A Comparison of Structural CSP Decomposition Methods *

Georg Gottlob
Institut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria. E-mail: gottlob@dbai.tuwien.ac.at

Nicola Leone
Department of Mathematics, University of Calabria, I-87036 Rende (CS), Italy. E-mail: leone@unical.at

Francesco Scarcello
Dipartimento di Elettronica, Informatica e Sistemistica, University of Calabria, I-87036 Rende (CS), Italy. E-mail: scarcello@deis.unical.it

Abstract

We compare tractable classes of constraint satisfaction problems (CSPs). We first give a uniform presentation of the major structural CSP decomposition methods. We then introduce a new class of tractable CSPs based on the concept of hypertree decomposition recently developed in Database Theory, and analyze the cost of solving CSPs having bounded hypertree-width. We provide a framework for comparing parametric decomposition-based methods according to tractability criteria and compare the most relevant methods. We show that the method of hypertree decomposition dominates the others in the case of general CSPs (i.e., CSPs of unbounded arity). We also make comparisons for the restricted case of binary CSPs. Finally, we consider the application of decomposition methods to the dual graph of a hypergraph. In fact, this technique is often used to exploit binary decomposition methods for nonbinary CSPs. However, even in this case, the hypertree-decomposition method turns out to be the most general method.

Key words: Constraint satisfaction, decomposition methods, hypergraphs, tractable cases, degree of cyclicity, treewidth, hypertree width, tree-clustering, cycle cutsets, biconnected components.

[^0]
1 Introduction and Summary of Results

The efficient solution of Constraint Satisfaction Problems (CSPs) has been for many years an important goal of AI research. Constraint satisfaction is a central issue of problem solving and has an impressive spectrum of applications [23]. A constraint $\left(S_{i}, R_{i}\right)$ consists of a constraint scope S_{i}, i.e., a list of variables and an associated constraint relation r_{i} containing the legal combinations of values. A CSP consists of a set $\left\{\left(S_{1}, r_{1}\right),\left(S_{2}, r_{2}\right), \ldots,\left(S_{q}, r_{q}\right)\right\}$ of constraints whose variables may overlap (for a precise definition, see Section 2). A solution to a CSP consists a of an assignment of values to all variables such that all constraints are simultaneously satisfied. By solving a CSP we mean detemining whether the problem has a solution at all (i.e., checking for constraint satisfiability), and, if so, compute one solution.

Constraint satisfiability is equivalent to various database problems [4, 18, 7,21], e.g., to the problem of conjunctive query containment [21], or to the problem of evaluating Boolean conjunctive queries over a relational database [22] (for a discussion of this and other equivalent problems, see [15]). Actually, evaluating Boolean conjunctive queries, and deciding constraint satisfaction can be also recast as the same fundamental algebraic problem of deciding whether, given two finite relational structures A and B, there exists a homomorphism $f: A \rightarrow B$ [21].

Constraint satisfiability in its general form is well-known to be NP-hard. Much effort has been spent by both the AI and database communities to identify tractable classes of CSPs. Both communities have obtained deep and useful results in this direction. The various successful approaches to obtain tractable CSP classes can be divided into two main groups [23]:

Tractability due to restricted structure. This includes all tractable classes of CSPs that are identified solely on the base of the structure of the constraint scopes $\left\{S_{1}, \ldots S_{q}\right\}$, independently of the actual constraint relations r_{1}, \ldots, r_{q}.
Tractability due to restricted constraint relations. This includes all classes that are tractable due to particular properties of the constraint relations r_{1}, \ldots, r_{q}.

This paper deals with tractability due to restricted structure. There are several papers proposing polynomially tractable classes of constraints based on different structural properties of the constraint scopes. Usually, these properties can be formalized as graph-theoretic properties of the constraint graph in case of binary constraints, or of the constraint hypergraph in the general case. The constraint hypergraph of a CSP is the hypergraph whose vertices are the variables of the CSP and whose hyperedges are the sets of all those variables which occur together in a constraint scope.

It is well known that CSPs with acyclic constraint hypergraphs are polynomially solvable [7]. The known structural properties that lead to tractable CSP classes are
all (explicitly or implicitly) based on some generalization of acyclicity. In particular, each method defines some concept of width which can be interpreted as a measure of cyclicity of the underlying constraint (hyper)graph such that, for each fixed width k, all CSPs of width bounded by k are solvable in polynomial time. There is a plethora of proposed methods based on various different measures of cyclicity, but little was known so far on the relative strength of the different methods. A comparison of the main methods is called for.

In this paper we establish a framework for uniformly defining and comparing structural CSP decomposition methods. Within this framework we compare the main methods that have been published so far. In particular, we deal with the following methods (which are reviewed in detail in Section 4): Cycle Cutset [7], Tree Clustering [9], Treewidth [24], Hinge Decomposition [18,19], Hinge Decomposition with Tree Clustering [18], Cycle Hypercutset, and Hypertree Decomposition [16].

We first point out that every considered CSP-decomposition method D gives rise to an infinite hierarchy of CSP classes:

$$
C(D, 1) \subset C(D, 2) \subset \cdots \subset C(D, i), \cdots \cdots
$$

such that the CSPs of each class $C(D, k)$ are solvable in time bounded by a polynomial. In particular, for each CSP C belonging to class $C(D, k)$ there exists a decomposition of width $\leq k$, i.e., a data structure witnessing that C can be transformed in polynomial time into an equivalent acyclic CSP.

For each CSP-decomposition method D, the class $C(D, k)$ is a tractable class of CSPs because the following important tasks are tractable:
(1) Checking membership of a CSP C in $C(D, k)$, and computing a corresponding CSP decomposition for C.
(2) Solving the CSP C. In turn, this task usually consists of the following two subtasks:

- Transforming C in polynomial time into an equivalent acyclic CSP C^{\prime}, and
- solving C^{\prime} in polynomial time by using well-known algorithms.

In this paper we compare only those methods that are tractable in the above sense. In fact, there are methods for solving CSPs, reported in the literature, for which only one of the two tasks (1) and (2) above is tractable, while the other one is NP-hard. For instance, task (1) is NP-complete for the method of bounded query decompositions defined by Chekuri and Rajaraman [6] (see [16] for an NP-completeness proof), while task (2) is intractable for an early method proposed by Freuder [10,11] (see Section 4 for an NP-completeness proof).

For a pair of decomposition methods D_{1} and D_{2}, we define the following comparison criteria:

Generalization. D_{2} generalizes D_{1} if there exists a constant δ such that, for each level $k, C\left(D_{1}, k\right) \subseteq C\left(D_{2}, k+\delta\right)$ holds. In practical terms, this means that whenever a class \mathcal{C} of constraints is tractable according to method D_{1}, it is also tractable according to D_{2}. Moreover, the worst case runtime upper bound guaranteed by method D_{2} is polynomially bounded by the worst case upper bound guaranteed by method D_{1}; more precisely, the overhead of D_{2} with respect to D_{1} is at most n^{δ}, where n is the size of the input CSP. Note that for all pairs of methods compared in this paper, δ is at most 1 . This means that there is no significant loss of efficiency when replacing method D_{1} with the more general method D_{2}.
Beating. D_{2} beats D_{1} if there exists an integer k such that $C\left(D_{2}, k\right)$ is not contained in class $C\left(D_{1}, m\right)$ for any m. Intuitively, this means that some classes of problems are tractable according to D_{2} but not according to D_{1}. For such classes, using D_{2} is thus better than using D_{1}.
Strong generalization. D_{2} strongly generalizes D_{1} if D_{2} generalizes D_{1} and D_{2} beats D_{1}. This means that D_{2} is really the more powerful method, given that, whenever D_{1} guarantees polynomial runtime for constraint solving, then also D_{2} guarantees tractable constraint solving, but there are classes of constraints that can be solved in polynomial time by using D_{2} but are not tractable according to D_{1}.
Equivalence. D_{1} and D_{2} are equivalent if D_{1} generalizes D_{2} and D_{2} generalizes D_{1}. Intuitively, this means that the methods are polynomial on the same classes of CSPs and do not differ significantly from each other.

In this paper we completely classify all above-mentioned decomposition methods according to these criteria. The result of the classification is given in Figure 1. This figure, in addition mentions another method (ω^{*}) which is known to be equivalent to the tree-clustering method [9].

An arrow from a method D_{1} to a method D_{2} in Figure 1 indicates that D_{2} is strongly more general than D_{1}. Since this relationship is transitive, also a directed path between two methods indicates the same relationship. The picture is complete in the sense that there is a directed path from method D_{1} to method D_{2} if and only if D_{2} strongly generalizes D_{1}. On the other hand, whenever two methods are not related by a directed path, then they are incomparable with respect to the generalization relation, and, moreover, each of the two methods beats the other.

Figure 1 shows that the method of Hypertree Decompositions dominates all other methods, as it is strongly more general than the other decomposition methods. This method was originally introduced in the database field for identifying a large class of tractable conjunctive queries [16]. In this paper we adapt this notion to the setting of constraints and we show that constraints of bounded hypertree-width are polynomially solvable, providing a precise complexity analysis. In particular, we show that CSPs of hypertree width k can be solved in time $O\left(n^{k+1} \times \log n\right)$.

Figure 1. Constraint Tractability Hierarchy
Hypertree width is a measure of cyclicity specifically designed for hypergraphs. It is interesting to see how the situation changes in the special case of graphs, i.e., of binary CSPs. To answer this question, we have compared all considered method in the binary case (in Section 8; see Figure 25). Again, it turns out that the method of Hypertree Decomposition dominates the others, but this time in a slightly weaker sense to be explained in Section 8.

It was recently asked ${ }^{1}$ whether the method of Hypertree Decompositions can be explained in terms of simpler and well-known graph cyclicity measures. To every hypergraph \mathcal{H} one defines the dual graph of \mathcal{H} by taking as vertices the hyperedges of \mathcal{H} and by connecting two vertices by an edge if their corresponding hyperedges intersect. The question arose whether the hypertree width of a hypergraph coincides with the treewidth or TCLUSTER width of the dual graph of \mathcal{H} (See Section 9 for definitions). We study this interesting question in Section 9 and give a negative answer. More generally, we show that the method of hypertree decompositions strongly generalizes all relevant binary methods based on the dual graph of a given hypergraph.

This paper is organized as follows. Section 2 contains preliminaries on CSPs. In Section 3 we discuss tractability of CSPs due to restricted structure. In Section 4 we review well-known CSP decomposition methods. In Section 5 we describe the new method of hypertree decompositions and analyze the cost of solving CSPs having bounded hypertree-width. In Section 6 we explain our comparison criteria and in Section 7 we present the comparison results for general CSPs. The case of binary CSPs is briefly discussed in Section 8. In Section 9 we consider the application of "binary" methods to the dual graph of a hypergraph. Finally, in Section 10, we draw our conclusions.

[^1]
2 Constraint Satisfaction Problems

An instance of a constraint satisfaction problem (CSP) (also constraint network) is a triple $I=(\operatorname{Var}, U, \mathcal{C})$, where Var is a finite set of variables, U is a finite domain of values, and $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ is a finite set of constraints. Each constraint C_{i} is a pair (S_{i}, r_{i}), where S_{i} is a list of variables of length m_{i} called the constraint scope, and r_{i} is an m_{i}-ary relation over U, called the constraint relation. (The tuples of r_{i} indicate the allowed combinations of simultaneous values for the variables S_{i}). A solution to a CSP instance is a substitution $\vartheta: \operatorname{Var} \longrightarrow U$, such that for each $1 \leq i \leq q, S_{i} \vartheta \in r_{i}$. The problem of deciding whether a CSP instance has any solution is called constraint satisfiability (CS). (This definition is taken almost verbatim from [20].)

Many well-known problems in Computer Science and Mathematics can be formulated as CSPs.

Example 1 The famous graph three-colorability (3COL) problem, i.e., deciding whether the vertices of a graph $G=$ (Vertices, Edges) can be colored by three colors (say: red, green, blue) such that no edge links two vertices having the same color, is formulated as follows as a CSP. The set Var contains a variable X_{v} for each vertex $v \in$ Vertices. For each edge $e=\{v, w\} \in$ Edges, where $v<w$ according to some ordering on Vertices, the set \mathcal{C} contains a constraint $C_{e}=\left(S_{e}, r_{e}\right)$, where $S_{e}=\left(X_{v}, X_{w}\right)$ and r_{e} is the relation r_{\neq}consisting of all pairs of different colors, i.e., $r_{\neq}=\{\langle$red, green \rangle,\langlered, blue \rangle,\langlegreen, red \rangle,\langlegreen, blue $\rangle,\langle b l u e$, red \rangle, \langle blue, green \rangle \}.

For instance, the set of constraints for the graph G_{1} in Figure 2 is the following $\mathcal{C}=\left\{\left((A, B), r_{\neq}\right),\left((A, D), r_{\neq}\right),\left((A, G), r_{\neq}\right),\left((B, C), r_{\neq}\right), \ldots,\left((G, H), r_{\neq}\right)\right\}$.

Figure 2. The graph G_{1}
Example 2 Figure 3 shows a combinatorial crossword puzzle, which is a typical CSP [7,23]. A set of legal words is associated to each horizontal or vertical array of white boxes delimited by black boxes. A solution to the puzzle is an assignment of a letter to each white box such that to each white array is assigned a word from its set of legal words.

This problem is represented as follows. There is a variable X_{i} for each white box,
and a constraint C for each array D of white boxes. (For simplicity, we just write the index i for variable X_{i}.) The scope of C is the list of variables corresponding to the white boxes of the sequence D; the relation of C contains the legal words for D. For the example in Figure 3, we have $C_{1 H}=\left((1,2,3,4,5), r_{1 H}\right), C_{8 H}=$ $\left((8,9,10), r_{8 H}\right), C_{11 H}=\left((11,12,13), r_{11 H}\right), C_{20 H}=\left((20,21,22,23,24,25,26), r_{20 H}\right)$, $C_{1 V}=\left((1,7,11,16,20), r_{1 V}\right), C_{5 V}=\left((5,8,14,18,24), r_{5 V}\right), C_{6 V}=\left((6,10,15,19,26), r_{6 V}\right)$, $C_{13 V}=\left((13,17,22), r_{13 V}\right)$. Subscripts H and V stand for "Horizontal" and "Vertical," respectively, resembling the usual naming of definitions in the crossword puzzles. A possible instance for the relation $r_{1 H}$ is $\{\langle h, o, u, s, e\rangle,\langle c, o, i, n, s\rangle,\langle b, l, o, c, k\rangle\}$.

1	2	3	4	5		6
7				8	9	10
11	12	13		14		15
16		17		18		19
20	21	22	23	24	25	26

Figure 3. A crossword puzzle
It is well-known and easy to see that Constraint Satisfiability is an NP-complete problem. Membership in NP is obvious. NP-hardness follows, e.g., immediately from the NP hardness of 3COL [13].

3 Tractable classes of CSPs

Much effort has been spent by both the AI and database communities to indentify tractable classes of CSPs. Both communities have obtained deep and useful results in this direction. The various successful approaches to obtain tractable CSP classes can be divided into two main groups [23]:

1. Tractability due to restricted structure. This includes all tractable classes of CSPs that are identified solely on the base of the structure of the constraint scopes $\left\{S_{1}, \ldots S_{q}\right\}$, independently of the actual constraint relations r_{1}, \ldots, r_{q}.
2. Tractability due to restricted constraints. This includes all classes that are tractable due to particular properties of the constraint relations r_{1}, \ldots, r_{q}.

The present paper deals with tractability due to restricted structure.
The structure of a CSP is best represented by its associated hypergraph and by
the corresponding primal graph, defined as follows. To any CSP instance $I=$ (Var $, U, \mathcal{C}$), we associate a hypergraph $\mathcal{H}_{I}=(V, H)$, where $V=\operatorname{Var}$, and $H=$ $\{\operatorname{var}(S) \mid C=(S, r) \in \mathcal{C}\}$, where $\operatorname{var}(S)$ denotes the set of variables in the scope S of the constraint C. Figure 4 shows the hypergraph $\mathcal{H}_{c p}$ associated to the crossword puzzle of Example 2.

Figure 4. Hypergraph $\mathcal{H}_{c p}$ of the crossword puzzle in Example 2

Since in this paper we always deal with hypergraphs corresponding to CSPs instances, the vertices of any hypergraph $\mathcal{H}=(V, H)$ can be viewed as the variables of some constraint satisfaction problem. Thus, we will often use the term variable as a synonym for vertex, when referring to elements of V. Moreover, for the hypergraph $\mathcal{H}=(V, H), \operatorname{var}(\mathcal{H})$ and $\operatorname{edges}(\mathcal{H})$ denote the sets V and H, respectively.

Let $\mathcal{H}_{I}=(V, H)$ be the constraint hypergraph of a CSP instance I. The primal graph of I is a graph $G=(V, E)$, having the same set of variables (vertices) as \mathcal{H}_{I} and an edge connecting any pair of variables $X, Y \in V$ such that $\{X, Y\} \subseteq h$ for some $h \in H$.

Note that if all constraints of a CSP are binary, then its associated hypergraph is identical to its primal graph.

The most basic and most fundamental structural property considered in the context of CSPs (and conjunctive database queries) is acyclicity. It was recognized independently in AI and in database theory that acyclic CSPs are polynomially solvable. A CSP I is acyclic if its primal graph G is chordal (i.e., any cycle of length greater than 3 has a chord) and the set of its maximal cliques coincide with $\operatorname{edges}\left(\mathcal{H}_{I}\right)$ [2].

A join tree $J T(\mathcal{H})$ for a hypergraph \mathcal{H} is a tree whose vertices are the edges of \mathcal{H} such that, whenever the same variable $X \in V$ occurs in two edges A_{1} and A_{2} of \mathcal{H}, then A_{1} and A_{2} are connected in $T(\mathcal{H})$, and X occurs in each vertex on the unique path linking A_{1} and A_{2} in $J(\mathcal{H})$. In other words, the set of vertices in which X occurs induces a (connected) subtree of $J(\mathcal{H})$. We will refer to this condition as
the Connectedness Condition of join trees.
Acyclic hypergraphs can be characterized in terms of join trees: A hypergraph \mathcal{H} is acyclic iff it has a join tree [3,2,22]. There exist various equivalent characterizations of acyclic hypergraphs [2,14,22]. Checking the satisfiability of acyclic CSPs (or, equivalently, evaluating acyclic conjunctive queries) is not only tractable but also highly parallelizable. In fact, as shown in [15], this problem is complete for the complexity class LOGCFL, a very low class contained in the parallel classes AC_{1} and NC_{2}.

Many CSPs arising in practice are not acyclic but are in some sense or another close to acyclic CSPs. In fact, the hypergraphs associated with many naturally arising CSPs contain either few cycles or small cycles, or can be transformed to acyclic CSPs by simple operations (such as, e.g., lumping together small groups of vertices). Consequently, CSP research in AI and in database theory concentrated on identifying, defining, and studying suitable classes of nearly acyclic CSPs, or, equivalently, decomposition methods, i.e., techniques for decomposing cyclic CSPs into acyclic CSPs [23,7].

4 Decomposition Methods

In order to study and compare various decomposition methods, we find it useful to introduce a general formal framework for this notion.

Let \mathcal{H} be a hypergraph. For any set of edges $H^{\prime} \subseteq \operatorname{edges}(\mathcal{H})$, let $\operatorname{var}\left(H^{\prime}\right)=$ $\bigcup_{h \in H^{\prime}} h$. Without loss of generality, we assume that $\operatorname{var}(H)=\operatorname{var}(\mathcal{H})$, i.e., every variable in $\operatorname{var}(\mathcal{H})$ occurs in at least one edge of \mathcal{H}, and hence, any hypergraph can be simply represented by the set of its edges. Moreover, we assume without loss of generality that all hypergraphs under consideration are both connected, i.e., their primal graph consists of a single connected component, and reduced, i.e., no hyperedge is contained in any other hyperedge. All our definitions and results easily extend to general hypergraphs.

Let $\mathcal{H} S$ be the set of all (reduced and connected) hypergraphs. A decomposition method (short: DM) D associates to any hypergraph $\mathcal{H} \in \mathcal{H} S$ a parameter D width (\mathcal{H}), called the D width of \mathcal{H}.

The decomposition method D ensures that, for fixed k, every CSP instance I whose hypergraph \mathcal{H}_{I} has D-width $\leq k$ is polynomially solvable, i.e., it is solvable in $p(\|I\|)=O\left(\|I\|^{O(1)}\right)$ time, where $\|I\|$ denotes the size of I. For any CSP instance I, the size of I is defined in the standard way, i.e., as the number of bits needed for encoding I by listing, for each constraint in I, its constraint scope and all tuples occurring in its constraint relation.

For any $k>0$, the k-tractable class $C(D, k)$ of D is defined by

$$
C(D, k)=\{\mathcal{H} \mid D \text {-width }(\mathcal{H}) \leq k\} .
$$

Thus, $C(D, k)$ collects the set of CSP instances which, for fixed k, are polynomially solvable by using the strategy D. Typically, the polynomial $p(\|I\|)$ depends on the parameter k. In particular, for each D, there exists a function f such that, for each k, each instance $I \in C(D, k)$ can be transformed in time $O\left(\|I\|^{O(f(k))}\right)$ into an equivalent acyclic CSP instance. (It follows that all problems in $C(D, k)$ are polynomially solvable.)

Every DM D is complete with respect to $\mathcal{H} S$, i.e., $\mathcal{H} S=\bigcup_{k \geq 1} C(D, k)$. Note that, by our definitions, it holds that D-width $(\mathcal{H})=\min \{k \mid \mathcal{H} \in C(D, k)\}$.

All tractable classes based on restricted structure that we have studied in the literature fit into this framework. We next describe how the notion of width is defined in the decomposition methods we shall compare in this paper. Detailed descriptions of these methods can be found in the corresponding reference (see below) and in many surveys on this subject, e.g., [23,7].

4.1 Biconnected Components (short: BICOMP) [11]

Let $G=(V, E)$ be a graph. A vertex $p \in V$ is a separating vertex for G if, by removing p from G, the number of connected components of G increases. A biconnected component of G is a maximal set of vertices $C \subseteq V$ such that the subgraph of G induced by C is connected and remains connected after any one-vertex removal, i.e., has no separating vertices.

It is well known that, from any graph G, we can compute in linear time a vertexlabeled tree $\langle T, \chi\rangle$, where the labeling function χ is a bijective function that associates to each vertex of the tree T a set of vertices S of G, such that S is either a biconnected component of G, or a singleton containing a separating vertex for G. There is an edge $\{p, q\}$ in the tree T, if $\chi(p)$ is a biconnected component of G and $\chi(q)$ contains a separating vertex for G belonging to the component $\chi(p)$, i.e., $\chi(q) \subseteq \chi(p)$, holds. We say that $\langle T, \chi\rangle$ is the BICOMP decomposition of G.

For a hypergraph \mathcal{H}, the BICOMP decomposition of \mathcal{H} is the BICOMP decomposition of its primal graph, and the biconnected width of \mathcal{H}, denoted by BICOMP-width (\mathcal{H}), is the maximum number of vertices over the biconnected components of the primal graph of \mathcal{H}.

Example 3 Figure 5.a shows a hypergraph \mathcal{H}_{b} and Figure 5.b its primal graph. The vertices G, C, D, and E are the separating vertices of this primal graph. Note that
the maximum number of vertices over its biconnected components is 3 , and thus BICOMP-width $(\mathcal{H})=3$. Figure 6 shows the BICOMP decomposition of \mathcal{H}_{b}.

(a)

(b)

Figure 5. (a) The hypergraph \mathcal{H}_{b}, and (b) its primal graph

Figure 6. The BICOMP decomposition of the hypergraph \mathcal{H}_{b} in Example 3

4.2 Tree Clustering (short: TCLUSTER) [9]

The tree clustering method is based on a triangulation algorithm which transforms the primal graph $G=(V, E)$ of any CSP instance I into a chordal graph G^{\prime}. The acyclic hypergraph $\mathcal{H}\left(G^{\prime}\right)$ having the same set of vertices as G^{\prime} and the maximal cliques of G^{\prime} as its hyperedges is a TCLUSTER decomposition of \mathcal{H}_{I}. Intuitively, the hyperedges of $\mathcal{H}\left(G^{\prime}\right)$ are used to build the constraints of an acyclic CSP I^{\prime} equivalent to I. The width of the TCLUSTER decomposition $\mathcal{H}\left(G^{\prime}\right)$ is the maximum cardinality of its hyperedges. The tree-clustering width (short: TCLUSTER width) of \mathcal{H}_{I} is 1 if \mathcal{H}_{I} is an acyclic hypergraph; otherwise, it is equal to the minimum width over the TCLUSTER decompositions of \mathcal{H}_{I}.

Example 4 Consider the hypergraph $\mathcal{H}_{t c}$ shown in Figure 7.a. Figure 7.b shows its primal graph.

(a)

(b)

Figure 7. (a) The hypergraph $\mathcal{H}_{t c}$, and (b) its primal graph
This graph can be triangulated as shown in Figure 8.a. If we associate a hyperedge to each maximal clique of this triangulated graph, we get the acyclic hypergraph shown in Figure 8.b. This acyclic hypergraph is a TCLUSTER decomposition of $\mathcal{H}_{t c}$ of width 3 . Moreover, it is easy to see that there is no TCLUSTER decomposition for $\mathcal{H}_{t c}$ having a smaller width, and hence the TCLUSTER width of $\mathcal{H}_{t c}$ is 3 .

Figure 8. (a) A triangulation of the primal graph of $\mathcal{H}_{t c}$, and (b) a TCLUSTER decomposition of $\mathcal{H}_{t c}$

4.3 Treewidth (TREEWIDTH) [24]

A tree decomposition of a graph $G=(V, E)$ is a pair $\langle T, \chi\rangle$, where $T=(N, F)$ is a tree, and χ is a labeling function associating to each vertex $p \in N$ a set of vertices $\chi(p) \subseteq V$, such that the following conditions are satisfied:
(1) for each vertex b of G, there exists $p \in N$ such that $b \in \chi(p)$;
(2) for each edge $\{b, d\} \in E$, there exists $p \in N$ such that $\{b, d\} \subseteq \chi(p)$;
(3) for each vertex b of G, the set $\{p \in N \mid b \in \chi(p)\}$ induces a (connected) subtree of T.

The width of the tree decomposition $\langle T, \chi\rangle$ is $\max _{p \in N}|\chi(p)-1|$. The treewidth of G is the minimum width over all its tree decompositions. The TREEWIDTH of a hypergraph \mathcal{H} is 1 if \mathcal{H} is an acyclic hypergraph; otherwise, it is equal to the treewidth of its primal graph. As pointed out below, TREEWIDTH and TCLUSTER
are two equivalent methods.
Example 5 Consider again the hypergraph $\mathcal{H}_{t c}$ in Example 4. Figure 9 show a tree decomposition of $\mathcal{H}_{t c}$ having width 2 . It follows that the treewidth of $\mathcal{H}_{t c}$ is 2 as only hypergraphs having acyclic primal graphs have treewidth 1.

Figure 9. A tree decomposition of hypergraph $\mathcal{H}_{t c}$ in Example 4

4.4 Hinge Decompositions (short: HINGE) $[18,19]$

Let \mathcal{H} be a hypergraph, $H \subseteq \operatorname{edges}(\mathcal{H})$, and $F \subseteq \operatorname{edges}(\mathcal{H})-H$. Then F is called connected with respect to H if, for any two edges $e, f \in F$, there exists a sequence e_{1}, \ldots, e_{n} of edges in F such that (i) $e_{1}=e ;(i i)$ for $i=1, \ldots, n-1, e_{i} \cap e_{i+1}$ is not contained in $\bigcup_{h \in H} h$; and (iii) $e_{n}=f$. The maximal connected subsets of $\operatorname{edges}(\mathcal{H})-H$ with respect to H are called the connected components of \mathcal{H} with respect to H. It is easy to see that the connected components of \mathcal{H} with respect to H form a partition of $\operatorname{edges}(\mathcal{H})-H$.

Let $\mathcal{H} \in \mathcal{H} S$ and let H be either edges (\mathcal{H}) or a proper subset of $\operatorname{edges}(\mathcal{H})$ containing at least two edges. Let C_{1}, \ldots, C_{m} be the connected components of \mathcal{H} with respect to H. Then, H is a hinge if, for $i=1, \ldots, m$, there exists an edge $h_{i} \in H$ such that $\left.\operatorname{var}\left(\operatorname{edges}\left(C_{i}\right)\right) \cap \operatorname{var}(H)\right) \subseteq h_{i}$. A hinge is minimal if it does not contain any other hinge.

A hinge decomposition of \mathcal{H} is a tree T such that all the following conditions hold: (1) the vertices of T are minimal hinges of \mathcal{H}; (2) each edge in $\operatorname{edges}(\mathcal{H})$ is contained in at least one vertex of T; (3) two adjacent vertices A and B of T share precisely one edge $L \in \operatorname{edges}(\mathcal{H})$; moreover, L consists exactly of the variables shared by A and B (i.e., $L=\operatorname{var}(A) \cap \operatorname{var}(B)$); (4) the variables of \mathcal{H} shared by two vertices of T are entirely contained within each vertex on their connecting path in T.

It was shown in [19] that, for any CSP instance I, the cardinality of the largest vertex of any hinge decomposition of \mathcal{H}_{I} is an invariant of \mathcal{H}_{I}, and is equal to the cardinality of the largest minimal hinge of \mathcal{H}_{I}. This number is called the degree of cyclicity of \mathcal{H}_{I}. We will also refer to it as the HINGE width of \mathcal{H}_{I}.

Figure 10. (a) Hypergraph $\mathcal{H}_{h g}$, and (b) a hinge-tree decomposition of $\mathcal{H}_{h g}$
Example 6 Consider a CSP instance $I_{h g}$ having the following constraint scopes:

$$
\begin{aligned}
& s_{1}\left(X_{1}, X_{10}, X_{11}\right) ; s_{2}\left(X_{1}, X_{2}, X_{3}\right) ; s_{3}\left(X_{1}, X_{4}\right) ; s_{4}\left(X_{3}, X_{6}\right) ; s_{5}\left(X_{4}, X_{5}, X_{6}\right) ; \\
& s_{6}\left(X_{4}, X_{7}\right) ; s_{7}\left(X_{5}, X_{8}\right) ; s_{8}\left(X_{6}, X_{9}\right) ; s_{9}\left(X_{2}, X_{3}, X_{10}, X_{11}\right) .
\end{aligned}
$$

Figure 10 shows the corresponding hypergraph $\mathcal{H}_{h g}$, which is clearly cyclic. The minimal hinges of $\mathcal{H}_{h g}$ are $H_{1}=\left\{s_{1}, s_{2}, s_{9}\right\}, H_{2}=\left\{s_{2}, s_{3}, s_{4}, s_{5}\right\}, H_{3}=\left\{s_{5}, s_{6}\right\}$, $H_{4}=\left\{s_{5}, s_{7}\right\}, H_{5}=\left\{s_{5}, s_{8}\right\}, H_{6}=\left\{s_{3}, s_{6}\right\}$, and $H_{7}=\left\{s_{4}, s_{8}\right\}$, where s_{i} denotes the set of variables occurring in the scope s_{i}, for $1 \leq i \leq 9$.

Since the cardinality of the largest minimal hinge of $\mathcal{H}_{h g}$ (hinge H_{2}) is 4, it follows that the HINGE width of $\mathcal{H}_{h g}$ is 4 . Figure 10. b shows a HINGE decomposition of $\mathcal{H}_{h g}$.

4.5 Hinge Decomposition + Tree Clustering (short: HINGE ${ }^{\text {TCLUSTER })}$ [18]

It has been observed [18] that the minimal hinges of a hypergraph can be further decomposed by means of the triangulation technique of the above-described tree-clustering method. This leads to a new decomposition method, that we call HINGE ${ }^{\text {TCLUSTER }}$, which combines HINGE and TCLUSTER and can be formally defined as follows. Let $T=(N, E)$ be a hinge tree of a hypergraph \mathcal{H}. For any hinge $H \in N$, let $w(H)$ be the minimum of the cardinality of H and the TCLUSTER width of the hypergraph $(\operatorname{var}(H), H)$. The HINGE ${ }^{\text {TCLUSTER }}$ width of \mathcal{H} with respect to T is $\max _{H \in N}\{w(H)\}$. A HINGE ${ }^{\text {TCLUSTER }}$ decomposition of \mathcal{H} with respect to T is an acyclic hypergraph \mathcal{H}^{\prime} having the same set of vertices as \mathcal{H}, and whose set of edges is obtained from T and \mathcal{H} as follows. For each hinge $H \in N$, if $w(H)=|H|$, then \mathcal{H}^{\prime} contains an edge $\operatorname{var}(H)$; otherwise, \mathcal{H}^{\prime} contains the edges of any TCLUSTER decomposition of the (sub)hypergraph $(\operatorname{var}(H), H)$ having width $w(H)$.

The HINGE ${ }^{\text {TCLUSTER }}$ width of \mathcal{H} is the minimum HINGE ${ }^{\text {TCLUSTER }}$ width over all its HINGE ${ }^{\text {TCLUSTER }}$ decompositions.

Figure 11. A HINGE ${ }^{\text {TCLUSTER }}$ decomposition of hypergraph $\mathcal{H}_{h g}$ in Example 6
Example 7 Consider again the constraint scopes of Example 6 and the hinge-tree decomposition for the hypergraph $\mathcal{H}_{h g}$ shown in Figure 10.b. From this hinge-tree decomposition, we construct a HINGE ${ }^{\text {TCLUSTER }}$ decomposition $\mathcal{H}_{h g}^{\prime}$ of $\mathcal{H}_{h g}$.

Consider the sub-hypergraph $\left(\operatorname{var}\left(H_{1}\right), H_{1}\right)$ corresponding to the minimal hinge H_{1} occurring in this hinge-tree decomposition. The primal graph of the hypergraph $\left(\operatorname{var}\left(H_{1}\right), H_{1}\right)$ is a clique containing the vertices $X_{1}, X_{2}, X_{3}, X_{10}$, and X_{11}, thus it is easy to see that the TCLUSTER width of this hypergraph is 5 . However, the hinge H_{1} contains three edges, hence we get $w\left(H_{1}\right)=3$, and the HINGE ${ }^{\text {TCLUSTER }}$ decomposition $\mathcal{H}_{h g}^{\prime}$ contains the edge $\left\{X_{1}, X_{2}, X_{3}, X_{10}, X_{11}\right\}$ with all the variables occurring in H_{1}.

A different situation concerns the sub-hypergraph $\left(\operatorname{var}\left(\mathrm{H}_{2}\right), \mathrm{H}_{2}\right)$ corresponding to the minimal hinge H_{2}. This hypergraph is identical to hypergraph $\mathcal{H}_{t c}$ in Example 4. We observed that $\mathcal{H}_{t c}$ has TCLUSTER width 3, which is smaller than $\left|H_{2}\right|=4$, and hence $w\left(H_{2}\right)=3$ holds. This means that, in this case, it is convenient to further decompose $\left(\operatorname{var}\left(H_{2}\right), H_{2}\right)$ using the TCLUSTER decomposition method, and the HINGE ${ }^{\text {TCLUSTER }}$ decomposition $\mathcal{H}_{h g}^{\prime}$ contains all the edges belonging to the TCLUSTER decomposition of $\mathcal{H}_{t c}=\left(\operatorname{var}\left(H_{2}\right), H_{2}\right)$ shown in Figure 7.

Similarly, for $i \in\{4,5,6\}$, the sub-hypergraphs $\left(\operatorname{var}\left(H_{i}\right), H_{i}\right)$ corresponding to the other hinges occurring in the hinge-tree decomposition at hand are acyclic hypergraphs. Therefore, $w\left(H_{i}\right)=1$ holds, because the TCLUSTER width of acyclic hypergraphs is 1 .

The resulting HINGE ${ }^{\text {TCLUSTER }}$ decomposition $\mathcal{H}_{h g}^{\prime}$ of $\mathcal{H}_{h g}$ is the acyclic hypergraph shown in Figure 11. The thickest edges in this figure come from the TCLUSTER decomposition of $\left(\operatorname{var}\left(H_{2}\right), H_{2}\right)$. Recall that both $w\left(H_{1}\right)$ and $w\left(H_{2}\right)$ are 3, which is the maximum value over the hinges occurring in the given HINGE decompo-
sition of $\mathcal{H}_{h g}$. Thus, the width of $\mathcal{H}_{h g}^{\prime}$ is 3 , and it is easy to verify that there is no other HINGE ${ }^{\text {TCLUSTER }}$ decomposition having smaller width. It follows that the HINGE ${ }^{\text {TCLUSTER }}$ width of $\mathcal{H}_{h g}$ is 3 .

4.6 Cycle Cutset (short: CUTSET) [7]

A cycle cutset of a hypergraph \mathcal{H} is a set $S \subseteq \operatorname{var}(\mathcal{H})$ such that the subgraph of the primal graph of \mathcal{H} (vertex-)induced by $\operatorname{var}(\mathcal{H})-S$ is acyclic. That is, after deleting the vertices in S, the primal graph of \mathcal{H} becomes acyclic. The CUTSET width of \mathcal{H} is 1 if \mathcal{H} is acyclic; otherwise, it is the minimum cardinality over all its possible cycle cutsets.

Example 8 The hypergraph \mathcal{H}_{b} shown in Figure 5.a has CUTSET width 4. Indeed, $\{G, C, D, E\}$ is a cycle cutset of this hypergraph, and any smaller set of vertices does not allow to break all the cycles in its primal graph (see Figure 5.b). As another example, consider the hypergraph $\mathcal{H}_{t c}$ shown in Figure 7. The CUTSET width of $\mathcal{H}_{t c}$ is 2 , because there is no cycle cutset of cardinality 1 , while there are cycle cutsets of cardinality 2 , e.g., the set $\left\{X_{1}, X_{4}\right\}$.

4.7 Cycle Hypercutset (short: HYPERCUTSET)

This is a simple modification of the CUTSET method where the cutset is composed of (hyper)edges rather than vertices of the given hypergraph. A cycle hypercutset of a hypergraph \mathcal{H} is a set $\hat{H} \subseteq \operatorname{edges}(\mathcal{H})$ such that the subhypergraph of \mathcal{H} induced by $\operatorname{var}(\mathcal{H})-\operatorname{var}(\hat{H})$ is acyclic. The HYPERCUTSET width of \mathcal{H} is 1 if \mathcal{H} is acyclic; otherwise, it is the minimum cardinality over all its possible cycle hypercutsets.

Example 9 The hypergraph \mathcal{H}_{b} shown in Figure 5.a has HYPERCUTSET width 2. Indeed, the set containing the two edges $\{F, G, C\}$ and $\{C, D, E\}$ is a hypercutset of this hypergraph, as deleting these edges it becomes acyclic. Moreover, by deleting any single edge, we cannot achieve acyclicity. Instead, the hypergraph $\mathcal{H}_{h g}$ shown in Figure 10 has HYPERCUTSET width 1. Indeed, e.g., by just deleting from $\mathcal{H}_{h g}$ the edge $\left\{X_{4}, X_{5}, X_{6}\right\}$ we get an acyclic hypergraph.

4.8 Solving CSPs using decomposition methods

For each of the above decomposition methods D, it was shown (or it is easy to see) that, for any fixed k, given a CSP instance I, deciding whether a hypergraph \mathcal{H}_{I} has D-width $\left(\mathcal{H}_{I}\right)$ at most k is feasible in polynomial time and that solving CSPs
whose associated hypergraph is of width at most k can be done in polynomial time. In particular, D consists of two phases. Given a CSP instance I,
(1) the (k-bounded) D width w of \mathcal{H}_{I} along with a corresponding decomposition is computed;
(2) exploiting this decomposition, I is then solved in time $O\left(n^{w+1} \log n\right)$, where n is the size of I plus the size of the given decomposition (for most methods this phase consists of the solution of an acyclic CSP instance equivalent to I).

Actually, for these methods it is always possible to give the decompositions in suitable forms without redundancies. Thus, the cost above reduces to $O\left(\|I\|^{w+1}\right.$ $\log \|I\|)$, i.e., it depends only on the CSP instance, and does not depend on the size of the decomposition. For a detailed analysis, see Section 5, where we study the complexity of evaluating bounded-width CSPs according to a new decomposition method, based on hypertree decompositions [16].

The cost of the first phase is independent on the constraint relations of I; in fact, it is $O\left(\left\|\mathcal{H}_{I}\right\|^{c_{1} k+c_{2}}\right)$, where $\left\|\mathcal{H}_{I}\right\|$ is the size of the hypergraph \mathcal{H}_{I}, and c_{1}, c_{2} are two constants relative to the method $D\left(0 \leq c_{1}, c_{2} \leq 3\right.$ for the methods above). As usual, the size of hypergraph \mathcal{H}_{I} is defined as the number of bits needed for encoding all the edges of \mathcal{H}_{I} as lists of variables. Clearly, the size of \mathcal{H}_{I} is always smaller than than $\|I\|$, because the encoding of I includes the encoding of its constraint relations, too. Observe also that computing the D-width w of a hypergraph in general (i.e., without the constant bound $w \leq k$) is NP-hard for most methods, while it is feasible in polynomial time for HINGE, and even in linear time for BICOMP.

Remark 10 The above complexity bounds, given as functions of the total size of the CSP instance, are appropriate for all considered decomposition methods for general CSP instances. Of course, if one considers some restricted cases, e.g., CSP instances with a fixed constant domain size, some finer analysis may be useful. In fact, by exploiting additional information, more accurate complexity bounds may be found in order to choose a method that is better tailored for such a special case.

4.9 Freuder width and adaptive width

Further interesting methods, that do not explicitly generalize acyclic hypergraphs, are based on a different notion of width, that we call Freuder width [10,11]. If \sqsubset is a total ordering of the vertices of a graph $G=(V, E)$, then the \sqsubset-width of G is defined by $w_{\sqsubset}(G)=\max _{v \in V} \mid\{\{v, w\} \in E$ s.t. $w \sqsubset v\} \mid$. The Freuder width of G is the minimum of all \sqsubset-widths over all possible total orderings \sqsubset of V. For each fixed constant k, it can be determined in polynomial time whether a graph is of Freuder width k. The graph G_{1} shown in Figure 2 has Freuder width 3. This width can be obtained taking the ordering $b \sqsubset d \sqsubset e \sqsubset a \sqsubset g \sqsubset h \sqsubset c \sqsubset f$. Freuder observed that many naturally arising CSPs have a very low width [10]. He
showed that a CSP of width k whose relations enjoy the property of k^{\prime}-consistency, where $k^{\prime}>k$, can be solved in a backtrack-free manner, and thus in polynomial time [10,11]. Clearly, since the consistency condition on the constraint relations must be satisfied, we cannot define a purely structural decomposition method based on Freuder width. In fact, the following theorem pinpoints that the structural property of bounded Freuder width does not make the CSP problem any easier.

Theorem 11 Constraint solvability remains NP-complete even if restricted to CSPs whose primal graph has Freuder width bounded by 4.

PROOF. 3COL remains NP-complete even for graphs of degree 4 (cf. [13]). Such graphs, however, have width at most 4 . By the encoding of 3COL as a CSP, as given in Section 2, the theorem follows.

One can try to enforce a suitable level of consistency on the constraint relations of a given CSP instance. However, the algorithms used to increase the level of consistency in the data also increase the Freuder width of the instance [25,8]. Of course, one can think of devising a more powerful procedure to find an equivalent CSP instance whose Freuder width stays below a fixed bound. However, from the above theorem, if $\mathrm{P} \neq \mathrm{NP}$, such a procedure cannot run in polynomial time.

Dechter and Pearl subsequently introduced the notion of induced width w^{*} [8], which is - roughly - the smallest Freuder width k of any graph G^{\prime} obtained by triangulation methods from the primal graph G of a CSP such that G^{\prime} ensures $k+1$ consistency. Graphs having induced width at most k can be also characterized as partial k-trees [12] or, equivalently, as graphs having treewidth at most k [1]. It follows that, for fixed k, checking whether $w^{*} \leq k$ is feasible in linear time [5]. If w^{*} is bounded by a constant, a CSP is solvable in polynomial time. The approach to CSPs based on w^{*} is referred to as the w^{*}-Tractability method [7]. Note that this method is implicitly based on hypergraph acyclicity, given that the used triangulation methods enforce chordality of the resulting graph G^{\prime} and thus acyclicity of the corresponding hypergraph. It was noted [9,7] that, for any cyclic CSP instance I, $\operatorname{TCLUSTER}$ width $\left(\mathcal{H}_{I}\right)=w^{*}\left(\mathcal{H}_{I}\right)+1$.

5 Hypertree Decompositions of CSPs

A new class of tractable conjunctive database queries, which generalizes the class of acyclic queries, has recently been identified [16]. This is the class of queries having a bounded-width hypertree decomposition [16]. Deciding whether a given query has this property is feasible in polynomial time and even highly parallelizable. In this section we first adapt the notion of hypertree decomposition, previously
defined in the database context, to the general framework of hypergraphs. Then, we show how to employ this notion in order to define a new CSP decomposition method we will refer to as HYPERTREE.

A hypertree for a hypergraph \mathcal{H} is a triple $\langle T, \chi, \lambda\rangle$, where $T=(N, E)$ is a rooted tree, and χ and λ are labeling functions which associate to each vertex $p \in N$ two sets $\chi(p) \subseteq \operatorname{var}(\mathcal{H})$ and $\lambda(p) \subseteq \operatorname{edges}(\mathcal{H})$. If $T^{\prime}=\left(N^{\prime}, E^{\prime}\right)$ is a subtree of T, we define $\chi\left(T^{\prime}\right)=\bigcup_{v \in N^{\prime}} \chi(v)$. We denote the set of vertices N of T by vertices (T), and the root of T by $\operatorname{root}(T)$. Moreover, for any $p \in N, T_{p}$ denotes the subtree of T rooted at p.

Definition 12 A hypertree decomposition of a hypergraph \mathcal{H} is a hypertree $H D=$ $\langle T, \chi, \lambda\rangle$ for \mathcal{H} which satisfies all the following conditions:
(1) for each edge $h \in \operatorname{edges}(\mathcal{H})$, there exists $p \in \operatorname{vertices}(T)$ such that $\operatorname{var}(h) \subseteq$ $\chi(p)$ (we say that p covers h);
(2) for each variable $Y \in \operatorname{var}(\mathcal{H})$, the set $\{p \in \operatorname{vertices}(T) \mid Y \in \chi(p)\}$ induces a (connected) subtree of T;
(3) for each $p \in \operatorname{vertices}(T), \chi(p) \subseteq \operatorname{var}(\lambda(p))$;
(4) for each $p \in \operatorname{vertices}(T)$, $\operatorname{var}(\lambda(p)) \cap \chi\left(T_{p}\right) \subseteq \chi(p)$.

Note that the inclusion in Condition 4 is actually an equality, because Condition 3 implies the reverse inclusion.

An edge $h \in \operatorname{edges}(\mathcal{H})$ is strongly covered in $H D$ if there exists $p \in \operatorname{vertices}(T)$ such that $\operatorname{var}(h) \subseteq \chi(p)$ and $h \in \lambda(p)$. In this case, we say that p strongly covers h.

A hypertree decomposition $H D$ of hypergraph \mathcal{H} is a complete decomposition of \mathcal{H} if every edge of \mathcal{H} is strongly covered in $H D$.

The width of a hypertree decomposition $\langle T, \chi, \lambda\rangle$ is $\max _{p \in \operatorname{vertices}(T)}|\lambda(p)|$. The HYPERTREE width $h w(\mathcal{H})$ of \mathcal{H} is the minimum width over all its hypertree decompositions. A c-width hypertree decomposition of \mathcal{H} is optimal if $c=h w(\mathcal{H})$.

The acyclic hypergraphs are precisely those hypergraphs having hypertree width one. Indeed, any join tree of an acyclic hypergraph \mathcal{H} trivially corresponds to a hypertree decomposition of \mathcal{H} of width one. Furthermore, if a hypergraph \mathcal{H}^{\prime} has a hypertree decomposition of width one, then, from this decomposition, we can easily compute a join tree of \mathcal{H}^{\prime}, which is therefore acyclic [16].

Remark 13 From any hypertree decomposition $H D$ of \mathcal{H}, we can easily compute a complete hypertree decomposition of \mathcal{H} having the same width. For any "missing" edge h, choose a vertex q of T such that $\operatorname{var}(h) \subseteq \chi(q)$ (such a vertex must exist by Condition 1), and create a new vertex p as a child of q with $\lambda(p)=h$ and $\chi(p)=\operatorname{var}(h)$. Assuming the use of suitable data structures, this computation can
be done in $O(\|\mathcal{H}\| \cdot\|H D\|)$ time, where $\|H D\|$ denotes the size of a hypertree decomposition, i.e., the number of bits needed for encoding $H D$ (that is, for encoding the rooted tree of $H D$ and, for each vertex v of this tree, the labelings χ and λ for v, encoded as a list of variables and a list of edge identifiers, respectively).

Intuitively, if \mathcal{H} is a cyclic hypergraph, the χ labeling selects the set of variables to be fixed in order to split the cycles and achieve acyclicity; $\lambda(p)$ "covers" the variables of $\chi(p)$ by a set of edges.

Example 14 Figure 12 shows a hypertree decomposition of width 2 of the hypergraph $\mathcal{H}_{c p}$ of the crossword puzzle in Example 2 (see Figure 4). Each box b in this figure represents a vertex v of the hypertree decomposition of $\mathcal{H}_{c p}$. The two sets depicted in the box b are the labelings $\chi(v)$ and $\lambda(v)$. The hypergraph $\mathcal{H}_{c p}$ is clearly cyclic, therefore $h w\left(\mathcal{H}_{c p}\right)>1$ (as only acyclic hypergraphs have hypertree width 1). Thus, it follows that the HYPERTREE width of $\mathcal{H}_{c p}$ is 2 .

Figure 12. A hypertree decomposition of width 2 of hypergraph $\mathcal{H}_{c p}$ in Example 2

Figure 13. A 2-width hypertree decomposition of \mathcal{H}_{1}
Example 15 Consider the following constraint scopes:

$$
\begin{aligned}
& j\left(J, X, Y, X^{\prime}, Y^{\prime}\right) ; a\left(S, X, X^{\prime}, C, F\right) ; b\left(S, Y, Y^{\prime}, C^{\prime}, F^{\prime}\right) \\
& c\left(C, C^{\prime}, Z\right) ; d(X, Z) ; e(Y, Z) ; f\left(F, F^{\prime}, Z^{\prime}\right) ; g\left(X^{\prime}, Z^{\prime}\right) ; h\left(Y^{\prime}, Z^{\prime}\right) .
\end{aligned}
$$

Let \mathcal{H}_{1} be their corresponding hypergraph. Since \mathcal{H}_{1} is cyclic, $h w\left(\mathcal{H}_{1}\right)>1$ holds. Figure 13 shows a (complete) hypertree decomposition of \mathcal{H}_{1} having width 2 , hence $h w\left(\mathcal{H}_{1}\right)=2$.

Figure 14. Hyperedge representation of hypertree decomposition $H D_{5}$
In order to help the intuition of what a hypertree decomposition is, we also present an alternative representation, called hyperedge representation. (Also, "atom representation," in the conjunctive-queries framework.) Figure 14 shows the hyperedge representation of the hypertree decomposition $H D_{1}$ of \mathcal{H}_{1}. Each node p in the tree is labeled by a set of hyperedges representing $\lambda(p) ; \chi(p)$ is the set of all variables, distinct from ' $_$', appearing in these hyperedges. Thus, the anonymous variable ' \quad ' replaces the variables in $\operatorname{var}(\lambda(p))-\chi(p)$.

Using this representation, we can easily observe an important feature of hypertree decompositions. Once an hyperedge has been covered by some vertex of the decomposition tree, any subset of its variables can be used freely in order to decompose the remaining cycles in the hypergraph. For instance, the variables in the hyperedge corresponding to constraint j in \mathcal{H}_{1} are jointly included only in the root of the decomposition. If we were forced to take all the variables in every vertex where j occurs, it would not be possible to find a decomposition of width 2 . Indeed, in this case, any choice of two hyperedges per vertex yields a hypertree which violates the connectedness condition for variables (i.e., Condition 2 of Definition 12).

Let k be a fixed positive integer. We say that a CSP instance I has k-bounded HYPERTREE width if $h w\left(\mathcal{H}_{I}\right) \leq k$, where \mathcal{H}_{I} is the hypergraph associated to I. From the results in [16], it follows that k-bounded hypertree width is efficiently decidable, and that a hypertree decomposition of width k can be efficiently computed (if any).

Example 16 Consider again the CSP instance $I_{h g}$ in Example 6. Figure 15 shows the hyperedge representation of a width 2 hypertree decomposition of its hypergraph $\mathcal{H}_{h g}$. It follows that $h w\left(\mathcal{H}_{h g}\right)=2$, because $\mathcal{H}_{h g}$ is cyclic. Thus, $I_{h g}$ has 2-bounded HYPERTREE width and, more generally, k-bounded HYPERTREE width for any integer $k>1$.

Let \mathcal{H} be a hypergraph, and let $V \subseteq \operatorname{var}(\mathcal{H})$ be a set of variables and $X, Y \in$ $\operatorname{var}(\mathcal{H})$. Then X is [V]-adjacent to Y if there exists an edge $h \in \operatorname{edges}(\mathcal{H})$ such that $\{X, Y\} \subseteq h-V$. A $[V]$-path π from X to Y is a sequence $X=X_{0}, \ldots, X_{\ell}=$ Y of variables such that X_{i} is [$\left.V\right]$-adjacent to X_{i+1}, for each $i \in[0 \ldots \ell-1]$. A set

Figure 15. A hypertree decomposition of hypergraph $\mathcal{H}_{h g}$ in Example 6
$W \subseteq \operatorname{var}(\mathcal{H})$ of variables is [V]-connected if, for all $X, Y \in W$, there is a [V]-path from X to Y. A [V]-component is a maximal $[V]$-connected non-empty set of variables $W \subseteq \operatorname{var}(\mathcal{H})-V$. For any [V]-component C, let edges $(C)=\{h \in$ edges $(\mathcal{H}) \mid h \cap C \neq \emptyset\}$.

Let $H D=\langle T, \chi, \lambda\rangle$ be a hypertree for \mathcal{H}. For any vertex v of T, we will often use v as a synonym of $\chi(v)$. In particular, $[v]$-component denotes $[\chi(v)]$-component; the term $[v]$-path is a synonym of $[\chi(v)]$-path; and so on. We introduce a normal form for hypertree decompositions.

Definition 17 ([16]) A hypertree decomposition $H D=\langle T, \chi, \lambda\rangle$ of a hypergraph \mathcal{H} is in normal form ($N F$) if, for each vertex $r \in \operatorname{vertices}(T)$, and for each child s of r, all the following conditions hold:

1. there is (exactly) one [r]-component C_{r} such that $\chi\left(T_{s}\right)=C_{r} \cup(\chi(s) \cap \chi(r))$;
2. $\chi(s) \cap C_{r} \neq \emptyset$, where C_{r} is the [r]-component satisfying Condition 1;
3. $\operatorname{var}(\lambda(s)) \cap \chi(r) \subseteq \chi(s)$.

Intuitively, each subtree rooted at a child node s of some node r of a normal form decomposition tree serves to decompose precisely one $[r]$-component.

Proposition 18 ([16]) For each k-width hypertree decomposition of a hypergraph \mathcal{H} there exists a k-width hypertree decomposition of \mathcal{H} in normal form.

This normal form theorem immediately entails that, for each optimal hypertree decomposition of a hypergraph \mathcal{H}, there exists an optimal hypertree decomposition of \mathcal{H} in normal form.

The fact that no redundancies occur in hypertree decompositions in normal form allows us to give a precise bound on the number of vertices in such hypertree decompositions.

Lemma 19 Let $H D=(T, \chi, \lambda)$ be a hypertree decomposition in normal form of a hypergraph \mathcal{H}. Moreover, let n be the number of vertices of the decomposition tree T, and m the number of strongly covered edges of \mathcal{H} in $H D$. Then, $n \leq m$ holds.

PROOF. Let s be some vertex in T. We say that a variable $X \in \chi(s)$ (respectively, an edge $H \subseteq \chi(s))$) is "first covered" in s if $X \notin \chi\left(\operatorname{vertices}(T)-\operatorname{vertices}\left(T_{p}\right)\right)$
(resp., $\left.H \nsubseteq \chi\left(\operatorname{vertices}(T)-\operatorname{vertices}\left(T_{p}\right)\right)\right)$; otherwise, X (resp., H) is said to be "previously covered." By Condition 2 of Definition 17 and by Condition 2 of Def. 12, it follows that, for any vertex p of T, there exists at least a variable X in $\operatorname{var}(\mathcal{H})$ which is "first covered" in p. Since $X \in \chi(p)$, from Condition 3 of Definition 12, it follows that there is an edge H of \mathcal{H} such that $X \in H$ and $H \in$ $\lambda(p)$. Moreover, from Condition 4 of Definition 12, it follows that every variable belonging to H and not covered in some vertex in vertices $(T)-\operatorname{vertices}\left(T_{p}\right)$ must be first covered in p, and belongs to $\chi(p)$.

Moreover, since $H D$ is in normal form, it satisfies Condition 3 of Definition 17. (i.e., $\operatorname{var}(\lambda(s)) \cap \chi(r) \subseteq \chi(s)$). It follows that, in fact, any previously-covered variable Y belonging to H must belong to $\chi(p)$. Indeed, since the variable X was not previously covered, the edge H cannot be previously covered, and thus there exists some vertex p^{\prime} in the subtree T_{p} such that $H \subseteq \chi\left(p^{\prime}\right)$, in order to fulfill Condition 1 of Definition 12. Assume that the variable $Y \in H$ does not belong to $\chi(p)$. Since H is strongly covered by $p^{\prime}, Y \in \chi\left(p^{\prime}\right)$. Moreover, by the choice of Y, this variable is previously covered with respect to p. It follows that Y violates the connectedness condition, a contradiction.

Thus, all the variables in H belong to $\chi(p)$. Recall that $H \in \lambda(p)$, too. It follows that at least one edge of \mathcal{H} is first covered in vertex p and strongly covered by p, and, in general, that each vertex in T first and strongly covers some edge of \mathcal{H}. This entails that the cardinality of the set of vertices in the decomposition tree T of $H D$ is less than or equal to the number m of the strongly covered edges in the normal form hypertree decomposition $H D$ of \mathcal{H}.

A polynomial time algorithm opt- k-decomp which, for a fixed k, decides whether a hypergraph has k-bounded hypertree width and, in this case, computes an optimal hypertree decomposition in normal form is described in [17]. As for many other decomposition methods, the running time of this algorithm to find the hypergraph decomposition is exponential in the parameter k. More precisely, opt-k-decomp runs in $O\left(m^{2 k} v^{2}\right)$ time, where m and v are the number of edges and the number of vertices of \mathcal{H}, respectively.

We next show that any CSP instance I is efficiently solvable, given a k-bounded complete hypertree-decomposition $H D$ of \mathcal{H}_{I}. To this end, we define an acyclic CSP instance which is equivalent to I and whose size is polynomially bounded by the size of I.

For each vertex p of the decomposition $H D$, we define a new constraint scope whose associated constraint relation is the projection on $\chi(p)$ of the join of the relations in $\lambda(p)$. This way, we obtain a join-tree $J T$ of an acyclic hypergraph \mathcal{H}^{*}. \mathcal{H}^{*} corresponds to a new CSP instance I^{*} over a set of constraint relations of size $O\left(n^{k}\right)$, where n is the input size (i.e., $\left.n=\|I\|\right)$ and k is the width of the hyper-
tree decomposition $H D$. By construction, I^{*} is an acyclic CSP, and we can easily show that it is equivalent to the input CSP instance I. Thus, all the efficient techniques available for acyclic CSP instances [9,7], or for any problem equivalent to CSP [26,21,15], can be employed for the evaluation of I^{*}, and hence of I.

Remark 20 According to our definition, any hypertree is a labeled rooted tree. The rooting is necessary for technical reasons concerning the notion of hypertree decomposition only, but has no impact on the actual evaluation of the given CSP instance. In fact, the above discussion describes how to compute from a hypertree decomposition and a CSP instance I a join tree J of an acyclic instance I^{*} that is equivalent to I. This construction does not use the fact that the hypertree is rooted. Moreover, note that the acyclic instance I^{*} can be evaluated rooting the join tree $J T$ at any vertex.

The following theorem provides a detailed analysis of the complexity of evaluating a CSP given a hypertree decomposition for it.

Theorem 21 Given a CSP I and a k-width hypertree decomposition $H D^{\prime}$ of \mathcal{H}_{I} in normal form, I is solvable in $O\left(\|I\|^{k+1} \log \|I\|\right)$ time.

PROOF. Let I be a CSP instance and $H D^{\prime}=\left(T^{\prime}, \chi^{\prime}, \lambda^{\prime}\right)$ a k-width hypertree decomposition of \mathcal{H}_{I} in normal form. We proceed as follows.

Step 1 We compute from $H D^{\prime}$ a complete hypertree decomposition $H D=(T, \chi, \lambda)$ of \mathcal{H}_{I}.
Step 2 We compute from $H D$ and I an acyclic instance I^{*} equivalent to I, as described above.
Step 3 We evaluate the acyclic instance I^{*} employing any efficient technique for solving acyclic CSPs.

Let m be the number of edges of \mathcal{H}_{I}. The following statements hold:
Claim 1. The decomposition tree of the complete hypertree decomposition HD has at most m vertices. This immediately follows from the construction of $H D$ and from Lemma 19, since in Step 1 above we just add to the decomposition tree T those edges of \mathcal{H}_{I} that are not strongly covered in $H D^{\prime}$.
Claim 2. Step 1 is feasible in $O\left(\left\|\mathcal{H}_{I}\right\|^{2}\right)$. As observed in Remark 13, this computation takes $O\left(\left\|H D^{\prime}\right\| \cdot\left\|\mathcal{H}_{I}\right\|\right)$ time. From Lemma 19, it easily follows that $\left\|H D^{\prime}\right\|$ is $O\left(k\left\|\mathcal{H}_{I}\right\|\right)=O\left(\left\|\mathcal{H}_{I}\right\|\right)$, because the number of vertices in T^{\prime} is at most the number of edges of \mathcal{H}_{I}, and the number of edge-labels of each vertex of T^{\prime} is bounded by the constant k.
Claim 3. $\left\|I^{*}\right\|=O\left(\|I\|^{k}\right)$, and computing I^{*} from I takes time $O\left(\|I\|^{k}\right)$. Consider a constraint $C=\left(S_{c}, r_{c}\right)$ in the acyclic instance I^{*}. As described above, the relation r_{c} is obtained as the natural join of at most k relations occurring in the input instance I. One of these input relations, say r_{i}, - in fact, its constraint scope $S_{i}-$
is covered by some vertex p in the decomposition tree of $H D$ which corresponds to C in the acyclic instance I^{*}. (In particular, its scope S_{i} corresponds to some edge $h_{i} \in \operatorname{edges}\left(\mathcal{H}_{I}\right)$ such that $h_{i} \in \lambda(p)$, and $h_{i} \subseteq \chi(p)$.) Let $r_{\text {max }}$ be the constraint relation having the maximum size $\left\|r_{\text {max }}\right\|$ over all the constraint relations occurring in the input instance I. Then, $\left\|r_{c}\right\| \leq\left(\left\|r_{\text {max }}\right\|^{k-1} \cdot\left\|r_{i}\right\|\right)$. Recall that the instance I^{*} has at most m constraints. Considering all the constraints in I, we get the following upper bound for the size of the whole CSP I^{*} :

$$
\left\|I^{*}\right\| \leq\left(\left\|r_{\max }\right\|^{k-1} \cdot\left\|r_{1}\right\|+\cdots+\left\|r_{\max }\right\|^{k-1} \cdot\left\|r_{m}\right\|\right)
$$

and hence

$$
\left\|I^{*}\right\| \leq\left\|r_{\max }\right\|^{k-1} \cdot\left(\left\|r_{1}\right\|+\cdots+\left\|r_{m}\right\|\right) \leq\left\|r_{\max }\right\|^{k-1} \cdot\|I\|
$$

It follows that $\left\|I^{*}\right\| \leq\|I\|^{k}$. Moreover, the effective computation of I^{*} from I takes time $O\left(\|I\|^{k}\right)$. Indeed, computing the natural join of two relations r_{1} and r_{2} takes time $O\left(\left\|r_{1}\right\| \cdot\left\|r_{2}\right\|\right)$, which is exactly the same bound that we have for the size of the result of this join operation. Thus, by applying the same line of reasoning as used for the space bound, we get that the computation of the acyclic instance I^{*} is feasible in $O\left(\|I\|^{k}\right)$ time.

From claims $1-3$ and from the well-known $O\left(m \cdot\left\|I^{*}\right\| \cdot \log \left\|I^{*}\right\|\right)$ complexity of evaluating the acyclic CSP I^{*} (see. e.g., [7,9]), it follows that the overall cost of this evaluation procedure is $O\left(\|I\| \cdot\|I\|^{k} \cdot \log \|I\|^{k}\right)+O\left(\left\|\mathcal{H}_{I}\right\|^{2}\right)=O\left(\|I\|^{k+1}\right.$ $\cdot \log \|I\|)$, because k is fixed, $\left\|\mathcal{H}_{I}\right\| \leq\|I\|$, and $k \geq 1$.

It is worthwhile noting that the crucial difference between the HYPERTREE method and the TCLUSTER method is the objective function to be minimized in order to obtain the most convenient acyclic decomposition of a given CSP instance. The HYPERTREE method minimizes the number of hyperedges of \mathcal{H}_{I} associated to any vertex of the acyclic equivalent instance, thus exploiting the fact that one hyperedge "covers" many variables at once. The TCLUSTER method minimizes the number of variables occurring in any vertex of the equivalent acyclic instance, as evidenced by the following example.

Example 22 For any $m>0$, let $T(m)$ be the hypergraph having the $m+3$ hyperedges $\left\{h_{1}, h_{2}, h_{3}, e_{1}, e_{2}, \ldots, e_{m}\right\}$ defined as follows:

- $h_{1}=\left\{X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{m}, A\right\}$;
- $h_{2}=\left\{Y_{1}, \ldots, Y_{m}, Z_{1}, \ldots, Z_{m}, B\right\}$;
- $h_{3}=\left\{Z_{1}, \ldots, Z_{m}, X_{1}, \ldots, X_{m}, C\right\}$;
- $e_{i}=\left\{X_{i}, Y_{i}, Z_{i}\right\}, \forall 1 \leq i \leq m$.

The TCLUSTER width of $T(m)$ is $3 m$, because its primal graph is chordal and its maximal clique $C=\left\{X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{m}, Z_{1}, \ldots, Z_{m}\right\}$ has cardinality $3 m$. In
fact, according to the TCLUSTER method, we have to solve a subproblem involving every hyperedge $e_{i}(1 \leq i \leq m)$.

On the other hand, for any $m>0$, the HYPERTREE width of $T(m)$ is 2 . It is worthwhile noting that the number of variables occurring in the largest vertex of this decomposition is $3 m+2$. Hence, the equivalent acyclic instance we obtain according to HYPERTREE is not "optimal" according to the TCLUSTER method, because its associated primal graph has a clique of cardinality $3 m+2$. Nevertheless, the constraint relation associated to this vertex is computable very easily as the join of the constraint relations r_{1} and r_{2} corresponding to h_{1} and h_{2}, respectively.

A simple way to get decomposition methods which in some way exploit the power of hyperedges is using the dual graph associated to a CSP. We give a detailed analysis of these approaches and of their relationships with the HYPERTREE method in Section 9. It turns out that even such methods do not exploit the full power of hyperedges, and are less general then HYPERTREE, according to a strong notion of generalization, formally defined in the next section.

6 Comparison Criteria

For comparing decomposition methods we introduce the relations \preceq, \triangleright, and \prec defined as follows:
$D_{1} \preceq D_{2}$ (in words, D_{2} generalizes D_{1}) if there exists $\delta \geq 0$ such that, for every $k>0, C\left(D_{1}, k\right) \subseteq C\left(D_{2}, k+\delta\right)$. Thus, $D_{1} \preceq D_{2}$ implies that every class of CSP instances which is tractable according to D_{1} is also tractable according to D_{2}.

Note that the constant δ above allows us to get rid of small differences among tractability classes that should be irrelevant in the comparison. E.g., it is known (see discussion in Section 4.9) that TCLUSTER and TREEWIDTH are equivalent methods and one would expect TCLUSTER to generalize TREEWIDTH (as well as vice versa). However, for any $k>1, C$ (TREEWIDTH, $k) \nsubseteq C$ (TCLUSTER, k), because the treewidth is defined through the cardinality of the vertex-labeling minus one. Rather, C (TREEWIDTH, k) $\subseteq C$ (TCLUSTER, $k+1$) holds. Thus, by taking $\delta=1$, we easily get TREEWIDTH \preceq TCLUSTER.
$\underline{D_{1} \triangleright D_{2}}\left(D_{1}\right.$ beats $\left.D_{2}\right)$ if there exists an integer k such that, for every $m, C\left(D_{1}, k\right) \nsubseteq$ $C\left(D_{2}, m\right)$. To prove that $D_{1} \triangleright D_{2}$, it is sufficient to exhibit a class of hypergraphs contained in some $C\left(D_{1}, k\right)$ but in no $C\left(D_{2}, j\right)$ for every $j \geq 0$.

Intuitively, $D_{1} \triangleright D_{2}$ means that, at least on some class of CSP instances, D_{1} outperforms D_{2} with respect to tractability, because these instances are tractable according to D_{1}, but not according to D_{2}. For such classes, using D_{1} is thus better
than using D_{2}.
$\frac{D_{1} \prec D_{2}}{D_{1}}$ if $D_{1} \preceq D_{2}$ and $D_{2} \triangleright D_{1}$. In this case we say that D_{2} strongly generalizes

This means that D_{2} is really the more powerful method, given that, whenever D_{1} guarantees polynomial runtime for constraint solving, then also D_{2} guarantees tractable constraint solving, but there are classes of constraints that can be solved in polynomial time by using D_{2} but are not tractable according to D_{1}.

Mathematically, \preceq is a preorder, i.e., it is reflexive, transitive, but not antisymmetric. We say that D_{1} is \preceq-equivalent to D_{2}, denoted $D_{1} \equiv D_{2}$, if both $D_{1} \preceq D_{2}$ and $D_{2} \preceq D_{1}$ hold. Note that, on the other hand, \prec is transitive and antisymmetric, but not reflexive.

The decomposition methods D_{1} and D_{2} are strongly incomparable if both $D_{1} \triangleright D_{2}$ and $D_{2} \triangleright D_{1}$. Note that, if D_{1} and D_{2} are strongly incomparable, then they are incomparable with respect to the relations \preceq and \prec, too.

7 Comparison Results

In this section we present a complete comparison of the decomposition methods described in Section 4, according to the above criteria. Figure 1 (reproduced here as Figure 16 with the acronyms of decomposition methods for the reader's convenience) shows a representation of the hierarchy of decomposition methods determined by the \prec relation. Each element of the hierarchy represents one decomposition method, apart from that containing Tree Clustering, w^{*}, and Treewidth which are grouped together because they are \preceq-equivalent as easily follows from the observations in Section 4.

Theorem 23 For each pair D_{1} and D_{2} of decompositions methods represented in Figure 16, the following holds:

- There is a directed path from D_{1} to D_{2} if and only if $D_{1} \prec D_{2}$, i.e., if and only if D_{2} strongly generalizes D_{1}.
- D_{1} and D_{2} are not linked by any directed path if and only if they are strongly incomparable.

Hence, Fig. 16 gives a complete picture of the relationships holding among the different methods.

The following lemmas, together with the transitivity of the relations defined in Section 6, prove Theorem 23.

Figure 16. Constraint Tractability Hierarchy
For any $n>2$ and $m>0$, let $\operatorname{Circle}(n, m)$ be the hypergraph having n edges $\left\{h_{1}, \ldots, h_{n}\right\}$ defined as follows:

- $h_{i}=\left\{X_{i}^{1}, \ldots, X_{i}^{m}, X_{i+1}^{1}, \ldots, X_{i+1}^{m}\right\} \forall 1 \leq i \leq n-1$;
- $h_{n}=\left\{X_{n}^{1}, \ldots, X_{n}^{m}, X_{1}^{1}, \ldots, X_{1}^{m}\right\}$.

Figure 17. The hypergraph $\operatorname{Circle}(n, 2)$
Figure 17 shows the hypergraph $\operatorname{Circle}(n, 2)$, for some $n>8$. For $m=1, \operatorname{Circle}(n, 1)$ is a graph consisting of a simple cycle with n edges (like a circle). Note that, for any $n>2$ and $m>0$, $\operatorname{Circle}(n, m)$ has hypertree width 2 . A width 2 hypertree decomposition of $\operatorname{Circle}(n, m)$ is shown in Figure 18. It follows that the (infinite) class of hypergraphs $\bigcup_{n>2, m>0}\{\operatorname{Circle}(n, m)\}$ is included in the tractability class C (HyPERTREE, 2).

For any $n>0$, let triangles (n) be the graph (V, E) defined as follows. The set of vertices V contains $2 n+1$ vertices $p_{1}, \ldots, p_{2 n+1}$. For each even index $i, 2 \leq i \leq 2 n$, $\left\{p_{i}, p_{i-1}\right\},\left\{p_{i}, p_{i+1}\right\}$, and $\left\{p_{i-1}, p_{i+1}\right\}$ are edges in E. No other edge belongs to E. Figure 19 shows the graph triangles (n). The HYPERTREE width of triangles (n) is 2 . Indeed, a hypertree $\langle T, \chi, \lambda\rangle$, where T is a simple chain of n vertices v_{1}, \ldots, v_{n} and, for each $v_{i}(1 \leq i \leq n), \chi\left(v_{i}\right)=\left\{p_{2 i-1}, p_{2 i}, p_{2 i+1}\right\}$ and $\lambda\left(v_{i}\right)$ contains the two edges $\left\{p_{2 i-1}, p_{2 i}\right\}$ and $\left\{p_{2 i}, p_{2 i+1}\right\}$, is a width 2 HYPERTREE decomposition of triangles (n).

Figure 18. 2-width hypertree decomposition of $\operatorname{Circle}(n, m)$

Figure 19. The graph triangles (n)
For any $n>0$, let $\operatorname{book}(n)$ be a graph having $2 n+2$ vertices and $3 n+1$ edges that form n squares (pages of the book) having exactly one common edge $\{X, Y\}$. It is easy to see that the HYPERTREE width of $\operatorname{book}(n)$ is 2 . Figure 20 shows the graph book(4).

Figure 20. The graph book (4)
Lemma 24 CUTSET $\prec ~ H Y P E R C U T S E T . ~$

PROOF. HYPERCUTSET clearly generalizes CUTSET. Moreover, HYPERCUTSET® CUTSET. Indeed, $\cup_{n>2, m>0}\{\operatorname{Circle}(n, m)\} \nsubseteq C(C U T S E T, k)$ holds for any $k>0$; while, $\cup_{n>2, m>0}\{\operatorname{Circle}(n, m)\} \subseteq C($ HYPERCUTSET, 1$)$, as deleting any edge of Circle (n, m) yields an acyclic hypergraph.

Lemma 25 BICOMP \triangleright HYPERCUTSET.

PROOF. Consider the graph triangles(n) for some $n>0$. It is easy to see that the HYPERCUTSET width of triangles (n) is $\lceil n / 3\rceil$, while its BICOMP width is 3. Hence, $\bigcup_{n>1}\{$ triangles $(n)\} \subseteq C(\operatorname{BICOMP}, 3)$, while, $\bigcup_{n>1}\{$ triangles $(n)\} \nsubseteq$ C (HYPERCUTSET, k) holds for every $k>0$.

Lemma 26 BICOMP and CUTSET are strongly incomparable.

PROOF. (BICOMP \triangleright CUTSET.) Follows from Lemma 25 and Lemma 24.
(CUTSET \triangleright BICOMP.) Consider the graph $\operatorname{book}(n)$ for some $n>0$. The whole graph $\operatorname{book}(n)$ is biconnected. Thus, its BICOMP width is $2 n+2$. On the other hand, the set $\{X, Y\}$ is a cycle cutset of $\operatorname{book}(n)$. Thus, $\bigcup_{n>1}\{\operatorname{book}(n)\} \subseteq C$ (CUTSET, 2) holds.

Lemma 27 BICOMP \prec HINGE.

PROOF. In [18], it was shown that BICOMP \preceq HINGE. Thus, it suffices to prove that HINGE \triangleright BICOMP: Consider the graph $\operatorname{book}(n)$ defined above, for some $n>0$. As observed above, the BICOMP width of $\operatorname{book}(n)$ is $2 n+2$, while its HINGE width is 4 . Indeed, the minimal hinges of $\operatorname{book}(n)$ correspond to the pages of the book, and each of them has cardinality 4.

Lemma 28 BICOMP $\prec ~ T C L U S T E R . ~$

PROOF. In [7], it was observed that BICOMP \preceq TCLUSTER. (In fact, BICOMP was compared with w^{*}, which is \preceq-equivalent to TCLUSTER.) Furthermore, TCLUSTER \triangleright BICOMP follows from CUTSET \triangleright BICOMP and from the fact, observed in [7], that TCLUSTER generalizes CUTSET, i.e., CUTSET \preceq TCLUSTER.

Lemma 29 CUTSET $\prec ~ T C L U S T E R . ~$

PROOF. As mentioned above, CUTSET \preceq TCLUSTER [7]. Moreover, TCLUSTER \triangleright CUTSET follows from BICOMP \triangleright CUTSET and BICOMP \preceq TCLUSTER.

Lemma 30 CUTSET \triangleright HINGE.

PROOF. Every graph in $\bigcup_{n>2}\{\operatorname{Circle}(n, 1)\}$ has CUTSET width 1 , because deleting any vertex of the graph we get an acyclic graph. However, for any $n>2$, the degree of cyclicity of $\operatorname{Circle}(n, 1)$ is n [18].

Lemma 31 HINGE and TCLUSTER are strongly incomparable.

PROOF. (HINGE \triangleright TCLUSTER). Let $S=\{\operatorname{Circle}(3, m) \mid m>1\}$. For any $m>$ 1, the primal graph G of $\operatorname{Circle}(3, m)$ is a clique of $3 m$ variables. Thus, G does not need any triangulation, because it is a chordal graph. The TCLUSTER width of Circle $(3, m)$ is clearly $3 m$; while its HINGE width is 3 , because every hypergraph in S has only three (hyper)edges.
(TCLUSTER \triangleright HINGE). Follows from CUTSET $\triangleright H I N G E$ and CUTSET \preceq TCLUSTER.
Lemma 32 HINGE \prec HINGE $^{\text {TCLUSTER }}$ and TCLUSTER \prec HINGE ${ }^{\text {TCLUSTER }}$.

PROOF. It is easy to see that both HINGE \preceq HINGE ${ }^{\text {TCLUSTER }}$ and TCLUSTER \preceq HINGE ${ }^{\text {TCLUSTER }}$ hold. Furthermore, HINGE ${ }^{\text {TCLUSTER }} \triangleright$ HINGE follows from TCLUSTER \preceq HINGE ${ }^{\text {TCLUSTER }}$ and TCLUSTER \triangleright HINGE; and HINGE ${ }^{\text {TCLUSTER }} \triangleright$ TCLUSTER follows from HINGE \preceq HINGE ${ }^{\text {TCLUSTER }}$ and HINGE \triangleright TCLUSTER.

Lemma 33 HINGE ${ }^{\text {TCLUSTER }} \preceq$ HYPERTREE.

PROOF. Let \mathcal{H} be a hypergraph, and \mathcal{H}^{\prime} be a HINGE ${ }^{\text {TCLUSTER }}$ decomposition of \mathcal{H} of width k. We show that there exists a hypertree decomposition for \mathcal{H} of width k. We will use as a running example the hypergraph $\mathcal{H}_{h g}$ in Example 6. Figure 11 shows the width 3 HINGE ${ }^{\text {TCLUSTER }}$ decomposition $\mathcal{H}_{h g}^{\prime}$ of $\mathcal{H}_{h g}$, described in Example 7.

Recall that, by construction, the HINGE ${ }^{\text {TCLUSTER }}$ decomposition \mathcal{H}^{\prime} is an acyclic hypergraph. Note that, in general, \mathcal{H}^{\prime} is not a reduced hypergraph. For instance, $\mathcal{H}_{h g}^{\prime}$ is not reduced, as the edge $\left\{X_{1}, X_{2}, X_{3}\right\}$, coming from the TCLUSTER decomposition of the hinge H_{2}, is a subset of $\left\{X_{1}, X_{2}, X_{3}, X_{10}, X_{11}\right\}$, which comes from the hinge H_{1}.

Let $\mathcal{H}^{\prime \prime}$ be the reduced and acyclic hypergraph obtained from \mathcal{H}^{\prime} deleting each edge that is a subset of some other edge of the hypergraph. Therefore, e.g., $\mathcal{H}_{h g}^{\prime \prime \prime}$ contains all the edges of $\mathcal{H}_{h g}^{\prime}$, but the edge $\left\{X_{1}, X_{2}, X_{3}\right\}$.

We partition the edges of $\mathcal{H}^{\prime \prime}$ into three sets $A E, H E$, and $T E$ defined as follows.
The set $A E$ contains all edges of $\mathcal{H}^{\prime \prime}$ that come from the TCLUSTER decomposition of some hinge H_{i} of \mathcal{H} such that the subgraph $\left(\operatorname{var}\left(H_{i}\right), H_{i}\right)$ is acyclic. In the running example, this property holds for hinges H_{4}, H_{5}, and H_{6}. Recall that, in this case, $w\left(H_{i}\right)=1$ holds, and the decomposition of this hinge is just the acyclic hypergraph $\left(\operatorname{var}\left(H_{i}\right), H_{i}\right)$. E.g., for $\mathcal{H}_{h g}^{\prime \prime}, A E$ contains the edges corresponding to the constraint scopes s_{5}, s_{6}, s_{7}, and s_{8}, i.e., $\left\{X_{4}, X_{5}, X_{6}\right\},\left\{X_{4}, X_{7}\right\},\left\{X_{5}, X_{8}\right\}$, and $\left\{X_{6}, X_{9}\right\}$, respectively.
The set $T E$ contains all edges in edges $\left(\mathcal{H}^{\prime \prime}\right)-A E$ that come from the TCLUSTER decomposition of some hinge H_{i} of \mathcal{H} such that the subgraph $\left(\operatorname{var}\left(H_{i}\right), H_{i}\right)$
is cyclic. Since the TCLUSTER decomposition of this hypergraph is bounded by k, it follows that each edge in $T E$ contains at most k variables. In our running example, TE contains two edges $\left\{X_{1}, X_{3}, X_{6}\right\}$ and $\left\{X_{1}, X_{4}, X_{6}\right\}$ that we call $t e_{1}$ and $t e_{2}$, respectively.
The set $H E$ contains all those edges in edges $\left(\mathcal{H}^{\prime \prime}\right)-A E-T E$ that come from some hinge of \mathcal{H}. Thus, any edge h in $H E$ is the union of at most k edges belonging to some hinge H_{i} of \mathcal{H}. We denote the hinge H_{i} corresponding to h by hinge (h). In our running example, $H E$ contains one edge $\left\{X_{1}, X_{2}, X_{3}, X_{10}, X_{11}\right\}$ that we call $h e_{1}$ and comes from the hinge $H_{1}=\left\{s_{1}, s_{2}, s_{9}\right\}$ of $\mathcal{H}_{h g}$. Therefore, hinge $\left(h e_{1}\right)=\left\{s_{1}, s_{2}, s_{9}\right\}$.

Let $J T$ be a jointree of the acyclic hypergraph $\mathcal{H}^{\prime \prime}$. Recall that each vertex of the tree $J T$ is an edge of $\mathcal{H}^{\prime \prime}$ and vice versa, and that the connectedness condition holds, i.e., the subgraph of $J T$ induced by any variable of \mathcal{H}^{\prime} is connected. Figure 21 shows a jointree of $\mathcal{H}_{h g}^{\prime \prime}$.

Figure 21. A jointree of the hypergraph $\mathcal{H}_{h g}^{\prime \prime}$
From $J T$, we define a hypertree decomposition $H D=\langle T, \chi, \lambda\rangle$, where the tree T has the same shape as π, and the labelings χ and λ are defined through the following procedure. For each vertex h of J, denote by p_{h} the corresponding vertex in the tree T of \mathcal{H}.
(1) for each edge h of $A E$, label the corresponding vertex p_{h} as follows: $\chi\left(p_{h}\right)=$ h and $\lambda\left(p_{h}\right)=\{h\}$.
(2) for each edge h of $H E$, label the corresponding vertex p_{h} as follows: $\chi\left(p_{h}\right)=$ h and $\lambda\left(p_{h}\right)=\operatorname{hinge}(h)$.
(3) for each edge h of $T E$, label the corresponding vertex p_{h} as follows: $\chi\left(p_{h}\right)=$ h and $\lambda\left(p_{h}\right)=\emptyset$. For the running example, Figure 22 shows the hypertree obtained after these three steps.

Figure 22. The hypertree for the running example in the proof of Lemma 33 after steps 1 , 2 , and 3
(4) for each edge \bar{h} of the hypergraph \mathcal{H} such that there is no vertex q in T with $\bar{h} \in \lambda(q)$, choose a vertex h of $J T$ such that $\bar{h} \subseteq h$ and $h \in T E$, and add \bar{h} to the λ labeling of the corresponding vertex p_{h} in T (i.e., $\lambda\left(p_{h}\right):=\lambda\left(p_{h}\right) \cup\{\bar{h}\}$). In our running example, we add the edge s_{3}, whose variables are X_{1} and X_{4}, to the λ labeling of the hypertree's root, and the edge s_{4}, whose variables are X_{4} and X_{6}, to the λ labeling of the left child of the root, as shown in Figure 23.

Figure 23. The hypertree for the running example in the proof of Lemma 33 after Step 4
(5) While there is a vertex p in T such that $\chi(p)$ contains a variable X not covered by $\lambda(p)$ (i.e., $X \in \chi(p)-\operatorname{var}(\lambda(p))$), proceed as follows.
(A) Find a path π in T linking p to a vertex q such that (i) $X \in \operatorname{var}(\lambda(q))$ and, (ii) $X \notin \operatorname{var}(\lambda(s))$ for every vertex s in $\pi-\{q\}$.
(B) Choose an edge $h \in \lambda(q)$ such that $X \in h$.
(C) Add h to both $\lambda(s)$ and $\chi(s)$, for every vertex $s \in \pi-\{q\}$ (i.e., $\chi(s):=$ $\chi(s) \cup h$, and $\lambda(s):=\lambda(s) \cup\{h\})$.
In the running example, the root contains the variable X_{6} that is not covered by the edge s_{3} (see Figure 23). Then, we choose the path connecting the root and its right child, because X_{6} occurs in some edge belonging to its λ labeling, namely in the edge s_{5}. Thus, we add s_{5} to the λ labeling of the root, and the covering of X_{6} is done. Similarly, the variable X_{1} occurring in the left child of the root is covered by adding to its λ labeling the edge s_{1}, which occurs in its child. Figure 24 shows the final hypertree obtained for the running example.

Figure 24. The final hypertree for the running example in the proof of Lemma 33
Note that, after steps 1,2 , and 3, the connectedness condition (i.e., Condition 2 of Definition 12) clearly holds in $H D$ because it holds in the jointree $J T$. However, for any vertex p_{h} of T corresponding to a vertex $h \in T E$ of $J T$, Step 3 only provides the χ labeling for p_{h}. Thus, in Step 4, we select the edges of \mathcal{H} that cover these variables in the vertex p_{h} of the decomposition $H D$, i.e., we define the λ labeling for p_{h}.

Since the connectedness condition is preserved in Step 3 above, it is easy to verify that, at the end of the procedure, $H D$ is a hypertree decomposition of \mathcal{H}. Moreover,
its HYPERTREE width is at most k. Indeed, by the above construction, it follows that for each vertex $h \in H E,\left|\lambda\left(p_{h}\right)\right|=|\operatorname{hinge}(h)| \leq k$, and, for each vertex $h^{\prime} \in T E,\left|\lambda\left(p_{h}\right)\right| \leq|h| \leq k$.

Lemma 34 HINGE ${ }^{\text {TCLUSTER }} \prec$ HYPERTREE.

PROOF. From Lemma 33, HINGE ${ }^{\text {TCLUSTER }} \preceq$ hYpertree holds. We next show that HYPERTREE \triangle HINGE ${ }^{\text {TCLUSTER }}$. Consider the cyclic hypergraph Circle (n, m), for any $n>2, m>0$. This hypergraph has a unique hinge containing all its edges, and therefore its HINGE width is n. Moreover, its primal graph contains maximal cliques of cardinality at least $2 m$, and thus its TCLUSTER width is at least $2 m$. It follows that $\cup_{n>2, m>0}\{\operatorname{Circle}(n, m)\} \nsubseteq C$ (HINGE $\left.{ }^{\text {TCLUSTER }}, k\right)$ holds for any $k>$ 0 . However, for HYPERTREE, $\bigcup_{n>2, m>0}\{\operatorname{Circle}(n, m)\} \subseteq C($ HYPERTREE, 2$)$ holds. (See Figure 18 for a hypertree decomposition of $\operatorname{Circle}(n, m)$ of width 2.)

Lemma 35 HINGE ${ }^{\text {TCLUSTER }}$ and HYPERCUTSET are strongly incomparable.

PROOF. HINGE ${ }^{\text {TCLUSTER }} \triangleright$ HYPERCUTSET follows from BICOMP \triangleright HYPERCUTSET and BICOMP \preceq HINGE $^{\text {TCLUSTER }}$.

HYPERCUTSET \triangleright HINGE $^{\text {TCLUSTER }}$. Indeed, $\bigcup_{n>2, m>0}\{\operatorname{Circle}(n, m)\} \nsubseteq C\left(\right.$ HINGE $\left.^{\text {TCLUSTER }}, k\right)$ holds for any $k>0$; while, $\bigcup_{n>2, m>0}\{\operatorname{Circle}(n, m)\} \subseteq C($ HYPERCUTSET, 1$)$.

Lemma 36 HYPERCUTSET \prec HYPERTREE.

PROOF. We have that HYPERTREE \triangleright HYPERCUTSET because, from Lemma 25, BICOMP \triangleright HYPERCUTSET, and BICOMP \preceq HYPERTREE.

We next prove that HYPERCUTSET \preceq HYPERTREE. Let \mathcal{H} be a hypergraph and $H \subseteq$ edges (\mathcal{H}) a cycle hypercutset of \mathcal{H}. Let k be the cardinality of H. Let \mathcal{H}^{\prime} be the subhypergraph of \mathcal{H} induced by $\operatorname{var}(\mathcal{H})-\operatorname{var}(H)$, i.e., the hypergraph having an edge $h^{\prime}(h)=h-\operatorname{var}(H)$ for each edge $h \in \operatorname{edges}(\mathcal{H})$ such that $h-\operatorname{var}(H) \neq \emptyset$. Note that, in general, \mathcal{H}^{\prime} is not connected. By definition of cycle hypercutset, \mathcal{H}^{\prime} is acyclic. Thus, there exists a join forest for \mathcal{H}^{\prime}, i.e., a set of jointrees J_{1}, \ldots, J_{ℓ} corresponding to the s connected components of \mathcal{H}^{\prime}.

We show that there exists a hypertree decomposition $H D=\langle T, \chi, \lambda\rangle$ of \mathcal{H} having width $k+1$. The root r of T is labeled by the cycle hypercutset H, i.e., $\lambda(r)=H$, and $\chi(r)=\operatorname{var}(H)$. The root r has ℓ children $\left\{p_{1}, \ldots, p_{\ell}\right\}$ corresponding to the ℓ jointrees J_{1}, \ldots, J_{ℓ}. In particular, each subtree $T_{p_{i}}$ rooted at a child $p_{i}(1 \leq i \leq \ell)$ has the same tree shape as the jointree T_{i}. Moreover, let q be a vertex of the jointree J_{i}, and h be an edge of \mathcal{H} such that $h^{\prime}(h)$ is the edge of \mathcal{H}^{\prime} associated to the vertex
q of J_{i}. We label the corresponding vertex \bar{q} in $T_{p_{i}}$ as follows: $\lambda(\bar{q})=\{h\} \cup H$, and $\chi(\bar{q})=h \cup \operatorname{var}(H)$.

It is easy to see that the hypertree $H D$ is a hypertree decomposition of \mathcal{H}, and its width is $k+1$. It follows that HYPERCUTSET \preceq HYPERTREE.

8 Binary CSPs

In this section, we focus on binary constraints satisfaction problems, i.e., on CSPs where the constraints relations have arity at most two.

On binary constraint networks, the differences among the decomposition strategies, highlighted in Section 7, become less evident. Indeed, bounding the arities of the constraint relations, the k-tractable classes of some decomposition strategies collapse, while some generalizations are no longer strong generalizations.

Figure 25. Tractability Hierarchy for Binary CSPs
Let $\prec_{b i n}, \preceq_{b i n}, \triangleright_{b i n}$, and $\equiv_{b i n}$ the relations on the decompositions strategies induced by $\prec, \preceq, \triangleright$, and \equiv, respectively, when only binary CSPs are considered.

In Figure 25, full arcs (and paths containing full arcs) represent $\prec_{\text {bin }}$ relationships, while a dashed arc from a method D_{1} to a method D_{2} means that $D_{1} \preceq_{\text {bin }} D_{2}$ and $D_{2} \preceq_{\text {bin }} D_{1}$, but at the same time $D_{1} \nprec_{\text {bin }} D_{2}$. From the latter relationship, it follows that every class C that is tractable according to D_{1} is also tractable according to D_{2}, i.e., the D_{2} width of every graph belonging to the class C is bounded by some constant $k>0$. However, $D_{2} \not \varliminf_{\text {bin }} D_{1}$ entails that D_{2} decompositions are more "efficient," in the sense that solving a D_{1}-tractable class by D_{2}-solution methods is feasible by augmenting the worst-case complexity by at most an additive constant in the exponent, while this is not possible in the other direction.

Theorem 37 For each pair D_{1} and D_{2} of decompositions methods represented in Figure 25, the following holds:

- There is a directed path from D_{1} to D_{2} if and only if $D_{1} \preceq_{\text {bin }} D_{2}$.
- There is a directed path containing at least one full arrow from D_{1} to D_{2} if and only if $D_{1} \prec$ bin D_{2}.
- D_{1} and D_{2} are not linked by any directed path if and only if they are incomparable with respect to the $\preceq_{\text {bin }}$ relationship, i.e., if both $D_{1} \preceq_{\text {bin }} D_{2}$ and $D_{2} \nwarrow_{\text {bin }} D_{1}$ hold.

The following lemmas provide the proof of this theorem.
Lemma 38 HINGE $\prec_{\text {bin }}$ TCLUSTER.

PROOF. First note that TCLUSTER $\triangleright_{b i n}$ HINGE follows from the proof showing that TCLUSTER \triangleright HINGE. Indeed, for any $n>2$, the graph $\operatorname{Circle}(n, 1)$ has degree of cyclicity n, while it has TCLUSTER width 3 .

To prove that HINGE $\preceq_{b i n}$ TCLUSTER, we show that for any graph $G=(V, E)$ HINGE-width $(G) \geq$ TCLUSTER-width (G). If G is an acyclic graph, then its degree of cyclicity is 2 and its TCLUSTER width is 1 , by definition. Now, assume G is a cyclic graph and let T be a hinge decomposition of G. From the definition of hinge decomposition, it follows that T represents a join tree of an acyclic hypergraph.

We recall from [19] that, given a hinge H of $G, H^{\prime} \subseteq H$ is a hinge of G if and only if H^{\prime} is a hinge of the graph $(\operatorname{var}(H), H)$. It follows that any minimal hinge of G must be a connected set of edges. Moreover, it is easy to see that if H is a minimal hinge and $(\operatorname{var}(H), H)$ is acyclic, then $|H|=2$.

Let T^{\prime} be a new join tree initially set equal to T. As long as there exists some vertex of T^{\prime} corresponding to a 2 -edges hinge of G, modify T^{\prime} as follows: (1) select a vertex p of T^{\prime} containing two edges of $G e_{1}$ and e_{2}; (2) add to T^{\prime} two vertices p_{1} and p_{2} containing edges e_{1} and e_{2}, respectively; (3) add an edge connecting p_{1} and p^{\prime} for any vertex p^{\prime} of T^{\prime} connected to p and sharing e_{1} with p; (4) add an edge connecting p_{2} and p^{\prime} for any vertex p^{\prime} of T^{\prime} connected to p and sharing e_{2} with p; (5) remove p and all its incident edges from T^{\prime}. It is easy to verify that the final tree T^{\prime} obtained when the procedure above terminates satisfies the connectedness condition of join trees. In fact, it represents an acyclic hypergraph, say \mathcal{H}^{\prime}.

Let G^{\prime} be the primal graph of \mathcal{H}^{\prime}. The graph G^{\prime} is clearly chordal and $E \subseteq E^{\prime}$, thus it can be obtained by some suitable triangulation of G. Let k be the number of variables occurring in the largest clique C of G^{\prime}. Since G is a cyclic graph, $k>2$. By construction of G^{\prime}, the clique C corresponds to some minimal hinge H of G such that the graph $(\operatorname{var}(H), H)$ is both connected and cyclic. This entails that $|H| \geq \operatorname{var}(H)=k$.

It follows that $k \leq$ HINGE-width (G), because $\operatorname{HINGE-width}(G)$ is equal to the cardinality of the largest minimal hinge of G. Thus the lemma holds, because TCLUSTERwidth $(G) \leq k$, as G^{\prime} witnesses that there exists a graph obtained by some triangulation of G whose maximal clique has cardinality k.

Lemma 39 The following relationships hold between HYPERTREE and TCLUSTER:

- TCLUSTER $\preceq_{\text {bin }}$ HYPERTREE;
- HYPERTREE $\varnothing_{\text {bin }}$ TCLUSTER; and
- HYPERTREE $\varliminf_{b i n}$ TCLUSTER.

PROOF. (TCLUSTER $\preceq_{b i n}$ HYPERTREE.) Easily follows from the same construction described in Lemma 33 to prove that HINGE ${ }^{\text {TCLUSTER }} \preceq$ HYPERTREE.
(HYPERTREE $\pitchfork_{b i n}$ TCLUSTER.) Follows from the fact that, for any graph G, TCLUSTER-width $(G) \leq 2 \cdot$ HYPERTREE-width (G). Let $H D$ be any k-width hypertree decomposition of a graph G. The hypergraph corresponding to the acyclic instance built according to $H D$ has a primal graph G^{\prime} whose largest clique contains $2 \cdot k$ variables at most. Indeed, at most k edges can be associated to any vertex p of the hypertree decomposition and hence $\operatorname{var}(p) \leq 2 \cdot k$.
(HYPERTREE $\varliminf_{b i n}$ TCLUSTER.) Observe that, for every $n>3$, the complete graph K_{n} has HYPERTREE width $\lceil n / 2\rceil$, while it has TCLUSTER width n. Thus, $K_{n} \in$ C (HYPERTREE, n^{\prime}), for each $n^{\prime} \geq\lceil n / 2\rceil$, while $K_{n} \notin C$ (TCLUSTER, $n^{\prime \prime}$), for each $n^{\prime \prime}<n$. It follows that there is no fixed δ such that, for every $k>0, C($ HYPERTREE, $k) \subseteq$ C (TCLUSTER, $k+\delta$).

Lemma 40 The following relationships hold between HYPERCUTSET and CUTSET:

- CUTSET $\preceq_{b i n}$ HYPERCUTSET;
- HYPERCUTSET $\downarrow_{\text {bin }}$ CUTSET; and
- HYPERCUTSET Ł ${ }_{b i n}$ CUTSET.

PROOF. The proofs of the first two points above are straightforward. We next show that HYPERCUTSET \npreceq bin CUTSET. Consider the graph triangles (n) for some $n>0$. It is easy to see that the HYPERCUTSET width of $\operatorname{triangles}(n)$ is $\lceil n / 3\rceil$, while its CUTSET width is $\lceil n / 2\rceil$. Thus, triangles $(n) \in C$ (HYPERCUTSET, n^{\prime}), for each $n^{\prime} \geq\lceil n / 3\rceil$, while $\operatorname{triangles}(n) \notin C\left(\right.$ CUTSET, $\left.n^{\prime \prime}\right)$, for each $n^{\prime \prime}<\lceil n / 2\rceil$. It follows that there is no fixed δ such that, for every $k>0, C$ (HYPERCUTSET, k) \subseteq C (CUTSET, $k+\delta$).

All the other relationships follow from transitivity, or from the corresponding proofs given in the general case of hypergraphs, which carry over to the binary case.

9 Solving nonbinary CSPs by dualization

Many structural decomposition methods have been designed to identify "easy" graph structures, rather than "easy" hypergraph structures. In Section 4, we described binary decomposition methods (i.e., decomposition methods designed for graphs, but not for hypergraphs) acting on the primal graph of the hypergraph associated to the given CSP instance. As we showed in the previous section, for binary CSPs some methods become closer to the hypertree-decomposition method.

An alternative approach to the solution of nonbinary CSPs is to exploit binary methods on the dual graph of a hypergraph. (See, e.g., [7].) Given a CSP instance I, the dual graph $[7,9,22]$ of the hypergraph \mathcal{H}_{I} is a graph $G_{I}^{d}=(V, E)$ defined as follows: the set of vertices V coincides with the set of (hyper)edges of \mathcal{H}_{I}, and the set E contains an edge $\left\{h, h^{\prime}\right\}$ for each pair of vertices $h, h^{\prime} \in V$ such that $h \cap h^{\prime} \neq \emptyset$. That is, there is an edge between any pair of vertices corresponding to hyperedges of \mathcal{H}_{I} sharing some variable.

The dual graph often looks very intricate even for simple CSPs. For instance, in general, acyclic CSPs do not have acyclic dual graphs. However, it is well known that the dual graph G_{I}^{d} can be suitably simplified in order to obtain a "better" graph G^{\prime} which can still be used to solve the given CSP instance I. In particular, if I is an acyclic CSP, G_{I}^{d} can be reduced to an acyclic graph that represents a jointree of \mathcal{H}_{I}. In this case, the reduction is feasible in polynomial (actually, linear) time. (See, e.g., [22].)

Definition 41 Let $G=(V, E)$ be the dual graph of some hypergraph \mathcal{H}. For any pair of vertices $h, h^{\prime} \in V$, let $\ell\left(\left\{h, h^{\prime}\right\}\right)=h \cap h^{\prime}$. A reduct G^{\prime} of G is a graph $\left(V^{\prime}, E^{\prime}\right)$ satisfying the following conditions:
(i) $V^{\prime}=V$;
(ii) $E^{\prime} \subseteq E$; and
(iii) for each edge $q=\left\{h, h^{\prime}\right\}$ belonging to $\left(E-E^{\prime}\right)$, there exists in G^{\prime} a path P from h to h^{\prime}, such that the variables in $\ell(q)$ are included in $\ell\left(q^{\prime}\right)$ for each edge q^{\prime} occurring in the path P. That is, if all the variables shared by two vertices occur in some other path between these vertices, the edge connecting them can be safely deleted from the dual graph.

We denote by $\operatorname{red}(G)$ the set of all the minimal reducts of a graph G, i.e., the set containing every graph G^{\prime} which is a reduct of G and whose set of edges is minimal (with respect to set inclusion) over all the reducts of G. Clearly, computing a graph belonging to $\operatorname{red}(G)$ is feasible in polynomial time, because one can just repeatedly delete an edge as long as possible.

It is thus natural to try to solve a nonbinary CSP I using any decomposition method
$D M$ on its dual graph:
(1) compute from G_{I}^{d} a suitable reduct $G \in \operatorname{red}\left(G_{I}^{d}\right)$;
(2) compute a $D M$ decomposition of the graph G;
(3) solve the instance I using this decomposition.

For instance, BICOMP can easily be modified to be used on the dual graph of a given hypergraph [11]. Call this dual version BICOMP ${ }^{d}$. The relationship between BICOMP ${ }^{d}$ and HINGE has already been discussed in [18]: it was proved that HINGE is more general than BICOMP ${ }^{d}$. However, Gyssens et al. observed that a fine comparison between the two methods is quite difficult because the performance of BICOMP ${ }^{d}$ strongly depends on the simplification applied to G_{I}^{d}, i.e., depends on the particular graph in $\operatorname{red}\left(G_{I}^{d}\right)$ selected to solve the given CSP instance I. They also argued that there is no obvious way to find a suitable simplification good enough to keep small the biconnected width of the reduct to be used for solving the problem.

Since HYPERTREE strongly generalizes HINGE, it follows that HYPERTREE strongly generalizes BICOMP ${ }^{d}$. However, as suggested by Dechter (personal communication), it would be interesting to compare HYPERTREE with the dual version of TCLUSTER (short: TCLUSTER ${ }^{d}$), defined as follows. Let \mathcal{H} be a hypergraph, and G its dual graph. An acyclic hypergraph \mathcal{H}^{*} is a TCLUSTER ${ }^{d}$ decomposition of \mathcal{H} of width w if \mathcal{H}^{*} is a TCLUSTER decomposition of G^{\prime} of width w, for some reduct $G^{\prime} \in \operatorname{red}(G)$. The dual tree-clustering width (short: TCLUSTER ${ }^{d}$ width) of \mathcal{H} is equal to the minimum width over the TCLUSTER ${ }^{d}$ decompositions of \mathcal{H}.

We next show that HYPERTREE strongly generalizes the TCLUSTER ${ }^{d}$ method, too. To this end, we introduce a new class of hypergraphs. For any $n>1$ let D-Clique (n) be the hypergraph having $n+2$ edges $\left\{h_{a}, h_{b}, h_{1}, h_{2}, \ldots, h_{n}\right\}$ defined as follows:

- $h_{a}=\left\{X_{i j}^{a} \mid 1 \leq i<j \leq n\right\}$;
- $h_{b}=\left\{X_{i j}^{b} \mid 1 \leq i<j \leq n\right\}$;
- for $1 \leq i \leq n, h_{i}=\left\{X_{1 i}^{a}, X_{2 i}^{a}, \ldots, X_{i-1 i}^{a}, X_{i i+1}^{a}, \ldots X_{i n}^{a}\right\} \cup$ $\left\{X_{1 i}^{b}, X_{2 i}^{b}, \ldots, X_{i-1 i}^{b}, X_{i i+1}^{b}, \ldots X_{i n}^{b}\right\}$.

We denote by $G^{d}(n)$ the dual graph of D-Clique (n).

Figure 26. The dual graph of D-Clique(4)

Example 42 Consider the hypergraph D-Clique(4). Its edges are

$$
\begin{aligned}
h_{1} & =\left\{X_{12}^{a}, X_{12}^{b}, X_{13}^{a}, X_{13}^{b}, X_{14}^{a}, X_{14}^{b}\right\} ; \\
h_{2} & =\left\{X_{12}^{a}, X_{12}^{b}, X_{23}^{a}, X_{23}^{b}, X_{24}^{a}, X_{24}^{b}\right\} ; \\
h_{3} & =\left\{X_{13}^{a}, X_{13}^{b}, X_{23}^{a}, X_{23}^{b}, X_{34}^{a}, X_{34}^{b}\right\} ; \\
h_{4} & =\left\{X_{14}^{a}, X_{14}^{b}, X_{24}^{a}, X_{24}^{b}, X_{34}^{a}, X_{34}^{b}\right\} ; \\
h_{a} & =\left\{X_{i j}^{a} \mid 1 \leq i<j \leq 4\right\} \\
h_{b} & =\left\{X_{i j}^{b} \mid 1 \leq i<j \leq 4\right\} .
\end{aligned}
$$

Figure 26 shows the dual graph $G^{d}(4)$. Note that this graph cannot be reduced, and hence $\operatorname{red}\left(G^{d}(4)\right)=\left\{G^{d}(4)\right\}$. For instance, consider the vertices h_{1} and h_{4}. Their shared variables are X_{14}^{a} and X_{14}^{b}. For any $t \notin\{1,4, a, b\}, h_{t} \cap h_{1}=\left\{X_{1 t}^{a}, X_{1 t}^{b}\right\}$, which clearly does not include $\left\{X_{14}^{a}, X_{14}^{b}\right\}$. Moreover, $X_{14}^{b} \notin h_{1} \cap h_{a}$ and $X_{14}^{a} \notin$ $h_{1} \cap h_{b}$. Thus, we cannot delete the edge $\left\{h_{1}, h_{4}\right\}$, and in fact no edge can be deleted from $G^{d}(4)$.

Apply TCLUSTER to $G^{d}(4)$. It is already a chordal graph, therefore we can directly identify the maximal cliques, that form the edges of the TCLUSTER decomposition of $G^{d}(4)$. The resulting acyclic hypergraph has the two edges $\left\{h_{a}, h_{1}, h_{2}, h_{3}, h_{4}\right\}$, and $\left\{h_{b}, h_{1}, h_{2}, h_{3}, h_{4}\right\}$. Thus, the TCLUSTER ${ }^{d}$ width of D-Clique(4) is 5 .

The HYPERTREE width of D-Clique(4) is 2 . Figure 27 shows a complete hypertree decomposition (T, χ, λ) of D-Clique (4) having width 2 . Observe that, exploiting the two edges h_{1} and h_{2}, even the root of T alone covers all the variables occurring in D-Clique(4), and is in fact a hypertree decomposition of this hypergraph. To obtain the complete hypertree decomposition shown in Figure 27, the remaining edges are simply "attached" as singletons to the root.

Figure 27. A hypertree decomposition of D-Clique (4)
Theorem 43 TCLUSTER ${ }^{d} \prec$ HYPERTREE.

PROOF. (HYPERTREE \triangleright TCLUSTER d.) Consider the hypergraph class $\{D$-Clique $(n) \mid$ $n>1\}$. Generalizing the above example, it is easily seen that, for any $n \geq 3$, the set $\operatorname{red}\left(G^{d}(n)\right)$ is a singleton containing only the dual graph $G^{d}(n)$ of D-Clique (n).

This graph is chordal, its maximal cliques are $\left\{h_{a}, h_{1}, \ldots, h_{n}\right\}$ and $\left\{h_{b}, h_{1}, \ldots, h_{n}\right\}$, and hence the TCLUSTER ${ }^{d}$ width of $\operatorname{D-Clique(~} n$) is $n+1$. Thus, for any $k>0$, $\cup_{n>0}\{D$-Clique $(n)\} \nsubseteq C\left(\right.$ TCLUSTER $\left.^{d}, k\right)$, whereas the hypertree width of all these hypergraphs is 2, i.e., $\cup_{n>0}\{D$-Clique $(n)\} \subseteq C$ (hypertree, 2). Indeed, a tree with a single vertex r with $\lambda(r)=\left\{h_{a}, h_{b}\right\}$ and $\chi(r)=h_{a} \cup h_{b}$ is a hypertree decomposition of $D-\operatorname{Clique}(n)$, though not complete. Figure 27 shows what a complete hypertree decomposition for such hypergraphs looks like.
(TCLUSTER ${ }^{d} \preceq$ HYPERTREE.) Let \mathcal{H}^{\prime} be a TCLUSTER ${ }^{d}$ decomposition of a hypergraph \mathcal{H} of width k. Then, \mathcal{H}^{\prime} is an acyclic hypergraph whose edges are sets containing at most k edges from \mathcal{H}. Any join tree $J T$ of \mathcal{H}^{\prime} can be mapped straightforwardly to a hypertree decomposition (T, χ, λ) of \mathcal{H} with the same tree-shape as $J T$. Every vertex p in T corresponds to a vertex p^{\prime} in $J T$. The vertex p^{\prime} of the join tree of \mathcal{H}^{\prime} corresponds to a maximal clique of (some reduct of) the dual graph of \mathcal{H}, and hence contains a set S of edges occurring in \mathcal{H}. Then, the vertex p in the hypertree decomposition is labeled by $\lambda(p)=S$ and $\chi(p)=\operatorname{var}(S)$. Clearly the hypertree decomposition (T, χ, λ) has the same width as the TCLUSTER ${ }^{d}$ decomposition \mathcal{H}^{\prime}.

Note that the TCLUSTER ${ }^{d}$ width of \mathcal{H} does not depend on the choice of the reduct of the dual graph. The width is in fact computed using an optimal reduct of G, i.e., a reduct leading to a lowest-width TCLUSTER decomposition of \mathcal{H}. However, as observed in [18], it is not clear how to choose the right reduct in order to obtain the TCLUSTER ${ }^{d}$ decomposition having the smallest width. In fact, it is currently not known whether, for a fixed k, deciding whether the TCLUSTER ${ }^{d}$ width of a hypergraph is at most k is feasible in polynomial time. Thus, compared to TCLUSTER ${ }^{d}$, HYPERTREE is strongly more general and k-bounded hypertree decompositions are efficiently computable.

Clearly, the above result holds for TREEWIDTH and w^{*}, too, given the equivalence of these methods (see Section 4).

10 Conclusion

In this paper we have established a framework for systematically comparing structural CSP decomposition methods with regard to their power of identifying large tractable classes of constraints. We have compared the main decomposition methods published in the AI literature. Moreover, we have adapted the method of hypertree decompositions, previously defined in the database context, to the CSP setting. We compared all methods both for CSPs of arbitrary arity and for binary CSPs. In both cases it turned out that the hypertree decomposition method is more general than the others; in the case of general CSPs this holds even in a very strong sense.

We have also shown that the method of hypertree decompositions is more general than any dualization method which applies a standard decomposition method to the dual graph of the constraint hypergraph of a CSP. We have derived the upper time bound $O\left(\|I\|^{k+1} \log \|I\|\right)$ for the solution of a CSP instance I having a k-width hypertree decomposition. Note that this bound is not worse than the bound for any other considered method of CSP decompositions. Thus, it appears that the method of hypertree decompositions is currently the most powerful CSP decomposition method.

The comparison results and complexity bounds presented in this paper are valid for general CSP instances whose domain size is unrestricted. Further work is needed both on suitable extensions or modifications of decomposition methods and on the comparison of the various methods for some relevant special cases, in particular, for CSPs with a fixed domain size. Moreover, as already remarked, both the HINGE and the BICOMP width of a hypergraph can be computed in polynomial time even if no fixed bound is given. Thus, these methods may be useful for providing in polynomial time a "measure of the cyclicity" of any arbitrary CSP instance. For some practical applications where the given CSP instances have large hypertree width, HINGE and BICOMP decompositions may be used for the fast identification of "easy" and "hard" modules (or clusters) of the constraint hypergraph. Moreover, the algorithm for computing hypertree decompositions itself may suitably be modified to identify and output clusters of low hypertree-width in case the entire hypergraph has a high width.

We believe that our comparison results provide insight into the relationship of various standard methods of constraint decomposition. Constraint satisfaction is a very lively field and several new methods and techniques for decomposing and solving CSPs are expected to be proposed in the years to come. We hope that the results of this paper, our comparison framework, and our proof techniques will be useful to other authors for assessing the relative strength of their methods, and for comparing them to existing methods.

Acknowledgements

We thank the anonymous referees for their useful comments and suggestions.

Research supported by FWF (Austrian Science Funds) under the project Z29-INF. Part of the work of Francesco Scarcello has been carried out while visiting the Technische Universität Wien. Part of the work of Nicola Leone has been carried out while he was with the Technische Universität Wien.

References

[1] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs. Journal of Algorithms, 12:308-340, 1991.
[2] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. Journal of the ACM, 30(3):479-513, July, 1983.
[3] P.A. Bernstein, and N. Goodman. The power of natural semijoins. SIAM Journal on Computing, 10(4):751-771, 1981.
[4] W. Bibel. Constraint Satisfaction from a Deductive Viewpoint. Artificial Intelligence, 35,401-413, 1988.
[5] H.L. Bodlaender. Treewidth: Algorithmic Techniques and Results. In Proceedings of MFCS'97, Bratislava. LNCS 1295, Springer, pp. 19-36, 1997.
[6] Ch. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited. Theoretical Computer Science, 239(2):211-229, 2000.
[7] R. Dechter. Constraint Networks. In Encyclopedia of Artificial Intelligence, second edition, Wiley and Sons, pp. 276-285, 1992.
[8] R. Dechter and J. Pearl. Network based heuristics for constraint satisfaction problems. Artificial Intelligence, 34(1):1-38, 1988.
[9] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence, 38:353-366, 1989.
[10] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29(1):24-32, 1982.
[11] E.C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the ACM, 32(4):755-761, 1985.
[12] E.C. Freuder. Complexity of K-Tree Structured Constraint Satisfaction Problems. Proceedings of AAAI'90, 1990.
[13] M.R. Garey and D.S. Johnson. Computers and Intractability. A Guide to the Theory of NP-completeness. Freeman and Comp., NY, USA, 1979.
[14] N. Goodman, and O. Shmueli. Syntactic characterization of tree database schemas. Journal of the ACM, 30(4):767-786.
[15] G. Gottlob, N. Leone, and F. Scarcello. The Complexity of Acyclic Conjunctive Queries, in Proceedings of FOCS'98, pp.706-715, Palo Alto, CA, 1998. Full version: Technical Report DBAI-TR-98/17, available on the web as: http://www.dbai.tuwien.ac.at/staff/gottlob/acyclic.ps, or by email from the authors.
[16] G. Gottlob, N. Leone, and F. Scarcello. "Hypertree Decompositions and Tractable Queries," in Proceedings of PODS'99, Philadelphia, May, 1999. Full version to appear in Journal of Computer and System Sciences. A preprint of the full version is currently stored in The Computer Research Repository, http://xxx.lanl.gov/archive/cs.
[17] G. Gottlob, N. Leone, and F. Scarcello. "On Tractable Queries and Constraints," in Proceedings of the Conference on Database and Expert Systems Applications (DEXA'99, Florence, 1999, LNCS 1677, pp. 1-15, Springer.
[18] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction problems using database techniques. Artificial Intelligence, 66:57-89, 1994.
[19] M. Gyssens and J. Paredaens. A Decomposition Methodology for Cyclic Databases. In Advances in Database Theory, volume 2, pp. 85-122. Plenum Press New York, NY, 1984.
[20] P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal of the ACM, 44(4), 1997.
[21] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-Query Containment and Constraint Satisfaction. In Proc. of Symp. on Principles of Database Systems (PODS'98), pp.205213, Seattle, Washington, 1998. Full version to appear in Journal of Computer and System Sciences.
[22] D. Maier, The theory of relational databases. Computer Science Press, Rockville, MD, 1986.
[23] J. Pearson and P.G. Jeavons. A Survey of Tractable Constraint Satisfaction Problems, CSD-TR-97-15, Royal Holloway, Univ. of London, 1997.
[24] N. Robertson and P.D. Seymour. Graph Minors II. Algorithmic aspects of tree width. Journal of Algorithms, 7:309-322, 1986.
[25] R. Seidel. A new method for solving constraint satisfaction problems. In Proceedings of IJCAI'81, 1981.
[26] M. Yannakakis. Algorithms for Acyclic Database Schemes. In Proc. of Int. Conf. on Very Large Data Bases (VLDB'81), pp. 82-94, C. Zaniolo and C. Delobel Eds., Cannes, France, 1981.

[^0]: * Part of this work has been published in preliminary form in the proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI'99), Stockholm, 1999.

 Please, address correspondence to Francesco Scarcello.

[^1]: ${ }^{1}$ Rina Dechter, personal communication at IJCAI'99.

