
AIAA-2000-0667

A COMPARISON OF THE CONTINUOUS AND DISCRETE ADJOINT
APPROACH TO AUTOMATIC AERODYNAMIC OPTIMIZATION

Siva K. Nadarajah∗ and Antony Jameson†

Department of Aeronautics and Astronautics
Stanford University

Stanford, California 94305 U.S.A.

Abstract

This paper compares the continuous and discrete
adjoint-based automatic aerodynamic optimization.
The objective is to study the trade-off between the
complexity of the discretization of the adjoint equa-
tion for both the continuous and discrete approach,
the accuracy of the resulting estimate of the gra-
dient, and its impact on the computational cost to
approach an optimum solution. First, this paper
presents complete formulations and discretization of
the Euler equations, the continuous adjoint equation
and its counterpart the discrete adjoint equation.
The differences between the continuous and discrete
boundary conditions are also explored. Second, the
results demonstrate two-dimensional inverse pres-
sure design and drag minimization problems as well
as the accuracy of the sensitivity derivatives ob-
tained from continuous and discrete adjoint-based
equations compared to finite-difference gradients.

Introduction

In the 1970s several attempts were made to use
Computational Fluid Dynamics (CFD) as a design
tool.1–3 Since then CFD has had a significant im-
pact. Many individuals have refocused their atten-
tion on automatic aerodynamic optimization, be-
cause of accurate numerical schemes and an expo-
nential growth in computational speed at affordable
prices. The mathematical theory for control systems
governed by partial differential equations has cre-
ated a framework for the formulation of inverse de-
sign and general aerodynamic problems at a reduced
computational cost.4, 5 Recently, with the help of
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a new generation of computers, automatic aerody-
namic optimization has been revisited.6–11

Optimization techniques for the design of
aerospace vehicles generally use gradient-based
methods in which the vehicle shape is parameter-
ized with a set of design variables. A feasible opti-
mum shape is only achievable with an appropriate
cost function. Typically such cost functions are drag
coefficients, lift to drag ratios, target pressure distri-
butions, etc. Sensitivity derivatives of the cost func-
tion with respect to the design variables are calcu-
lated by taking small steps in each and every design
variable. These sensitivity derivatives are then used
to get a direction of improvement and a step is taken
until convergence is achieved. Each step requires a
complete flow solution, and for a large number of
design variables such methods are computationally
costly. The mathematical theory for the control sys-
tems governed by partial differential equations, as
developed, for example, by J.L. Lions,4 decreases
the cost and is more advantageous than the classical
finite-difference methods.
In control theory the gradient is calculated indi-

rectly by solving the adjoint equation. The cost of
obtaining the sensitivity derivatives of the cost func-
tion with respect to each design variable from the
solution of the adjoint equation is negligible in com-
parison with the cost of the flow calculation. Con-
sequently, the total cost to obtain these gradients
is essentially independent of the number of design
variables, amounting to the cost of one flow solution
and one adjoint solution, where the adjoint equation
is a linear equation and thus of reduced complexity.
This method was first applied to transonic flow by
Jameson.6 In the last six years automatic aerody-
namic design of complete aircraft configurations has
been successful, yielding optimized solutions of wing
and wing-body configurations.12–14, 16

The continuous adjoint approach theory was de-
veloped by combining the variation of the cost func-
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tion and field equations with respect to the flow-field
variables and design variables through the use of La-
grange multipliers also called costate or adjoint vari-
ables. Collecting the terms associated with the vari-
ation of the flow-field variables produces the adjoint
equation and its boundary condition. The terms
associated with the variation of the design variable
produce the gradient. The field equations and the
adjoint equation with its boundary condition must
be discretized to obtain numerical solutions. As the
mesh is refined, the continuous adjoint yields the ex-
act gradient.
The discrete adjoint approach means applying the

control theory directly to the set of discrete field
equations. The discrete adjoint equation is derived
by collecting together all the terms multiplied by the
variation δwi,j of the discrete flow variable. If the
discrete adjoint equation is solved exactly, then the
resulting solution for the Lagrange multiplier pro-
duces an exact gradient of the inexact cost function
and the derivatives are consistent with finite differ-
ence gradients independent of the mesh size.
A subject of on-going research is the trade-off be-

tween the complexity of the adjoint discretization,
the accuracy of the resulting estimate of the gra-
dient, and its impact on the computational cost to
approach an optimum solution. Shubin and Frank11

presented a comparison between the continuous and
discrete adjoint for quasi-one-dimensional flow. A
variation of the discrete field equations proved to be
complex for higher order schemes. Due to this limi-
tation of the discrete adjoint approach, early imple-
mentation of the discretization of the adjoint equa-
tion was only consistent with a first order accurate
flow equation. Beux and Dervieux15 used a first or-
der upwind scheme with Van Leer flux vector split-
ting on a two-dimensional unstructured grid.
Burgreen and Baysal16 carried a second order

implementation of the discrete adjoint on three-
dimensional shape optimization of wings for struc-
tured grids. For second order accuracy on unstruc-
tured grids, Elliot and Peraire17 solved the Euler
equations by a multistage Runge-Kutta scheme with
Roe decomposition for the dissipative fluxes on two
and three-dimensional unstructured grids. They
performed optimization on inverse pressure designs
of multielement airfoils and wing-body configura-
tions in transonic flow. Anderson and Venkatakr-
ishnan18 computed inviscid and viscous optimiza-
tion on unstructured grids using both the continu-
ous and discrete adjoint. Iollo, Salas, and Ta’saan19

investigated shape optimization on one and two-
dimensional flows using the continuous adjoint ap-

proach. Ta’saan, Kuruvila, and Salas20 used a one-
shot approach with the continuous adjoint formula-
tions. Kim, Alonso, and Jameson21 conducted an
extensive gradient accuracy study of the Euler and
Navier-Stokes equations which concluded that gra-
dients from the continuous adjoint method were in
close agreement with those computed by finite dif-
ference methods, and less dependent on the level of
convergence of the flow solver.

Objectives

The objectives of this work are:

1. Review the formulation and development of the
compressible adjoint equations for both the con-
tinuous and discrete approach.

2. Investigate the differences in the implementa-
tion of boundary conditions for each method.

3. Compare the gradients of the two methods to
finite difference gradients for inverse pressure
design and drag minimization.

4. Compare the convergence between the continu-
ous and discrete adjoint.

5. Study the differences in calculating the exact
gradient of the inexact cost function (discrete
adjoint) or the inexact gradient of the exact cost
function (continuous).

The Design Problem as a
Control Problem

A simple approach to optimization is to represent
the geometry through a set of design parameters,
which may, for example, be the weights αi applied
to a set of shape functions bi(x) so that the shape is
represented as

f(x) =
∑

αmbm(x).

Next, a cost function I which is a function of the
weight parameters αm is chosen. Such a cost func-
tion can be the difference between the current and
target pressure distribution for inverse design prob-
lems, drag coefficient for drag minimization prob-
lems, or lift to drag ratio. The sensitivities ∂I

∂αm
may

now be estimated by making a small variation δαm

in each design parameter in turn and recalculating
the flow to obtain the change in I. Then, using a
finite difference formula,

∂I

∂αm
≈ I(αm + δαm)− I(αm)

δαm
.
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The gradient vector ∂I
∂α may now be used to deter-

mine a direction of improvement. The simplest pro-
cedure uses the method of steepest descent and takes
a step in the negative gradient direction by setting

αn+1 = αn − λ
∂I

∂α
,

so that to first order

I + δI = I +
∂IT

∂α
δα = I − λ

∂IT

∂α

∂I

∂α
.

The main disadvantageous of the finite difference
method are first that N + 1 flow calculations are
needed to calculate the sensitivities of N design vari-
ables, and second that the accuracy is sensitive to
the step size δαm.
These difficulties are circumvented by the control

theory approach which may be outlined in abstract
form as follows. For flow around an airfoil, the aero-
dynamic properties that define the cost function are
functions of the flow-field variables, w, and the phys-
ical location of the boundary, which may be repre-
sented by the function F , say. Then

I = I (w,F) ,

and a change in F results in a change

δI =
∂IT

∂w
δw +

∂IT

∂F δF , (1)

in the cost function. Using control theory the gov-
erning equations of the flow-field are now introduced
as a constraint in such a way that the final expres-
sion for the gradient does not require reevaluation
of the flow-field. In order to achieve this δw must
be eliminated from (1). Suppose that the governing
equation R which expresses the dependence of w and
F within the flow-field domain D can be written as

R (w,F) = 0. (2)

Then δw is determined from the equation

δR =
[
∂R

∂w

]
δw +

[
∂R

∂F
]
δF = 0. (3)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F δF − ψT

([
∂R

∂w

]
δw +

[
∂R

∂F
]
δF
)

=

{
∂IT

∂w
− ψT

[
∂R

∂w

]}
δw +

{
∂IT

∂F − ψT

[
∂R

∂F
]}

δF .

Choosing ψ to satisfy the adjoint equation[
∂R

∂w

]T

ψ =
∂I

∂w
(4)

the first term is eliminated, and we find that

δI = GδF , (5)

where

G =
∂IT

∂F − ψT

[
∂R

∂F
]
.

Euler Equations

In order to allow for geometric shape changes it is
convenient to use a body fitted coordinate system,
so that the computational domain is fixed. This re-
quires the formulation of the Euler equations in the
transformed coordinate system. The Cartesian co-
ordinates and velocity components are denoted by
x1, x2, and u1, u2. Einstein notation simplifies the
presentation of the equations, where summation over
k = 1 to 2 is implied by a repeated index k. Then the
two-dimensional compressible Euler equations may
be written as

∂w

∂t
+

∂fk

∂xk
= 0 in D, (6)

where

w =




ρ
ρu1

ρu2

ρE


 , fk =




ρuk

ρuku1 + pδk1

ρuku2 + pδk2

ρukH


 (7)

and δkl is the Kronecker delta function. Also,

p = (γ − 1) ρ
{
E − 1

2
(
u2

k

)}
, (8)

and

ρH = ρE + p (9)

where γ is the ratio of the specific heats.
Consider a transformation to coordinates ξ1, ξ2,

where

Kkl =
[
∂xk

∂ξl

]
, J = det (K) , K−1

kl =
[
∂ξk

∂xl

]
,

and

S = JK−1.

The elements of S are the coefficients of K, and in
a finite volume discretization they are just the face
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areas of the computational cells projected in the x1

and x2 directions. Also introduce scaled contravari-
ant velocity components as

Uk = Sklul.

The Euler equations can now be written as

∂W

∂t
+

∂Fk

∂ξk
= 0 in D, (10)

where

W = Jw,

and

Fk = Sklfl =




ρUk

ρUku1 + Sl1p
ρUku2 + Sl2p

ρUkH


 . (11)

Assume now that the new computational coordinate
system conforms to the airfoil in such a way that the
airfoil surface BW is represented by ξ2 = 0. Then
the flow is determined as the steady state solution of
equation (10) subject to the flow tangency condition

U2 = 0 on BW . (12)

At the far field boundary BF , conditions are spec-
ified for incoming waves, as in the two-dimensional
case, while outgoing waves are determined by the
solution.
When equation (10) is formulated for each compu-

tational cell, a system of first-order ordinary differ-
ential equations is obtained. To eliminate odd-even
decoupling of the solution and overshoots before and
after shock waves, the conservative flux is added to a
diffusion flux. The artificial dissipation scheme used
in this research is a blended first and third order flux,
first introduced by Jameson, Schmidt, and Turkel.22

The artificial dissipation scheme is defined as,

Di+ 1
2 ,j = ε2i+ 1

2 ,j(wi+1,j − wi,j)

− ε4i+ 1
2 ,j(wi+2,j − 3wi+1,j + 3wi,j − wi−1,j). (13)

The first term in equation (13) is a first order
scalar diffusion term, where ε2

i+ 1
2 ,j

is scaled by the
normalized second difference of the pressure and
serves to damp oscillations around shock waves.
ε4
i+ 1

2 ,j
is the coefficient for the third derivative of the

artificial dissipation flux. The coefficient is scaled
such that it is zero at regions of large gradients, such
as shock waves and eliminates odd-even decoupling
elsewhere.

Design using the Euler Equations

This section illustrates application of control the-
ory to aerodynamic design problems for the case of
two-dimensional airfoil design using the compress-
ible Euler equations as the mathematical model.

Continuous Adjoint

The weak form of the Euler equations for steady flow
is ∫

D

∂φT

∂ξk
FkdD =

∫
B
nkφ

T FkdB, (14)

where the test vector φ is an arbitrary differentiable
function and nk is the outward normal at the bound-
ary. If a differentiable solution w is obtained to this
equation, then it can be integrated by parts to give∫

D
φT ∂Fk

∂ξk
dD = 0.

Since this is true for any φ the differential form can
be recovered. If the solution is discontinuous, then
(14) may be integrated by parts separately on either
side of the discontinuity to recover the shock jump
conditions.
Suppose now that we desire to control the sur-

face pressure by varying the wing shape. For this
purpose, it is convenient to retain a fixed computa-
tional domain. Variations in the shape then result in
corresponding variations in the mapping derivatives
defined by K. Introduce the cost function

I =
1
2

∫
BW

(p − pd)
2
ds,

where pd is the desired pressure. The design problem
is now treated as a control problem where the control
function is the wing shape, which is chosen to mini-
mize I subject to the constraints defined by the flow
equations (10-11). A variation in the shape causes
a variation δp in the pressure and consequently a
variation in the cost function

δI =
∫

BW

(p − pd) δp ds +
1
2

∫
BW

(p− pd)
2

δds.

(15)

Since p depends on w through the equation of
state (8–9), the variation δp is determined from the
variation δw. Define the Jacobian matrices

Ak =
∂fk

∂w
, Ck = SklAl. (16)
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The weak form of the equation for δw in the steady
state becomes∫

D

∂φT

∂ξk
δFkdD =

∫
B
(nkφ

T δFk)dB,

where

δFk = Ckδw + δSklfl,

which should hold for any differentiable test function
φ. This equation may be added to the variation in
the cost function, which may now be written as

δI =
∫

BW

(p− pd) δp ds+
1
2

∫
BW

(p− pd)
2

δds

−
∫
D

∂ψT

∂ξk
δFkdD +

∫
B
(nkψ

T δFk)dB (17)

On the wing surface BW , n1 = 0. Thus, it follows
from equation (12) that

δF2 =




0

S21δp

S22δp

0



+




0

δS21p

δS22p

0




. (18)

Since the weak equation for δw should hold for
an arbitrary choice of the test vector φ, we are free
to choose φ to simplify the resulting expressions.
Therefore we set φ = ψ, where the costate vector
ψ is the solution of the adjoint equation

∂ψ

∂t
− CT

k

∂ψ

∂ξk
= 0 in D. (19)

At the outer boundary incoming characteristics for ψ
correspond to outgoing characteristics for δw. Con-
sequently we can choose boundary conditions for ψ
such that

nkψ
TCkδw = 0.

If the coordinate transformation is such that δS is
negligible in the far field, then the only remaining
boundary term is

−
∫

BW

ψT δF2 dξ1.

Thus, by letting ψ satisfy the boundary condition,

ψjnj = p− pd on BW , (20)

where nj are the components of the surface normal,

nj =
S2j√
S2jS2j

we find finally that

δI =
1

2

∫
BW

(p− pd)
2 δds

−
∫
D

∂ψT

∂ξk
δSklfldD

−
∫

BW

(δS21ψ2 + δS22ψ3) p dξ1. (21)

Numerical Discretization

The continuous adjoint equation is linear and con-
sequently it could be solved by direct numerical in-
version. The cost of the associated matrix inversion
can become prohibitive as the number of mesh cells
are increased. Instead, since the equations are sim-
ilar to that of the Euler equations, the same itera-
tive method is used to solve the continuous adjoint
equation. In this research, a five stage Runge-Kutta
scheme with three evaluations of the artificial dissi-
pation scheme is used. We employ the blended first
and third order scalar diffusion scheme used for the
Euler equations here as well. The following is a sec-
ond order discretization of the continuous adjoint
equation,

V
∂ψi,j

∂t
=

(
∆yη

[
∂f

∂w

]T

−∆xη

[
∂g

∂w

]T
)

i,j

(
ψi+1,j

2

)

−
(
∆yη

[
∂f

∂w

]T

−∆xη

[
∂g

∂w

]T
)

i,j

(
ψi−1,j

2

)

+

(
−∆yξ

[
∂f

∂w

]T

+∆xξ

[
∂g

∂w

]T
)

i,j

(
ψi,j+1

2

)

−
(
−∆yξ

[
∂f

∂w

]T

+∆xξ

[
∂g

∂w

]T
)

i,j

(
ψi,j−1

2

)

+di+ 1
2 ,j − di− 1

2 ,j + di,j+ 1
2
− di,j− 1

2

(22)

where, V is the cell area and di+ 1
2 ,j has the same

form as equation (13).
In the case of the continuous adjoint boundary

condition, equation (20) dictates values for the nor-
mal adjoint velocities. The choice for ψ1, ψ4, and
the tangential adjoint velocity are arbitrary, there-
fore assigning a zero value for these variables does
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not violate equation (20). This results, however, in
a poor convergence for the adjoint equation since it
is an over-specification of the adjoint boundary con-
dition. A satisfactory boundary condition may be
formulated as follows:

ψ1i,1 = ψ1i,2

ψ2i,1 = ψ2i,2 + 2n2

(
(p − pd)− n2ψ2i,2 + n1ψ3i,2

)
ψ3i,1 = ψ3i,2 − 2n1

(
(p − pd)− n2ψ2i,2 + n1ψ3i,2

)
ψ4i,1 = ψ4i,2

(23)

where,

ni =
S2i√
S2jS2j

The subscript i, 1 and i, 2 in the above equations
denote cells below and above the wall. Here, the
first and fourth costate variables below the wall are
set equal to the corresponding values above the wall
and the tangential adjoint velocities above and below
the wall are equated.

Drag Minimization

If the drag is to be minimized, then the cost function
is the drag coefficient,

I = Cd

=
(
1
c

∫
BW

Cp
∂y

∂ξ
dξ

)
cosα

+
(
1
c

∫
BW

−Cp
∂x

∂ξ
dξ

)
sinα

A variation in the shape causes a variation ∂p in
the pressure and consequently a variation in the cost
function,

δI =
1
c

∫
BW

Cp

(
∂y

∂ξ
cosα− ∂x

∂ξ
sinα

)
∂pdξ

+
1
c

∫
BW

Cp

(
δ

(
∂y

∂ξ

)
cosα − δ

(
∂x

∂ξ

)
sinα

)
dξ

(24)

As in the inverse design case, the first term is
a function of the state vector, and therefore is in-
corporated into the boundary condition, where the
integrand replaces the pressure difference term in
equation (23). The second term is added on to the
gradient term.

Discrete Adjoint

The discrete adjoint equation is obtained by apply-
ing the control theory directly to the set of discrete
field equations. The resulting equation depends on
the type of scheme used to solve the flow equations.
This paper uses, a cell centered multigrid scheme
with upwind biased blended first and third order
fluxes as the artificial dissipation scheme. A full dis-
cretization of the equation would involve discretizing
every term that is a function of the state vector.

δI = δIc +
nx∑
i=2

ny∑
j=2

ψT
i,jδ

(
R (w)i,j +D (w)i,j

)
(25)

where δIc is the discrete cost function, R(w) is the
field equation, and D(w) is the artificial dissipation
term.
Terms multiplied by the variation δwi,j of the dis-

crete flow variables are collected and the following is
the resulting discrete adjoint equation,

V
∂ψi,j

∂t
=(

∆yη
i+ 1

2 ,j

[
∂f

∂w

]T

i,j

−∆xη
i+ 1

2 ,j

[
∂g

∂w

]T

i,j

)
ψi+1,j

2

−
(
∆yη

i− 1
2 ,j

[
∂f

∂w

]T

i,j

−∆xη
i− 1

2 ,j

[
∂g

∂w

]T

i,j

)
ψi−1,j

2

+

(
∆xξ

i,j+ 1
2

[
∂g

∂w

]T

i,j

−∆yξ
i,j+ 1

2

[
∂f

∂w

]T

i,j

)
ψi,j+1

2

−
(
∆xξ

i,j− 1
2

[
∂g

∂w

]T

i,j

−∆yξ
i,j− 1

2

[
∂f

∂w

]T

i,j

)
ψi,j−1

2

−
(
∆yη

i+ 1
2 ,j

[
∂f

∂w

]T

i,j

−∆xη
i+ 1

2 ,j

[
∂g

∂w

]T

i,j

)
ψi,j

2

+

(
∆yη

i− 1
2 ,j

[
∂f

∂w

]T

i,j

−∆xη
i− 1

2 ,j

[
∂g

∂w

]T

i,j

)
ψi,j

2

−
(
∆xξ

i,j+ 1
2

[
∂g

∂w

]T

i,j

−∆yξ
i,j+ 1

2

[
∂f

∂w

]T

i,j

)
ψi,j

2

+

(
∆xξ

i,j− 1
2

[
∂g

∂w

]T

i,j

−∆yξ
i,j− 1

2

[
∂f

∂w

]T

i,j

)
ψi,j

2

+ δdi+ 1
2 ,j − δdi− 1

2 ,j + δdi,j+ 1
2
− δdi,j− 1

2
.

(26)
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where,

δdi+ 1
2 ,j = ε2i+ 1

2 ,j(ψi+1,j − ψi,j)− ε4i+ 3
2 ,jψi+2,j

+3ε4i+ 1
2 ,j (ψi+1,j − ψi,j) + ε4i− 3

2 ,jψi−1,j

(27)

is the discrete adjoint artificial dissipation term and
V is the cell area. The dissipation coefficients ε2 and
ε4 are functions of the flow variables, but to reduce
complexity they are treated as constants. The effect
of this partial discretization of the artificial dissipa-
tion term is explored in the Results section.
In the case of an inverse design, δIc is the dis-

crete form of equation (15). The δwi,2 term is added
to the corresponding term from equation (26), and
the metric variation term is added to the gradient
term. In contrast to the continuous adjoint, where
the boundary condition appears as an update to the
costate variables in the cell below the wall, the dis-
crete boundary condition appears as a source term
in the adjoint fluxes. At cell i, 2 the adjoint equation
is as follows,

V
∂ψi,2

∂t
=

1
2

[
−AT

i− 1
2 ,2 (ψi,2 − ψi−1,2)−AT

i+ 1
2 ,2 (ψi+1,2 − ψi,2)

]
+

1
2

[
−BT

i, 5
2
(ψi,3 − ψi,2)

]
+Φ

(28)

where V is the cell area, Φ is the source term for
inverse design,

Φ =
(−∆yξψ2i,2 +∆xξψ3i,2 − (p − pT )∆si

)
δpi,2

and,

AT
i+ 1

2 ,2 = ∆yη
i+ 1

2 ,2

[
∂f

∂w

]T

i,2

−∆xη
i+ 1

2 ,2

[
∂g

∂w

]T

i,2

All the terms in equation (28) except for the source
term are scaled as the square of ∆x. Therefore, as
the mesh width is reduced, the terms within paren-
thesis in the source term divided by ∆si must ap-
proach zero as the solution reaches a steady state.
One then recovers the continuous adjoint boundary
condition as stated in equation (20).
If a first order artificial dissipation equation is

used, then equation (27) would reduce to the term
associated with ε2. In such a case, the discrete ad-
joint equations are completely independent of the

costate variables in the cells below the wall. How-
ever, if we use the blended first and third order equa-
tion, then these values are required. As shown later,
a simple zeroth order extrapolation across the wall
produces good results.
Replacing the inverse design boundary condition

in equation (28) by the discrete form of equation
(24) results in a discrete adjoint equation for drag
minimization.

Optimization Procedure

The search procedure used in this work is a sim-
ple descent method in which small steps are taken
in the negative gradient direction. Let F represent
the design variable, and G the gradient. Then an
improvement can be made with a shape change

δF = −λG,

The gradient G can be replaced by a smoothed
value G in the descent process. This ensures that
each new shape in the optimization sequence re-
mains smooth and acts as a preconditioner which al-
lows the use of much larger steps. To apply smooth-
ing in the ξ1 direction, the smoothed gradient G may
be calculated from a discrete approximation to

G − ∂

∂ξ1
ε

∂

∂ξ1
G = G

where ε is the smoothing parameter. If the modifi-
cation is applied on the surface ξ2 = constant, then
the first order change in the cost function is

δI = −
∫ ∫

GδFdξ1

= −λ

∫ ∫ (
G − ∂

∂ξ1
ε

∂

∂ξ1
G
)
Gdξ1

= −λ

∫ ∫ (
G2

+ ε

(
∂G
∂ξ1

)2
)

dξ1

< 0,

assuring an improvement if λ is sufficiently small and
positive. The smoothing leads to a large reduction
in the number of design iterations needed for conver-
gence. An assessment of alternative search methods
for a model problem is given by Jameson and Vass-
berg.23
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Results

This section presents the results of the inviscid in-
verse design and drag minimization cases. For each
case, we compare the continuous and discrete gradi-
ents, study the adjoint solutions from each method,
and compare the convergence of the methods.

Inverse Design

The target pressure is first obtained using the
FLO83 flow solver for the NACA 64A410 airfoil at
a flight condition of M = 0.74 and a lift coefficient
of Cl = 0.63 on a 192 x 32 C-grid. At such a condi-
tion the NACA 64A410 produces a strong shock on
the upper surface of the airfoil, thus making it an
ideal test case for the adjoint versus finite difference
comparison.
The gradient for the continuous and discrete ad-

joint is obtained by perturbing each point on the
airfoil. We apply an implicit smoothing technique
to the gradient, before it is used to obtain a direc-
tion of descent for each point on the surface of the
airfoil. Figure (1) illustrates an inverse design case
of a Korn to NACA 64A410 airfoil at fixed lift coef-
ficient. Figure (1a) shows the solution for the Korn
airfoil at M = 0.74 and Cl = 0.63. After five design
cycles we achieve a general shape of the target airfoil
as shown in figure (1b). After twenty five design cy-
cles the upper surface shape is obtained, and nearly
eighty percent of the lower surface is achieved. Fol-
lowing a few more iterations, we obtain the desired
target pressure except for a few points at the trail-
ing edge. Observe the point-to-point match-up at
the shock.
Figures (2), (3), and (4) exhibit the values of the

gradients obtained from the adjoint methods and fi-
nite difference for various grid sizes. The circles de-
note values that we obtain by using the finite dif-
ference method. The square represents the discrete
adjoint gradient. The asterisk represents the contin-
uous adjoint gradient. The gradient is obtained with
respect to variations in Hicks-Henne sine “bump”
functions placed along the upper and lower surface of
the airfoil.3, 21 The figures only illustrate the values
obtained from the upper surface starting from the
leading edge on the left and ending at the trailing
edge on the right. In order to reach an accurate finite
difference gradient, we obtain gradients for various
step sizes until the finite difference gradient for each
point converges. The discrete adjoint equation is ob-
tained from the discrete flow equations but without
taking into account the dependence of the dissipa-

Grid Size Cont. Disc. Cont-Disc
96 x 16 3.106e− 3 2.397e− 3 9.585e− 4
192 x 32 1.730e− 3 1.724e− 3 2.130e− 4
256 x 64 1.424e− 3 1.419e− 3 4.749e− 5

Table 1: L2 norm of the Difference Between Adjoint
and Finite Difference Gradient

tion coefficients on the flow variables. Therefore, in
order to eliminate the effect of this on comparisons
with the finite difference gradient we compute the
flow solution until attaining a decrease of seven or-
ders of magnitude in the residue. We then freeze the
dissipative coefficients and calculate the finite differ-
ence value for each design point. The figures show
that the only discrepancies exist in the trailing edge
area.
Table 1 contains values of the L2 norm of the dif-

ference between the adjoint and finite difference gra-
dients. The table illustrates three important facts:
the difference between the continuous adjoint and fi-
nite difference gradient is slightly greater than that
between the discrete adjoint and finite difference gra-
dient; the norm decreases as the mesh size is in-
creased; and the difference between continuous and
discrete adjoint gradients decreases as the mesh size
is reduced. The second column depicts the difference
between the continuous adjoint and finite difference
gradient. The third column depicts the difference
between the discrete adjoint and finite difference gra-
dients. The last column depicts the difference be-
tween the discrete adjoint and continuous adjoint.
As the mesh size increases the norms decrease as
expected. Since we derive the discrete adjoint by
taking a variation of the discrete flow equations, we
expect it to be consistent with the finite difference
gradients and thus to be closer than the continuous
adjoint to the finite difference gradient. This is con-
firmed by numerical results, but the difference is very
small. As the mesh size increases, the difference be-
tween the continuous and discrete gradients should
decrease, and this is reflected in the last column of
table 1.
Figure (5) presents the effect of the partial dis-

cretization of the flow solver to obtain the discrete
adjoint equation. Here we obtain the finite differ-
ence gradients in the figure without freezing the dis-
sipative coefficients. A small discrepancy exists in
regions closer to the leading edge and around the
shock.
Kim, Alonso, and Jameson21 verified that accu-

rate finite difference gradients require a convergence
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of four to five orders of magnitude in the flow solver.
However, both the continuous and discrete adjoint
gradients only require a convergence of two orders
of magnitude in the flow solver. Figures (6) and (7)
illustrate the continuous and discrete gradients for
various flow solver convergence. In figure (8) and (9)
continuous and discrete adjoint gradients are plotted
for various adjoint solver convergence. The gradients
only require two orders of magnitude convergence in
the adjoint solver.
Figure (10) shows a comparison of the profiles

of the second and third costate values between the
continuous and discrete adjoint method in a direc-
tion normal to the boundary. The solutions agree
in the interior points, differing only at the cell be-
low the boundary due to the different treatment of
the boundary condition. In the continuous case the
value at cell one is updated by the boundary condi-
tion. This is in contrasts to the discrete case where
the boundary condition appears as a source term
when the fluxes are accumulated in cell two and the
boundary condition does not depend on the value of
the costate in cell one. In figure (11) both methods
produce similar convergence histories.
In figure (12) we attempt to design a Korn airfoil

based on the target pressure of the NACA 64A410 at
a Mach number of 0.78. Both the initial and target
pressures contain a very strong shock. A comparison
of the finite difference and adjoint gradients reveals
an increase in the discrepancy between the two gra-
dients in the vicinity of the shock. In contrast to
figure (2), where the shock location is at mesh point
75 along the surface, figure (13) illustrates the dis-
crepancy around the stronger shock around mesh
point 80.

Drag Minimization

The cost function for drag minimization is the pres-
sure drag of the airfoil. We perform computations
on a NACA 64A410 airfoil at a flight condition of
M = 0.75 and fixed lift coefficient of Cl = 0.63. As
before, the gradients were obtained by taking varia-
tions respect to Hicks-Henne sine “bump” functions
placed along the upper and lower surface of the air-
foil. Figure (15a) illustrates the initial solution of
the airfoil with 132 drag counts. After two design
cycles, the drag is reduced by a third to 44 drag
counts. The strong shock in the initial solution is
weakened. And after just four design cycles, this
value is further halved. In figure (15d), the final de-
sign does not contain any shock and the drag count
is a mere 15.

Grid Size Cont. Disc. Cont-Disc
96 x 16 2.920e− 2 1.275e− 2 2.009e− 2
192 x 32 1.049e− 2 7.577e− 3 5.072e− 3
256 x 64 6.241e− 3 5.542e− 3 1.315e− 3

Table 2: L2 norm of the Difference Between Adjoint
and Finite Difference Gradient

Figures (16-18) illustrate the values of the gradi-
ents obtained from the adjoint methods and finite
difference for various grid sizes. The finite difference
gradients are based on the same method used for the
inverse design case, where the dissipative coefficients
are frozen after a converged flow solution is obtained
to simulate a full discretization for the discrete ad-
joint equation. We reduce the finite difference step
sizes until we gain converged values for each design
point. We plot gradients for the upper surface from
leading edge to trailing edge. In figure (16) design
points between 50 and 60 are located in the vicinity
of the leading edge, where the gradient has a posi-
tive slope. In this region the discrete adjoint gradi-
ent agrees better with the finite difference gradient,
if compared to the continuous adjoint gradient. The
difference reduces as the grid size increases. Apart
from the region of the leading edge, the adjoint and
finite difference gradients agree.
Table (2) contains values of the L2 norm of the

difference between the adjoint and finite difference
gradients. Similar to the inverse design case, the
table illustrates three important facts: the discrete
adjoint gradient is closer than the continuous adjoint
gradient to the finite difference gradient; the norms
decrease as the mesh size increases; and, finally, the
difference between the continuous and discrete ad-
joint gradient decreases as the mesh size increases.
We recalculate the finite difference and adjoint

gradients in figure (19) for the medium size mesh
of 192 x 32 cells to illustrate the effect of partial
discretization of the flow solver. The dissipative co-
efficients are not frozen during the finite difference
calculations. A very small discrepancy appears in
the leading edge and in the shock wave (points: 137-
140).
Figures (20) and (21) illustrate the continuous

and discrete gradients for various flow solver con-
vergence. Only a single order magnitude drop in the
flow solver is required for the adjoint gradients to
converge. We plot continuous and discrete adjoint
gradients in figure (22) and (23) for various adjoint
solver convergence. The gradients only require one
order of magnitude convergence in the adjoint solver.
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Figure (24) shows a comparison of convergence of
the objective function between the continuous and
discrete adjoint. Both methods converge to the same
value for the objective function. Figure (25) presents
the second and third costate profiles normal to the
boundary for the continuous and discrete adjoint so-
lutions. Both solutions agree in the interior points
but disagree at the cell below the wall. This is due to
the difference between the enforcement of the bound-
ary condition. Figure (26) shows that both adjoint
methods produce the same convergence history.

Conclusion

This paper presents a complete formulation for the
continuous and discrete adjoint approach to auto-
matic aerodynamic design using the Euler equations.
The gradients from each method are compared to fi-
nite difference gradients. We conclude:

1. The continuous boundary condition appears as
an update to the costate values below the wall
for a cell-centered scheme, and the discrete
boundary condition appears as a source term
in the cell above the wall. As the mesh width
is reduced, one recovers the continuous adjoint
boundary condition from the discrete adjoint
boundary condition. (Equations 23 and 28)

2. Discrete adjoint gradients have better agree-
ment than continuous adjoint gradients with fi-
nite difference gradients as expected, but the
difference is generally small. (Figure 16)

3. As the mesh size increases, both the continu-
ous adjoint gradient and the discrete adjoint
gradient approach the finite difference gradient.
(Figures 16-18)

4. The difference between the continuous and dis-
crete gradient reduces as the mesh size in-
creases. (Tables 1 and 2)

5. The cost of deriving the discrete adjoint is
greater. (Equation 26)

6. With our search procedure as outlined, the
overall convergence of the objective function is
not significantly affected when the discrete ad-
joint gradient is used instead of the continu-
ous adjoint gradient. Consequently, we find no
particular benefit in using the discrete adjoint
method, which requires greater computational
cost. However, we believe it beneficial to use
the discrete adjoint equation as a guide for the

discretization of the continuous adjoint equa-
tion. (Figure 24)
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1a: Initial Solution of Korn Airfoil
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1b: After 5 Design Iterations
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1c: After 25 Design Iterations
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1d: Final Design

Figure 1: Inverse Design of Korn to NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.74, Cl = 0.63, α = 0 degrees
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Figure 2: Adjoint Versus Finite Difference
Gradients for Inverse Design of Korn to
NACA 64A410 at Fixed Cl.
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Figure 3: Adjoint Versus Finite Difference
Gradients for Inverse Design of Korn to
NACA 64A410 at Fixed Cl.
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Figure 4: Adjoint Versus Finite Difference
Gradients for Inverse Design of Korn to
NACA 64A410 at Fixed Cl.
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Cl = 0.63

90 100 110 120 130 140 150 160 170
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Design Point

M
ag

ni
tu

de
 o

f G
ra

di
en

t

Cont Adjoint Gradient      
Disc Adjoint Gradient      
Finite Difference Gradient 
                           
||cont−fdg||

2
 = 3.188e−03 

||disc−fdg||
2
  = 3.213e−03

Figure 5: Adjoint Versus Finite Difference
Gradients for Inverse Design of Korn to
NACA 64A410 at Fixed Cl. Dissipative
Coefficients Not Frozen

Medium Grid - 192 x 32, M = 0.74,
Cl = 0.63
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Figure 6: Continuous Adjoint Gradients
for Varying Flow Solver Convergence for
the Inverse Design Case
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Figure 7: Discrete Adjoint Gradients for
Varying Flow Solver Convergence for the
Inverse Design Case
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Figure 8: Continuous Adjoint Gradients
for Varying Adjoint Solver Convergence
for the Inverse Design Case
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Figure 9: Discrete Adjoint Gradients for
Varying Adjoint Solver Convergence for
the Inverse Design Case
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12a: Initial Solution of Korn Airfoil
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12b: Final Design

Figure 12: Inverse Design of Korn to NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.78, Cl = 0.63, α = 0 degrees
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Figure 13: Adjoint Versus Finite Differ-
ence Gradients for Inverse Design of Korn
to NACA 64A410 at Fixed Cl.

Coarse Grid - 96 x 16, M = 0.78,
Cl = 0.63
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Figure 14: Adjoint Versus Finite Differ-
ence Gradients for Inverse Design of Korn
to NACA 64A410 at Fixed Cl.

Medium Grid - 192 x 32, M = 0.78,
Cl = 0.63
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15a: Initial Solution of NACA 64A410.
M = 0.75, Cl = 0.630, Cd = 0.0132,

α = −.34 degrees
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15b: After 2 Design Iterations.
M = 0.75, Cl = 0.626, Cd = 0.0044,

α = −.18 degrees
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15c: After 4 Design Iterations
M = 0.75, Cl = 0.626, Cd = 0.0022,

α = −.08 degrees

0.
1E

+
01

0.
8E

+
00

0.
4E

+
00

-.
2E

-1
5

-.
4E

+
00

-.
8E

+
00

-.
1E

+
01

-.
2E

+
01

C
p

+
++++++++++++++++++++++++++++++++++++++++++++++++++++++

+
+
+
+

+

+

+

++
+

+

+

+
+

+

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
++

+++
+++++++++++++++++++++++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

15d: After 20 Design Iterations
M = 0.75, Cl = 0.629, Cd = 0.0015,

α = .79 degrees

Figure 15: Drag Minimization of NACA 64A410 at Fixed Cl

Grid - 192 x 32, M = 0.75, Cl = 0.63
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Figure 16: Adjoint Versus Finite Differ-
ence Gradients for Drag Minimization of
NACA 64A410 at Fixed Cl.

Coarse Grid - 96 x 16, M = 0.75,
Cl = 0.63
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Figure 17: Adjoint Versus Finite Differ-
ence Gradients for Drag Minimization of
NACA 64A410 at Fixed Cl.

Medium Grid - 192 x 32, M = 0.75,
Cl = 0.63
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Figure 18: Adjoint Versus Finite Differ-
ence Gradients for Drag Minimization of
NACA 64A410 at Fixed Cl.

Fine Grid - 256 x 64, M = 0.75,
Cl = 0.63
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Figure 19: Adjoint Versus Finite Differ-
ence Gradients for Drag Minimization of
NACA 64A410 at Fixed Cl. Dissipative
Coefficients Not Frozen

Medium Grid - 192 x 32, M = 0.75,
Cl = 0.63
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Figure 20: Continuous Adjoint Gradients
for Varying Flow Solver Convergence for
the Drag Minimization Case
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Figure 21: Discrete Adjoint Gradients for
Varying Flow Solver Convergence for the
Drag Minimization Case
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Figure 22: Continuous Adjoint Gradients
for Varying Adjoint Solver Convergence
for the Drag Minimization Case
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Figure 23: Discrete Adjoint Gradients for
Varying Adjoint Solver Convergence for
the Drag Minimization Case
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Figure 24: Comparison of Convergence of
the Objective Function Between the Con-
tinuous and Discrete Adjoint Method for
Drag Minimization
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Figure 25: Comparison of Costate Val-
ues Between the Continuous and Discrete
Adjoint Method for Drag Minimization of
NACA 64A410 at Fixed Cl.

Medium Grid - 192 x 32, M = 0.75,
Cl = 0.63
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Figure 26: Convergence History for the
Continuous and Discrete Adjoint for Drag
Minimization of NACA 64A410 at Fixed
Cl. M = 0.75, Cl = 0.63
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