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ABSTRACT

The EMIME project aims to build a personalized speech-to-speech

translator, such that spoken input of a user in one language is used

to produce spoken output that still sounds like the user’s voice how-

ever in another language. This distinctiveness makes unsupervised

cross-lingual speaker adaptation one key to the project’s success.

So far, research has been conducted into unsupervised and cross-

lingual cases separately by means of decision tree marginalization

and HMM state mapping respectively. In this paper we combine the

two techniques to perform unsupervised cross-lingual speaker adap-

tation. The performance of eight speaker adaptation systems (su-

pervised vs. unsupervised, intra-lingual vs. cross-lingual) is com-

pared using objective and subjective evaluations. Experimental re-

sults show the performance of unsupervised cross-lingual speaker

adaptation is comparable to that of the supervised case in terms of

spectrum adaptation in the EMIME scenario, even though automati-

cally obtained transcriptions have a very high phoneme error rate.

Index Terms— unsupervised cross-lingual speaker adaptation,

decision tree marginalization, HMM state mapping

1. INTRODUCTION

The language barrier is an important hurdle to overcome in order

to facilitate better communication between people across the globe.

It would be exciting and extremely helpful if we had a real-time

automated speech-to-speech translator, especially when the transla-

tor could reproduce a user’s input voice characteristics in its output

speech. This is exactly the principal goal of the EMIME project

(Effective Multilingual Interaction in Mobile Environments). Cross-

lingual speaker adaptation is thus one of the key goals of EMIME.

Such a speech-to-speech translator consists of speech recogni-

tion, machine translation and speech synthesis. EMIME focuses on

speech recognition and synthesis. Bridging the gap between speech

recognition and synthesis [1] is also an implicit goal. Thus, we

hope to employ a unified modelling framework which applies to

both recognition and synthesis. As speech recognition is typically

HMM-based and we want to easily alter the voice identity of output

speech, the HMM-based speech synthesis technology [2, 3] is the

ideal choice. As a statistical parametric approach, the HMM-based

framework provides a great deal of flexibility, especially with respect

to its generality across languages and the ease of altering voice char-

acteristics of models. Consequently, this paper investigates cross-

lingual speaker adaptation based on unified HMM modelling.

We proposed a decision tree marginalization technique in [4] for

unified HMM modelling, by which speech recognition can be per-

formed with speech synthesis models. We found that this technique

made it feasible to conduct unsupervised intra-lingual speaker adap-

tation in a unified modelling framework. As a result, employing the

HMM state mapping technique [5] as well as decision tree marginal-

ization should make unsupervised cross-lingual speaker adaptation

viable in a unified modelling framework. We investigate the viabil-

ity of the combination of these techniques in this paper.

In Section 2, decision tree marginalization and HMM state map-

ping are briefly reviewed. In Section 3, details on applying the two

techniques simultaneously to unsupervised cross-lingual speaker

adaptation are described. We then compare the performance of

supervised and unsupervised cross-lingual speaker adaptation sys-

tems in the context of English and Mandarin Chinese in Section 4.

Conclusions follow in Section 5.

2. COMPONENT TECHNIQUES

2.1. Decision Tree Marginalization

Decision tree marginalization [4] allows deriving speech recognition

models from a full-context speech synthesis model set according to

given triphone labels. Hence, the first stage is training a conventional

HMM-based speech synthesis system from scratch, of which each

HMM state emission distribution is typically composed of a single

Gaussian PDF.

Conventionally, making a new synthesis model is carried out by

traversing a synthesis decision tree according to the new full-context

label and eventually assigning one leaf node to it. The basic idea

of decision tree marginalization is fairly straightforward in the sense

that it generates a triphone recognition model in almost the same

manner. The only difference from making a new synthesis model is

that both children of a decision tree intermediate node of the syn-

thesis system are traversed when the question associated with the

intermediate node is irrelevant to any triphone context. So finally

a triphone label is associated with more than one leaf node, which

form a state emission distribution of multiple Gaussian components.

In other words, a triphone model for recognition constructed by de-

cision tree marginalization can be viewed as a linear combination

of full-context single Gaussian models for synthesis. No model pa-

rameters are changed during the whole process. See Figure 1 for an

example.

The decision tree marginalization process described above is ac-

tually a special case. It can be extended such that an arbitrary context

combination of full-context labels is marginalized out. For instance,

we can create tonal monophone models by marginalizing out all the

contexts that are unrelated to the base phone context and tone infor-

mation.
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Fig. 1. An example of decision tree marginalization, showing how

a new recognition model “r-ih+z” is derived from a decision tree

of a speech synthesis system (“L ” / “R ”: left/right phone; “G?”:

clustered state emission distribution PDFs)

2.2. HMM State Mapping

We consider the case in which we have adaptation data in an input

language (L1) and an average voice model set for synthesis in an out-

put language (L2). In theory, this prevents us from directly adapting

the voice identity of the average voice model set into that of the adap-

tation data, because language mismatch eliminates all the correspon-

dence between the data and the model set. Two possible solutions

are (i) training a bilingual model set [6] and (ii) reconstructing the

correspondence. HMM state mapping [5] is an effective method ca-

pable of reconstructing the correspondence for cross-lingual speaker

adaptation when a bilingual model set is unavailable.

HMM state mapping requires two decent average voice model

sets in L1 and L2, respectively. The two average voices are pre-

sumed to sound like a single person. Each state-cluster of L1 (or

L2) is then associated with the most similar one of L2 (or L1) by

matching state-cluster PDFs in the two model sets which have min-

imum (symmetric) Kullback-Leibler divergence between them. It is

not guaranteed that every state-cluster of L2 (or L1) is touched. Un-

touched ones are ignored typically. Wu et al. [5] proposed two ways

of applying state mapping rules to cross-lingual speaker adaptation:

Transform version is performed by first generating speaker depen-

dent transforms by carrying out intra-lingual speaker adapta-

tion using the acoustic model set trained for L1. Following

this, voice characteristics of the acoustic model set in L2 are

converted by applying these speaker-dependent transforms to

state-clusters of L2’s acoustic models, according to prepared

state mapping rules between the two acoustic model sets.

Data version is performed by first mapping state-clusters of the

acoustic model set in L1 to those of L2’s acoustic models.

Then adaptation data in L1 is associated with state-clusters of

L2 through state-clusters of L1. Finally the adaptation data

in L1 is treated as if it were in L2 and adaptation is performed

using L2’s acoustic models in the “intra-lingual” sense.

3. COMBINING DECISION TREE MARGINALIZATION

AND HMM STATE MAPPING

As discussed above, decision tree marginalization makes it feasible

to perform unsupervised intra-lingual speaker adaptation and HMM

state mapping makes it feasible to perform supervised cross-lingual

speaker adaptation. We expected that their combination would en-

able unsupervised cross-lingual speaker adaptation.

First of all, we prepared HMM state mapping rules using two av-

erage voice synthesis model sets in L1 and L2, respectively, and per-

formed speech recognition with the help of decision tree marginal-

ization in order to obtain estimated triphone transcriptions of adap-

tation data uttered in L1.

Once estimated triphone transcriptions of adaptation data were

available, either the transform version or the data version of HMM

state mapping was used for “supervised” cross-lingual speaker adap-

tation. Note that estimated transcriptions were triphone sequences in

L1. So rather than the synthesis model set in L1, it is the recognition

models of L1 constructed by decision tree marginalization that were

involved in the “supervised” cross-lingual speaker adaptation.

4. EXPERIMENTS

4.1. Experimental Setup

We trained two average voice, single Gaussian synthesis model sets

on the corpora SpeeCon (Mandarin) and WSJ SI84 (English), re-

spectively, and derived HMM state mapping rules and eight synthe-

sis systems from them. Half of the eight systems were supervised

and the rest were unsupervised. We collected bilingual adaptation

data from two Chinese students (H and Z) who also spoke English

well. The Mandarin and English prompts, which were not included

in our training data, were also selected from SpeeCon and WSJ, re-

spectively. Mandarin and English were defined as input (L1) and

output (L2) languages, respectively, throughout our experiments.

System name format: (S/U) (1/2) - (D/T/M)

S/U supervised / unsupervised

1/2 cross-lingual / intra-lingual

D/T data/transform version of HMM state mapping

M Decision tree marginalization was used instead of HMM

state mapping. The average voice model set of Mandarin

(L1) was therefore unnecessary.

Following this naming rule, the eight synthesis systems were S2,

S1-M, S1-T, S1-D, U2, U1-M, U1-T and U1-D:

S2 purely built on the English side

S1-M We marginalized out all the English-specific contexts first.

As a result, a Mandarin full-context label was associated with

more than one English state-cluster. Then Mandarin adapta-

tion data could be treated as English data for “intra-lingual”

speaker adaptation.

S1-T & S1-D as described in Section 2.2

U2 purely built on the English side; as described in Section 2.1

U1-M We marginalized out all the non-triphone contexts and then

recognized Mandarin adaptation data with English models.

Mandarin adaptation data was thus associated with the En-

glish average voice model set.

U1-T & U1-D as described in Section 3

As decision tree marginalization was engaged in all the four

unsupervised systems and S1-M, their transforms were estimated

over multiple Gaussian component models instead of single Gaus-

sian ones.

Speech features were 39th-order mel-cepstra, log F0, five di-

mensional band aperiodicity, and their delta and delta-delta coeffi-

cients. The CSMAPLR [7] algorithm and 40 adaptation utterances

were used. Global variances were calculated on adaptation data. A

simple phoneme loop was adopted as a language model for recogni-

tion. The average phoneme error rate was around 75%.



4.2. System Evaluation

We calculated RMSE of mel-cepstrum (MCEP) and F0, as well as

correlation coefficients and voicing error rates of F0, for objective

evaluation. See Table 1 (“AV” means “average voice”).

MCEP F0

RMSE (/frm) RMSE (Hz/frm) CorrCoef

H Z H Z H Z

AV 1.39 1.43 26.0 35.9 0.46 0.49

S2 1.04 1.04 11.8 9.6 0.46 0.56

U2 1.06 1.08 13.0 14.0 0.47 0.54

S1-T 1.23 1.22 20.0 12.6 0.47 0.51

U1-T 1.24 1.26 21.1 16.5 0.48 0.53

S1-D 1.13 1.14 19.5 12.6 0.47 0.51

U1-D 1.13 1.13 22.7 17.3 0.48 0.55

S1-M 1.10 1.11 25.9 22.3 0.48 0.54

U1-M 1.10 1.11 25.1 21.0 0.48 0.53

Table 1. Objective evaluation results

The proposed method was mainly designed for spectrum adapta-

tion. Table 1 confirms that the performance of unsupervised adapta-

tion is comparable to that of supervised adaptation no matter which

approach was applied, especially in terms of spectrum. According

to Table 1:

(1) Intra-lingual systems provided the best performance in terms

of spectrum adaptation, which makes sense as there was no language

mismatch.

(2) It is not surprising that S1-T and U1-T provided worse per-

forming spectrum adaptation, because the transforms were estimated

on the Mandarin side but used to adjust the English average voice

models; there was an obvious language mismatch.

(3) In contrast, mapping rules were applied to the Mandarin

adaptation data before transform estimation when the data version

of HMM state mapping was used. Since transforms were directly

estimated on the Mandarin data and the English average voice mod-

els, the language mismatch in S1-D and U1-D could be partly al-

leviated by the maximum likelihood linear transformation (MLLT)

based adaptation algorithm. RMSE of MCEP thus decreased.

(4) In S1-M and U1-M, without any explicit mapping rules, the

Mandarin adaptation data was directly associated with PDFs of the

English average voice models by prior phonetic knowledge and in an

ML-based data-driven manner, respectively. This could be regarded

as an automatic, more precise, mapping process. So S1-M and U1-M

could be slightly better than S1-D and U1-D in terms of spectrum.

(5) Unfortunately, the great prosody distinction between En-

glish and Mandarin meant F0 adaptation was not nearly as effective.

Speaker Language Mean StD Min Max

H Mandarin 137.9 25.2 72.9 236.3

H English 128.7 11.8 64.1 222.6

Z Mandarin 117.9 15.4 58.1 182.1

Z English 112.0 10.3 59.3 186.1

Table 2. F0 statistics (Unit: Hz)

Initially we synthesized speech with adapted pitch contours, but

unnatural pitch patterns resulting from unsupervised cross-lingual

speaker adaptation were perceived during informal listening evalua-

tion. In addition, Table 2 confirms that the prosody of English (i.e.

stress-timed & atonal) is distinct from that of Mandarin (i.e. syllable-

timed & tonal). Hence, pitch and duration of utterances to be sub-

jectively evaluated were synthesized by the English average voice

model set. We then shifted the mean F0 value of each synthesized

pitch contour to that of speech data of the corresponding bilingual

speaker (H or Z). So our formal listening test merely focused on

the performance of spectrum adaptation.

Our formal listening test consisted of two sections: naturalness

and speaker similarity. In the naturalness section, a listener was re-

quested to listen to a natural utterance first and then utterances syn-

thesized by the eight systems each as well as vocoded speech in a

random order. Having listened to each synthesized utterance, the lis-

tener was requested to score what he/she heard on a 5-point scale

of 1 through 5, where 1 meant “completely unnatural” and 5 meant

“completely natural”. The speaker similarity section was designed

in the same fashion, except that a listener was requested to listen to

one more utterance which was synthesized directly by the average

voice models and the 5-point scale was such that 1 meant “sounds

like a totally different person” and 5 meant “sounds like exactly the

same person”.
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Fig. 2. Naturalness score (speaker H)
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Fig. 3. Naturalness score (speaker Z)

Twenty listeners participated in our listening test. Because of

the anonymity of our listening test, only two native English speak-

ers can be confirmed. The results in Figure 2 and Figure 3 suggest

that unsupervised cross-lingual speaker adaptation is comparable to

or sometimes better than the supervised case in terms of natural-

ness. We noted that in the case of intra-lingual speaker adaptation

with speaker Z’s speech adaptation data, the supervised system S2

outperformed the unsupervised one U2. This is probably because

speaker Z speaks Mandarin accented English while speaker H has a

more natural English accent. In order to avoid the potential effect of

non-standard English accents, only speaker H was involved in the

speaker similarity evaluation.



It is observed from both objective and subjective evaluation re-

sults that for speaker H , *1-D and *1-M followed the intra-lingual

adaptation systems closely while *1-T evidently underperformed.

Reviewing the analysis of Table 1, we noted the state emission PDFs

of *1-D, *1-M and intra-lingual systems for transform estimation

were all in English, which was the output language, and that the

difference was just language identities of their adaptation data. By

contrast, both the emission PDFs and adaptation data of *1-T for

transform estimation were in Mandarin, which was not the output

language. Hence, it would appear that it is necessary to make sure

we use output language distributions for estimation of cross-lingual

speaker transforms. The language identity of adaptation data is less

important than that of a model set to be adapted.
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Fig. 4. Similarity score (Mandarin reference uttered by speaker H)

4.8 2.8 2.1 2.6 2.0 1.21.8 1.7 1.8 1.9
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

vocoder intra *1-D *1-T *1-M average 
voice

supervised unsupervised

95% confidence interval

Fig. 5. Similarity score (English reference uttered by speaker H)

The results in Figure 4 were obtained in the EMIME scenario

– speaker similarity has to be compared between natural speech in

L1 and synthesized speech in L2. This figure shows unsupervised

speaker adaptation is comparable to the supervised case in terms of

speaker similarity. However, Figure 5, where both natural and syn-

thesized speech were in English, shows an interesting contrast in

that supervised adaptation outperformed the unsupervised case. We

attribute this phenomenon to human perception being affected by

language mismatch. Namely, because the prompt of a natural En-

glish utterance was the same as that of synthesized ones, and thus

they were uttered with close prosody, the listeners could more eas-

ily perceive how similar/dissimilar a synthesized utterance was to a

natural one, and tended to grade supervised adaptation with higher

scores. In the case shown by Figure 4, the language mismatch made

it more difficult for the listeners to compare a synthesized utterance

with a natural one. The listeners didn’t think either synthesized ut-

terance (adapted supervisedly or unsupervisedly) sounded more sim-

ilar/dissimilar to the natural one. This explanation needs to be con-

firmed by further experiments and analysis.

Comparing with the cross-lingual systems *1-D and *1-M, we

didn’t observe significantly better performance of the intra-lingual

systems. This suggests the MLLT-based speaker adaptation tech-

nique is able to compensate for language mismatch between adapta-

tion data and an average voice model set fairly well.

5. CONCLUSION

We implemented unsupervised cross-lingual speaker adaptation by

combining recently developed decision tree marginalization and

HMM state mapping techniques. It was observed that unsupervised

cross-lingual speaker adaptation was comparable to the supervised

case in terms of spectrum adaptation in the EMIME scenario. We

have observed language mismatch is the main problem for cross-

lingual speaker adaptation, so introducing some extra techniques to

alleviate the mismatch before speaker adaptation would be helpful.

Since prosody plays an important role in voice characteristics as

well, we may need to pay more attention to improving prosody

adaptation in order to deal with two dissimilar languages.
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