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Abstract: Magnesium (Mg) is the most essential element constituent in chlorophyll molecules that
regulates photosynthesis processes. The physiological response of ‘Superior Seedless’ grapes was
evaluated under different foliar magnesium fertilization such as sulfate magnesium (MgSO4·7 H2O),
magnesium disodium EDTA (Mg-EDTA), and magnesium nanoparticles (Mg-NPs) during the berry
development stages (flowering, fruit set, veraison, and harvest). In general, the ‘Superior Seedless’
vine had a higher performance in photosynthesis with Mg-NPs application than other forms. The
Fy/Fm ratio declined rapidly after the fruit set stage; then, it decreased gradually up until the
harvesting stage. However, both MgSO4 and Mg-EDTA forms showed slight differences in Fv/Fm
ratio during the berry development stages. The outcomes of this research suggest that the Fv/Fm
ratio during the growth season of the ‘Superior Seedless’ vine may be a good tool to assess magne-
sium fertilization effects before visible deficiency symptoms appear. Mg-NPs are more effective at
improving ‘Superior Seedless’ berry development than the other magnesium forms. These findings
suggest that applying foliar Mg-NPs to vines grown on salinity-sandy soil alleviates the potential Mg
deficiency in ‘Superior Seedless’ vines and improves bunches quality.

Keywords: fruit quality; nutrient concentration; chlorophyll concentration

1. Introduction

Grapes are one of the most important fruit crops on the planet. Grape is a member of
the Vitis genus, which is part of the Vitaceae family, which contains more than 60 genera.
Grapes (Vitis vinifera L.) are cultivated in more than 100 countries throughout the world,
with an estimated area of 7.8 million hectares in 2016. Wine, jam, juice, grape seed extract,
dried grapes, vinegar, and grape seed oil are among the many goods made from grapes.
In 2016, the world produced 75.8 million tons of grapes, with 39% produced in Europe,
34% produced in Asia, 18% produced in the Americas, and 9% produced in Africa [1].
Grapes are Egypt’s second most important fruit crop, after citrus. Egypt’s agriculture has
succeeded in increasing vineyard area by 220,665 hectares over the past decade, yielding
1,586,342 tons of grapes [2]. The grapevine is one of the most important horticultural crops
in the world. The high value of table grapes is primarily attributed to bio-compounds
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required for human health, such as antioxidants, anthocyanins, and phenolics, which
include gallic acid, catechin, anthocyanins, and resveratrol [3].

The fundamental issue with newly reclaimed and cultivated fields was that they were
often sandy and calcareous soils with poor nutrient concentration, especially magnesium.
Recently, research on magnesium nutrition has begun, with the goal of determining the Mg
requirements of Egypt’s most important crops. Magnesium deficiency has been discovered
in some Egyptian soils such as clay or newly reclaimed soils [4]. Therefore, magnesium
(Mg) is the most essential element constituent in chlorophyll molecules that regulates
the photosynthesis processes [5,6]. The deficiency of Mg during growth seasons limits
photosynthesis performance [7]. The physiological functions of Mg in plants have also been
characterized for flowering induction [8]. Mg is required for the growth and development
of plants [9]. It is also a cofactor in the biosynthesis of various enzymes, including those
involved in respiration and photosynthesis. It is a phloem-mobile nutrient that migrates
between older and younger leaves [10]. Mg is also a significant component of the chloro-
phyll molecule’s ring structure [11]. Additionally, it alleviates abiotic stress conditions,
such as dryness and heat, which can significantly enhance Mg deficit by inhibiting its
absorption due to its mass flow transit [9]. Additionally, it mitigates aluminum toxicity
in acid soils at micromolar concentrations, as opposed to calcium, which is required at
millimolar concentrations [12]. A Mg shortage has been shown to adversely influence
ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is involved in CO2
fixation [13], resulting in a decrease in photosynthetic performance [14], which is correlated
to a decrease in photosynthesis performance and stomatal mechanism [15]. Furthermore, it
plays a role of metabolism nitrogen in plant [16]. The inhibitory influence of Mg loss on pho-
tosynthetic capacity and net CO2 absorption was marked in several plant species [5,17,18].
As a result, in certain species, magnesium deprivation affects the structure and function
of the PSI and PSII systems [19]. As a result, a decrease in the Fv/Fm ratio (maximum
quantum efficiency of PSII) was observed in citrus seedlings [20]. Despite this, the Mg
shortage had no effect on Fy/Fm and other fluorescence metrics in Helianthus annuus plants
under Mg deficiency conditions. A rise in the chlorophyll a/chlorophyll b ratio is typically
reported [21]. The decrease in light-harvesting complex II ( LHC-II) abundance in Mg the
absence of Arabidopsis thaliana leaves is caused by thylakoid membrane dysfunction [22].

Many researchers have begun to investigate magnesium nutrition and the determina-
tion of magnesium requirements for economically important crops [23] such as ‘Washington
navel’ orange trees [24] and banana plants, and they have reported on the influence of
magnesium on yield and fruit quality, stating that magnesium fertilization increased the
yield and fruit quality of the aforementioned fruit species [25]. In addition, using the
magnesium application can induce a state of magnesium deficiency during growing [26].
Furthermore, fertilizing “Grand Nain” bananas with 100 g/plant magnesium chelate plus a
foliar spray of 2% magnesium sulfate increased growth metrics, yield, and fruit quality [27].
In addition, treating Le Conte pear plants with compost 45 kg/tree + biofertilizers 20 g/tree
plus 1.5% magnesium sulfate produced the best production and fruit quality [28]. The foliar
Mg (137.5 ppm) application boosted the growth characteristics and yield of Washington
Navel orange trees [29]. Moreover, some studies were conducted to improve bunches of
color quality of Crimson seedless by using foliar application of Mg [30].

‘Superior seedless’ is one of the first seedless table grapes to be produced in the
Mediterranean region, and it adapts well to and performs well in Egyptian circumstances
as well. It was harvested when the meat was yellow-white and the skin was green, as
requested by the European market [31]. ‘Superior Seedless’ is also considered as one of the
most important international grape variety with a good economic return [32]. Consumers
value this grape selection for its excellent nutritional value, great taste, versatile application,
and higher economic returns [33]. The world’s vineyard area is growing as a result of a
continual and unrelenting shift [34]. The purpose of this study is to determine the difference
among foliar magnesium forms on ‘Superior Seedless’ vines grown in salinity sandy soil.
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Furthermore, this study also aims to determine the optimal magnesium form for vine
nutrition under soil salinity conditions.

2. Materials and Methods
2.1. Vine and Experimental Setup

A commercial vineyard in the Nobaria area of Egypt (31.23◦ N, 29.96◦ E) was studied
for two growth seasons (2020 and 2021). The soil was sandy in texture (Entisol-Typic
Torripsamments), and the soil composition is described in Table 1. The farm consists of
6-year-old vines of the ‘Superior Seedless’ cv. grafted on 1103 Paulsen rootstock. Three-by-
three-meter vines were planted in sandy soil using a drip watering system. The pruning
level was done on all vines at 70 bud vines−1 (7 cans × 10 buds can−1 each on four cardons),
and all vines were trained by the Y system. Table 1 summarizes the physical and chemical
examination of the field experiment with ‘Superior Seedless’ vines [35,36]. All vines were
pruned to a height of 60 buds’ vine−1, with the length of the cans ranging from 6 to 8 buds
per can, and each can contain 12–14 buds and were produced until mid-July in European
countries. Additionally, according to the Egyptian Agriculture Ministry, all vines received
the same management program as for NPK fertilizer (300, 200, and 250 Kg were afforded
on three portions from growth starting until harvesting (one portion was added at the
vine dormancy stage) in sandy soil. Uniform vines (48) were chosen and treated with four
different types of magnesium; each treatment consisted of three duplicates with four vines
per replication. All treatments receive 750 g of magnesium sulfate per 600 L of irrigation
water, which was employed to avoid magnesium shortages. It is distinguished by the
yellowing of older leaves and a yellow tint between the veins of the leaves.

Table 1. Soil and irrigation-water traits analysis.

Soil Analysis

Physical Properties Soluble Anions (meq L−1) Soluble Cations(meq L−1)

Sand % Clay % Silt % Texture EC dsm−1 pH HCO3 Cl− SO4 Na+ K+ Mg++ Ca++ SAR
85.8 6.90 11.30 Sandy 4.50 7.93 2.80 14.10 13.10 25.00 3.00 3.80 12.00 8.89

Irrigation-Water Analysis

- - Anions (meq L−1) Cations (meq L−1)

pH EC
(dS m−1) 0.85 CO3

- HCO3
− Cl− SO4

− Ca++ Mg++ Na+ K+ - - -

7.18 567 ppm 0.20 2.45 0.90 1.18 1.73 0.67 2.60 0.16 - - -

2.2. Magnesium Fertilization Forms Treatment Protocol

The foliar magnesium application was laid out as control (0.5 g L−1), MgSO4·7H2O
(0.5 g L−1), Mg-EDTA (Mg chelate 0.5 g L−1), and Mg-NPs powder (0.5 g L−1). Nanoma-
terials provided magnesium nanoparticles (MgO, 99%+ purity, 20 nm) in powder form
at sundown. This optimal concentration was used for application. At sundown during
the four stages of growth (flowers, fruit set, veraison, and harvest), foliar treatments were
made (7:00 pm). In a bath of warm tap water, the magnesium compounds were melted.
Using a knack-sap pump, the solutions were sprayed over the entire vine monthly until the
leaves became saturated. The rest of the magnesium salts were acquired from EL-Gomhoria
Co. Ltd. in Egypt from EL-Gomhoria Co. Ltd. In Mansoura city, Egypt.

2.3. Magnesium Deficiency Index

Magnesium deficiency (MD) results in interveinal yellowing or reddening on old
leaves, beginning at the leaf edge and proceeding to the leaf veins’ petiole-connected point.
These symptoms progress to necrotic brown patches, and in severe MD, the leaves exhibit
necrosis, dray, and premature fall. The Mg deficiency was inspected and scored on a scale
from 0 (no injury) to 5 (very severe injury) [37].
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2.4. Leaf Pigments Content and Chlorophyll Fluorescence

Total chlorophyll (Chls) and carotenoid (Car) content were determined spectrophoto-
metrically [38] on the 7th leaf (ten leaves) from the shoot base.

Individual dark-leaf CF data were recorded. The data were acquired using a commer-
cial fluorimeter (Mini-PAM, Walz, Effeltrich, Germany) and data gathering software (Win
Control, Walz, Effeltrich, Germany). These data included F0 (minimum fluorescence), Fm
(light-saturated fluorescence), and the Fv/Fm ratio (the difference between maximum fluo-
rescence and minimum fluorescence is Fv or variable fluorescence divided by maximum
fluorescence). A fall in the Fv/Fm ratio below 0.75–0.78 suggests a decline in photosys-
tem II photochemical transformation capability [39,40]. On the 7th leaf, CF parameters
were determined.

2.5. Leaf Area, Total Carbohydrate Content, Ion Leakage Percentage, and Malondialdehyde (MDA)

On the 7th leaf, the Sokkia Planix 7 Digital Planimeter was used to quantify leaf
area during four developmental stages. However, the vine canes’ cumulative carbo-
hydrate content was assessed according to [41]. The leaf petiole cell permeability was
also tested. After three washes with deionized water, the rachis samples were put in
10 mL of 0.4 M mannitol at 24 ◦C for three hours. After measuring the EC of the aque-
ous phase (M1), the rachis samples were killed in a water bath at 100 ◦C for 20 min.
This was followed by room-temperature cooling. Then, it was estimated as a percentage
of the relative electrolyte loss from M1 rachis samples using the equation: ion leakage
percent = (M1M2)/M1 × 100 [42,43]. However, MDA was a by-product of lipid peroxi-
dation that accumulated during salinity stress. They used 2.5 g of leaf petiole samples
for MDA extraction [44,45]. This was done by measuring 0–3 mM of TBARS (equal to
0–1 mM MDA) in 1,3,3-tetraethoxypropane (Sigma, St. Louis, MO, USA). During the
assay’s acid-heating halt, TEOP is stoichiometrically transformed to MDA.

2.6. Leaf Minerals Content

Leaf mineral content was measured on the 7th leaf from the base of the shoot during
four vegetative growth stages. Nitrogen % [46], phosphorous [47], and potassium con-
tent [35] as well as the magnesium, calcium, chloride, and sodium content percentages
were demined [48].

2.7. Yield and Berry Properties

At harvest, the number of clusters per vine, average cluster weight (Kg), and yield per
vine (Kg) were determined. In addition, the pruned wood was weighted. The SSC % of
berry juice was measured with a digital refractometer (PR32 ALA-GO Co., Tokyo, Japan) at
lab temperature, and it was represented as a percentage. As for TA %, berry juice (20 mL)
was used for titrating by NaOH (0.1N). The outcome was shown as a percentage. However,
the SSC/TA-ratio was computed to judge bunch maturity [49,50].

2.8. Statistical Analysis

The experiment was designed as a randomized complete block in three-way ANOVA
with three factors: seasons (2 levels), berry developmental phase (4 levels), and foliar
magnesium forms (3 levels) with three replicates per treatment. The mean separations
were run with Tukey’s HSD test (p ≤ 0.05). Pearson’s correlation matrix among the studied
parameters and principal component analysis (PCA) were applied. Tukey’s HSD test was
run using the JMP Pro 16 software, with p < 0.05 taken as indicating a statistically significant
difference (SAS Institute, Cary, NC, USA).

3. Results
3.1. Magnesium Deficiency Index (MD-Index)

Figure 1 depicts the magnesium deficiency index (MD-index), which is a function of
berry developmental stages (BDSs) for all magnesium types. When seasons, BDSs, and
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magnesium application forms are examined, the MD-index demonstrates a significant influ-
ence of p < 0.05. Considering the different magnesium forms, it is obvious that the Mg-NPs
treatment produced fewer symptoms of magnesium deficiency than the other magnesium
forms. Observably, the effect of ‘Mg-NPs’ was that there was no evidence of deficient
symptoms prior to the veraison stage (berry change color) and that it rose somewhat until
the harvesting stage was completed. For vines treated with Mg-EDTA, MgSO4, and control
treatments, deficit symptoms were observed prior to fruit set, increased significantly during
veraison, and persisted until harvesting. However, during the vegetative growth stages,
the ‘Control’ treatment exhibited the most deficiency symptoms. The severity of Mg was
noticed on ‘Control’ vines that were unaffected by the Mg forms, but the control vines
had more symptoms throughout the vegetative growth stages. On sandy soils, symptoms
of a magnesium deficit appear on vines during the growth season, necessitating monthly
spraying of vines to compensate for the shortfall and thereby avoiding deficient occurrence.
Regardless of the magnesium supply to the vines, 750 g of magnesium sulfate per 600 L
of irrigation water is employed to avoid magnesium shortages. It is distinguished by the
yellowing of older leaves and a yellow tint between the veins of the leaves.

Figure 1. The influence of various magnesium fertilizer forms on ‘Superior seedless’ vines throughout
four berry development phases (flowering, fruit set, veraison, and harvesting) under soil salinity
conditions on magnesium shortage during the four stages. The values represent the mean affect levels
in each application plus standard error (n = 3). Tukey’s HSD test (p ≤ 0.05) used mean severance
between blocks (capital letters) to detect significant differences between growing seasons and Mg
applications (capital letters) to distinguish significant differences between Mg types.

3.2. Photosynthetic Pigments: Chlorophyll (Chls) and Carotene (Car)

Photosynthetic pigments as a function of BDSs for all foliar magnesium application
forms are shown in Tables 2 and 3. Leaf pigments show a significant interaction at p ≤ 0.05
when the seasons, BDSs, and foliar magnesium treatments were considered. Generally,
chlorophyll compounds (Chl A and Chl B) and carotenoid (Car) were raised gradually
during BDSs until the harvest stage for all Mg treatments, whereas the untreated vines
(control) treatment presented the lowest decreases in Chls and Car until the end of the
experiment. Despite this, there is a significant variance between Mg treatment on pigment
content that was observed during both growing seasons. The obvious outcomes are that the
Mg-NPs presented the highest amount of Chl A and Chl B and Car compared to the other
Mg treatments and control vines. They were marked with the highest amount at the harvest
stage. Moreover, the Car exhibited the highest content at the harvest time stage compared
to other foliar treatments. Regarding the Chl A:b ratio, the lowest rates at the harvesting
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stage of the vegetative growth period decreased progressively until grape harvesting with
all Mg treatments. Nevertheless, the Chl A:b ratio of Mg-NPs had more stable outcomes
than those shown with other Mg treatments throughout the growing season.

3.3. Parameters of Chlorophyll Fluorescence (CF) (Fv/Fm, Fm, and F0)

A significant interaction between seasons and berry developmental stages was found
as well as the influence of Mg treatments on Fm and F0 (p < 0.001). No significant variations
in Fv/Fm ratio were observed for the interaction effect of seasons, berry developmental
stages, and mg treatments, but significant differences in Fm and F0 were observed, whereas
a significant difference (p < 0.01) was noted for the magnesium effect (p < 0.001). The
Fv/Fm ratio of ‘Superior seedless’ vines was proposed as a function of BDSs; when seasons,
BDSs, and foliar Mg form fertilization were considered, substantial results were obtained
(Table 4). On average, untreated vines exhibit a higher decline in the Fv/Fm ratio than
vines treated with other Mg compounds. It is drastically reduced until the harvest stage.
Except for Mg-NPs treatment, the drop in the Fv/Fm ratio appears to be more gradual
and progressive, including a trend toward a more inferior Fv/Fm ratio during vegetative
growth stages.

Both Fm and F0 rates increased significantly in overall Mg treatments from the initial
stage (flowering) to the veraison stage (Table 4), and this increase was significant for
both Fm and F0. It was discovered that the effect of Mg treatments on Fm and F0 varied
according to the Mg forms. Then, both are steady until the experiment’s duration expires.
In comparison to other treatments, the application of Mg-NPs resulted in the greatest Fm
and F0 values. Thus, when the Fv/Fm ratio of the ‘Superior Seedless’ vine was changed,
Mg-NPs enhanced CF parameters more than other Mg treatments. As a result, this sample
fluorescence parameter can detect magnesium insufficiency.

3.4. Leaf Area, Shoot Carbohydrate, Ion Leakage, and Malondialdehyde Content

Table 5 presents the differences in leaf area, shoot carbohydrate, ion leakage, and
malondialdehyde accumulation as a function of berry developmental stages. The interac-
tion (p < 0.001) was significant between the berry developmental stages and the Mg foliar
fertilization forms and season. The leaf area (cm2) and shoot carbohydrate content (%)
have significantly (p < 0.008) higher values when vines receive the Mg-NPs form than other
forms. Whereas, when considering the ion leakage percent and MDA content, there were
significantly (p < 0.0005) lower values throughout the berry developmental stages. This
implies that there is variability based on Mg type for previous variables.

3.5. Mineral Content in Leaves

Tables 6 and 7 exhibit the significant variances (p > 0.001) between seasons, BDSs, and
Mg application foliar form treatments in the 7th leaf from the base of the shoot N, P, K+,
Ca++, Mg++, Na+, and Cl− content when all were considered as experimental factors. Na+

and Cl− content significantly decreased with Mg-NPs application compared to other Mg
forms. However, the rest of the mineral increased during the growth stages.

3.6. Yield and Berry Quality Properties

Table 8 presents the yield and berry quality properties. The quality variables were
significantly affected by foliar fertilization at harvesting time by 5%. The yield was signifi-
cantly affected more by using foliar Mg-NPs (9.13 kg vine−1) compared to other forms and
control treatments.
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Table 2. The influence of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on leaf chlorophyll parameters pigment of ‘Superior seedless’
vines, which were used four times on various phases during berry growth (flowering, fruit set, version, and at harvest time) throughout two summers (2020
and 2021).

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

Chl A

Control 1.77 ± 0.011 dA * 1.81 ± 0.005 d 1.62 ± 0.008 dB 1.66 ± 0.005 dB 1.33 ± 0.008 dC 1.16 ± 0.005 dC 0.86 ± 0.018 dD 0.76 ± 0.008 dE
MgSO4 1.87 ± 0.023 cC 1.91 ± 0.005 cABC 1.90 ± 0.005 cBC 1.91 ± 0.008 cABC 1.93 ± 0.008 cAB 1.96 ± 0.005 cA 1.94 ± 0.005 cAB 1.89 ± 0.005 cBC

Mg EDTA 2.07 ± 0.024 bE 2.07 ± 0.011 bE 2.16 ± 0.011 bD 2.18 ± 0.005 bCD 2.24 ± 0.026 bABC 2.26 ± 0.005 bAB 2.30 ± 0.005 bA 2.21 ± 0.005 bBCD
Mg-NPs 2.16 ± 0.012 aD 2.17 ± 0.005 aD 2.27 ± 0.005 aC 2.28 ± 0.008 aC 2.47 ± 0.011 aB 2.52 ± 0.014 aB 2.66 ± 0.017 aA 2.64 ± 0.005 aA

Chl b

Control 0.59 ± 0.008 cB 0.55 ± 0.005 dB 0.53 ± 0.011 dBC 0.51 ± 0.005 dCD 0.84 ± 0.005 dDE 0.45 ± 0.005 dEF 0.43 ± 0.005 dF 0.39 ± 0.005 dG
MgSO4 0.65 ± 0.011 bB 0.66 ± 0.005 cB 0.73 ± 0.028 cAB 0.71 ± 0.003 cAB 0.72 ± 0.005 cAB 0.72 ± 0.028 bAB 0.73 ± 0.008 cA 0.65 ± 0.005 cB

Mg EDTA 0.78 ± 0.005 aD 0.79 ± 0.008 bCD 0.83 ± 0.011 bBCD 0.85 ± 0.015 bB 0.87 ± 0.005 bB 0.84 ± 0.005 cBC 0.92 ± 0.015 bA 0.81 ± 0.005 bBCD
Mg-NPs 0.83 ± 0.012 aD 0.84 ± 0.012 aD 0.94 ± 0.005 aC 0.96 ± 0.012 aC 0.97 ± 0.005 aC 0.98 ± 0.012 aBC 1.04 ± 0.008 aA 1.03 ± 0.005 aAB

Chl A + B

Control 2.36 ± 0.020 dA 2.36 ± 0.011 dA 2.15 ± 0.020 dB 2.17 ± 0.011 dB 1.59 ± 0.014 dC 1.61 ± 0.011 dC 1.29 ± 0.024 dD 1.15 ± 0.014 dE
MgSO4 2.52 ± 0.034 cD 2.57 ± 0.011 cBCD 2.62 ± 0.033 cABCD 2.63 ± 0.012 cABCD 2.65 ± 0.014 cABC 2.68 ± 0.033 cAB 2.70 ± 0.014 cA 2.54 ± 0.011 cCD

Mg EDTA 2.85 ± 0.029 bD 2.86 ± 0.020 dD 2.99 ± 0.017 bC 3.03 ± 0.020 bBC 3.11 ± 0.032 bBC 3.10 ± 0.011 bB 3.22 ± 0.020 bA 3.02 ± 0.011 bBC
Mg-NPs 2.99 ± 0.023 aD 3.01 ± 0.017 aD 3.21 ± 0.032 aC 3.25 ± 0.020 aC 3.44 ± 0.017 aB 3.51 ± 0.026 aB 3.70 ± 0.026 aA 3.67 ± 0.011 aA

Chl A:B

Control 2.98 ± 0.027 aB 3.29 ± 0.023 aA 3.07 ± 0.052 aB 3.25 ± 0.026 aA 2.32 ± 0.010 aD 2.57 ± 0.020 aC 2.01 ± 0.020 aE 1.96 ± 0.006 aE
MgSO4 2.87 ± 0.014 bA 2.89 ± 0.014 bA 2.63 ± 0.092 bB 2.67 ± 0.003 bAB 2.68 ± 0.008 bAB 2.72 ± 0.095 aAB 2.54 ± 0.020 aB 2.91 ± 0.017 bA

Mg EDTA 2.66 ± 0.020 cAB 2.61 ± 0.015 cABC 2.60 ± 0.028 bABC 2.56 ± 0.038 bBC 2.57 ± 0.013 bAB 2.69 ± 0.011 aAB 2.50 ± 0.035 aC 2.73 ± 0.011 cA
Mg-NPs 2.63 ± 0.049 cA 2.57 ± 0.030 cA 2.42 ± 0.015 bB 2.36 ± 0.021 cB 2.54 ± 0.003 cA 2.57 ± 0.015 aA 2.55 ± 0.008 bA 2.56 ± 0.008 dA

* The mean and standard error of the mean are used to represent the data. Tukey’s HSD test at p < 0.05 for mean separation among columns (small letters) and rows (capital letters). Data
were obtained at various stages of berry growth.
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Table 3. The effect of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on leaf carotene pigment and the ratio of chlorophyll and carotenoid
of ‘Superior seedless’ vines, which were used four times on various phases during berry growth (flowering, fruit set, version, and at harvest time) throughout two
summers (2020 and 2021).

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

Car

Control 2.18 ± 0.017 dC * 2.23 ± 0.005 dBC 2.23 ± 0.005 dBC 2.28 ± 0.005 dAB 2.31 ± 0.032 cA 2.33 ± 0.005 dA 2.20 ± 0.005 dC 2.17 ± 0.012 dC
MgSO4 2.26 ± 0.008 cE 2.28 ± 0.014 cDE 2.31 ± 0.008 cCD 2.34 ± 0.005 cBC 2.37 ± 0.008 cAB 2.39 ± 0.008 cA 2.39 ± 0.005 cA 2.37 ± 0.005 cAB

Mg EDTA 2.60 ± 0.014 bC 2.66 ± 0.008 bBC 2.64 ± 0.008 bB 2.67 ± 0.008 bB 2.69 ± 0.005 bB 2.76 ± 0.005 bA 2.72 ± 0.008 bA 2.73 ± 0.012 bA
Mg-NPs 2.79 ± 0.011 aE 2.81 ± 0.008 aE 2.94 ± 0.008 aD 3.07 ± 0.011 aC 3.16 ± 0.008 aB 3.19 ± 0.008 aB 3.40 ± 0.020 aA 3.36 ± 0.017 aA

Chl:Carratio

Control 1.08 ± 0.000 aA 1.05 ± 0.003 cA 0.96 ± 0.012 cB 0.95 ± 0.003 cB 0.69 ± 0.015 cC 0.69 ± 0.003 bC 0.59 ± 0.012 cD 0.53 ± 0.003 cE
MgSO4 1.11 ± 0.012 aA 1.12 ± 0.003 aA 1.13 ± 0.008 aA 1.12 ± 0.003 aA 1.11 ± 0.003 abA 1.12 ± 0.010 aA 1.13 ± 0.015 bA 1.07 ± 0.003 bB

Mg EDTA 1.09 ± 0.017 aCD 1.07 ± 0.003 bD 1.13 ± 0.008 aB 1.13 ± 0.003 aB 1.15 ± 0.014 aB 1.12 ± 0.003 aBC 1.18 ± 0.003 aA 1.10 ± 0.003 aBCD
Mg-NPs 1.07 ± 0.005 aAB 1.06 ± 0.003 bcAB 1.09 ± 0.010 bAB 1.06 ± 0.000 bB 1.08 ± 0.003 bAB 1.10 ± 0.005 aA 1.08 ± 0.014 bAB 1.09 ± 0.003 aAB

* The mean and standard error of the mean are used to represent the data. Tukey’s HSD test at p < 0.05 for mean separation among columns (small letters) and rows (capital letters). Data
were obtained at various stages of berry growth.

Table 4. The impact of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on chlorophyll fluorescence parameters of ‘Superior seedless’ vines,
which were used four times on various phases during berry growth (flowering, fruit set, version, and at harvest time) throughout two summers (2020 and 2021).

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

Fv/Fm

Control 0.806 ± 0.00 dA * 0.800 ± 0.00 dAB 0.780 ± 0.00 dABC 0.743 ± 0.02 bC 0.756 ± 0.00 dBC 0.740 ± 0.00 dC 0.670 ± 0.00 dD 0.660 ± 0.00 dD
MgSO4 0.820 ± 0.00 cA 0.810 ± 0.00 cB 0.793 ± 0.00 cC 0.776 ± 0.00 bDE 0.780 ± 0.00 cD 0.756 ± 0.00 cF 0.770 ± 0.00 cE 0.740 ± 0.00 cG

Mg EDTA 0.853 ± 0.00 bA 0.860 ± 0.00 bA 0.840 ± 0.00 bA 0.820 ± 0.02 abAB 0.813 ± 0.00 bAB 0.830 ± 0.00 bA 0.780 ± 0.00 bBC 0.770 ± 0.00 bC
Mg-NPs 0.870 ± 0.00 aABC 0.860 ± 0.00 aAB 0.880 ± 0.00 aA 0.860 ± 0.01 aBC 0.880 ± 0.00 aA 0.870 ± 0.00 aABC 0.870 ± 0.00 aABC 0.856 ± 0.00 aC

Fm

Control 1697.33 ± 2.18 dA 1702.33 ± 1.45 dA 1626.67 ± 3.38 dB 1603.33 ± 1.20 dC 1591.00 ± 1.154 dD 1494.67 ± 2.60 dF 1556.33 ± 1.76 dE 1442.00 ± 0.55 dg
MgSO4 1738.33 ± 3.17 cG 1739.33 ± 0.88 cG 1886.33 ± 1.76 cD 1805.33 ± 2.60 cF 1955.00 ± 2.309 cC 1851.66 ± 1.20 cE 2020.33 ± 0.88 cA 1992.00 ± 1.52 cB

Mg EDTA 1990.67 ± 1.20 bF 1995.00 ± 0.57 bF 2015.66 ± 1.76 bE 2105.67 ± 2.84 bD 2193.00 ± 2.309 bD 2222.66 ± 0.88 bB 2205.67 ± 1.76 bC 2314.66 ± 2.02 bA
Mg-NPs 2137.34 ± 3.33 aH 2152.00 ± 1.52 aG 2359.00 ± 1.15 aF 2413.00 ± 1.15 aE 2585.33 ± 1.452 aD 2604.67 ± 2.02 aB 2595.33 ± 1.85 aC 2664.00 ± 1.52 aA
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Table 4. Cont.

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

F0

Control 364.00 ± 1.52 cB 372.00 ± 1.52 dA 357.66 ± 1.76 dB 362.00 ± 0.57 dB 304.33 ± 1.763 dD 332.00 ± 0.57 dC 296.00 ± 2.51 dE 285.66 ± 1.20 dF
MgSO4 393.00 ± 1.15 bF 403.00 ± 1.52 cE 407.33 ± 1.20 cDE 414.00 ± 1.52 cBC 420.00 ± 1.527 cAB 426.00 ± 0.57 cA 412.00 ± 0.57 cCD 417.66 ± 1.45 cBC

Mg EDTA 422.66 ± 11.34 aD 442.33 ± 1.20 bCD 459.00 ± 1.15 bBC 457.33 ± 1.85 bBC 517.33 ± 2.333 bBC 474.00 ± 1.52 bB 532.66 ± 0.88 bA 457.00 ± 1.15 bBC
Mg-NPs 441.00 ± 1.15 aH 461.66 ± 0.88 aG 552.66 ± 1.45 aE 526.33 ± 2.40 aF 792.33 ± 1.201 aC 693.33 ± 1.76 aD 817.66 ± 2.60 aB 827.00 ± 2.51 aA

* The mean and standard error of the mean are used to represent the data. Tukey’s HSD test at p < 0.05 for mean separation among columns (small letters) and rows (capital letters). Data
were obtained at various stages of berry growth.

Table 5. The impact of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on leaf area (cm2), shoot carbohydrate content percentage, ion
leakage percentage, and malondialdehyde of ‘Superior seedless’ vines, which were used four times on various phases during berry growth (flowering, fruit set,
version, and at harvest time) throughout two summers (2020 and 2021).

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

Leaf area (cm2)

Control 105.20 ± 0.883 dF * 113.02 ± 1.229 dE 116.11 ± 1.790
dDE

120.14 ± 0.586
dCD

125.41 ± 1.469
dBC

126.69 ± 0.904
dAB

129.94 ± 0.560
dAB 131.94 ± 0.589 dA

MgSO4 115.15 ± 1.212 bE 123.72 ± 1.212 cD 125.18 ± 0.600 cD 129.22 ± 0.586 cC 135.21 ± 0.873 cB 139.56 ± 0.583 cA 140.65 ± 0.589 cA 141.94 ± 0.335 cA
Mg EDTA 128.32 ± 0.892 cE 132.64 ± 0.562 bD 137.85 ± 0.580 bC 139.75 ± 0.580 bC 142.00 ± 1.216 bC 148.78 ± 0.331 bB 150.79 ± 0.898 bB 154.43 ± 0.574 bA

Mg-NPs 139.53 ± 0.881 aE 143.26 ± 0.885 aE 149.60 ± 2.623 aD 153.00 ± 1.460
aCD

154.87 ± 1.212
cBCD

159.14 ± 0.554
aBC

160.75 ± 0.586
aAB 166.40 ± 0.580 aA

Shoot carbohy-
dratecontent

%

Control 19.56 ± 0.591 cD 21.64 ± 0.568 cCD 21.82 ± 0.597 dCD 22.74 ± 0.568 cC 24.45 ± 0.565 cBC 26.45 ± 0.580 dB 26.62 ± 0.597 cB 29.64 ± 0.565 dA
MgSO4 23.20 ± 0.580 cD 26.34 ± 0.588 bC 26.66 ± 0.591 cC 30.96 ± 0.328 bB 30.55 ± 0.583 bB 32.66 ± 0.580 cAB 32.35 ± 0.586 bAB 34.36 ± 0.597 cA

Mg EDTA 27.88 ± 1.208 bD 29.35 ± 0.574 bD 30.75 ± 0.566 bCD 32.66 ± 0.346 bBC 32.92 ± 0.591 bBC 35.74 ± 0.594 bAB 34.65 ± 0.571 bAB 37.67 ± 0.594 bA
Mg-NPs 33.45 ± 1.169 aD 33.45 ± 1.169 aD 36.63 ± 0.560 aCD 39.74 ± 0.560 aBC 40.87 ± 0.586 aB 42.95 ± 0.583 aAB 41.94 ± 0.586 aAB 45.57 ± 0.583 aA

Ion leakage %

Control 12.29 ± 0.502 aC 12.67 ± 0.617 aBC 14.65 ± 0.566 aBC 15.10 ± 0.345 aAB 22.57 ± 0.580 aA 23.93 ± 0.591 aA 28.76 ± 0.673 aC 30.72 ± 0.671 aC

MgSO4 10.33 ± 0.494 abE 11.14 ± 0.447 aDE 13.58 ± 0.574
abCD 13.27 ± 0.330 bBC 19.73 ± 0.560 bAB 19.95 ± 0.332 bA 24.58 ± 0.583 bA 28.97 ± 0.377 aAB

Mg EDTA 8.36 ± 0.565 bC 9.25 ± 0.577 bB 11.27 ± 0.586 bB 10.68 ± 0.340 cB 15.84 ± 0.600 cB 17.19 ± 1.323 bA 21.05 ± 0.600 cA 20.73 ± 0.333 bA
Mg-NPs 5.07 ± 0.048 cE 4.99 ± 0.058 cE 6.04 ± 0.338 cD 6.10 ± 0.336 dC 7.25 ± 0.571 dB 6.84 ± 0.310 cB 10.56 ± 0.588 dA 8.64 ± 0.588 cA



Coatings 2022, 12, 201 10 of 18

Table 5. Cont.

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

Malondialdehyde
(MDA; ηM g−1

FW)

Control 0.15 ± 0.005 aD 0.16 ± 0.003 aD 0.20 ± 0.005 aC 0.21 ± 0.005 aC 0.24 ± 0.005 aB 0.25 ± 0.005 aB 0.29 ± 0.005 aA 0.31 ± 0.008 aA
MgSO4 0.13 ± 0.003 abE 0.14 ± 0.005 aE 0.17 ± 0.005 bD 0.18 ± 0.005 bD 0.22 ± 0.005 aC 0.23 ± 0.005 aC 0.26 ± 0.005 bB 0.28 ± 0.003 aA

Mg EDTA 0.11 ± 0.003 bD 0.11 ± 0.005 bCD 0.13 ± 0.003 cBCD 0.14 ± 0.005 cBC 0.14 ± 0.005 bBC 0.20 ± 0.005 bA 0.15 ± 0.005 cB 0.21 ± 0.005 bA
Mg-NPs 0.09 ± 0.005 cBC 0.08 ± 0.005 cC 0.10 ± 0.005 dBC 0.09 ± 0.005 dBC 0.11 ± 0.005 cAB 0.11 ± 0.005 cAB 0.13 ± 0.005 dA 0.13 ± 0.005 cA

* The mean and standard error of the mean are used to represent the data. Tukey’s HSD test at p < 0.05 for mean separation among columns (small letters) and rows (capital letters). Data
were obtained at various stages of berry growth.

Table 6. The effect of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on leaf mineral compositions of ‘Superior seedless’ vines, which were
used four times on various phases during berry growth (flowering, fruit set, version, and at harvest time) throughout two summers (2020 and 2021).

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

N%

Control 2.57 ± 0.014 dA * 2.48 ± 0.017 cA 2.64 ± 0.012 dA 2.76 ± 0.015 dA 2.76 ± 0.005 cA 2.56 ± 0.177 bA 2.61 ± 0.008 dA 2.58 ± 0.005 dA
MgSO4 2.67 ± 0.008 cE 2.77 ± 0.017 bBCD 2.75 ± 0.011 cCD 2.87 ± 0.012 cA 2.80 ± 0.005 cBC 2.80 ± 0.008 bB 2.73 ± 0.008 cD 2.65 ± 0.008 bE

Mg EDTA 2.79 ± 0.011 bCD 2.82 ± 0.012 bBCD 2.90 ± 0.012 bABC 2.93 ± 0.014 bAB 3.00 ± 0.014 bAB 2.98 ± 0.063 abA 2.85 ± 0.014 bBC 2.72 ± 0.012 cD
Mg-NPs 2.85 ± 0.014 aF 3.01 ± 0.018 aD 2.98 ± 0.015 aDE 3.10 ± 0.005 aC 3.10 ± 0.008 aC 3.26 ± 0.012 aA 2.93 ± 0.008 aE 3.17 ± 0.012 aB

P%

Control 0.13 ± 0.005 dC 0.14 ± 0.005 dBC 0.16 ± 0.005 dABC 0.17 ± 0.005 dAB 0.17 ± 0.008 dA 0.19 ± 0.005 dA 0.18 ± 0.008 cA 0.17 ± 0.005 dAB
MgSO4 0.20 ± 0.005 cB 0.21 ± 0.005 cAB 0.22 ± 0.005 cAB 0.23 ± 0.005 cAB 0.24 ± 0.005 cA 0.24 ± 0.005 cA 0.21 ± 0.008 cAB 0.20 ± 0.005 cB

Mg EDTA 0.25 ± 0.005 bCD 0.25 ± 0.005 bCD 0.27 ± 0.005 bCD 0.28 ± 0.005 bAB 0.29 ± 0.005 bAB 0.30 ± 0.005 bA 0.26 ± 0.005 bBCD 0.24 ± 0.005 bD
Mg-NPs 0.30 ± 0.005 aD 0.32 ± 0.005 aCD 0.33 ± 0.005 aC 0.34 ± 0.005 aBC 0.37 ± 0.005 aA 0.38 ± 0.005 aA 0.33 ± 0.005 aC 0.36 ± 0.005 aAB

K%

Control 1.53 ± 0.008 dC 1.60 ± 0.008 dB 1.59 ± 0.011 dB 1.66 ± 0.005 dA 1.60 ± 0.005 dB 1.69 ± 0.008 dA 1.54 ± 0.008 dC 1.44 ± 0.008 dD
MgSO4 1.62 ± 0.005 cE 1.70 ± 0.005 cC 1.67 ± 0.005 cCD 1.74 ± 0.015 cAB 1.70 ± 0.008 cBC 1.77 ± 0.005 cA 1.64 ± 0.005 cDE 1.55 ± 0.005 cF

Mg EDTA 1.71 ± 0.008 bB 1.74 ± 0.005 bB 1.75 ± 0.005 bB 1.81 ± 0.008 bA 1.80 ± 0.005 bA 1.84 ± 0.012 bA 1.75 ± 0.011 bB 1.63 ± 0.017 bC
Mg-NPs 1.78 ± 0.008 aE 1.85 ± 0.012 aD 1.80 ± 0.005 aE 1.91 ± 0.005 aC 1.86 ± 0.008 aD 2.03 ± 0.014 aA 1.81 ± 0.005 aE 1.96 ± 0.008 aB

* The mean and standard error of the mean are used to represent the data. Tukey’s HSD test at p < 0.05 for mean separation among columns (small letters) and rows (capital letters). Data
were obtained at various stages of berry growth.
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Table 7. The influence of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on the leaf mineral compositions of ‘Superior seedless’ vines was
studied for four terms in various phases during berry growth (flowering, fruit set, version, and at harvest time) throughout two summers (2020 and 2021).

- - Berry Developmental Stages

- - Flowering Fruit Set Veraison At Harvesting

- - Growth Seasons

Variables Treatment 2020 2021 2020 2021 2020 2021 2020 2021

Mg%

Control 0.31 ± 0.008 dA * 0.32 ± 0.005 dA 0.30 ± 0.008 cAB 0.30 ± 0.005 dAB 0.25 ± 0.009 dC 0.27 ± 0.005 dBC 0.21 ± 0.007 dD 0.21 ± 0.008 dD
MgSO4 0.64 ± 0.008 cE 0.65 ± 0.005 cE 0.71 ± 0.008 cbD 0.70 ± 0.005 cD 0.77 ± 0.009 cBC 0.76 ± 0.005 cC 0.81 ± 0.007 cA 0.80 ± 0.008 cB

Mg EDTA 0.70 ± 0.008 bD 0.71 ± 0.005 bD 0.88 ± 0.008 aB 0.79 ± 0.005 bC 0.91 ± 0.009 bC 0.89 ± 0.005 bB 0.96 ± 0.007 bA 0.97 ± 0.008 bA
Mg-NPs 0.78 ± 0.008 aE 0.79 ± 0.005 aE 0.91 ± 0.008 aD 0.94 ± 0.005 aCD 0.97 ± 0.005 aC 1.07 ± 0.005 aB 1.04 ± 0.007 aB 1.13 ± 0.008 aA

Ca%

Control 2.27 ± 0.008 dD 2.30 ± 0.007 dCD 2.32 ± 0.005 dBC 2.33 ± 0.005 dBC 2.38 ± 0.015 dA 2.36 ± 0.005 dAB 2.32 ± 0.008 dBC 2.29 ± 0.008 cCD
MgSO4 2.35 ± 0.008 cC 2.39 ± 0.007 cB 2.44 ± 0.005 cB 2.43 ± 0.011 cB 2.51 ± 0.005 cA 2.52 ± 0.008 cA 2.49 ± 0.005 cA 2.44 ± 0.005 bcB

Mg EDTA 2.44 ± 0.008 bA 2.49 ± 0.007 bA 2.54 ± 0.005 bA 2.52 ± 0.008 bA 2.65 ± 0.011 bA 2.59 ± 0.008 bA 2.61 ± 0.005 bA 2.60 ± 0.098 abA
Mg-NPs 2.58 ± 0.008 aF 2.65 ± 0.007 aE 2.68 ± 0.014 aDE 2.72 ± 0.005 aCD 2.75 ± 0.017 aBC 2.81 ± 0.012 aA 2.80 ± 0.005 aAB 2.82 ± 0.005 aA

Cl%

Control 1.24 ± 0.014 aE 1.25 ± 0.005 aE 1.31 ± 0.008 aD 1.35 ± 0.005 aCD 1.39 ± 0.015 aBC 1.38 ± 0.012 aBC 1.41 ± 0.014 aAB 1.45 ± 0.005 aA
MgSO4 1.23 ± 0.008 aC 1.23 ± 0.005 aC 1.26 ± 0.005 bC 1.26 ± 0.005 bC 1.30 ± 0.005 bB 1.30 ± 0.005 bB 1.34 ± 0.005 bA 1.34 ± 0.008 bA

Mg EDTA 1.19 ± 0.005 abD 1.20 ± 0.005 bCD 1.22 ± 0.005 cC 1.22 ± 0.005 cC 1.24 ± 0.005 cC 1.28 ± 0.005 bA 1.25 ± 0.005 cB 1.29 ± 0.005 cA
Mg-NPs 1.13 ± 0.021 bB 1.12 ± 0.005 cB 1.19 ± 0.005 cA 1.13 ± 0.005 dB 1.22 ± 0.005 cA 1.20 ± 0.005 cA 1.23 ± 0.005 cA 1.23 ± 0.005 dA

Na%

Control 0.40 ± 0.005 aE 0.42 ± 0.005 aDE 0.43 ± 0.005 aD 0.44 ± 0.005 aCD 0.46 ± 0.005 aBC 0.46 ± 0.005 aBC 0.48 ± 0.005 aAB 0.49 ± 0.005 aA
MgSO4 0.39 ± 0.005 abD 0.39 ± 0.005 bD 0.42 ± 0.005 aBC 0.41 ± 0.005 bCD 0.44 ± 0.005 aAB 0.43 ± 0.005 bABC 0.45 ± 0.003 bA 0.45 ± 0.005 bA

Mg EDTA 0.36 ± 0.005 bC 0.37 ± 0.005 bC 0.38 ± 0.005 bBC 0.38 ± 0.005 cBC 0.39 ± 0.008 bBC 0.40 ± 0.005 cAB 0.40 ± 0.003 cAB 0.42 ± 0.005 cA
Mg-NPs 0.31 ± 0.008 cBC 0.30 ± 0.005 cC 0.33 ± 0.005 cABC 0.32 ± 0.005 dBC 0.34 ± 0.005 cAB 0.33 ± 0.005 dABC 0.35 ± 0.005 dA 0.34 ± 0.005 dAB

* The mean and standard error of the mean are used to represent the data. Tukey’s HSD test at p < 0.05 for mean separation among columns (small letters) and rows (capital letters). Data
were obtained at various stages of berry growth.

Table 8. The impact of various magnesium fertilization types (MgSO4, Mg-EDTA, and Mg-NPs) on ‘Superior seedless’ vines on yield, berries proprieties, and fruit
quality of ‘Superior seedless’ vine. Treatments were used four times on various phases during berry growth (flowering, fruit set, version, and at harvest time)
throughout two summers (2020 and 2021).

Treatments Cluster Weight
(Kg) Cluster Number Vine−1 Yield Vine−1

(Kg)
Wood Pruned
Weight (Kg)

Berry Weight
(g)

Berry Size
(Cm3)

Total Soluble
Solid (SSC %)

Total Acidity
(TA %) SSC:TA-Ratio

Yield and Berry Properties Berry Juice Proprieties

Control 0.440 ± 0.002 d 13.56 ± 0.233 c 5.91 ± 0.073 d 14.19 ± 0.134 d 3.46 ± 0.029 d 3.31 ± 0.008 d 15.95 ± 0.014 d 0.713 ± 0.001 a 22.35 ± 0.062 d 0.713 ± 0.001 a 22.35 ± 0.062 d

MgSO4 0.502 ± 0.003 c 14.71 ± 0.020 b 7.39 ± 0.055 c 14.67 ± 0.023 c 3.85 ± 0.020 c 3.66 ± 0.005 c 16.71 ± 0.028 b 0.684 ± 0.002 c 24.41 ± 0.029 b 0.684 ± 0.002 c 24.41 ± 0.029 b

Mg-EDTA 0.525 ± 0.002 b 15.51 ± 0.340 a 8.15 ± 0.210 b 15.94 ± 0.086 b 4.16 ± 0.029 b 4.17 ± 0.023 b 16.33 ± 0.014 c 0.699 ± 0.000 b 23.36 ± 0.020 c 0.699 ± 0.000 b 23.36 ± 0.020 c

Mg-Nano 0.582 ± 0.002 a 15.98 ± 0.015 a 9.13 ± 0.038 a 16.85 ± 0.272 a 4.67 ± 0.021 a 4.56 ± 0.008 a 17.38 ± 0.038 a 0.661 ± 0.000 d 26.30 ± 0.066 a 0.661 ± 0.000 d 26.30 ± 0.066 a

The main data of two seasons are analyzed using one-way (complete block randomized design) on ‘Superior seedless’ vines. Each value represents mean and ±SE (n = 4) replicates. The
superscript letters differ (p < 0.05) and represent the significance between treatments using Tukey’s HSD test at p ≤ 0.05. Data were collected at different berry developmental stages.
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3.7. Multivariate Analysis of Leaf Parameters

A PCA for physiological and biochemical variables data obtained from leaves was
conducted from the tested different foliar magnesium fertilization forms (MgSO4, Mg-
EDTA, and Mg-NPs) applied four times on different fruit developmental stages (flowering,
fruit set, version, and at harvest time) throughout two growth seasons (2020 and 2021) of
‘Superior Seedless’ vines. The PCA separated the effect of magnesium forms under each
seasonal stage. The PC1 explained 70.9% of the variability in the data, while PC2 explained
16.1% of the variability (Figure 2A). Figure 2B displays the negative correlation between MD-
index with all the parameters except for EL%, MDA, Na+ %, and Cl− %. Chlorophyll a and
b and total chlorophyll contents were negatively correlated with chlorophyll fluorescence
variables (Fv/Fm; Fm, and F0). These four valuables (MD, MDA, Na+ %, and Cl− %) had
a negative correlation with the other variables. Chl B showed negative correlation with
Chl A:B. Chl A:B was positively correlated with Chls:Caro and Fv/Fm, whereas it had
a negative correlation with the other valuables. Pearson’s correlation matrix among the
examined parameters shows the correlation and shows these results (Table 9).

Figure 2. Principal Component Analysis (PCA) representing seasons and magnesium application
forms to ‘Superior seedless’ vine grown in sandy soil and salt conditions, plotted with the contribution
of each parameter on the two PCA axes (A) and all the physiological and biochemical parameters
measured in leaf during the growing season (B). Principal Component Analysis (PCA)-Variable
correlation of 7th leaf.
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Table 9. Pearson’s correlation pattern among the considered variables of ‘Superior seedless’ vines under four levels of magnesium foliar application.

Variables MD−
Index Chl A Chl B Chl

A+ B
Chl
A:B Caro Chls:

Caro Fv/Fm Fm F0 Leaf
Area

Shoot
Car. IL% MDA N% P% K% Ca% Mg% Cl% Na%

MD−index * 1.0000
Chl A −0.7543 1.0000
Chl B −0.6424 0.9441 1.0000

Chl A+ B −0.7307 0.9955 0.9712 1.0000
Chl A:B −0.3765 0.2037 −0.1244 0.1114 1.0000

Caro −0.4960 0.8004 0.8970 0.8375 −0.2487 1.0000
Chls:Caro −0.7281 0.8552 0.7100 0.8232 0.4610 0.3803 1.0000

Fv/Fm −0.8758 0.8250 0.7977 0.8267 0.1369 0.7291 0.6523 1.0000
Fm −0.5258 0.8958 0.9557 0.9234 −0.1487 0.9469 0.5785 0.7285 1.0000
F0 −0.4961 0.8148 0.8561 0.8361 −0.0965 0.9203 0.4576 0.6603 0.9097 1.0000

Leaf Area −0.1279 0.6528 0.8011 0.7032 −0.4336 0.8714 0.2790 0.4121 0.8757 0.7871 1.0000
Shoot
Car −0.2059 0.6896 0.8255 0.7368 −0.3968 0.8856 0.3232 0.4662 0.8955 0.8277 0.9790 1.0000

IL% 0.9348 −0.6787 −0.6213 −0.6700 −0.2364 −0.5626 −0.5611 −0.9008 −0.5262 −0.5085 −0.1789 −0.2593 1.0000
MDA 0.9291 −0.7360 −0.7122 −0.7377 −0.1362 −0.6206 −0.6101 −0.9185 −0.5984 −0.5474 −0.2709 −0.3283 0.9527 1.0000
N% −0.4926 0.7260 0.8258 0.7632 −0.2568 0.8262 0.4332 0.6697 0.8156 0.7583 0.7545 0.7847 −0.5803 −0.6122 1.0000
P% −0.4905 0.7736 0.8962 0.8180 −0.3349 0.9253 0.4230 0.7248 0.9070 0.8319 0.8593 0.8810 −0.5735 −0.6271 0.9067 1.0000
K% −0.5934 0.7846 0.8409 0.8099 −0.1109 0.8390 0.5053 0.7460 0.8091 0.7626 0.7150 0.7489 −0.6685 −0.6911 0.9052 0.9047 1.0000
Ca% −0.4310 0.8136 0.9189 0.8534 −0.2780 0.9441 0.4630 0.6707 0.9491 0.8796 0.9144 0.9243 −0.4833 −0.5620 0.8649 0.9440 0.8655 1.0000
Mg% −0.5068 0.9090 0.9481 0.9308 −0.1059 0.8098 0.7315 0.6645 0.9205 0.7906 0.8300 0.8466 −0.4472 −0.5441 0.7670 0.8473 0.7656 0.8847 1.0000
Cl% 0.8988 −0.7761 −0.7405 −0.7748 −0.1586 −0.5961 −0.7000 −0.8990 −0.6271 −0.4973 −0.3131 −0.3722 0.8944 0.9394 −0.5932 −0.6408 −0.6783 −0.5710 −0.6240 1.0000
Na% 0.8310 −0.7779 −0.7937 −0.7915 −0.0073 −0.7709 −0.5462 −0.9271 −0.7360 −0.6594 −0.4830 −0.5469 0.9058 0.9311 −0.7271 −0.7797 −0.7809 −0.7134 −0.6535 0.9181 1.0000

* Values represent average values per season, berry developmental phases, and magnesium foliar application treatments. Chl A—Chlorophyll a content; Chl B—Chlorophyll b content;
Chl A + B—Total chlorophyll content; Chl A:B—The ratio between chlorophyll A and B; Car—Carotene content; Chls:Car—The ration between total chlorophyll and Carotene; Fv/Fm—
Chl fluorescence ratios; Fm—Maximum Chl fluorescence in the light-adapted state; F0—Ground fluorescence; IL%—Ion leakage percentage; MDA—Malondialdehyde accumulation;
N%—Nitrogen content; P%—Phosphor content; K%—Potassium content; Ca%—Calcium content; Mg%—Magnesium content; Cl%—Chloride content; Na%—Sodium content.
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4. Discussion

Magnesium is involved in a number of biochemical and physiological processes that
influence plant growth and development [51]. As a result, the wounded bunches’ early-
stage leaves fall off throughout the growing season. However, under soil salinity conditions,
a variety of mechanisms occur that result in Mg loss [52]. As a result, Mg insufficiency
occurred on control vines earlier in the growth season than on vines treated with other Mg
treatments. This can be seen in the slower transport of Mg through the soil profile, which
results in more Mg adsorption [53]. In addition, changes in Ca and K content across Mg
application rates suggest that Mg and two other cations interact throughout the season [54].
Foliar spraying is a common way for plants to adjust for nutritional deficiencies in the
soil [55]. During the trial period, the efficiency of the nano-magnesium image revealed the
fewest symptoms on the leaves. This result could be attributed to magnesium absorption
being faster than the rest of the pictures, resulting in better photosynthetic efficiency [56].
These conclusions were reached because of the results shown in the graph. The presence of
EDTA in chelated Mg form, on the other hand, has been shown to improve vine growth
and biomass [57], and the sulfate part plays a critical role in the catalytic or electrochemical
functions of the biomolecules in the cells [58].

Chlorophylls (Chls) are reputedly the most outstanding natural syntheses on the
planet, as they are required for the photosynthesis process [59,60]. This method of vegeta-
tion occurs primarily based on gaining light rays by chlorophyll and especially chlorophyll
A [61]. Photosynthesis is a very powerful method wherein it is supplied with 5 to 11 µmol
CO2 m−2 s−1. This process is involved in the biosynthesis of essential organic molecules
required for plant growth and development [62]. The photosynthesizing cells need a
large amount of assimilatory pigment that reaches up to 5% of typical dry matter [63,64].
Most plant species have photosynthetic pigment content in their leaves (chlorophyll and
carotene), which plays a fundamental function in the physiological overall performance
of plants [65,66]. Mg participates in a variety of biochemical and physiological processes
that contribute to vine growth. It is a critical component of the chlorophyll molecule,
affecting both its structure and function [67]. Foliar magnesium fertilization compensates
for deficits in the vines’ growth stages. Additionally, it reflected the quantity and activity
of photosynthetic pigments [54]. Mg is a mineral activator constituent of the chlorophyll
molecule, which is responsible for photosynthetic regulation [68]. As a result, as com-
pared to other Mg forms, the usage of Mg-NPs increased the chlorophyll components and
carotene content [69]. Our findings corroborated those published in Tables 1 and 2. This
comparison most likely reflects Mg-NPs’ superior mobility and absorption capacity when
compared to other forms [70].

Chlorophylls are critical functional and structural cofactors for all photosynthetic
pigment proteins involved in oxygenic and anoxic photosynthesis, and so magnesium
fertilization throughout the growing season contributes to photosynthesis’s efficacy. The
pigments’ distinctiveness is owing to the porphyritic chromophore’s extensive electron
system, which chelates the Mg2+ ion in the center [71]. The results in Table 3 can be clarified
by the variation in the Fv/Fm ratios of the various forms of foliar magnesium fertilization
applied at various growth stages. In comparison to other forms, Mg-NPs dramatically
boosted nucleic acid and carbohydrate enzymes [68]. However, the onset of magnesium
deficit during the growing season may result in a reduction in chlorophyll and carotene
levels [72]. Our findings established that Mg-NPs boosted photosynthetic pigment in
comparison to other Mg forms, and our findings corroborated those of [56].

Since magnesium is required for carbohydrate accumulation in plants, its absence has
an effect on the overall biomass production and distribution among plant sections [73,74].
This shows that three major factors could influence Mg effects. These are the magnesium
forms, mobility, and absorption capacity of magnesium [75]. Our data indicated that the
Mg-NPs increased the leaf area and carbohydrate content of the shoots during the growing
season, owing to the higher photosynthesis performance. We observed reduced values
for ion leakage and MDA quantity when vines were treated with Mg-NPs compared to
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other types. One may argue that increasing magnesium absorption in nano form [69]
resulted in a reduction in the size of the cell wall, which was most likely because of its
role in ion transport across the membrane and involvement in membrane-center ATPase
activity [76,77]. This conclusion was consistent with previous research on citrus [78],
banana [19], and coffee [79]. On the current experiment, we discovered a similar pattern of
carbohydrate accumulation in vines stressed with evident leaf symptoms in the presence of
a magnesium deficiency.

Normally, in plants, an element’s uptake and distribution are controlled by both its
supply conditions and interactions with other elements [80]. Mg, K, and Ca have been
considered to exhibit opposing interactions as cation ions. Mg absorption was restricted
when K or Ca concentrations increased and vice versa [81,82]. However, under salinity
stress, the application of Mg-NPs increases the content of macro and micro-nutrients
(Tables 5 and 6). This may be explained by the inaction between Ca++ and K+ and Mg++,
which increased the abortion of both cations by using Mg-NPs more than other forms [52].
The achieved outcomes regarding the effect of foliar Mg forms on leaf mineral content
proved that the magnesium nano form has a pronounced effect on micronutrient status.
The results agree with the findings of [56]. In addition, the foliar magnesium fertilizer
improved the leaf mineral content of the mentioned fruit crop species.

This could be explained by the fact that the Mg-NPs enhanced photosynthesis during
the growth stages [54]. As a result, the carbohydrate content of the product increased [7].
Our findings established that Mg-NPs raised carbohydrate content more than other forms
(Table 4) and wood-trimmed weight more than other forms (Table 8). However, Mg-
NPs had a considerably greater effect on berry quality features than other treatments, as
measured by SSC percent (17.50%), TA percent (0.805%), and SSC:TA ratio (21.63%) (Table 7).
The lowest SSC:TA ratio observed with Mg-NPs application might be read as indicating
that bunches collected from vines treated with other Mg forms had a significantly longer
shelf life. Additionally, magnesium has a role in protein synthesis as a bridge element that
aids in ribosome assembly [83]. Additionally, it catalyzes about 300 enzymes, including
phosphoenolpyruvate carboxylase, glutathione synthase, phosphatases, kinases, RNA
polymerases, and ATPases [74].

A negative connection was detected between Chl B and Chl A:B. Chls:Caro and Fv/Fm
were positively linked with Chl A:B but negatively with the other assets. Our observations
were acknowledged by both parties [19].

5. Conclusions

The outcomes of this research recommend that the Fv/Fm ratio during the growth
season of ‘Superior Seedless’ vines may be a good tool to assess magnesium fertilization
effects before visible deficiency symptoms appear. Mg-NPs are more effective at improving
‘Superior Seedless’ vine growth than the other magnesium forms. Moreover, a comparison
validated that the application of different forms of Mg foliar fertilization for ‘Superior Seed-
less’ vines does affect the yield and berry quality at harvest time as a final determination
of the impact of Mg foliar fertilization. Overall, Mg-NPs are the most effective form for
application to ‘Superior Seedless’ vines when compared to other Mg forms under saline
soil. It enhanced biochemical and bunched quality variables.
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