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Abstract 

 
Cellular material structures, such as honeycombs and lattice structures, have been 

engineered at the mesoscale for high performance and multifunctional capabilities.  We desire 
efficient algorithms for searching the large, complex design spaces associated with cellular 
structures.  In this paper, we present a comparison of two synthesis methods, Particle Swarm 
Optimization (PSO) and least-squares minimization (LSM), for the design of components 
comprised of cellular structures.  Computational characteristics of the algorithms are reported for 
design problems with hundreds of variables.  Constraints from SLS and direct-metal 
manufacturing processes are incorporated to ensure that resulting designs are realizable.  Two 2-
dimensional examples are used to study the characteristics of the proposed synthesis methods. 

 
Keywords:  cellular materials, lattice structures, design synthesis, particle swarm optimization, 
least squares minimization, additive manufacturing. 
 

1 INTRODUCTION 

1.1 Cellular Materials 

The concept of designed cellular materials is motivated by the desire to put material only 
where it is needed for a specific application.  From a mechanical engineering viewpoint, a key 
advantage offered by cellular materials is high strength accompanied by a relatively low mass.  
These materials can provide good energy absorption characteristics and good thermal and 
acoustic insulation properties as well [8].  Cellular materials include foams, honeycombs, 
lattices, and similar constructions.  When the characteristic lengths of the cells are in the range of 
0.1 to 10 mm, we refer to these materials as mesostructured materials.  Mesostructured materials 
that are not produced using stochastic processes (e.g. foaming) are called designed cellular 
materials.  In this paper, we focus on designed lattice materials. 
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In the past 10 years, the area of lattice materials has received considerable attention due to 
their inherent advantages over foams in providing light, stiff, and strong materials [2].  Lattice 
structures tend to have geometry variations in three dimensions; some of our designs are shown 
in Figure 1.  As pointed out in [6], the strength of foams scales as ρ1.5, whereas lattice structure 
strength scales as ρ, where ρ is the volumetric density of the material.  As a result, lattices with a 
ρ = 0.1 are about 3 times stronger than a typical foam.  The strength differences lie in the nature 
of material deformation: the foam is governed by cell wall bending, while lattice elements stretch 
and compress.  The examples in Fig. 1 utilize the octet-truss (shown on the left), but many other 
lattice structures have been developed and studied (e.g., kagome, Kelvin foam).  We have 
developed methods for designing lattice mesostructure for parts [17,20] and have developed 
design-for-manufacturing rules for their fabrication in SL. 

Methods of continuum mechanics have been applied to various mesostructured materials.  
Ashby and co-workers wrote a book on metal foam design and analysis [2].  They and others 
have applied similar methods to the analysis of lattice structures.  The octet truss in Fig. 1 has 
been extensively analyzed.  Deshpande et al. [6] treated the octet truss unit cell as a collection of 
tension-compression bars that are pin-jointed at vertices and derived analytical models of their 
collapse behavior for many combinations of stresses.  Their results match finite element model 
behavior well, but tend to under-predict the strength and stiffness of octet trusses due to their 
assumption of pin-jointed vertices.  Wang and McDowell [21] extended this study to include 
several other lattice cells.  Recently, we have been developing a more general analytical model 
of lattice behavior [11].  From our general model, models for octet and other lattice structures 
can be derived.  We base our model on a single vertex with a collection of struts incident on that 
vertex.  This vertex model will be our base “unit cell” for representation and modeling purposes. 

0

0.5

1

0
0.5

1

0

0.5

1

0

u

w

v

d

a) octet-truss

b) skin with single layer of lattice structure

c) Skin with 2 layers of truss structure made in SL

0

0.5

1

0
0.5

1

0

0.5

1

0

u

w

v

d

0

0.5

1

0
0.5

1

0

0.5

1

0

u

w

v

d

a) octet-truss

b) skin with single layer of lattice structure

c) Skin with 2 layers of truss structure made in SL  
Figure 1.  Octet-truss unit cell and example parts with octet-truss mesostructures. 

 

1.2 Design for Additive Manufacturing 

Design for manufacturing (DFM) has typically meant that designers should tailor their 
designs to eliminate manufacturing difficulties and minimize costs.  However, the improvement 
of rapid prototyping, or Additive Manufacturing (AM), technologies provides an opportunity to 
re-think DFM to take advantage of the unique capabilities of these technologies.  Several 
companies are now using AM technologies for production manufacturing.  For example, 
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Siemens, Phonak, Widex, and the other hearing aid manufacturers use selective laser sintering 
(SLS) and stereolithography (SL) machines to produce hearing aid shells, Align Technology uses 
stereolithography to fabricate molds for producing clear braces (“aligners”), and Boeing and its 
suppliers use SLS to produce ducts and similar parts for F-18 fighter jets.  In the first three cases, 
AM machines enable one-off, custom manufacturing of 10’s to 100’s of thousands of parts.  In 
the last case, AM technology enables low volume manufacturing and, at least as importantly, 
piece part reductions to greatly simplify product assembly.  More generally, the unique 
capabilities of AM technologies enable new opportunities for customization, improvements in 
product performance, multi-functionality, and lower overall manufacturing costs.  These unique 
capabilities include: 

• Shape complexity: it is possible to build virtually any shape, lot sizes of one are practical, 
customized geometries are achieved readily, and shape optimization is enabled. 

• Material complexity: material can be processed one point, or one layer, at a time, enabling 
the manufacture of parts with complex material compositions and designed property 
gradients. 

• Hierarchical complexity:  hierarchical multi-scale structures can be designed and fabricated 
from the microstructure through geometric mesostructure (sizes in the millimeter range) to 
the part-scale macrostructure. 

In this paper, we are interested in developing design methods that enable designers to take 
advantage of the shape complexity capabilities of AM processes.  Specifically, we develop 
design synthesis methods for cellular materials in general, and lattice structures in particular 
[17].  We first present a problem formulation for general structural synthesis applications 
(Section 2).  In Section 3, we propose two synthesis algorithms, Particle Swarm Optimization 
and Least Squares Minimization, that show promise in searching the design spaces defined in our 
problem formulation.  Two examples are investigated in Section 4 and the performance of the 
synthesis algorithms is compared.   

2 PROBLEM FORMULATION 

The class of problems being solved is most closely related to size optimization, although our 
problems have aspects of topology optimization and multiobjective decision making.  Given the 
synthesis methods under investigation, we use unconstrained problem formulations, where 
constraints are included using penalty methods, if necessary.  The general word formulation of 
the structural synthesis problem is shown in Figure 2. 

 
Given: Unit cell geometry, layout of unit cells, loading conditions. 

Find: Values of lattice strut dimensions  

Satisfy:  Bounds on strut dimensions 

 Constraints (optional):  stress 

 Goals:  nodal deflections, volume 

Minimize: sum of deviations from goal target values 

Figure 2.  Structural design problem formulation.  
 

Typically, we formulate multiple objective design decision problems using the Compromise 
Decision Support Problem (cDSP) formulation [18,19]; hence, goals are specified as deviations 
from target values and the multi-objective function to be minimized is a weighted-sum of goal 
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deviations.  Figure 3 is a math formulation of a problem to minimize volume and deviations from 
target nodal deflections, where the di

-/+ are under and overachievement deviation variables, 
respectively, and Wi are goal weights (importances).  For a given problem, we may or may not 
include the maximum stress constraint in the objective function. 

Various truss topologies can be explored by relaxing the lower bound on strut dimensions; 
when they approach 0 the strut is deleted.  The notation x ∈ {0, [LB, UB]} indicates that strut 
dimensions can take on values between upper (UB) and lower (LB) bounds, or if they have 
values less than the LB, then they are set equal to 0.  Additional checks must be included to 
ensure connectivity among struts. 

 
Find: x ∈ {0, [LB, UB]} 

Satisfy: Constraints:  σ(x) ≤ σmax  stress 

 Goals:  ,1
1 1 1
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Minimize: ( ) ( )1 1 1 2 2 2Z W d d W d d+ − − += + + +      (3) 

Figure 3  Math formulation of the structural design problem.  
 

3 SYNTHESIS METHODS 

3.1 Background 

The material distribution problem can be thought of as a point on-off (“material/no 
material”) problem, which needs shape parameters or basic shape functions to represent the part 
shape.  Several design optimization methodologies could be applied to the problems of interest, 
including topology optimization, shape/size optimization, and hybrid methods.  Topology 
optimization methods can be categorized based on their design representations and their search 
techniques.  In the homogenization approach, a representation based on composite materials was 
used, where a material density function ρ models an infinite number of periodically distributed 
microstructures with small holes [3]. Therefore, the on-off material distribution problem is 
converted to a sizing problem and moves from the macroscopic scale to the microscopic scale. 
From a macroscopic perspective, a point in a structure can be partially occupied by the structural 
material, with ρ = 0 corresponding to a void, ρ = 1 to solid material, and 0 < ρ < 1 to the porous 
composite with voids at the micro level.  Many microstructures have been developed and 
generally fall into three categories: porous micro-microstructure [4], rank laminate composite 
[1], and free mixture [5].  However, this kind of on-off approach requires the use of discrete 
optimization algorithms, which can be unstable [9].  

In the discrete ground truss approach, the optimum topology is a subset of the ground truss, 
which is a complete graph of struts among all nodes. The cross-sections of the ground truss 
members are considered as continuous design variables for this optimization problem. The 
members with vanishing cross-sectional areas are removed to obtain the optimum [7].  Let a(i), l(i) 
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denote the cross-sectional area and the length of beam number i in the ground truss shown in Fig. 

7. Its Young’s modulus is given as ( )iE . The given volume of the truss is ( )

1

m i

i
V v

=
= ∑ , and v(i) = 

a
(i) l(i) (i = 1,…,m) is beam volume for beam i as the fundamental design variables.  For a typical 

single load situation, the design synthesis problem for the discrete ground truss approach is 
formulated as minimizing compliance, or deflection, and volume subject to static equilibrium 
and stress constraints [3,5]. 

Recently, an exploratory framework was developed that can minimize the risk of structural 
failure by integrating a topology optimization method and a reliability assessment technique 
[15].  In this method, a Genetic Algorithm (GA) method [10] was used for the optimization 
process and Latin hypercube sampling was conducted for the estimation of the reliability 
constraint.  Other researchers have applied GA methods for the synthesis of structural 
components, arguing that the evolutionary nature of GAs is well suited to the exploration 
necessary in the large complex design spaces typical of cellular materials [22]. 

3.2 Particle Swarm Optimization 

To date, we have used a synthesis method based on Particle Swarm Optimization (PSO), 
which is an extension of genetic algorithms (GA), to perform parametric and limited topological 
optimization of structures and compliant mechanisms.  PSO simulates the movement of birds in 
a flock, where individuals adjust their flying according to their experience and other individuals’ 
experiences during searches for food [12]. It combines local search with global search, and 
enables cooperative behavior among individuals (“birds”), as well as the competition modeled 
using GA.  Hence, PSO often converges more quickly than GA and was selected for the design 
synthesis of cellular structures [7]. 

The search method of PSO creates a number of particles (the swarm), which “fly” in the 
design domain.  Each particle updates its velocity and position according to its own experience 
as well as the swarm’s combined experience, according to Eqns. 4 and 5.  

1 2

velocity inertia cognition behavior social behavior

() ( ) () ( )id k id id id gd idv w v rand p x rand p xϕ ϕ= × + × × − + × × −

 (4) 
1k k

id id idx x v+ = +           (5) 

The velocity update equation (Eqn. 4) consists of three terms: one that models the inertia of 
each particle as it is flying in a certain direction, one that models the cognitive behavior of the 
particle, and one that models the cognitive behavior of the swarm.  The third term is a function of 
the best solution found by the entire swarm (pgd).  The position update equation (Eqn. 5) is 
simply the sum of the current position of a particle and its velocity [12], where apparently it is 
acceptable to ignore the units mismatch in this community. 

Considerable research is needed to identify values of the four parameters that control PSO: 
the velocity inertia constant, wk, the cognition behavior constant ϕ1, the social behavior constant 
ϕ2, and the size of the swarm.  In our experience, appropriate values are:  wk = linearly 
interpolated from 0.9 to 0.4 through the PSO run,  ϕ1 = ϕ2 = 2, and the swarm size is chosen in 
the range of 40 to 70 percent of the number of variables. 

3.3 Least-Squares Minimization 

The achievement of target values of goals can be formulated as a least-squares regression 
problem, which has similarities to formulations in inverse design [14] and parameter estimation 
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[18].  For cellular material design, the number of design variables far exceeds the number of 
objectives, which is similar to fitting a low order polynomial model to a large data set.  The least-
squares formulation for this problem is given by Eqn. 6. 

( ) ( )( )2

,i,target i actual

i

S P P= −∑X X     (6) 

where Pi,target is the target value of the ith objective, Pi,actual is the actual value of the ith objective, 
and X is the vector of design variables.  This error term is to be minimized, so the derivative of S 
is set equal to 0: 

,
,

1

( )
( ) 2 ( )

n
i actual

i,target i actual

i

P
S P P

=

∂ 
 ∇ = − =   ∂ 

∑
X

X X 0
X

    (7) 

where the partial derivative term is the Jacobian, J(X), of the system, Since J is nonlinear, an 
iterative solution technique must be used to solve for the unknown coordinates, X.  Gauss-
Newton methods are typically used to solve such problem.  We used the Levenburg-Marquardt 
(LM) method [16], an extension of Gauss-Newton methods, since it tends to be more robust 
when sensitivities in the Jacobian are small.  The iteration function for the LM method is: 

X
k+1 = Xk + [(Jk)T Jk + µkI]-1 (Jk)T [Pi,target – Pi,actual]       (8) 

where, µk is a scalar damping parameter that aids stability of the method. 

We use Matlab to solve the process planning problems.  Its non-linear least-squares solver, 
lsqnonlin, selects from Gauss-Newton and LM algorithms to solve problems.   

4 SYNTHESIS EXAMPLES 

Two examples will be used to compare the performance of the PSO and LSM algorithms.  
One example is a cantilever beam composed of square unit cells, while the other is a simply 
supported bridge structure, which utilizes a ground truss as the starting configuration.  Both 
problems are in 2-dimensions. 

4.1 Cantilever Beam Example 

Four cantilever beam problems were investigated, each consisting of square 10x10 mm unit 
cells.  The beams consist of 1x3, 3x8, 4x11, and 9x25 unit cells, where each unit cell consists of 
four beams (lattice struts) arranged in a square.  As shown in Figure 4 for the 3x8 case, the left 
end is fixed and the right end is loaded with a 10 N point load.  Design variables are the beam 
diameters.  Target deflections of nodes at the free end are determined as 20 percent of the 
deflection of a solid beam (through finite-element analysis).  Target volumes were: 226.2, 
1407.4, 2448.1, and 11938 mm3 for the four cases. 

 
Figure 4  Cantilever beam problem, 3x8 case. 
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Figure 5  Representative result of PSO for the 3x8 case. 

 
Table 1.  Results of cantilever beam experiments for PSO and LSM. 

1x3 PSO     LSM    

 Run # 
Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

9 variables 1 0.3888 0.0361 3638 158.31 0.3888 0.016 24 0.609 

 2 0.3888 0.0113 4140 178.85    

 3 0.3888 0.0251 4850 211.07    

 4 0.3888 0.0165 5828 242.84    

3x8 PSO     LSM    

 Run # 
Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

56 variables 1 1.4867 0.0286 8714 6919 1.4867 0.0811 118 15.92 

 2 1.4867 0.0241 5401 4228.6 6200 0.0054 181 26 

 3 1.4867 0.0149 3945 3141    

 4 1.4867 0.0169 4252 3322    

4x11 PSO     LSM    

 Run # 
Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

99 variables 1 2.3915 0.0877 4811 12567 2.3915 0.0099 308 102.9 

 2 2.3915 0.0710 7266 18828 9340 0.0653 310 103 

 3 2.3915 0.0600 3200 8284.2    

 4 2.3915 0.0910 3059 7914.9    

9x25 PSO     LSM    

 Run # 
Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

Init. Obj. 

Value 

Objective 

Value 

Function 

calls 

Time 

[sec] 

475 variables - - - - - 6.81 0.01 958 7474 

      24000 0.1412 1438 11745 

 

Results are shown in Table 1.  The table is organized by the sizes of the problems (e.g., 1x3, 
3x8, etc.).  Initial and final objective values are reported, along with the number of function calls 
to the objective function and the total time required.  Multiple runs were performed for PSO 
since it is a stochastic algorithm.  Note that the 15x40 case was too large to run and that only 
LSM could achieve a solution in the 9x25 case.  The two LSM solutions in the 3x8, 4x11, and 
9x25 cases represent problems where the initial designs had strut diameters of 2 mm and 1 mm, 
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respectively.  Note that the 1 mm cases were initially far from optimum, improved significantly, 
but did not result in as low of an objective function value as the 2 mm case (except for 3x8). 

Results indicate that PSO and LSM achieve approximately the same objective function 
values, but LSM is one to two orders of magnitude faster than PSO.  Example solutions for the 
3x8 case are shown in Figure 5 and for the 9x25 case in Figure 6.  Note that the PSO solution 
exhibits significant variations in strut sizes, but the variation does not follow obvious patterns.  
Although this may be expected due to the stochastic nature of PSO, we expected a more uniform 
decrease in strut size from left to right as PSO neared convergence.  A much more uniform size 
variation is observed in the LSM results. 
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Figure 6  Results from LSM method for the a) 3x8 case, and b) 9x25 case. 

 

4.2 Bridge Example 

The second synthesis example is a three-point bending lattice structure problem, as shown in 
Figure 7.  The premise of this example was to reduce the weight of the structure as much as 
possible without sacrificing stiffness at the central point load of –1 N.  The bridge was assumed 
to be 40 mm long and 20 mm tall.  This problem falls into the category of the well known 
Michell truss problems.   

Rather than utilize a unit lattice approach, we decided to start with a ground truss.  Two 
versions of the problem were investigated, one with a 5x5 ground truss and one with a 7x7 
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ground truss.  Both problems were symmetric about the center-line; the 5x5 node problem had 
102 variables while the 7x7 node problem had 377.  As usual, the design variables are the beam 
diameters.  It should be noted that the minimum value for strut diameters was constrained at 
0.001, instead of zero, to maintain the mathematical stability of the finite-element code utilized 
to analyze the model.  After the optimization was complete, struts whose diameters fell below a 
lower threshold Dt=0.5 were removed from the structure, yielding a reduced number of 
individually sized struts.  The target deflection of the top center node is zero.  The relative 
weights of the deflection and volume goals are equal to 1. 

Initial experiments showed that both PSO and LSM had limited ability to identify 
appropriate solutions from a complex ground structure. To overcome this limitation, while 
preserving the routines’ access to the entire design space, an initial “seed” was presented at the 
onset of each problem. This seed consisted of a potential lattice design with elements that were 
likely to be appropriate for the final solution sized larger than those that were not. The seed was 
placed as one member of the initial population for particle swarm optimization, while it 
represented the initial configuration of the system for least squares minimization.  

 
Figure 7  Ground truss (5x5) for Michell beam example. 

 

Again, LSM outperformed PSO by one or two orders of magnitude in terms of computation 
times as shown in Table 2.  For the 5x5 case, PSO did not converge; synthesis was terminated 
after 200 iterations.  In contrast, the LSM algorithm converged relatively quickly, using only 213 
objective function calls, compared to 10,050 calls required by PSO.  PSO did achieve a lower 
objective function value, 0.065 vs. 0.079 for LSM.  Example solutions are shown in Figure 8.  
Note that the PSO solution represents a very efficient, interesting solution, an isosceles triangle, 
which is close to the optimal solution.   

For the 7x7 case, PSO returned a wide range of solutions and converged sometimes.  The 
best solution had an objective function value of 0.059, which required 10,050 function 
evaluations (no convergence).  For the fastest convergence case, the solution had an objective 
value of 0.159 and required 2600 objective function evaluations.  In contrast, LSM required 773 
function evaluations to achieve an objective function value of 0.088.  Representative solutions 
for the 7x7 case are shown in Figure 9.  Note the resemblance to the optimal Michell truss [13].  
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Figure 10 shows the typical progression of objective function values vs. generations for the PSO 
algorithm.  Note that it is difficult to predict if or when reductions in objective function values 
will occur with this algorithm.  We terminated PSO after 200 generations, but could have 
selected a different number of maximum iterations, which may have resulted in lower objective 
function values. 

 

Table 2.  Results of PSO and LSM on the bridge problem. 
5x5         

PSO run # Generations 

Objective 

Value 

Function  

calls LSM 

Objective 

Value Function calls 

 1 200 0.164 10050   0.079 213 

 2 200 0.696 10050     

 3 200 0.065 10050     

 4 200 0.065 10050     

7x7         

PSO run # Generations 

Objective 

Value 

Function  

calls LSM 

Objective 

Value Function calls 

 1 40 0.116 4100   0.0877 772 

 2 200 0.091 20100     

 3 100 0.059 10100     

 4 200 0.099 20100     

 5 25 0.156 2600     

 6 200 0.084 20100     
 

 
Figure 8  Example PSO (left) and LSM (right) solutions for the 5x5 problem. 

 

   
Figure 9  Example PSO (left) and LSM (right) solutions for the 7x7 problem. 
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Figure 10  Typical progression of objective function values vs. generations for PSO. 

 

4.3 Discussion 

Both PSO and LSM produced results that were, for the most part, acceptable and appropriate 
for the problem. Particle swarm optimization was more apt to produce hanging struts, which are 
only attached to the structure on one end. This was most likely a result of the stochastic nature of 
the method, which introduces a certain amount of randomness into the solution. The differences 
in final objective function value between the two solution methods were on the order of 17% for 
the 5-by-5 truss, and 5% for the 7-by-7 truss, which is not significant for this portion of the 
design space. However, least squares minimization required approximately 96% fewer 
evaluations of the problem. For such complex problems, in which the time required for a single 
evaluation of the finite-element truss problem might be measured on the order of minutes, this 
reduction represents a significant reduction in processing time. 

While inclusion of an initial seed in the bridge problem dramatically increased the 
performance of both processes, its use reduces the extent to which the remaining portion of the 
design space is searched and requires pre-existing knowledge of the approximate solution. Both 
of these effects negate a certain amount of the utility of these processes, since computational 
optimization is implemented as a direct result of the large and complex design space. 

The need for an initial seed for LSM was not terribly surprising, since such gradient-based 
methods are often sensitive to the presence of local minima in the design space.  PSO’s difficulty 
locating an appropriate solution was unexpected, however, since the primary argument for its use 
is the ability to broadly search complex problems. It is possible that this difficulty could be 
alleviated through different settings of the various parameters of the optimization process 
(population size, particle velocity, etc).  However, we used values that were recommended in the 
literature and fine-tuned by our experience. The difficulty in identifying more appropriate 
parameters lies in the length of time required for optimization, which is so great that it prohibits 
an exhaustive study of complex problems. If the parameters guiding the PSO process must be set 
individually for each design problem in order to provide accurate results, the usefulness of the 
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process would be dramatically reduced. In the end, it might be more efficient to perform 
iterations of LSM and rely on multiple initial configurations to avoid local minimums present in 
the problem. 

Computational complexity results are displayed in Figure 11 as the number of objective 
function evaluations vs. the number of design variables.  For the PSO runs in Tables 1 and 2, 
blue diamonds are displayed if PSO did not converge.  For the two cases where PSO did 
converge (Table 2), pink squares are plotted.  Green triangles indicate the results for LSM runs in 
Tables 1 and 2.  It is clear that PSO takes many more function evaluations to achieve objective 
values that are comparable with those found by LSM.  The range of function evaluations appears 
to increase as the number of design variables increases, indicating a wide variation in execution 
times.  When PSO does converge, considerable time savings are realized, but LSM converges 
more quickly.  Although it is not clear from Figure 11, the LSM data points fall roughly on a 
linear curve, suggesting a very favorable linear increase in computational demands as problems 
get larger. 
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Figure 11.  Number of objective function evaluations vs. number of design variables for the PSO 

and LSM methods. 
 

5 CONCLUSIONS 

Two synthesis algorithms were compared for their use in designing structures with cellular 
materials, which are characterized by complex geometries and large numbers of design variables.  
Synthesis algorithms for such structures must be able to efficiently and effectively search large 
design spaces for promising design regions and for local optima.  Two simple 2-D problems 
were explored, a cantilever beam and a simply-supported plate.  When lattice materials are used 
to comprise the beam and plate, the design problems consist of hundreds of design variables.  
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The objective function to be minimized was a weighted sum of deflection and volume.  Based on 
experiments with these problems and the Particle Swarm Optimization (PSO) and Least Squares 
Minimization (LSM) algorithms, the following conclusions can be offered: 

• Both PSO and LSM found very good designs. 

• LSM converged much more quickly than PSO, often by more than an order of magnitude 
fewer objective function evaluations. 

• PSO was somewhat more effective in searching the large design spaces, as evidenced by 
the slightly lower objective function values that were found.  However, PSO rarely 
converged in the range of generations that PSO was allowed to run. 

• Good initial designs were needed to ensure good performance of both PSO and LSM.  
LSM needed a good initial design, while PSO needed at least one good design in its 
initial generation.   

• LSM will be utilized for design synthesis in the future for sizing problems, while PSO 
will only be used when exploring large, complex design spaces where good 
configurations are not yet known. 
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