattern matching (without replacement), replacement, and

END. Actually all four statements follow a basic statement

format consisting of five different fields, some of which

may be absent in a particular statement. This format is:

label subject pattern = object go-to

Fields must he separated by at least one blak. If the

label field is present, it must begin in Column 1. A

statement not having a label must start in other than Column

There are no other specifications for the beginning if

any of the other statement components. However, no -.:harac-

ters may appear after Column 71. Continuation cards may b(4

used, so fields may be as long as desired. No maximum

length of any field is specified. Labels must begin with i

letter or digit and extend to the first blank. The subject

or object may be either a literal string or the name of a

string. The pattern field may be any of the possibilities

9

described prlviously for a pattern. The go-to field is used

to indicate conditional and unconditional branching. In the

statement

START X = 'ABC' : (NEXT)

the go-to field causes the statement whose label is NEXT to

be branched to after X is lssigned 'ABC'. Branching

conditionally upon success or failure of a statement is done

with a :S(label) or :F(label), respectively, in the go-to

field. (Success or failure of a statement will be explained

shortly.)

The assignment statement has already been illustrated

in previous examples. Its format is

label subject = object go=to

label and go-to are optional. The value of the object is

assigned to the subject.

The pattern matching and replacement statements are a

little more involved. The pattern matching statenent's

format is:

label subject Ratte7n qo- to

label and go-to are optional. The entire subject is

searched for an occurrence of the first alternate of the

pattern; if it is not found, then the subject is searched

fcr the second alternate, etc. The statement is said to

succeed if the pattern is located in the subject; it fails

10

otherwise. For example, consider

STR = 'CABABET'
FIRST STR 'AD' I 'AB'

Statement FIRST s!,cceeds, matching pattern 'AB' with the

first AB in the subject. A pattern matching statement with

'AD' in place of 'AD' I 'AB' in the pattern field would

fail.

The result of a replacement statement is to substitute

an object for the first occurrence of the matchod pattern

alternate in the subject. The basic format of a replacement

statement is

label subject pattern = object go-to

label and go-to are optional. To replace the first B with

an R in statement FIRST, one would write:

STR = 'CABABET'
FIRST STR 'B' = 'RI

STR now has the value 'CABABET'. Suppose that it was

desired to replace the second B rather than the first B with

an R. Then it would be necessary to write:

STR = 'CABABET'
FIRST STR 'BE' = 'RE'

An END statement is simply END in the label field and

signifies the end of a SNOBOL4 program.

The four kinds of statements and input/output are

illustrated in the following short program whose purpose is

to count the number of E's and I's in some input cards.

11

START X = INPUT
SUM = 0

LOOP Y 'I'

SUM = SUM f 1

OUT OUTPUT = SUM
END

Input cards:

HE RECEIVED A GIFT.
A BEE STUNG THE BOY.
OUR PROGRAMS HAD FAULTS.

Output lines:

6

3

0

: F (END)

: F (OUT)

: (LOOP)

: (START)

Execution of the statement labelled START cause.. one input

card to be read and assigns X the value of the card. The

go-to field :F(END) means that on failure (there are no more

input cards) he program is finished. Otherwise the normal

sequential order of the program is followed, i.e. go to the

second statement. The second statement initializes SUM to

0. In the third statement X is searched for the first

occurrence of the letter 'I'. If no I's are found, then 'El

is to be looked for. The lack of an object after the = sign

means that the 'I' or 'E' is to be delated from X. If an I

or E is found, one is added to SUM, and X is searched again.

When an I or E can no longer be found, the program branches

to the statement labelled OUT, which causes the printing of

a line with the value of SUM. The program then branches to

START. The process continues until no more cards are in the

input file, whereupon the program term:_nates. Notice that

12

after all the I's and E's are found, X is the value of the

input card with all I's and E's removed. For example, the

final value of X is 'H RCYD A GFT' for the first input card.

The following program segment finds the first E or I in

X; if either letter is found, it indicates which of the two

it was. This is easily done using conditional value

operation.

X = 'RELIVE'
X ('I' I 'E') . FIND =
OUTPUT = FIND

: F (OUT)

The conditional value operator is a period (.), separated on

both sides by at least one blank. In the above example,

conditional value assignment associates a variable, FIND,

"it, a pattern ('I' I 'E'), such that when pattern alternate

'I' matches the I in 'RELIVE', FIND is assigned 'I'.

2.1.3 Arithmetic

Arithmetic facilities are limited in SNuBOL4. Addi-

tion, subtraction, multiplication, division, and exponentia-

tion of integer and real numbers may be done. Version 3 of

SNOBOL4 permits mixed-mode expressions and real exponents.

2.1.4 Functions

There are several built-in or primitive functiors in

SNOBOL4. For example, SIZE(X) returns the number of charac-

ters in string X and TRIM(X) removes all trailing blanks in

13

string X. REPLACE(X,Y1,Y2) replaces all occurrences of Y1

in string X by Y2. Several primitive functions are useful

for pattern matching. LEN(X), where X is an integer, has a

value of a pattern that matches any string of length X. The

statement

'RELIVE' LEN(1) . A

results in A being assigned the value '114. SPAN(X) and

BREAK(X), where X is a string of characters, will match runs

of the characters of X in the subject. TAB(integer) and

RTAB(integer) allow matching attempts to be started at a

desired position in the subject. ARB (no argument) matches

an arbitrary number of characters in the subject. For

instance, in the pattern matching statement

'THE PICTURE ON THE WALL' 'PICTURE' ARB 'WALL'

ARB matches ' ON THE There is also a cursor position

operator a to assign the position in the subject where a

match occurred. After execution of the following statement

PTR will be assigned the value 4, the position just before

'PICTURE'.

'THE PICTURE ON THE WALL' aPTR 'PICTURE' ARB 'WALL'

A second type of function in SNOBOL4 is the predicate.

If the condition specified by the predicate is satisfied,

the predicate is replaced by the null string. If the

condition is not satisfied, the statement fails and no

operation is performed. The statement

14

I = LE(I,9) I + 1 :F(END)

will succeed, adding 1 to I, so long as I is less than or

equal to 9. The numeric predicates include LT, LE, GT, GE,

EQ, and NE, whose meanings are what one would expect.

INTEGER (X) determines whether X is an integer. Other

predicates compare two strings instead of two numbers. For

example, LGT(X,Y) succeeds if string X follows string Y in

lexical ordering.

The third type of function is a function defined by the

user. These functions may be redefined during program

execution. No special notation is required for recursive

function calls.

2.1.5 Other Features

Other features of the language include data type

conversion, indirect referencing, delayed evaluation of

expressions in patterns, and the possibility of changing the

way the subject is scanned for a pattern.

SNOBOL4 programs are translated into Polish prefix

object code, and then executed interpretively. This helps

explain the good trace facilities in the language.

Some of the differences betweco SNOBOL4 and the earlier

SNOBOL and SNOBOL3 include improvements to I/O and arithmet-

ic capabilities. Also, the array data type was not present

in SNOBOL. There was no alternation operator in the earlier

15

languages, so patterns had to be less intricate. A large

number of the primitive functions which help in doing

complicated pattern matching problems were not present in

the earlier languages.

2.2 TRAC

TRAC is an entirely different kind of string handling

language from SNOBOL4. It is a macrogenerator language

designed to be interactive. Wegner [21] says that a macro

definition may be viewed as a function definition f such

that for every set of actual parameters a[1],...,a[n] in the

allowed domain, a value string f(a[1],...,a[n]) is deter-

mined which consists of the string generated as a result of

macro expansion. In macro assemblers the domain of actual

parameters consists of any strings that result in well-

formed lines of code, where the lines of code are the range

of the function. However in TRAC the domain and range of

arguments are to some extent arbitrary strings.

The two people responsible for the development of TRAC

are Calvin Mooers and Peter Deutsch. The TRAC system was

designed for interactive text processing. Sources of the

TRAC concepts came from COMIT, LISP, and McIlroy's macro

assembly system [5]. TRAC was developed independently from

Strachey's GPM [21], although the languages are very simi-

lar. TRAC is discussed in [5], (14), [15], [16], [20], and

16

[21].

2.2.1 TRAC Instructions

The basic instruction format is:

:(FCN,p[1],p[2],...,p[k]),

:(indicates a call to FCN, where FCN is a two-letter TRAC

primitive (or evaluates to a two-letter TRAC primitive).

The arguments of FCN are p[1],p[2],...,p[k]; each p[i] is a

string of characters. An activation symbol, usually the

apostrophe, indicates the end of input and cares the

processor to execute what was just entered. FCN is also

referred to as a macro name.

Instructions are executed interpretively by consulting

a table in memory for the name of the primitive and then

transferring to a subroutine for executing the primitive. A

new primitive is added to the language by adding it to the

table. However no new primitive can be specified within a

TRAC program. It must be entered before execution.

An instruction is executed by replacing the instruction

with its value, which may be the null string. Instructions

may cause side effects in the memory, I/O medium, or

information which determines the mode of operation of the

TRAC processor.

17

2.2.2 TRAC Primitives

TRAC primitives include, first of all, primitives which

allow the language to be interactive.

:(RS)* indicates a string of characters is to be read

from the typewriter unt4.1 an end of string character is

found, and that this instruction is to be replaced with what

was just read.

: (PS,string)' prints the value of string. For example,

: (PS,IT IS RAINING) '

prints IT IS RAINING. After printing, the null string is

left as the value of the instruction.

Macro definition is accomplished with the define string

primitive. :(DS,name,string) says to evaluate name, evalu-

ate string, and define the value of string to have as its

name the value of name. For instance,

:(DS,A,:(RS)),

causes a string to be read, evaluated, and the result named

A.

Micros are called with the call primitive. :(CL,name)

says to call the name to which the name expression evaluates

and replace the instruction with the name's value. Thus,

the new string could be a new instruction.

Parameters may be introduced in a defined string with

the segment string primitive. :(SS,name,p(11,,p[2],...,p[k])

says to evaluate name, evaluate the parameters p[i], and

18

call the named string and replace each instance in it of

p[i] by a paramteter marker for i. The string is stored

back in memory. For example, consider

:(SS,A,RAIN),

If L has the value IT IS RAINING, then RAIN is replaced by a

parameter marker. To Lee this new form for A, the print

form primitive may be used. The value of :(PF,A)' would he

IT IS <1>ING. Parameters may be replaced with actual para-

meters. :(CL,name,a[1],a[2],...,a[m]) replaces all occur-

rences of parameter markers with the corresponding actual

parameters a[1],a[2],...,a[m]. If the number of actual

parameters is less than the number of parameter markers,

i.e. m<k, then null strings replace the remaining parameter

markers. If m>k, then p[k+1),...,p[m] are ignored. The

instruction

:(PS,:(CL,A,SNOW)),

prints the value of : (CL,A,SNOW) which is IT IS SNOWING.

2.2.3 Evaluation Modes

TRAC has three different evaluation modes: active,

neutral, and quote.

The characters :(initiate the active mode. These

symbols cause the interpreter to delay evaluation of the

current function (if there is one) and evaluate all argu-

ments following :(until the matching right parenthesis is

19

found. For instance, in evaluating :(PS,:(CL,A,SNOW))4,

execution of the print string function is delayed until

: (CL,A,SNOW) is executed. The string produced as a result

of evaluating the active function is evaluated again, unless

it is the null string.

The characters :: (initiate the neutral mode. The

difference between this and the active mode is that after

the characters between ::(and matching) are evaluated once

and a resulting string produced, the resulting string is not

rescanned.

The quote mode, initiated by (, stops all evaluation of

what is between the matching parentheses. Examples 1.,2.,

and 3. below show the differences among the three modes.

Assume these definitions are made for x and Y:

:(DS,X,BOOK) X has value BOOK
: (DS, Y, (: (CL, X))) I has value : (CL, X)

Then

1. :(PS,:(CL,Y)) prints BOOK
2. :(PS,::(CL,Y)) prints :(CL,X)
3. :(PS,(: (CL,Y))) prints :(CL,Y)

Two stacks are necessary during evaluation, the active

string stack and the neutral string stack. Every instruc-

tion is copied to the top of the active string stack and

then scanned. Since parameters may also call TRAC func-

tions, a stack is needed in which to put intermediate

results of parameter evaluation. Thus, the necessity arises

for the neutral string stack. A flowchart of TRAC evalua-

20

tion (Figure 2.1) follows [15].

2.2.4 Arithmetic Primitives

TRAC has primitives to handle the usual arithmetic

operations. For example, :(AD,d1,d2), returns the sum of dl

and d2, which are strings representing numbers.

2.2.5 Decision Primitives

Two primitives EQ (equals) and GR (greater) provide

decision facilities. The value of : (EQ,x1,x2,t,f) is t if

character string x1 is equal to character string x2,

otherwise the value is f. Similarly, :(GR,d1,d2,t,f) is t

if dl is greater than d2. GR's operands d1 and d2 must be

strings representing numbers, not character strings.

2.2.6 Character Primitives

Each defined string (or form) has a form pointer

associated with it. Initially the form pointer points to

the first character of the string; it may be moved by four

primitives: CC (call a character) , CN (call a number of

characters), CS (call a segment), and IN (index). The value

of the instruction

:(CC,S,z)1

is the character in S pointed to by S's form pointer. As a

side effect, the form pointer of S is moved ahead one

21

ACTIVE STRING HAS A SCAN POINTER

CURRENT LOCATION IS IN NEUTRAL STRING

IDLING PROCEDURE IS :(DS,:(RS))

EXAMINE CHAR.

UNDER SCAN

PTR.

DELETE NEUTRAL STRING (N.S.), INITIALIZE

ITS POINTERS

RELOAD A NEW COPY OF IDLING PROCEDURE

INTO ACTIVE STRING (A.S.)

RESET SCAN POINTER TO BEGINNING OF

IDLING PROCEDURE

DELETE (

MOVE SCAN PTR. TO CHAR. FOLLOWING FIRST

MATCHING)

DELETE)

ALL NON-DELETED CHARS. ARE PUT IN N.S.

1

DELETE COMMA

LOCATION FOLLOWING RIGHT HAND CHAR.

AT END OF THE N.S. (CURRENT LOCATION)

IS MARKED BY A PTR. TO INDICATE

END OF AN ARGUMENT SUBSTRING AND

BEGINNING OF A NEW ARGUMENT SUBSTRING

Figure 2.1 TRAC Algorithm.

22

YES

NO

YES

NO

TRANSFER CHAR.

TO RIGHT HAND

SIDE OF N.S.

Figure 2.1 (cont.)

DELETE)

MARK CURRENT LOCATION IN N.S. TO

INDICATE END OF A FCN. AND END

OF ARC. SUBSTRING

RETRIEVE PTR. TO BEGINNING OF

CURRENT FCN.

PERFORM ACTION INDICATED

FCN.

HAS NULL

VALUE

23

VALUE STRING IS INSERTED TO LEFT OF

FIRST UNSCANNED CHAR. IN A.S.

RESET SCAN PTR. TO LOCATION

PRECEDING FIRST CHAR. OF

NEW VALUE STRING

DEVTEARG. AND FCN. PTRS. BACK

TO BEGINNING-OF-FCN. PTR. FOR FCN.

JUST EVALUATED, RESETTING

CURRENT LOCATION TO THIS POINT

FCN. IS NEUTRAL

INSERT VALUE STRING IN N.S. WITH ITS FIRST CHAR.

BEING PUT IN LOCATION POINTED TO BY CURRENT

BEGINNING-OF-FCN. PTR.

DELETE ARG. AND FCN. PTRS. BACK TO BEGINNING-OF-FCN.

PTR.

DO NOT RESET SCAN PTR.

Figure 2.1 (cont.)

24

INSPECT

NEXT

CHAR.

INDICATES BEGINNING OF AN ACTIVE FCN.

DELETE :(

MARK CURRENT LOCATION IN N.S. TO

INDICATE BEGINNING OF ARG. SUBSTRING

MOVE SCAN PTR. TO FIRST CHAR.

PAST :(

INSPECT

NEXT

CHAR

17hlemmowommeas....,

ADD CHAR.

TO N.S.

Figure 2.1 (cont.)

YES

INDICATES BEGINNING OF A

NEUTRAL FCN.

DELETE ::(

MARK CURRENT LOCATION IN N.S.

TO INDICATE BEGINNING OF A

NEUTRAL FCN. AND BEGINNING

OF AN ARGUMENT SUBSTRING

MOVE SCAN PTR. TO FIRST

CHAR. PAST ::(

25

character. If, before :(CC,S,z)I is executed, the form

pointer of S points beyond the last character of S, the

value of the instruction is z. Similarly, if the form

pointer is beyond the last character of S, the value of

:(CN,S,k,z)4 is z. Otherwise the value returned is the next

k characters of S after the form pointer. The form pointer

is moved ahead (or back if k is negative) k places.

:(CS,S,z). gives the segment of characters from the current

position of the form pointer to the next parameter marker.

:(IN,S,..x,z), searches S for substring x. If the substring

is present, the value that is returned is the string between

the beginning position of the form pointer and the matched

string; the form pointer is moved to the character after the

matched string. If there is no match, z is returned. The

cursor-reset or call-restore function :(CR,S) resets the

form pointer of S to the first character in S.

Some other functions useful in string processing are

mentioned by van 6Pr Poel in [20]. One is the yes there

function, :(YT,N,x,t,f). If string x is in N, then the

value of the function is t, otherwise the value LC. f.

:(LP,N) and :(RP:N) give, respectively, the number of

characters to the left of the form pointer and to the right

of the form po5',nter. Another function, IL (in left), is

like IN but searches to the left in x. : (LG,x1,x2,t,f)

determines whether string x1 is lexically greater than

26

string x2. If so, the value returned is t; if not, the

value returned is f.

A character primitive combined with EQ can move the

form pointer ahead and return a null string as result. For

example,

:(EQ;(CS,SENT),)0

moves the pointer after a. segment of SENT. There are no

true-false exits, and a null string is returned.

2.3 APL

APL was originated by Kenneth Iverson. It was devel-

oped further in association with A.D. Falkoff. Discussions

of APL may be found in [11] and [12].

APL is a general purpose programming language whose

concise notation' is good for interactive use. APL is

particularly useful in dealing with vectors and multidimen-

sional arrays. The APL discussed in the thesis is the

implementation used in an APL/360 interactive system. The

implementation provides a good repertoire of system action

commands; these will not be discussed.

The double arrow (<-->) will be used in the following

discussion to denote equivalence. This symbol is not part

of APL but merely a notational convenience.

27

2.3.1 Data Tiues

As in SNoB01.4, there are no declarations of type of a

variable. The only types are numbers and characters.

A scalar may be a number or a character. An array is

built from scalars of the same type. Thus, an array cannot

contain both numbers and characters.

A character string is a one-dimensional array of

characters. Thus, any operation on the string is performed

on each element individually. The importance of this

feature is illustrated in Chapter 4. There is no conversion

between characters and numbers.

2.3.2 Statements

The branch and the specification statements are the two

basic statement types. Branch statements are used only in

user-defined functions. Their explanation will be deferred

until defined functions are discussed. Examples of specifi-

cation statements are:

X-4-512

' I AMA STRING'
ZA-1 2 3 4
Z14-3Y 5+2

Z2-4-(3x5)+2

Specification statements assign to the variable on the left

hand s4.de of the arrow the result of evaluating the

expression on the right hand side of the arrow. In the

examples given previous X is assigned 2.5, Y is assigned

28

the character vector insida the apostrophes (each character

in the vector is an element of vector Y), and Z is assigned

a vector with the first four integers as elements. Two

elements of a vector of numbers, not a vector of characters,

are separated for input and output by at least one blank.

The value of Z1 is 21, not 17, because order of execution is

right to left. However, Z2 does have value 17 since

parentheses are used.

2.3.3 Indexing Arrays

[i] written after a vector, or [i;j] written after an

array (i or j possibly omitted), are called indices or index

functions. Like subscripts in other languages, the indices

are used to reference elements of vectors and arrays. For

example, suppose

Then

AM A STRING'

C4-4-1 2

3 4

5 6

B[114-0/'

/311 5 914-0I T'

C[1;214-4-2

C[1;14-4-1 2

Cr;214--)-2 4 6

3;214--4 6

all 2;1 214-.4-1 2

3 4

'ABCDEq314---OC'

As illustrated above, the indices (subscripts) inside the

brackets may be scalars, vectors, or arrays.

29

2.3.4 Functions

There are two kinds of functions (or operators):

primitive functions which are built into the system, and

defined functions which are defined by the user. Primitive

fun:firms will be considered first.

Every primitive function is either monadic (one argu-

ment) or dyadic (two arguments) . Whether an argument may be

a scalar, a vector, or an array depends on the function

used. The form of function result, i.e. scalar, vector, or

array, depends on the type of arguments used. (A scalar is

not considered to be a vector of length one.)

Primitive functions are considered to be either scalar

or mixed. Scalar functions are those which return a scalar

result for scalar arguments. However, their arguments may

be arrays, which are operated on element by element by the

function. The shape of the result is the same as that of

one of the arguments. For example, suppose S1-4-1 2 3 4 and

S2-4-5 6 7 8 . To evaluate S1+52, the addition operator is

applied to corresponding elements in the two vectors,

yielding the result 6 8 10 12. If Si or S2 is a scalar,

then the scalar is paired with every element of the vector

in evaluating the function. If S34-5 then RESULTS -S3+S2 or

RESULTA-S2+S3 assigns to RESULT the vector value

10 11 12 13.

Many function symbols are used to represent two dif-

30

ferent functions in APL. The meaning of the symbol depends

on the number of arguments it has. For example, [is the

ceiling (next integer not less than) function when used

monadically (with one argument) and the maximum function

when used dyadically (with two arguments). For example,

13.54-÷4 and 3f3.54-3.5

APL has relational operators which take scalar argu-

ments and whose results are 1 if the relation holds for the

arguments and 0 otherwise. For example,

314-41-3 2<3÷41 ,A1="B,+0

Scalar relation functions equals and not equals may be used

with character arguments, but the other relations cannot.

The logical functions or, and, etc. take logical arguments

(0 's and 1,$) and return 0 or 1 as value. For example, if

A4-1010 5*-1100

then

AA5-44000 Av194-14110 -114--10101

Any dyadic scalar function symbol may be followed by a

reduction symbol /. This has the effect of applying the

function symbol between successive components of the argu-

ment.' For example, +/X says to add together every component

of vector X. Reduction may also be used along any coordi-

nate of an array.

Mixed functions may be defined on numbers or charic-

ters. The shape of the result is not necessarily the shape

31

of one of the arguments. A mixed function must have a

non - scalar either as an argument or as a result. An example

of a non-scalar or mixed dyadic function is catenate,

symbolized by a comma. This function says to concatenate

its two arguments. For example, 'AB' ,'CD'1-0ABCD` . If X is

assigned 'AB' and Y is assigned 'CD', then X,Y-4---1/18CD' also.

Some of the more useful mixed functions will now be

explained. These explanations may need to be referenced

when reading later chapters.

2. 3.14. 1 Index generator

If N>0, Vs/ is a vector whose elements are the first N

integers. For example,

114+1 15-4-41 2 3 /4 5

10 is the null vector; it prints as a blank.

2. 3.4_2 Index of

The dyadic use of iota, AIB is very important in

string !landling problems. ALB gives the least index of the

occurrence of each element of B in A, where A must be a

vector. If an eleuent of B does not occur in A, then the

function returns 1 plus the highest index of A. Suppose

B4-1/1 S'
AM A STRING'

Then

A1,11'4-4.3

itliB4-).3 2 8

./Y

32 .-g.;

2.3.4.3 Size

If X is a vector, then pX gives the number of elements

in X. If X is an array, pX gives the dimensions of X in the

form of a vector result. For example, if X is array

1 2

3 4

5 6

then pX4-4.3 2 , denoting three rows and two columns in X.

2.3.4.4 Reshape

The dyadic function p can create an array. In such

usage the first argument specifies the dimensions the array

is to have. The second argument specifies a vector of

elements to be in the array,, The statement

/44-2 3p1 2 3 4 5 6

defines A to be array

1 2 3

4 5 6

2.3.4.5_Ravel

The comma (,) used monadically rewrites an array as a

vector. Hence, B-4-,A assigns El the value 1 2 3 4 5 6.

2.3.4.6 Membership

The membership function E takes two arguments; it

yields a logical array that has the dimensions of the first

argument. The result has ones in the positions where

aements of the first argument are members of the second

33

argument, and zeroes in all other positions. For example,

15)E24--).0 1 0 0 0

cad

'I AMA STRING'E'AEIOU'+-q 0 1 0 0 1 0 0 0 0 1 0 0

Parentheses are necessary around 15 in this example beeduse

of the right to left rule for function evaluation.

2.3.4.7 Compress and Expand

Compress and expand operators used with two arguments

are represented by the forward slash and the backward slash,

respectively. A logical vector may be used to compress or

expand a vector or array. In compressing character arrays,

characters in the second argument are deleted at the

positions where there are zeroes in the first argument. No

changes are made in the positions in the second argument

where there are ones in the first argument. In expanding

character arrays, the result is the same as the second

argument but with blanks inserted in positions where zeroes

appear in the first argument. For example, suppose

/4-1 0 0 1 and A-4-'ROAM' B-4-1RM' . Then //A-4-0RM' and

AB-4-0R M'

2.3.5 Defined Functions

Defined functions are used to extend the language. The

314

following is an example of a function definition.

VDIM

[1] SUM4-(pA)+pB
E 2 :I A VER+SUM +2

V

FUNCTION READER

T

I FUNCTION BODY

The del (v) character before DIM indicates the beginning of

the function definition mode. The last del ends function

definition. DIM is the name of the function to be defined;

[i) stands for statement number i. The statements consti-

tute the function body. After function definition the body

is associated with function name DIM. DIM could be called

by:

A-4-' SIZE

' SIZE11 ,A
DIM

AVER

DIM calculates the average size of A and B. Since A

contains four characters and B contains nine characters, the

value 6.5 is printed. DIM can be rewritten to have two

arguments. The function header would be changed to

VA DIM B

The function might then be called by

Z4-' SIZE'

Z DIM 'SIZE1',Z

Again 6.5 is the result.

The basic format of a branch statement is -kr. If I is

a number or a label, the program branches to the correspond-

ing statement in the function definition. If I is the null

vector, the next instruction in statement number order is

35

executed. If I=0 the execution is finished.

Branch statements are used in the following function

definition.

V 24-DOUBLE STR

[1] z+,,

12] LOOP:2+2,2p1fSTR

13] STR4-14STR

C41 4(0<pSTR)/LOOP

V

The above function DOUBLE doubles every letter of STR. Z is

assigned the null string in statement 1. In statement 2 Z

is concatenated with two copies of 11.STR the first

character of STR. The first character of STR is dropped

from STR in statement 3. Statement 4 causes a branch to the

statement labelled LOOP if there is at least one more

character in STR; otherwise the program stops.

Suppose DOUBLE is used in a statement, for example,

STRING4-(DOUBLE 'ABC'),(DOUBLE ' X'), ' Y

Then STRING will have the value 'AABBCCXXY'.

The previous example illustrates that a defined func-

tion does not have to be referred to any differently from a

primitive function. This means that a defined function may

also appear in other function definitions.

Some defined functions are included in libraries avail-

able to the user. Recursive function definitions are

allowed. Also, APL /360 allows functions to be traced as

they are being executed and function definitions to be

changed.

36

2.4 PL/I

PL/I is a general purpose programming language that can

be used for a wide variety of problems. The original

specificatiors for PL/I were written by the Advanced Lan-

guage Development Committee of the SHARE FORTRAN Project, a

group formed by SHARE and IBM.

PL/I contains many of the features of COBOL, FORTRAN,

and ALGOL. Also, to some extent, PL/I was influenced by

APL.

An important feature of PL/I is its modularity. The

language is such that a user need only learn that subset of

PL/I applicable to his problems.

PL/I is discussed in [2] and [18].

22.4.1_Data_Types

Data fall into the categories of problm data and

program control data. The latter category will not be

discussed. Problem data may be divided into arithmetic data

and string data. Attributes of a variable are declared in a

DECLARE statement anywhere in the program. However, if any

attribute is not declared explicitly, a default attribute is

assigned.

Attributes of arithmetic variables are BASE (binary or

decimal) , SCALE (fixed or floating point), MODE (real or

complex) , and precision.

37

String data may be either character or bit strings.

All string operations and functions may be performed on

either kind. Strings may be declared to be of fixed or

varying lengths. However, a maximum length must still be

specified for a varying length string.

Both arithmetic data and string data may be organized

into arrays and structures. A structure may contain both

arithmetic and string variables, whereas ,z11 elements of an

array must have identical attributes.

2.4.2 Block Structure

An important characteristic of PL/I is its block

structure. Blocks are groups of statements that delimit the

scope of variables. There are tvo kinds of blocks, proce-

dures and BEGIN blocks.

Procedures are subroutines which are activated expli-

citly by being invoked. They may be passed parameters.

BEGIN block:- are activated implicitly by being reached. No

parameters are passed to BEGIN blocks.

2.4.3 Statement Types

PL/I has several different statement types. These

include descriptive statements, such as DECLARE; I/O state-

ments, such as GET and PUT; data movement dnd computational

statements, such as assignment statements; program structure

38

statements, such as PROCEDURE, BEGIN; and control state-

ments, such as GO TO, IF, DO, CALL, RETURN. IF and GO TO

statements provide, respectively, conditional and uncondi-

tional aranching. IF statements can be quite complex. DO

groupz, delimited by DO and END statements, are used for

control purposes; they can specify how many times and under

what conditioner a group of statements is to be executed.

Some of the statements will be illustrated in the program

following the PL/I discussion.

2.4.4 Strinq Capabilities

Since PL/I has been influenced by FORTRAN, COBOL, and

ALGOL, it is not usually zonsidered a language in which to

do string manipulation problems. However, there are several

features of pL/I which permit fairly good string processing.

In this respect PL/I differs from most general purpose

programming languages.

Rosin has discussed these useful string features in a

1967 article [18). Strings may be declared to be of fixed

or varying length; fixed length is the default. String

constants are delimited by apostrophes, e.g.

II AM A STRING..

Strings may be concatenated using the operator II. The

function LENGTH(string) returns the size of string. The

relation operator equals (=) may be used to compare two

39

strings. Also, all of the other relational operators can be

used on string operands. The result depends on the collat-

iag sequence of the character codes. A replication factor

may be placed before a character string constant, but not

before the name of a character string. The factor, which is

a constant, indicates how many times the character string

constant is to be repeated.

The two extremely useful built-in string functions are

SUBSTR and INDEX. `'UBSTR(string,i,n) gives the n character

long substring of string that begins in position i. If n is

absent, then the rest of string from character i on is

given. SUBSTR may also appear on the left hand side of

assignment statements as a pseudo-variable, thus allowing

values to be assigned to substrings. For example, the

statement

SUBSTR(STR,3,9)=0ABCDEFGHI4;

replaces the third through eleventh positions of STR with

the first nine letters of the alphabet. The INDEX function

essentially does SNOBOL-like matching of a simple pattern.

INDEX(string,substring) finds the left-most occurrence of

substring in string. The position of the first character in

the matched portion of string is returned, and 0 is returned

if substring is not contained in string. This is a

generalization of the iota operator of APL.

There are other string functions as well.

40

REPEAT(string,N) does essentially the same thing as a

replication factor. However, string is no' restricted to

being a character string constant; it may be the name of a

string. TRANSLATE(string,tablel,table2) :rauslates each

character in string which appears in tablet to the corre-

sponding character in table2. In the following example

tablet is 'IG' and table2 is 'AD'.

A = TRANSLATE('SING','IG',"4D1);

assigns 'SAND' to A. VERIFY(str_ng1,string2) verities that

every character of stringl is present in string2. If so, 0

is returned. If not, the position (index) of the first

character in string1 not present in string2 is returned.

A sample PL/I program follows that counts the number of

I's and E's in an input card.

PR:

START:

PROCEDURE OPTIONS (MAIN) ;

DECLARE X CHAR (25) VARYING,
SUM FIXED;

GET LIST (X) ;

SUM = 0;
DO I=1 TO LENGTH (X) ;

IF SUBSTR(X,I,1)=,I, I

SUBSTR(X,I,1)=1E,
THEN SUM=SUM+1;

END;

PUT LIST (SUM) ;
END PR;

41

3 SAMPLE STRING HANDLING PROBLEMS

This chapter contains two examples of easy string

handling problems and one complex problem. These problems

help show the different ways that basic string operations,

which are discussed in detail in Chapter 4, ate done in each

language. Also, they use many of the language features

discussed in Chapter 2.

Problem 1 is sorting N strings into alphabetical order.

Problem 2 involves listing all words that begin with a vowel

that occur in a line of text. Problem 3 is a rather complex

text matching problem.

3.1 PROBLEM.

The following strings are to be sorted:

CATCH
THROW
OUTFIELD
BASEBALL
BASE
CATCHER

A bubble sort program will be written in all four

languages. In the ticst stage the bottom two strings, the

N-1st and the Nth, are compared; the alphabetically earlier

of the two strings is bubbled up and compared with the N-2nd

string; the earlier of the two is bubbled up and compared

42

with the N-3rd, etc., until the proper string is at the top

of the sequence of strings. In the second stage the above

process is repeated; the top item is not checked. After the

second stage the top two strings are in order. The bubble

sort continues until a stage when no two strings are

interchanged.

The flowchart, which applies to all four bubble sort

programs, is given in Figure 3.1. The algorithm is a common

form for a bubble sort and is found in reference [6]. It

was relatively easy on the basis of programming time to

write the PL/I, SNOBOL4, and APL programs from the flow-

chart. The TRAC program took more time to code. A bubble

sort is not the best method for sorting in APL, so an

alternate method is also given in the chapter.

3.1.1 SHOBOL4

(Refer to Figure 3.2.)

The first input card contains N, the number of strings

to be sorted. Succeeding cards contain the strings them-

selves. A one-dimensional array A of N items is created by

the statement

A = ARRAY (N)

Each string is a member of array A. Notice that the indices

of array elements are denoted by <>'s, not parentheses.

43

TEMPNA(J)

AW÷A(J+1)
A(J+1)+-TEMP

774-1

Figure 3.1 Flowchart for Problem 1.

44

* THIS PROGRAM IS SIMILAR TO THE ONE IN THE SNOBOL IV MANUAL
* INITIALIZE STAGE NO.

I = 0
*

* GET NUMBER OF ITEMS TO BE SORTED

N = TRIM (INPUT) :F (ERROR)

A = ARRAY(N)

* READ IN THE ITEMS
*

READ I = I 1

A<I> = TRIM (INPUT) :F (GO) S (READ)

*
* SORT THE LIST
*

GO I = 0

T = 1

SORT2 EQ (T,O) :S (PR)

J = N
T = 0
I = I + 1

SORT 1 E4 :S (SORT2)

J = GT (J,1) J - 1

LGT(A<J>,A<J 1>) :F (SORT1)

SWITCH TEMP = A<J>
A<J> = A<J 1>

A<J 1> = TEMP

T = 1

*
* PRINT SORTED LIST
*

PR M = 1

PRINT OUTPUT = A<M>
M = M 1

END

BASE

BASEBALL
CATCH

CATC EER

OUTFIELD
THROW

Figure 3.2 SNOBOL4 Program for Problem 1.

: (SORT 1)

:F (END)

: (PRINT)

45

31.1.2_PLZI

(Refer to Figure 3.3.)

The PL/I and SNOBOL4 programs are very similar. Howev-

er, in PL/I a maximum length for an element of A must be

given (8 ia this example) . In SNOBOL4 it is not necessary

to specify maximum lengths of array elements.

3.1.3 APL

(Refer to Figure 3.4.)

Since there is no collating sequence in APL, it is

necessary to use a string S containing the letters of the

alphabet in order preceded by a blank for reference in

getting the proper lexical order.

The sequence of six strings to be sorted is stored as a

two-dimensional array A. J is the index of the array

element in A being considered, L indexes the position or

column of the array member, and I is the stage number of the

bubble sort process. In the previous examples in SNOBOL4

and PL/I, A was a vector (one-dimensional array of character

strings), whereas in APL it is a two-dimensional array of

characters.

PL/I and SNOBOL4, when comparing two strings of unequal

lengths, left justify the shorter of the two strings ard pad

to the right with blanks. However, in APL a string is a

vector of characters. Since the dimensionality of two

46

SORT: PROCEDURE OPTIONS !MAIN) ;
DECLARE (A(6),TEMF) CHARACTER (15) VARYING;

/* READ IN NUMBER OF ITEMS TO BE SORTED */
GET IIST (N);

/* READ IN STFINGS TO DE SORTED */
DO TI) N;

GET SKIP EDIT (A (1)) (A(15),SKiP);
END;

/* INITIALIZE VARIABLES */
T=1:

T=0:

SORT2: TP T=0 THEN GO TO PRINT;
ELSE DO;

T=0;

I=I+1;
J=N;

SORT1: IF J=I THEN GO TO SORT2;
ELSE DO;

J=J-1;
IF A(J) <= A(J+1) THEN GO TO SORT1;
ELSE DO; /* INTERCHANGF ITEOS */

TEMP = AM:
A(J)=A(.5-1-1);

T=1; /* INDICATE INTERCHANGE */
A(J1-1)=TEMP;

T= 1;

GO TO SORT1;
END;

END;

END;

PRINT: PUT EDIT (A) (SKIP,A(15));
END SORT;

EASE

BASEBALL
CATCH
CATCFER
OUTFIELD
TI IThw

Figure 3.3 PL/I)gram fcr Problem 1.

47

V SORT

CI] /4-0

[2] S+' ABCDEFGHIJKLMNOPORSTUVWXYZ'

[31 /144ipM

(41 +HERE

[5] T+1

[6] LOOP1:4(T=0)/OUT

[7] HERE:T+0

[8] 1+1+1

[9] J+(PA)C1]

[10] TEST:(J=I)/LOOP1

[11] J+J -1

[12] L+0

[131 LOOP2:L+L+1

[14] 4(L=(oA)E2J+1)/TEST

[15] 4((SIA[J;L])?.SIACJ+1;L])/YES

[16] NO: +TEST

[17] YES:44(StA[J;L])=S:A[J+1;L]) /LOOP2

[18] TEMP+A[J0

(19] A[J;] +A[J+10

[201 A[J+10+TEMP
[21] T+1

C221 +TEST

C231 OUT:40

V

SORT

CATCH THROW OUTFIELDBASEBALLBASE CATCHER

0:

6 8

A

BASE

BASEBALL

CATCH

CATCHER

OUTFIELD

THROW

Figure 3.4 APL Program for Problem 1.

48

vectors must match to be compared, and since APL strings are

character vectors, two APL strings must be of the same

length to be compared. Therefore the programmer must

provide for padding.

The APL bubble sort program is similar to the SNOBOL4

and PL/I versions. However, it is not the best way of

writing a sort in APL. Since APL has such a wide variety of

primitives, there are more concise ways to code the sort

problem. One of these ways is found in Katzan 112]. His

way uses the decode function 1 and transpose function 0 as

well as the size and index functions.

The expression RLY, where R is a radix and X is a

vector of digits, denotes the value of X evaluated in a

number system with radix R. For example, the value of

1011 2 3 is 123. Thus, if ABCDEFGHIJKLMNOPQRSTUVWXY Z

the value of 271SIW' would be (271x3)4-(270x4) or 85.

The expression OX, where X is an array, returns the

transpose of X. For example, if SAISTR4-2 4p THEYCAME ' then

OSiSMSTR is the array

21 4

9 2

6 14
26 6

Now consider

STRING -6 8p 'CATCH THROW OUTFIELDBASEBALLBASE CATCHER

49

Then the function

VR+SORT STRING ;ALPH

[1] ALPH+' ABCDEFGHIJKLMNOPQRSTUVWXYZ'

C2] R+STR NCI4(pALPH)144LPH ISTRING ;]

V

will order the elements of STRING.

STRING is the array:

CATCH
THROW
OUTFIELD
BASEBALL
BASE

CATCHER

Tracing through the operation step by step:

Step 1

The value of

ALPH I STRING

is

4 2 21 4 9 1 1 1

21 9 19 16 214 1 1 1

16 22 21 7 10 6 13 5

3 2 20 6 3 2 13 13

3 2 20 6 1 1 1 1

14 2 21 14 9 6 19 1

Each row contains the indices of a row of STRING in ALPH.

Step 2

The value of

44LPHtSTRING

50

is

4 21 16 3 3 4

2 9 22 2 2 2

21 19 21 20 20 21

4 16 7 6 6 4

9 24 10 3 1 9

1 1 6 2 1 6

1 1 13 13 1 19

1 1 5 13 1 1

The function 0 transposes the matrix obtained in Step 1.

Step 3

The value of (pALPH)AALPH1STRING is

4.291988451E10

2.234358071E11

1.761941507E11

3.244612824E10

3.244608781E10

4.291988864E10

The first number is equal to

(277x4)-1(276x2)-1-(275x21)-1-(27x4)

(273x9)-1-(2720)-1-(27111)}(270x1)

The other numbers are calculated in the same 'ay.

Step a

The function 4 assigns ranks to the elements of

(pALPH)ItALPH1STRING . The value of i(pALPH)IOALPH tSTRING

is 5 4 1 6 3 2

Finally indexing the rows, the value of

STRINGrhi(pALPH)AALPIItSTRING;7

51

is the sorted list

BASE
BASEBALL
CATCH
CATCHER
OUTFIELD
THROW

32. 1 ,T is

(Refer to Figure 3.5.)

The TRAC version of the bubble sort provides many

contrasts with the previous programs. For instance, there

are no arrays in TRAC. However, there is a way to get

around this deficiency. The variables that need to be

array-like could be named Al, A2, A3, etc. Then :(A:(J))

can be used to reference a[j].

In TRAC, as in AFL, character strings that need to be

compared must have the same length. Otherwise, when compar-

ing two strings of unequal lengths, the shorter of the two

will be right-justified and padded to the left with zeros.

This contrasts with tie left-justification of character

strings done in SNOBOL4 and PL/I. For alphabetiation,

therefore, the program must provide left justification.

There is no equals operator that may be used to compare

two numbers. In SORT1 of the TRAC program GR must be used

twice to test for equality.

The TRAC bubble sort is organized as a series of calls

to NEXT, SORT2, NEW, SORT1, LOOP1, LOOP2, and PRINT.

52

: (DS, N, 6)
: (DS, T, 0)
: (DS,J, 1)'
: (DS, NE XT, (: (DS,T, 1): (DS,I,O) : (SORT2)))
: (DS, SORT2, (: (GR,: (T) , 0, (: (NEW)) , (: (DS,K, 1) : (PRINT)))))
: (DS, LOOP2, (: (DS,TEMP, : (A: (3))) : (DS ,A : (J) , : (A: (AD,: (J), 1))) :
(DS, A: (AD, : (J) , 1) : (TEMP)) : (DS,T, 1) : (SORT1))))))
: (DS, SORT1, (: (GB,: (J), : (I) , (: (LOOP 1)) , (: (GR,: (I) ,: (J) , (: (LOO
P1)) , (: (SORT2)))))))
: (DS, LOOP1 , (: (DS,J, : (SU, : (3) , 1)) (LG, : (A: (J)) ,: (A: (AD,: (3) , 1
)) , (: (LOOP 2)) , (: (SORT1)))))

: (DS, PRINT, (: (PS,: (A: (K))) : (DS,K,: (AD,: (K) , 1)) (GR,K,N,, (: (P
HINT))))
: (DS ,NEW, (: (DS,T,O) : (DS, I,: (AD,: (I) , 1)) : (DS,J,: (N)) : (SORT1))
)'

: (DS, ASSIGN, (: (DS, I ,0) : (ALOOP)))
: (DS, ALOOP, (: (DS,I, : (AD, : (I) , 1)) (GR, : (I) : (N) , (: (NEXT)) , (: (
ns,A: (1) y: (RS)) :(ALooP)))))))) I
: (ASSIGN) 'CATCH 'THROW ' OUTFIELD' BASEBALL' BASE CATCH
ER I

BASE BASEDALLCATCH CATCHER OUTPIELDTHROW

Figure 3.5' TRAC Program for Problem 1.

53

SORT2 tests for T greater than 0, which indicates that

more interchanges are necessary. If T is not greater thin

0, K is initialized to 1 and the program branches to PRINT.

When T is greater than 0, NEW is called.

NEW resets T to 0, increments I by 1, sets J equal to

N, and calls SORT1.

In SORT1 the GR primitive is used to compare J with I.

If J is greater than I, LOOP1 is called. Otherwise J and I

must be compared again, using GR. If I is not greater than

J, then I and J must be equal and the program branches to

SORT2.

LOOP1 decrements J by 1. Next, a[j] and a[j+1] are

compared using the lexical ordering primitive LG. If a[j]

is lexically greater than a[j+1], LOOP2 is called to

interchange the two. Otherwise SORT1 is called.

LOOP2 switches a(j] and a[j+1] and sets T to 1 to

indicate that an interchange has taken place. SORT1 is

called.

PRINT is defined recursively. Each time PRINT is

called it prints a string, increments K; and calls itself.

When K exceeds N, the program stops.

3. 2 PROBLEM 2

(See Figures 3.6, 3.7, 3.8. and 3.9.)

54

LOOP
CHECK

END

I

ALL

A

TEXT = TRIM (INPUT)
TEXT1 = TEXT
TEXT BREAK(' ') . WORD LEN (1) = .:F (END)
IT = SIZE(WORD) - 1

WORD ANY(' AEIOU') LEN (IT)
OUTPUT = WORD

Figure 3.6 SNOBOL4 Program for Problem 2.

VOWEL: PROCEDURE OPTIONS (MAIN) ;
DECLARE WORD CHARACTER (15) VARYING,

TEXT CHARACTER (80) VARYING,
TEXT1 CHARACTER (80) VARYING,
L CHARACTER (1) ;

GET EDIT (TEXT) (it (80))
TEXT1= TEXT;

LOOP: PT=INDEX (TEXT, ') ;
IF PT -= 0 THEN GO TO PRINT1 ;
WORD = SUBSTR (TEXT,1,PT-1) ;
TEXT = SUBSTR (TEXT,PT+1) ;
L = SUBSTR (WORD, 1, 1) ;
IF L=s A' I L =' E' L=1I1

L=1 0' I L =' U'
THEN PUT EDIT (WORD) (A (15)) ;
GO TO LOOP;

PRIM; END VOWEL;

I ALL A

Figure 3.7 PL/I Program for Problem 2.

:F (LOOP)
: (LOOP)

55

V VON2

[1] TEXT41

[2] TEXT1+TEXT

[3] TEXT+",TEXT,"
[4] LIST+"

[5] VRC+(TRXTE")/tpTEXT

(s) /4-0

[7] INC:+((I +I+1)=pVEC)/0

[8] WORD+TRXT(VEC[I]ft(VEC[I+1]-(VRCLI]+1))]

[8] TEST:4.(WORD(110ARTOU1)/PH

[10] +INC

PR:LIST+LIST,' ',WORD

[12] INC
V

VOW2

I WANT TO LIST ALL WORDS THAT BEGIN WITH A VOWEL

LIST

I ALL A

Figure 3.8 APL Program for Problem 2.

: (DS,TEXT,I WANT TO LIST ALL WORDS BEGINNING WITH A VOWEL).
: (CS,TEXT1,:: (TEXT))

(SS,TEXT,)

: (DS, VOWEL,AEIOU)

: (DS, WORD, (: : (CS,TEXT)))

(DS,CHAR, (:: (CC,W)))

(DS, NEWW0ED, (: (GR,: (RP, TEXT) ,O, 1: (DS, W, : (WORD)) : (DS,LET,: (C
HAR)) (COMPAR))))))

(DS,COMPAB, (: (EQ,: (LET) (CC, VOWEL) et (: (PRINT)) (GR,: (RP,
VOWEL) ,O, (: (COMPAR)) , (: (TEST)))))))
: (DS, PRINT, (: (CR, W) : (PS, : (W) : (TEST)))
: (DS,TEST, (: (CR,VOWEL): (NEWWORD)))))

(NEWWORD) '

I ALL A

Figure 3.9 TRAC Program for Problem 2.

56

The purpose of this problem is to list all the words in

a line of text that begin with a vowel. For simplicity

there is no punctuation.

Words have to be isolated. In SNOBOL4 the BREAK

function, in conjunction with a conditional variable WORD,

does this. The ANY function of SNOBOL4 is convenient for

matching any of the vowels with the first character of WORD.

In PL/I each vowel must be compared individually. Again

SN0BOL4's pattern matching superiority is apparent. The

SN0BOL4 and PL/I programs dispose of a word in TEXT after it

is assigned to variable WORD.

A different approach is taken in APL since TEXT is an

array. The index of each blank character is placed in

vector VEC. Each word is isolated and checked.

The TRAC program is organized as a series of calls to

NEWWORD, COMPAR, PRINT, and TEST. The cursor of VOWEL must

be reset before comparisons with each word. W is the

current word under consideration. LET is the first letter

in the current word.

3.3 PROBLEM 3

An interesting problem that illustrates many of the

operations needed in string handling is the following.

Consider a student sitting at a terminal who is

answering questions in a foreign language drill. The

57

interactive system types a question that the student is to

answer., If the student types the correct answer, the system

responds with an R and types the next question. If the

student missed the answer, he must try another reply. It

would be helpful for the student to receive feedback that

some of his answer was correct. For example, consider this

hypothetical drill in English. The student's answers are

preceded by a question mark.

What is the capital of France?
?Marseilles

_a r__
?Paras
Par_s
?Paris
R

What are the three R's?
?reeding, riting, awrithmetick
re_ding, _riting, arithmetic
?reading, writing, arithmetic
R

The procedure for comparing the student's answer with

the correct answer is as follows. If the two answers are of

equal length, they are compared, and R is returned if they

are the same. If the two answers are not of equal length or

are of equal length and not the same, the student answer is

searched from left to right for n-character length sequences

of the correct answer.

Assume that the the value of n is first 7, then 2. In

the second drill question 'reading' would be the first

sequefice the student answer is searched for, leading,' is

58

the second seven character length sequence, lading, g the

third, etc. No match c:;curs until oriting,0.

When a match occurs, the letters following the matched

sequence in the correct answer (N) and student answer (S)

are searched one by one until the letter in M and the

corresponding letter in S are not the same. For example,

after 'riting,' is found in S the characters I I and fa'

will also be matched. In programming the problem, filler

characters, the asterisk and the slash, are substituted for

the matched characters in 8 and S, respectively. For

instance, in the previous example, after "riting, a' is

matched, N and S would be:

N

reading, w*********rithmetic

S

reeding, /////////vrithmetick

In future match attempts substrings with /'s and *'s are

ignored. The sequence Irithmet, would match a substring in

N successfully, and the subsequent Itc° would also match.

Thus,

be

N

S

after all 7-length sequences tried, N and S would

reading, w******************

reeding, ////////w/////////k

Next, M is searched for all possible 2-character length

sequences in S that match M substrings. 're' matches, but

no additional characters do, so

S

ading, w****************

//eding, / / / / / / / /w / / / / / / / //k

The process continues until all possible substrings have

been tried.

The M string is converted to an answer for the student.

Every asterisk now in M will print as the character: it

stands for. For example, the letter 'r' will be substituted

for the first letter in N in the answer, and le' for the

second. Any character, other than a blank, will be replaced

in the answer by the underline character (_) . Blanks are

given in the returned answer. In addition to an answer with

blanks and underlines, the student receives a percentage of

the letters in his answer that appear in the correct answer.

The flowchart for the program (Figure 3.10) follows.

SNOBOL4 has many string manipulating functions that

were useful in writing the program. .The SUBSTR and INDEX

functions of PL/I were sufficient to do the necessary string

processing in that language. However, the program was not

as easy to do in APL/360. Even though APL provides indexing

60

START

READ

VALUES

FOR N

<MAINLOOP

NO
STOP___,)

YES

J4-0

MCOUNT4-NUMBER OF

CHARS. IN M

SCOUNI4-NUMBER OF

CHARS. IN S

(A)

Figure 3.10 Flowchart for Problem 3.

61

ISOLATE

NEXT N(L)

CHARS. IN

S

Figure 3.10 (cont.)

PREPARER

A2

YES

YES

FILL IN * ' S. FOR
MATCHED M CHARS .

FILL IN I'S FOR
MATCHED S CHARS .

i I

Figure 3.10 (cont.)

SLOOP)

SLOOP

63

(PREPARER

EXAMINE NEXT

CBAR. IN M

YES

YES

J÷J+1

GET NEXT CHAR. FROM M1

SUBSTITUTE IT FOR *

CATENATE CHAR. TO RESULT

CATENATE

UNDERLINE

CHAR. TO

RESULT

CATENATE BLANK

TO RESULT

REMOVE FIRST

CHAR. FROM

M

Figure 3.10 (cont.)

64

MORE

CHARS. IN

M

YES

INSERT PERIOD AS

LAST CRAR. OF

RESULT

JJ41J+MCOUNT

PRINT

RESULT

AND JJ

1

MAINLOOP>

Figure 3.10 (cont.)

PREPARER

65

(the iota operator), it lacks an equivalent of the PL/I

INDEX function.

Some of the variable names used are the same in all the

programs. M is the correct answer; M1 is a copy of M. S is

the students answer. M and S change as matches are found.

J counts the number of characters that match; JJ is- the

fraction of characters (J/(size of M)) that matched. N

indicates how many characters are to be matched at once. N

must be less than or equal to the minimum of the sizes of M

and S. To be useful, however, the values of N should be

small. L indicates which value of N is currently being

used. RESULT is the string that is returned to the student. -

As matches occur, asterisks replace the matched charac-

ters in M, and slashes replace the matched characters in S.

In the PL/I and APL programs, KS is equal to the

position of the first character in the S-substring that is

about to be checked. However, in the SNOBOL4 program, KS is

equal to the current value of the cursor, the index of the

character in S before the one about to be checked.

3.3.1 SNOBOL4

(Refer to Figure 3.11.)

The patterns MPADPAT and SPAD PAT match N<L> characters

in the patterns STARS and SLASHES, respectively. MPAD and

66

* N= NO. OF CHARACTERS TO BE MATCHED
* J COUNTS NUMBER OF CHARACTERS THAT MATCHED

N = ARRAY(2)

MOREN N<1> = TRIM (INPUT)

N<2> = TRIM (INPUT)

* PATTERNS TO BE USED IN PROGRAM
MPADPAT = LEN(*N<L>) . MPAD

SPADPAT = LEN(*N<L>) . SPAD

STARS = "*******
SLASHES = 1///////1
S2 = LEN(*KS) *TAB (N<L> + KS) . S3

S4 = *LEN (KK + I) *TAB (KK .4- I + 1) . S5

*

MAINLOOP M = TRIM(INPUT)
OUTPUT =
OUTPUT =
OUTPUT = M
S = TRIM (INPUT)

OUTPUT = S
J = 0

* COUNT NO. OF CHARACTERS IN " AND S
MCOUNT = SIZE (M)

SCOUNT = SIZE(S)
EQ (MCOUNT,SCOUNT)

* IS M-SUBSTRING EOUAL TO S-SUBSTRING?
IDENT(M,S)
OUTPUT = 'RI

* INITIALIZE VARIABLES
SET L = 1

RESULT = "
* NEED A COPY OF t

M1 = M
* KS POINTS TO CHARACTER BEFORE ONE TO BE MATCHED

SRESET KS = 0
* SET MPADPAT TO -A PATTERN OF N<L> STARS AND
* SPADPAT TO A PATTERN OF N<L> SLASHES

STARS MPADPAT
SLASHES SPADPAT

Figure 3.11 SNOBOL4 Progcam for Problem 3.

:F (THRU)

:F (THRU)

: F (5 ET)

:F (SET)
: (MAIN LOOP)

67

SLCCP GT(KS + N<L>,SCOUNT) :S(NEWN)

* ISOLATE NEXT N<L> CHARACTERS IN S
S S2

* ::NY SLASHES IN S-SUBSTRING?
S3 ANY (' /') 1S(KSINC)

* CHECK FOR A MATCH; IF SUCCESSFUL, FILL IN *tS FOR MATCHED

* CHARACTERS IN M AND PS FOR MATCHED CHARACTERS IN S
* K POINTS TO THE LAST MATCHED CHARACTER IN M
* KK POINTS TO THE LAST MATCHED CHARACTER IN S

M S3 iDK = MPAD :F(KSINC)

S S3 ibKK = SPAD
* CHECK FOR ADDITIONAL CHARACTERS THAT MATCH;

* FILL IN *'S AND PS
I = 0

AGAIN S S4

M TAB (K 4- I) . HEAD S5 = HEAD "I" :F(CALC)

S TAB(KK + I) . TAIL S5 = TAIL '/'

I = I + 1
* Al LEAST ONE MORE CHAR. IN M ANDS?

GT(K + I,MCOUNT) :S(CALC)

GT (KK + I,SCOUNT) :F (AGAIN)

* YES, AT LEAST ONE MORE CHAR.
CALC KS = KK + I :(SLOOP)

*

NEWN L = L 1

EQ(L,3) :F(SRESET)

*
*
*
PREPARER M LEN(1) . TEMP = :F(PREOUT)

IDENT(TEMP,' *') :S(ZC)

ZA IDENr(TEMP,' ') :F(ZB)

RESULT = RESULT ' :(ZD)

ZR RESULT = RESULT : (ZD)

ZC J = J +.1
M1 LEN(1) . ANSWER
RESULT = RESULT ANSWER

ZD M1 LEN(1) = : (PREPARER)

*
* REPLACE LAST CHARACTER WITH A PERIOD
PRECUT RESULT RTAB(1) . TEMP1 LEN(1) = TEMP1

Figure 3.11 (cont.)

68

ORT OUTPUT =
OUTPUT = RESULT

* CCNVERT TO REAL NUMBERS
AJ = CONVERT(J,'REAL')
AMCOUNT = CONVERT(MCOUNT,'REAL')
AJJ = AJ / AMCOUNT
OUTPUT = AJJ

KSINC

THRU

END

: (MAINLOOP)

KS = KS I : (SLOOP)

DAS HAUS IST NICHT GROSS. +CORRECT ANSWER

DAS VATERHAUS IS VERNICHTET. 4-STUDENT'S ANSWER

DAS HAUS IS NICHT +-COMPUTER RESPONSE

0.6399999 +PERCENTAGE OF CORRECT LETTERS

MA SOEUR EST MARIEE.
MA SIR ET MARREE.

MA SR E_T MAR EE.
0.7500000

CETTE LECON EST DIFFICUE.
CET LECON EST DIFISEAL.

CET__ LECON EST DIF
0.6538461

LA JEUNE FILLE EST JOLIE.
LA JEtINE FILL! EST JOLIE.

Figure 3.11 (coat.)

69

SPAD are strings equal to the H<L> characters in the

patterns MPADPAT and SPADPAT, respectively. The pattern

STARS is used to replace matched characters in M. Similar-

ly, SLASHES is used to replace matched characters in S.

S2 matches N<L> characters in S, beginning with the

(KS-1-1)st character; S3 is a string equal to those N<L>

characters.

After a match of N<L> characters in M has occurred, KK

is set to one less than the position of the next character

in S. Similarly, K is set to one less than the position of

the next character in M. I indicates the number of the

character past KK that is being checked for a match.

S4 is a pattern which matches the (KK+I+1)st character

with a character in S. S5 is the string containing that

character. If S5 is the (K-144-1%st character, a star and

slash are substituted in M and S, respectively.

3.3.2 PL/I,

(Refer to Figure 3.12.)

AA is the N (L)- length substring of S that starts in

position KS. M is searched for an occurrence of AA. If

there is a match, then A is set to the index of the match.

3.3.3 APL

(Refer to Figure 3.13.)

70

PEC/BLEM: PROCEDURE OPTIONS (MAIN) ;
DCL RESULT CHARACTER (80) VARYING,

(M,11,S) CHARACTER (80),
(MCOONT,SCOUNT,N(2),KS,LrB,A,AAA) FIXED,
AA CHAR (80) VARYING,

JJ FIXED DECIMAL (6,5) ;
ON ENDFILE(SYSIN) GO TO THRU;

/* N IS NUMBER OF CHARACTERS TO BE MATCHED */
GET LIST ((N (L) DO L=1 TO 2));

/* J IS THE FRACTION OF MATCHED CHARACTERS PER STRING 44/
/* READ CHARACTERS INTO CHAR. STRING VAR.'S M AND S -*/
MAINLOOP: GET EDIT (M) (SKIP, A(80)) ;

GET EDIT (S) (A (80)) ;

/* PRINT THE STRINGS */
pur SKIP(3) EDIT (M) (A(80)) ;

PUT EDIT (61 (SKIP,A(80));
/* INITIALIZE NO. OF MATCHED CHARACTERS */

J=0;

/* COUNT NO. OF CHARACTERS IN EACH ARRAY */
MCOUNT=INDEX(M,...1);
SCOUNT=INDEX(S,I.');
IF MCOUNT=SCOUNT
THEN IF M=S THEN DO;

PUT SKIP LIST ('R');
GO TO MAINLOOP;

END;

/* COPY OF M */

M1=N;

/* INITIALIZE RESULT */
RESULT = ";

NEWN: DO L=1 TO 2;
/* KS IS EQUAL TO THE POSITION OF THE FIRST CHARACTER IN */

/* THE SUBSTRING OF S THAT IS BEING CHECKED */

KS = 1;

SLOOP IF KS-4-N(L)>SCOUNT+1 THEN GO TO NEWNEND;
/* ANY SLASHES IN S-SUBSTRING? */ .

/* AA IS THE N(L)-LENGTH SUBSTRING OF S, BEGINNING */
/* WITH THE CHARACTER IN POSITION KS */

AA=SUBSTR(S,KS,N(L));
AAA=IRDEX(AA,'/I);

/* IF A SLASH, GO TO NEWKS */
IF AAA =0 THEN GO TO NEWKS;

/* IS S-SUBSTRING IN M? */
/* IF SO, A IS THE INDEX OF THE FIRST OCCURRENCE OF AA */ AL

A=INDEX(M,AA) ;.

Figure 3.12 PL/I Program for Problem 3.

71

IF A-,=0
THEN DO;

/* YES, S-SUBSTHING IS IN M */
DO B=0 TO N(L)-1;

SUBSTR(M,A+8,1)=.*';
SUBSTR(S,KSfH,1)=0/0;

END;

/* DO ANY ADDITIONAL CHARACTERS MATCH? */
DO 1=0 BY 1
WHILE (h+N(L)+I<=MCOUNT & KS+N(L)+I<=SCOUNT);

IF SUBSTR(M,A+N(L)44,1) =

SUBSTR(S,KS+N(L)+I,1)
THEN DO;

SUBSTN(M,A4N(L)+I,1)=0*';
SUBSTR(S,KS+N(L)+I,1)=0/,;

END;

ELSE DO;
KS=KS+N(L)+I;

GO TO SLOOP;

END;

END;

END;
/* NO, S-SUBSTRING IS NOT IN M */

ELSE NEWKS: KS = KS+1;

GO TO SLOOP;
NEWNEND: END NENN;
/* PRINT PARTIALLY MATCHED STRING */
PREPARER: DO I=1 TO MCOUNT;

IF SUBSTR(M,I,1)=,*1
THEN DO;

RESULT = RESULT I I SUBSTR(M1,I,1);
J = J+1;

END;

ELSE IF SUBSTR(M1,I,1) -4=

THEN RESULT = RESULT II 1_1;

ELSE RESULT = RESULT 11 ' i;

EMD PREPARER;
/* MAKE SURE LAST CHARACTER IS A PERIOD */

SUBStR(RESULT,MCOUNT,1)=1.1;
PUT ED IT (RESULT) (SKIP(2), A (80)) ;

JJ=J/MCOUNT;
PUT SKIP LIST (JJ) ;

OUT: GO TO MAINLOOP;

THNU: END 'ROBLEM;

Figure 3.12 (cont.)

72

DAS HAUS IST NICHT GROSS.
DAS VATERHAUS IS VERNICHTET.

DAS IIAUS TS_ NICHT
0.63999

MA SOEUR EST MARIEE.
MA SIR ET MAREE.

MA S__ R MAR _EE.

0.75000

CETTE LECON EST DIFFICILE.
CFT LECON EST DIFISEAL.

CET LECON EST DIF______
0:65383

LA JEUNE FILLE EST JOLIE.
LA JEUNE FILLE EST JOLIE.

Figure 3.12 (cont.)

73

V STRINGS

C1] Nfl
[2] MAI NLOOP M*1!

[3] S+()

] M1+M

[5] 114-1

[6] JO
[7] 4((pM)gpS)/ NEWN

[8] /+1

[9] /TER:44M[I]*SCID/NEWN

t10] 4((l+7+1)0/4)//70?

[11] 11.0AIV

[12] +MAINLOOP

[13] NEWN:KS+4

C14] RRSULT -"

[15] SLOOP: +((KS+N[L]) >1+03) / NRWNEND

[16] D+S SUBSTR RS.N[L]

[17] 4((Di V')<1+pD)/NEWKS

[18] HI GB+0

[19] TESTI: +((HIGH+HIGJW+HIGH14 /TEMPtAltBIGH4 toM]ln)=1+pM) /NEWKS

[20] SUB+(TEMPI& GH1) -1

[21] +(MI GH- SUBW[L]-1)>PM) / NE:WKS

[22] TEST :+(A'[(RI GH- SUB)+((NEL]) -1)]*B) /TESTI

C23] Ai-BICH-SUB

[24] B-4-0

[25] ALOOP:MtA+B]+' *'

[26] SEKS+51+1/'

[27] +((B+B +1) <N[L])/AbOOP

[28] /+0
[29] BLOOP:+(-4(A+N[L] +1")spM)M(KS+N(L)+I)APS)) / OTRE77

[30] E+A+N[L]+I

[31] F+KS+N[L]+r

[32] 4((M SUBSTR E,1) *(3 SUBSTR F ,1)) /OTHER

[33] +NC L1,114-9*'

[34] Axs+N[L]frI4-1/1

[35] I+I+1

[36] +RLOOP

[37] OTHER :KS-41S+N[L].I.I

[38] +SLOOP

[39] NEWKS :KS+KS+1

[40] +SLOOP
[41] NEWNEND :+((L+L+1)*3) /NEWN

[42] PRE PARER :1+1

Figure 3.13 APL Program for Problem 3.

74

[43] CWOP:-4M[I]sitt')/ZA

[44] RESULT-RESULT.MI[I]

[45] trNI+1

[46] -.INC

[47] ZA:4-(M1[/]=I ')/ZR

[48] RESULT4-RESULT.'_'

[49] -*INC

[50] ZR:RESULT+RESULT.1 '

[51] INC:4-((I4-I+1)5pM) /CLOOP

[52] FINAL:RESULTfpM1.0.'

[53] C4-RESULT

[54] ni-JJ÷J*pM

[55] OUT:4MAINLOOP

V

STRINGS

7 2

DAS HAUS 1ST NICHT GROSS.

DAS VATERHAUS IS VERNICHTET.

DAS HAUS IS_ NICHT .

0.64

MA SOEUR EST MARIEE.

MA SIR ET MARREE.

MA S R E_T MAR_EE.

0.75

CETTE LECON EST DIFFICILE.

CE? LECON EST DIFISEAL.

CET LECON EST DIF

0.6538461538

LA JEUNE FILLE EST JOLIE.

LA JEUNE FILLE EST JOLIE.

R

Figure 3.13 (cont.)

75

M is swirched for an occurrence of the S-substring D.

HIGH1 is set to the maximum of the indices of the occur-

rences in M of the letters contained in D. If HIGH, the sum

of HIGH1 and the previous value of HIGH, is equal to 1 + the

size of M, then one or more of the letters in D does not

occur in M and the program branches to NEW.KS. SUB is

assigned one less than the position of HIGH1 in TEMP. The

substring in N of length N (L) beginning with the character

in the (HIGH-SOB)th position is compared with D. The

program branches to TEST1 if the substrings do not match.

76

4 COMPARISONS Alp DISCUSSION -

The first part of this chapter briefly mentions some of

the different features in each language: data formats,

statement formats, storage allocation, input/output, and

subroutine capability. Next follows a discussion of string

operations. Some string operations that are primittvo in

one language, but not in others, are coded in the other

languages.

4.1 DATA FORMATS

40.1 SNDBOL4

The data of SMOBOL4 include both character strings and

numbers, although operations on numbers are not an important

part of the language. Conversion is done automatically

between numbers and strings. For example, 'ABC' 3 is

equivalent to ,ABC3, and '123450 4- 1 iseinivalent to 12346.

Patterns are built from strings by using alternation and

concatenation. None of the other three languages has a

pattern data type.

77

4_1.1 TRAC

In the TRAC language both instructions and data are

strings. If arithmetic primitives are called, the parame-

ters will be treated as numbers. Each instruction string is

evaluated and replaced with a value string, which may itself

be evaluated in turn.

4/1.3 APL

The data of APL are characters and numbers. A charac-

ter vector, however, is a vector of single characters and

not a string of characters, as is the case in SNOBOL4, PL /I,

and TRAC. Arrays may be formed using characters or numbers.

Conversion between numbers and characters is not done, and

it is not permissible to mix the two data types.

4. 1.4 PL I

Data in PL/I consist mainly of fixed and floating point

numbers and character and bit strings. Arrays and struc-

tures can be made from the data. Each identifier or

variable is considered to have attributes which usually are

specified in DECLARE statements. Strings and their maximum

Lengths are not declared in the other three languages, but

this must be done explicitly in PL/I. Conversion is done

automatically between numbers and strings.

78

4.2 STATRMENT FORMATS

SNOBOL4

All statements in SNOBOL4 are of the fora

label subject pattern = object go-to

In various uses some of the five parts are omitted. This

statement format permits pattern matching to be specifiel

easily.

4.2.2 TRAC

All statements in TRAC are written as

:(FCN,p[1],p[2],...,p[k])

where FCN is a two-letter TRAC primitive and p[1],p[2],...,

p[k] are arguments.

4.2.3 APL

There are two types of statements in APL, branch and

specification. Specification statements are similar to

assignment statements. Branch statements are used chiefly

in function definitions.

4.2.4114z

Unlike the other languages, there are many different

statement types in PL/I. These include the DECLARE state-

ment, assignment statement, DO statement, IF statement,

79

input/output statements, and others.

4.3 STORAGE ALLOCATION

4.3.1 SNOBOL4

Storage allocation is done dynamically. When storage

space is filled, the storage is regenerated. That is, all

needed data are collected, and all data inaccessible to the

SNOBOL4 program are deleted. The user is unaware of this

process. Such programming techniques as building patterns

in a loop use a lot of storage and should be avoided to

prevent frequent storage regenerations. The user does not

reserve space explicitly for variables, except for arrays.

4_3_2 TRAC

Storage is divided into several areas by the TRAC

interpreter. User operations specified by the define string

primitive are kept in a form store. The active string stack

and the neutral string stack contain only the parts of the

current instruction that is being evaluated.

4. 3.3 APL

Storage reservation is done implicitly by the APL

system. That is, the user does not have to declare any

variables explicitly. Storage in TRAC and SNOBOL4 is also

84

implicit. When using the APL system, the user has his own

working storage, called a workspace. An active workspace

has room for internal system needs, storage, and transient

information. When inactive, a workspace is put in a library

on secondary storage.

4.3.4 Pia

Storage space for variables is allocated within begin

and procedure blocks. Usually the DECLARE statement is used

to reserve the space. Unlike the other languages, the

maximum size of a character string must be specified in the

DECLARE statement.

4.4 INPUT/OUTPUT

4.4.1 SN0BOL4

Input /output, is done by "association". The variable

INPUT is usual k, associated with the card reader, and the

variable OUTPUT is usually associated with the printer. For

example,

TEXT = INPUT

assigns to TEXT the data on the next input card.

OUTPUT = LINE

assigns to OUTPUT the information in variable LINE; numbers

are automatically converted to string cht:racters for

81

printing.

4.431111c

Input/output operations are not given special treat-

ment; TRAC primitives handle these operations. RS reads

string fr.om the input device and PS prints a given string.

4.4.3 APL

Whenever an expression or variable is typed by itself,

the APL system responds by printing the value of that

expression or variable.

Within function definitions, if a quad character is

written to the right of the specification arrow, the system

types

:

and waits for the user to type an expression. Also within

function definitions, if a quad character with a quote mark

inside it M is written to the right of the specification

arrow, the system stops and waits for character input to be

typed.

4.4.4 PL/I

Input/output in PL/I may be stream-oriented. Data are

regarded as one continuous stream of information, not

constrained to physical record sizes. GET and PUT are

82

associated with stream input/output.

However, the user does have the choice of using record

input-output. Data are organized into logical records which

are treated as a whola.

4.5 SUBROUTINE CAPABILITY

SNOBOL4

The user may define functions by using the DEFINE

function. After a function has been defined, it may be

invoked the same way as built-in SNOBOL4 functions.

4.5.2 TRAC

New operations can be defined using DS primitives.

Since there is no iteration in TRAC, recursion must be used

frequently in these operation definitions.

4.5.3 APL

Defined functions give subroutine capability. If they

have arguments and return a value, they may be defined as

either a binary or a unary operator.

pLZI

PL/I permits both internal and external subroutines

(procedures). Some procedures may be called as functions

83

and return a value.

4.6 BASIC STRING OPERATIONS

From the many accounts that I have read ([3] and [19)),

I regard the following as the most basic of all string

operations:

concatenation of two strings
insertion of a substring
deletion of a substring
pattern matching or PL/I INDEX

Another operation, pattern matching with replacement, is

often regarded as primitive (for example, in SNOBOL4).

However, it is a combination of all the above. Pattern

matching with replacement involves finding the occurrence of

a substring in a string (pattern matching), replacing it

with either a nonnull substring (insertion), or the null

string (deletion) , and then putting the string together

again (concatenation).

4.6.1 Concatenation

Concatenation of two strings is the most basic of all

string operations. Concatenation is done in SNOBOL4 by

implication. For instance, consider the SNOBOL statement

2911 ati 01.2 = obi1 01112

In this example the pattern used is the concatenation of

pAt1 and 2412. cimil,arly the object is the concatenation of

84

obj1 and obj2.

In APL and PL/I, on the other hand, an explicit

operator for concatenation is used. In APL this operator is

the comma, and a restriction is imposed that characters and

numbers cannot be concatenated. The symbol) 1 joins two

strings to be concatenated in PL/I, and unlike APL, automat-

ic conversion to characters is done if a number is found.

TRAC, like SNOBOL4, does concatenation implicitly. The

results of evaluating two macro calls written next to each

other are concatenated. Frequently one or Lnth of these

calls returns a null value, even though side effects occur.

4.6.2 Insestion of a substring

Suppose it is desired to insert the word 'THE' after

the tenth character of string STR. This could be done in

SNOBOL4 as follows:

STR LEN (10) . VAR1 = VAR1 'THE'

The above statement replaces the first ten characters of

STR, assigned to conditional variable VAR1, with VARI

concatenated with the word 'THE'.

The same operation could be done in PL/I with the

statement

STR = SUBSTR(STR,1,10) fi 'THE' 11 SUBSTP(STR,11);

85

The following APL statement will do the insertion:

STRI-(10+STR) , 'THE' ,10+STR

(See section 2.3.5 for an example of f and 4.)

The following TRAC definition for STR will do the same

operation as the above three:

:(DS,STR,:(CN,STR,10)THE:(CS,STR))

4.6.3 Deletion of a suYstring

Consider the operation of deleting the eleventh through

thirteenth . .z.c"ce'4-s of STR. The following SNOBOL4 state-

ment do this:

STR TAB(10) LEN(3) =

The following PL /I statement will do the deletion:

STR = SUBSTR(STR,1,10) SUBSTR(STR,14);

In APL the operation could be done as follows:

STR+STRE 110] .13+STR

This operation is rather complicated when written in TRAC.

Consider

(DS,STR,:(CN,STR,10):(EQ,:(CN,STR,3),):(CS,STR))

The hard part is to move STR's form pointer ahead to the

fourteenth character from the tenth without getting the

characters in between. The above use of EQ does this.

86

4.6.4 Pattern matching

SNOBOL4 is really the only language of the four in

which it is easy to do complicated pattern matching tasks.

Consider the following task: replace the first occurrence

of pAT1 in the string STR with 'THE', or if PAT1 is not

present, replace the first occurrence of PAT2, or if PAT2 is

not present, replace the first occurrence of PAT3.

In SNOBOL4 only one statement is needed to do this:

STR PAT1 1 PAT2 I PAT3 = 'THE'

This operation requires more statements when done in PL /I:

A=INDEX(STR,PAT1);
B=INDEX(STR,PAT2);
C=INDEX(STR,PAT3) ;
IF k=0 THEN

IF B=0 6 C - =O THEN

STR=SUBSTR(STR,1,C-1) II 'THE' 11
SUBSTR(STR,C+LENGTH(FAT3));

ELSE IF B-1=0 THEN
STR=SUBSTR(STR,1,B-1) 11 'THE' 11

SUBSTR(STR,C+LENGTH(PAT2));
ELSE;

ELSE STR=SUBSTR(STRO,A-1) 11 'THE'

SUBSTR(STR,A+LENGTH(PAT1));

APL and TRAC code for this same problem would be extremely

long. The same problems in coding are shown in the

following examples of pattern matching with replacement.

4.6.5 Pattern matching with replacement

Consider a typical pattern matching problem such as

finding whether the word 'THE' is present in a sentence and

87

if so, deleting or replacing its first occurrence in the

sentence. The SNOBOL4 language is dedicated to doing just

this kind of problem.

The PL/I index function, INDEX(string,substring), finds

whether an occurrence of substring is present in string.

INDEX returns the index of the first character of the

matched portion of the string. If there is no match, a

value of 0 is returned. There is no way in PL/I to indicate

without an index value the success or failure of a pattern

match.

With its present string primitives, PL/I cannot answer

the question "Is a 'THE' present?" without also finding the

position in the sentence of the first 'THE', because the

INDEX function is the only way to determine whether a

substring is present in a string. For example, INDEX (SENT,

ITHE'). The pattern matching with replacement operation in

PL/I must know the index and would be done as follows:

SENT = SUBSTR(SENT,1,INDEX(SENT,'THE1)-1)
replacement II
SUBSTR(SENT,INDEX(SENT,'THEI)+3);

SNOBOL4 uses the cursor function a to give the position

of the match. For example,

SENT &POSN 'THE'

POSN returns the index of the first 'THE' in SENT.

TRAC takes a different approach to the problem. Like

SNOBOL4 and unlike PL/I, it may find whether a substring is

88

present in a string without finding the irvi,?.): this

occurrence. This is done with the Yes There (YT) primitive.

The sane problem may also be solved using the IN primitive.

In that case everything in the string up to the substring to

be matched is returned as value. In either approach it is

unnecessary to know the index of the match.

Pattern matching with replacement is usually done with

the following sequence in TRAC: a define string primitive

(DS) defines the string9 the segment string (SS) lists the

substring (s) to be replaced, and the call (CL) primitive

calls the string with the indicated replacements.

The sequence, involving macro (string) definiti.or, and

parameter calls, is inherent in the design of TRAC. If no

replacement for a parameter is given in the CL operation,

the null string is substituted for that parameter, thus

deleting it. However, this sequence is different from the

original problem because all occurrences, not just the

first, are changed.

To replace just the first occurrence, other primitives

must be used. For instance, consider the following. The

initial (IN) function finds the first occurrence of THE.

The resulting value is the portion of SENT preceding 'THE'.

The form pointer now points to the first character after

ITHZe. A : (CN,SENT, -3) instruction resets the form pointer

to the T of 'THE'. A left pointer primitive kLP) finds the

89

number of characters to the left of the pointer and assigns

these characters to a variable LEFT with a DS primitive. An

instruction with :(EQ,::(CN,SEHT,3,)) would move the form

pointer to the first letter after 'THE' and would give a

null result, Then the value of a call segment (CS) of SENT

would give the remainder of SENT.

Unfortunately APL does not have any readily available

functions to solve pattern matching problems. This defi-

ciency is the reason string problems are so difficult to

code in APL. The deficiency is present because APL, which

regards strings as arrays, operates uniformly on these

strings. Thus string operations are done character by

character; every character is treated the same. For

example, using the index function,

'HE WAS THE RIGHT ONE, i'THE,

examines the string 'HE WAS THE RIGHT ONE' to find first,

the character T, then the character H, and finally character

E. The result is the vector 7 1 2. To allow scanning for

the string 'THE', a fairly involved defined function must be

used, as in Chapter 3.

The replacement problem in APL is not difficult once

the substring is found. Suppose variable IND is assigned

the index of the first 'THE' in string SENT and variable

WORD is to be inserted in place of 'THE'. Then an

90

instruction

S'ENT4-(c IND -1)+SENT) ,WORD ,(IND-2)4.SENT

would do the necessary replacement, assuming SENT has at

least one character.

4.7 OTHER STRING OPERATIONS

It is essential in doing string problems to be able to

find the size of a string easily. For instance, consider

scanning a string for the occurrence of several cop? es of a

substring. It would be desirable to know the length of the

substring so that when an occurrence is found, the length

could be used in maintaining a cursor for the start of the

next scan. SNOBOL4 has the SIZE function, PL/I the LENGTH

function, and APL the size function to do this operation.

Finding the length of a string is slightly harder in TRAC.

The form pointer must be set to the beginning of the string

by :(CR,string), and then :(RP,string) will return the

number of characters to the right of the form pointer, i.e.

the length of the string.

Another operation that should be readily available is

comparing two strings. Usually two functions are available

for this purpose - either to compare the strings for their

sameness or to compare them for their difference, namely

IDENT and DIFFER in SNOBOL4, = and in PL/I, and equals

and not equals in APL. TRAC is different. :(EQ,X1,X2,t,f)

91

tests X1 and X2 for equality and branches to t or f

accordingly. IDENT and DIFFER are said to return values of

success or failure and then a separate instruction in the

go-to field indicates the branch.

Two strings must be of the same length to be compared

in APL. If strings X and Y are compared using the equals or

not equals operator, a vector the size of X (or Y) will be

returned. This vector indicates whether the characters in

the respective positions of X and Y matched. In SNOBOL4 and

PL/I, if the strings are not of equal length, the shorter of

the two is padded with blanks.

A lexical ordering operator is also quite useful.

SNOBOL4 has LGT(X1,X2) to test whether X1 precedes X2 in the

collating sequence of the machine being used. All the

relational operators of PL/1 may be used to compare two

strings for lexical order with respect to the mac4ine's

collating sequence. :(LG,11,X2,t,f) in TRAC tests lexical

ordering depending on collating sequence and, as above,

branches accordingly. APL does not consider a machite's

collating sequence and thus can have no lexical ordering

operator. However, a user may define his own collating

sequence. For example,

ALPH-0 ABCDEFGIIIJKLMNOPQRSTUVWXYZ '

L1-4- C'

L2-4- ' D

Now any relational operator may be used in place of the > in

92.

the following:

(ALPHiL1) >(ALP1111,2)

The index of the occurrence of Li and L2 in ALPH serves the

purpose of a lexical operator, but again only for single

characters, not strings. (The decode operator can be used -

see Chapter 3.)

The SUBSTR operator of PL/I turns out to be useful in

the other three languages as well. To review,

X1 = SUBSTR(X,I1,I2)

assigns to X1 the 12 characters of X beginning with the 11

character. In SNOBOL4 one might use

X TAB (II - 1) LEN(I2) . X1

Similarly in APL

i+I1+t12]

More thought is necessary to do the operation in TRAC. The

following would do the SUBSTR operation in TRAC.

: (DS, SUBSTR, (

: (CR, <1>)

: (EQ,: (CN,<1>,:(SU,<2>,1)),)
:(CN,<1>,<3>)))

Since it is permissible to eliminate the CL primitive,

SUBSTR could be invoked by :

: (SUBSTR, X, : (I1) , (I2))

instead of

: (CL, SUBSTR,X ,: (I 1) ,: (12))

(However, this SUBSTR function does not allow for the case

where argument <3> is omitted.)

93

The following two tasks frequently occur in lower level

assembler coding. One string handling task is take a

string, define two lists of characters, and then replace the

occurrences of the characters in the first list in the

string by the corresponding members of the second list.

The REPLACE function in SNOBOL4 does this. Consider

the following:

STRINGI = 'THE BEAR IS GONE'
TABIE1 = 'Et A'

TABLE2 = /D;E'
STRING2 = REPLACE(STRING1,TABLE1,TABLE2)

STRING2 has value °THE;DEER;IS;GONE'.

PL/I has the built-in function TRANSLATE to accomplish

this replacement. Assuming the previous definitions for

STRING1, TABLET, TABLE2, the statement

STRING2 = TRANSLATE(STRING1,TABLE1,TABLE2)

assigns to STRING2 the value "THE;DEER:IS;GONE'.

Using segment gaps, the problem may be coded in TRAC.

Procedure COMMA calls every character in its argument one at

a time. After execution of COMMA, every character except

the last in the argument is delimited an both sides by a

comma.

:(DS,COMA,(
: (GR,: (RP, <1 >) ,O,

((,)::(CC,<1>)::(CL,COMMA,<1>))),))

Then

: (DS,TABLE1, (B A))9
:(DS,TABLE2,(D:E))0

(DS,STRING1,THE BEAR IS GONE)"
:(SS,STRING1,:(COMMA,TABLE1))
: (DS,STRING2, (:(STRING1:(COMMA,TABLE2))))'
: (PS,: (STRING2))1

The result 0THE;DEERiIS;GONE. is printed.

The task may be done in APL with the following code.

STRINGITHE BEAR IS CONE'
IABLE14 ' 8 A'

TABLE24'D;E'

1+1

STRING24-STRING1

LOOP:A4-S2'RING2:TABLE1CI)

--qA=1+pS2WING2) /INC
STRING2CAl+TABLE2[I]
-+LOOP

INC:44(141+1), p TABLE].) /OUT
4-100P

OUT:4-0

Consider the following problem in each language: find

the index of the first nonblank character in a string.

The SPAN function of SNOBOL4 in the statement

STRING SPAN(' 1)

matches all blank characters in STRING up to the first

non-blank. SPAN must match at least one character, or

failure is indicated. A function in PL/I very similar to

this in its effect is VERIFY, which in

VERIFY (STRING,' 1)

returns the index of the first non-blank in STRING. It

returns zero if STRING contains only blanks.

The difference between SPAN and VERIFY reflects a basic

95

difference in SNOBOL4's and PL /I's approach to string

problems. SPAN is used in a pattern matching statement; the

statement is said to succeed or to fail. On the other hand

VERIFY returns zero if all characters of the first string

are present in the second string. Otherwise the index of

the first character in the first string which is not present

in the second string is returned. In SNOBOL4 the cursor

operator a may be used to find the index of success. For

example, IND is assigned the index of the first nonblank in

the following statement:

STRING SPAN Q' ') &IND

Notice that two operators are necessary in SNOBOL4 to

perform the same function that one operator, VERIFY, does in

PL/I. Thus in a sense SPAN is a more primitive operation

than VERIFY. This shows a difference in the languages,

namely in SNOBOL4 the index of a pattern match is separate

from the pattern itself.

APL does not have a single primitive for this problem.

However, the operation may be done using the following:

(STRINGS'

96

The operation might be done in TRAC as follows:

: (DS,LOOP, (

(EQ,:: (CC,<1>)

(: (DS,I,: (AD, : (I) ,1))

: (GR,: (I) , : (LEN) ,
(: (PS , ALL BLANKS)) ,
(: (LOOP,<1>))))))

:(DS,I,1)*
:(DS,LEN,:(RP,STRING)),
:(LOOP,STRING),

4.8 DISCUSSION

The languages exhibit strengths in different areas of

string handling. Clearly, SNOBOL4 is superior for pattern

matching problems. This is particularly evident in the

SNOBOL4 and PL/I pattern matching problem in section 4.6.4.

The SNOBOL4 pattern data type gives great flexibility

in creating and referencing patterns. In SNOBOL4 it is

possible to find whether a pattern match is successful or

unsuccessful without determining an index value. If a match

is successful, replacement takes place; otherwise, no re-

placement occurs. In PL/I, however, an index value must be

tested.

If a general purpose programming language is needed for

a string problem, then PL/I is usually a good language to

use Its INDEX and SUBSTR primitives are very powerful.

However, there are restrictions. After all, PL/I is a

general purpose programming language and is not dedicated to

string handling tasks. SNOBOL4, being dedicated to pattern

97

matching problems, has its main statement form designed with

this in mind. PL/I does not, so it would require a lanquaye

extension to make this sort of problem easy in PL/I.

Rosin [18) has proposed modifications to PL/I to

improve string handling. First, he suggests that the

default for the character string type be VARYING, not FIXED.

Specification of a string's maximum length wculd be option-

al. Second, he feels that the SUBSTR notation, when SUBSTR

is used as a pseudo-vari able, is confusing. Instead he

suggests something like X (A,I:J+I-1) in place of

SUBSTR (X (A) J) ; X (I: I) for SUBSTR (X, I, 1) ; etc. If B=

IWXYZ,, I=2 J=3, then B(I:J) ='XY'.

Other modifications, modeled somewhat after SNOBOL4,

would make pattern matching and replacement easier. Rosin

defined five new operators to be used: UPTO, BEFORE, AFTER,

FROM, and IN. If X= 'ABCDEFG' and Y=1DE*, then X UPTO Y is

InBCDE", X BEFORE Y is *ABC', I AFTER Y is 'PG', X FROM Y is

'DEFG", Y IN X is 'DE'. Two or more of these operators may

be used in the same expression. For example, X FROM Y BE-

FORE 'G' is 'DEP'.

Like SNOBOL4, if Y is not present in X for any of the

operations, the scan fails. Any expression involving any of

the five operation:3 may be written on the left hand side of

a statement; Rosin refers to this as a pseudo-expression.

For example,

98

Z = 'CAT'
'A' IN Z = '0'

changes Z to 'COT'.

There are disadvantages to these suggestions whict.

Rosin himself brings up. The words UPTO, BEFORE, AFTER,

FROM, and IN might have to be reserved words in PL/I,

contradicting the PL/I design of no reserved words. Fur-

ther, pseudo-expressions make the equals sign ambiguous.

For example, consider:

DCL C BIT(2), D BIT(5);
D UPTO C = "11B = 11°B;

In the above statements either of the two = signs could be a

comparison and the other an assignment operator.

API. does have some primitives useful in string hand-

ling, but it is in need of some sort of PL/I-like INDEX

function before it could be used extensively in pattern-type

problems. In any sort of string operation in APL, one must

not lose sight of the fact that character strings are arrays

of characters. This feature in the APL design prevents good

string handling, as there is no string, just an array of

characters. This leads to problems when it is desired to

treat a group of characters non-uniformly. For example, it

would be nice to have the ability to find the index of the

first occurrence of a certain word in an APL character

vector. Unfortunately, with the iota operator, the charac-

ter vector will be searched for the first occurrence of each

99

letter of the word individually. A vector result will be

returned, and further manipulation is necessary to get the

correct answer. (See third example in Chapter 3.)

Thus, for good string handling in APL, it is necessary

to be able to treat a sequence of character array elements

as a string. Possibly an operator could be introduced to

produce a string from a character array. Then the result

could be used in string operations like those of PL/I and

SNOSOL4. It would also be desirable to be able to operate

on sequences of differing lengths. This would facilitate

comparison of strings of differing lengths.

TRAC may indeed be useful in text editing applications

when used interactively, but any real usefulness was not

evident from this investigation. Any operation that needs

to be done more than once must be coded to be recursive

since there is no iteration operator. Errors caused by

mismatching parentheses ;did choosing the wrong mode are hard

to find. Also, TRAC makes it difficult to structure a

program.

I feel that TRAC is much too difficult to learn ,d

even when learned, is still difficult to use, Unlike PL/I,

where a programmer has to know only a small subset of the

language to write programs, a novice TRAC programmer must be

aware of all the TRAC nuances before he can code in the

language.

100

Ftced with the problem of choosing one of the four

languages for a text editing system, system-implementation

questions aside, I would choose SNOBOL4. SNOBOL4 gives the

ability not only to perform pattern matching easily,

necessity in text editing, buf_ also to perform many other

kinds of string operations easily. PL/I, APL, and TRAC do

not have good pattern matching facilities. These three

languages would of course be more useful for string handling

if additional string operators were added to the language.

101

BIBLIOGRAPHY

1. Abrahams, P. W. Symbol Manipulation Languages. In

Advances in Computers, Voll_9, Academic Press, New York,
1968, pp. .51-111.

2. Bates, F. and Douglas, M. L. Programming Language/One.
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.

3. Bobrow, D. G. (Ed.) Symbol Manipulation Languages and

Techniques,. Proceedings of the IFIP Working Conference
on Symbol Haniptqation Languages. North-Holland Pub-

lishing Company, Amsterdam, 1968.

4. Bobrow, D. G. and Raphael, B. A Comparison of List-
Processing Computer Languages. In Programming Systems
and Languages, Saul Rosen (Ed.), McGraw-Hill, New York,
1967, pp. 490-509.

5. Breme, H. J. An Analysis of the TRAC Language. Report
Number CC-2200, Engineering Research Certer, Western
Electric, Princeton, N.J., 1967.

6. Brooks, F. P. and Iverson, K. E. Automatic Data Pro-

cessing. John Wiley and Sons, Inc., New York, 1969, pp.
343-44.

7. Caracciolo Di Forino, A. String Processing Languages
and Generalized Markov Algorithms. In Symbol Manipula-
tion Languages and Techniguess_ Proceedinag of the IFIP
Working_Conference on Symbol Manipulation Languages,

D. Bobrow (Ed.), North-Holland Publishing Company, Am-
sterdam, 1968, pp. 191-202.

8. Farber, D. J., Griswold, R. E., and Polonsky, I. P.

SNOBOL, A String Manipulating Language. Journal of the
ACM 11, 1 (1964), 21-30.

9. Forte, Allan. SNOBOL3 Primer: An .Introduction to the

Computer Programming Language. MIT Press, Cambridge,
Mass., 1967.

10. Griswold, R. E., Poage, J. F., and Polonsky, I. P. The

SNOBOL4 Programming Language. Prentice-Hall, Englewood
Cliffs, N.J., 1968.

102

11. IBM Corporation. API.L360 User's Manual. Form GH 20-

0683- 1970.

12. Katzan, H. Representation and Manlpulation of Data
Structures in API.. In pEoceedings of a Symposium on

Data Structures in Programming Languages, J. Tou and
P. Wegner (Eds.) , SIGPLAN Notices 6, 2 (Feb. 1971) ,

366-97.

13. MIT Research Laboratory of Electronics and the Computa-
tion Center. An Introduction to COMIT Programming. MIT

Press, Cambridge, Mass., 1961.

14. Mooers, C. N. How Some Fundamental Problems are Handled
in the Design of the TRAC Language. In Symbol Manipula-
tion Languages and Techniques Proceedings of the IFIP

Working Conference on Symbol Manipulation Languages,
D. Bobrow (Ed.), North-Holland Publishing Company, Am-

sterdam, 1968, pp. 178-88.

15. . TRAC, A Procedure-Describing Language for the
Reactive Typewriter. Communications of the ACM 9, 3

(Mar. 1966), 215-19.

16. and Deutsch, L. P. TRAC, A Text Handling

Language. Proceedings ACM 20th Nation?'" Conference,

1965, pp. 229-46.

17. Raphael, B. et al. A Brief Survey of Computer Lan-

guages and Algebraic Manipulation. In Symbol Manipula-
tion Languages and Techniguesi. Proceedings of the IFIP

Working .Conference on Symbol Manipulation Languages,
D. Bobrow (Ed.), North-Holland Publishing Company, Am-

sterdam, 1968, pp. 1-54.

18. Rosin, R. F. Strings in PL/I. PL/I Bulletin No. 4.

Sponsored by Working Group 4 (WG4) of the Special
Interest Group on Programming Languages (SIGPLAN) of the
Los Angeles Chapter of the ACM, Sept. 1967, pp. 1-12.

19. Sammet, J. Programming Languages: History and Funda-
mentals. Prentice-Hall, Englewood Cliff:;, N.J., pp.

382-470.

20. van der Poel, W. L. The Programming Language TRAC and
Its Implementation. Presented at IBM Geruany Computer

Science Seminar, Stuttgart, Germany, Sept. 20-21, 1971.

103

21. Wegner, P. Programming_ Languages4_ Igormation Struc-

tureE4 and Machine Organization. McGraw-Hill, New York,
1968, pp. 151-74.

104

