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A Comparison of the Effects of Transmitter Activity and Connectivity on the Diffusion

of Information over Online Social Networks

This paper examines how observable and measurablaateristics of the people
who originally transmit information in online sotr@etworks affect how far that information
spreads. Two characteristics are compared: a tittessconnectivity (how well connected
they are in the network) and activity (how frequerhey transmit information over their
social ties in the network). Despite extensive pasearch on connectivity (e.g., the literature
on hubs), the role played by activity in drivingfdsion is largely unexplored. Across three
studies (an experiment, a simulation, and an eogbignalysis of link sharing in Twitter) the
authors find that (1) a person’s transmission &gtipositively influences diffusion, (2)
people who are exceptionally frequent content tratters—pumps—have a large positive
effect on information diffusion, (3) when comparitige activity effect (cf. pumps) to that of
connectivity (cf. hubs), activity is at least a®ag a driver as connectivity, if not more under
a variety of realistic conditions, and (4) the smmitter activity effect on diffusion holds even

after controlling for the information’s quality afleadth of appeal.

Keywords: diffusion, online networks, social mediagial networks, word-of-mouth.



The spread of the Internet has led to a colossantgy of information posted and
shared by people through social media such as mrbtogs, and online social networks. A
fast-growing trend among users of online socialwoeks is to use them for sharing
information, which often includes referrals or linko content on the web. In the case of
Twitter, for example, an increasingly common ustigosting (or “tweeting”) links (URLS)
to content elsewhere on the Internet (e.g., a vied’ouTube, a news article on the New
York Times website). This is so common that, ace@ydo Twitter, a link to a New York
Times article is shared every four seconds ovar tretwork. Underscoring the ubiquity of
link sharing in networks such as Twitter, a recéahoo study of approximately 10 million
tweets in July 2009 found that 1.8 million (18%htaned URLs (Singh 2009). In the case of
Facebook, as of early 2010, more than 25 billi@ces of content (e.g., photos, videos, links)
were shared each month through Facebook (Facelfid®.2Clearly, information sharing is
a hallmark of social media. As a result, sharekislihave become significant traffic sources
for many blogs and websites (including mainstreaadian outlets such as CNN and the New
York Times). In some cases traffic to major welssiteming from Facebook, Twitter, and
other social media sites exceeds traffic cominghff@oogle (Hopkins 2009).

Despite the prevalence of information sharing ircia@o media, very little is
understood about what factors might affect theuditin of this information over these online
social networks. While diffusion has been extergiexamined in the marketing literature
for decades, information sharing through social imeshd over online social networks is a
new and important context that has received sc#ehteoon in extant research. A key
difference between diffusion of, for example, newoducts in consumer or industrial
markets, and diffusion of digitized information ovanline social networks is the underlying
social transmission process. The micro-level prodabsit drives macro-level information

diffusion outcomes in online social networks is smgomplex than most of those examined



in extant literature, requiring people t@nsmit consume and retransmit (i.e., pass on)
information for it to spread. Specifically, (1) arpon must bring content into a network from
“outside” (e.g., a news website or another netwankdl transmitit over their online social
ties (e.g., posting a link on one’s Facebook pageveeting it through Twitter), (2) their
contacts are theaxposedo the content (e.g., seeing a link to a newslarbn a friend’s
Facebook page or in their Twitter feed), (3) th&seeivers” then decide whether or not to
consumethe content (e.g., by clicking the link to reae thews article), and (4) they also
decide whether or not tetransmitor distribute the content by sharing it with oth@rg., by
“retweeting” it to their Twitter followers).

The requirement that information be explicitly egtsmitted distinguishes the social
transmission process for information sharing inrenkocial networks from other WOM and
contagion processes studied in marketing (e.g.s B869; Goldenberg, Libai, and Muller
2001; Watts and Dodds 2007), and in other fieldshsas physics and sociology (e.qg.,
Coleman, Katz, and Menzel 1957; Dodds and Wattg R0GQ/pical in the diffusion models in
prior work is the assumption that information spiee#o potential adopters simply by them
being exposed to (or connected to) past adopteegjuiRng a person to retransmit
information adds a critical extra step to the psscé deeper understanding of this process is
therefore needed. A major aim of this paper ishedslight on the micro-level processes that
give rise to macro-level diffusion outcomes foramhation shared through online social
networks.

Many potential drivers of diffusion can be conseterand here we concentrate on
easily observable and objectively measurable behdased attributes of the people who

first introduce (transmit) information into thesetworks. We concentrate on behavior-based

! Retransmit means that a person who received irfiom passes it on to another person. E.g., pefson
transmits information to person B. Then, if perd®rmasses this on to person C we say that persoasB h
“retransmitted” the information. Retransmit doeg neean that a single person repeatedly transmitséme
information repeatedly.



person characteristics because marketers can ese fibr targeting purposes where they have
less control over other potential diffusion drivetech as information content (which is often
user-generated and therefore not within a markewmhtrol), and also since past diffusion
research has often focused on such factors (Bayliteratures on hubs, opinion leaders, and
mavens). Specifically, we compare two major trat@nrelated diffusion drivers: a person’s
network connectivity (e.g., how many followers do they have in Twittar faends in
Facebook?), and their transmissuxtivity (e.g., how frequently do they post new tweets or
status updates?). While connectivity has beenubgst of much discussion (and debate) in
past literature (e.g., research on hubs), actiwdythe best of our knowledge, has not been
previously investigated.

To preview our main results, we find that (1) asper’s transmission activity
positively influences diffusion, (2) people who aexceptionally frequent content
transmitters—pumps—have a large positive effect imiormation diffusion, (3) when
comparing the activity effect (cf. pumps) to th&tonnectivity (cf. hubs), activity is at least
as strong a driver as connectivity, if not more ema variety of realistic conditions, and (4)
the transmitter activity effect on diffusion holdsen after controlling for the information’s

quality and breadth of appeal.

THEORY AND RESEARCH QUESTIONS

Our objective is to examine how transmitter acyiveind connectivity compare as
drivers of diffusion in the context of informatighared over online social networks. Put
simply, is a transmitter’s connectivity or theitiatty a better predictor of how far a piece of
information they post online in, for instance, Hamek or Twitter, will spread? Past research
on diffusion and related work on word-of-mouth (WQ&hd consumer-to-consumer social

interactions has focused mostly on how diffusedrmiation (e.g., online reviews as a type of



online WOM) influences consumer behavior and agapegarketing outcomes such as sales
(e.g., Chevalier and Mayzlin 2006; Dellarocas, Zhaand Awad 2007; Eliashberg et al.
2000; Reichheld and Teal 1996; see Libai et al.02fat a recent review of research on
consumer-to-consumer interactions). We are intedestot in how diffused information
affects such outcomes, but rather on the spreadfafmation itself and what drives this
diffusion.

A number of factors conceivably can influence thebpbility that a piece of
information or content will diffuse widely, fallinghto categories related to the item itself
(e.g., how interesting or topical is the informafoE.g., Berger and Milkman 2010), the
source of the item (e.g., how credible is the se®ycand the social network over which it
spreads (e.g., how centrally located in the netwsrthe seed person, or how dense is the
social network? E.g., Goldenberg et al. 2009; Katafubcsek, and Sarvary 2009; Watts
2002). Although many of these factors likely congband interact to drive social epidemics
and widespread diffusion of information, we focusr@twork-related factors associated with
the transmitter. We concentrate on certain traemibehaviors because receivers (i.e.,
people to whom information is transmitted) may tdkese into account when deciding
whether or not to retransmit a given piece of infation (e.g., how trustworthy is this person
as a source of information that is worth passin@)pmrespective of the nature of the
information itself or its perceived quality.

We focus on two kinds of easily observable and ahbjely measurable individual-
level transmitter behaviors that may influence hiafermation spreads over online social
networks: connectivity and activity. Connectivity is a direct function of the netwak’
structure and refers to how centrally positionggeeson is in the network. Various measures
of connectivity (based on graph theoretic analg$isetwork structure) are available, with

the most common and straightforward being a pessdegree (number of social ties a person



has)? Degree and other measures based on network seuwue attracted a lot of attention
in the literature; on the other hand, activity, @hiis not a direct function of network
structure, has attracted sparse attention so fetivigy refers to how frequently a person
transmits information or posts messages in an erslatial network.

Connectivity and Diffusion

Transmitter degree has been shown to affect ddfugirocesses. For example,
Goldenberg et al. (2009) studied the effects ofshigeople with exceptionally high degree)
on the diffusion of virtual goods in a South Koreamline social network, and found that a
hub adopting a good positively affected the extard speed of diffusion. However, in their
study the focus was on product adoption where @oloptwere publicly observable. A
positive relationship between degree and extentdifffision is plausible in such cases
because the process primarily depends on exposaeareness.If the aim is to maximize
reach (i.e., increase exposures and raise awajetiess this is reasonable. However, if
information needs to be explicitly passed on thegrde may not be the only (or best)
criterion for selecting seeds.

As noted above, the information sharing proceseriline social networks is more
complex and involves more steps than simply exgppeople to a piece of information and
having them adopt it with some nonzero probabilitgus, we cannot automatically assume
that degree will be a dominant diffusion driverddéed, the importance of degree in driving
information cascades and the spread of public opifas been questioned by Watts and
Dodds (2007), who argue that cascades occur n@ubecof so-called “influentials” (their

term for hubs) but because of the existence oft@armass of easily influenced people on

2 Other measures used in past literature are alsedb@an network structure, and include clustering,
betweenness, closeness, proximity, and eigenveetatrality. See Stephen and Toubia (2010) for exesnp
and Van den Bulte and Wuyts (2007) for a more gandiscussion of node-level measures that can be
computed from network graphs.

% This situation is typical in many diffusion modeiscluding in the Bass (1969) model and other comiy
used models such as Goldenberg et al. (2001).



the receiving end of transmissions. Despite sonmrceersy over the model used by Watts
and Dodds (2007), they nevertheless draw attertbothe possibility that a transmitter’s
connectivity may be neither the only nor the mastical driver of diffusion outcomes,
particularly when information (not products) is wiespreading over social ties.

Activity and Diffusion

We hypothesize that a person’s activity is a validdictor of their contribution to
widespread information diffusion in online sociatworks. We now explain the rationale
behind this hypothesis.

Recall that explicit retransmissions are criticat fnformation being shared over
social networks to spread widely. What would malgeieson who receives some information
over a social tie (e.g., they see it on a friendacebook page) more or less likely to
retransmit it? Research into the characteristiaseofis that makes them more likely to catch
on, diffuse, and be talked about suggests that praneocative, exciting, surprising, novel or
even awe-inspiring items tend to spread more (&grger and Heath 2005; Berger and
Milkman 2009; Heath, Bell, and Sternberg 2001; Redg2003). People have an inherent
desire for novelty (Hirschman 1980; Rogers and 8taker 1971), and are motivated to
transmit WOM by a need to be listened to by otl{&rsgel, Blackwell and Miniard 1993;
Hennig-Thurau et al. 2004; Stephen and Lehmann ;28L@daram, Mitra and Webster
1998). Therefore, digital media content and infarorashared in online social networks
should be more likely to be passed on if peoplegee it to be more novel or fresh (i.e.,
apparently current and/or new). Put differentlypgie should be generally more likely to
pass on information when they believe that othalisnet have already seen it. While it is
easy for a person to judge the freshness of sormgeanedia content (e.g., a big news story
published on a certain date), this is rarely theecgiven the sheer volume of available

content. For example, a video on YouTube might Haaen viewed a million times, but this



does not mean that a person’s friends have se®rthiat a person knows how many of their
friends have seen it.

We posit that in these situations people loolwlabd exposed them to the information
(i.e., transmitters) and form judgments about timormation based on transmitter
characteristics. This is where we believe a tratiens activity plays a role. Consider the
following example. Suppose that a Twitter userdal two people, one who has higher
activity and tweets frequently (e.g., a few timeday on average), and one who has lower
activity and tweets infrequently (e.g., about oesery other week). We hypothesize that,
compared to the less active person, the more goéixson will be perceived as having fresher
information. This is because receivers may infamfra person’s activity how much
information they have to give and people who fredlye“pump” out information are
presumably doing it because they have somethirgayoand want others to pay attention
(Stephen and Lehmann 2010). We predict that pdopleat how active a transmitter is and
use this as a heuristic for judging how fresh infation is likely to be. Then, if they judge
the information to be sufficiently fresh, it is tieéore worth retransmitting and they pass it on
to their contacts. (We test this in study 1.)

A transmitter’'s degree is not expected to havestimae effect on retransmission and,
when aggregated, diffusion. When the network isneated (i.e., if A> B then B> A; like
Facebook), a transmitter with high degree has aabtjence and is exposed to many other
people. When the network is directed (i.e., iPAB it is not necessarily the case thabBA,
like Twitter), having high degree means either thaye a large audience (high out-degree)
or are exposed to many others (high in-degree), notitnecessarily both (although the
correlation between in- and out-degree in directglihe networks, such as the WWW, tends
to be positive; e.g., Liu, Dang, Wang, and Zhou&®00n terms of out-degree (audience

size), there is no reason why information from ghhout-degree transmitter will have a



higher individual-level retransmission probability than information fromloav out-degree
transmitter. While broad awareness or exposures wdrease, it is not clear that
retransmission probabilities will. In fact, peophay belessinclined to pass on information
from a hub because they know that, by definitiots bf other people will have also received
the same information, thus making it less fresh aodel, and therefore less attractive to
retransmit. In terms of in-degree (i.e., breadtlexgfosure to others), although a person with
high in-degree has access to many other socialnmation sources, this information will not
necessarily be perceived as fresh, maybe because ohultiple appearances in the same
instance.
Research Questions and Overview of Studies

We address three research questions: (1) Whateimfes do people draw about
shared information based on how active and welheoted transmitters are? (2) What are the
relative effects of transmitters’ activity and cewtivity on the probability that a person
exposed to information from them will retransmitatothers? And (3) what are the relative
effects of transmitter activity and connectivity e extent of information diffusion in online
social networks? All questions (and all three stadn this paper) center on retransmission,
which, as discussed above, is essential for infoamdo diffuse over online social networks
like Twitter, Facebook or even through “old fasthedih email forwarding. We look at
retransmission directly as a micro, individual-legetion in study 1, and as an outcome of
collective retransmissions that give rise to maaggregate-level diffusion in studies 2 and 3.

The first two research questions, which addressayi@vel psychological aspects of
the underlying social contagion process, are erdlovith a behavioral experiment (study 1)
where we test how people perceive information frioamsmitters who differ according to
their activity and connectivity, and how likely paipants would be to retransmit this

information. The third question, which focuses oggregate, macro-level information
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diffusion, is examined first with an agent-baseddelo(study 2) where we build an
individual-level model for sharing and retransmigtinformation and simulate diffusion over
large social networks where people vary in termafnectivity and activity. Then we
further address how activity and connectivity afffdiffusion with an empirical analysis of

data on link sharing in Twitter (study 3).

STUDY 1. AN EXPERIMENTAL TEST OF THE MICRO-LEVEL EFFECTS OF
TRANSMITTER ACTIVITY AND CONNECTIVITY ON [INTENTIONS TO
RETRANSMIT

Overview and Experiment Design

One hundred and eight participants from a largeebavere recruited for this
experiment, for which we used Twitter as an onBoeial network context. All participants
were prequalified as current users of Twitter (itkey gave Twitter user names that were
checked to be valid). The task for participants stagightforward: they were asked to look at
information about another Twitter user who they evied to believe was a real person (the
“target user”), and were asked questions abownsinission and perceptions of this user and
information posted by them.

We manipulated between subjects the target userisectivity (out-degree/number
of followers: low vs. high) and the target usertiaty (average number of tweets per day:
low vs. high) in a 2 2 full factorial design. Participants were randgrassigned to one of
the four conditions. This information was presentegarticipants in a table that listed the
target user’s (1) number of followers, and (2) ager tweeting rate (expressed as “1 tweet
everyx days or about &/tweets per day”).

The levels of both factors were calibrated usirg data from a random sample of

approximately 2,500 Twitter users (from the samiasizt used in study 3). Both degree and
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average tweeting rate were heavily skewed, lorgdtsiributions (approximately power-law,
which is typical of many node-level measures inr@nkand social networks; e.g., Barabasi
and Albert 1999; Stephen and Toubia 2009). For (bigh) levels of the connectivity and
activity we respectively took the mean number dibfeers and mean average daily tweeting
rate from the first (fourth) quartiles of the resfie variables in the data. For connectivity:
low = 6 followers, and high = 693 followers. Fottiaty: low = .07 tweets/day, and high =
12 tweets/day (note that high-low ratios are of shene order of magnitude for these two
factors).

We asked participants to suppose that they follothedtarget user and that this user
“posted a tweet that contained a link (URL) to sornatent on the Internet” and that they
noticed this in their feed. We deliberately did pobvide actual information or content to
remove the potential for information characterstaffecting the dependent measures (we
leave this for study 3). We measured (1) the Ii@bdd they would click this link to view the
content (0 to 100% scale), (2) the likelihood tlveyuld share this link with their Twitter
followers by retweeting it (0 to 100% scale), aBd their perceptions of the target user and
the information they shared (10 scale items, eaeh“&trongly disagree” to 7 = “strongly
agree”). The items are listed in Table 1 and weesgnted to participants in a randomized
order. A factor analysis of the 10 items revealeeée factors that explained 82.5% of the
variance. The three factors reflect participantgeztations of the information quality of the
target user’s tweets (“quality”), perceived speeddivering new information (“speed”), and
perceived trustworthiness as a source of informatibust”). Three reliable composite items
were created by taking the means of the iteams (94 for “quality,”a = .88 for “speed,” and
o = .81 for “trust”).

[INSERT TABLE 1 ABOUT HERE]
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Results

Manipulation checksAfter the dependent variable and process measwessked
participants to rate the target user on seven-gapdlar scales with respect to how they
thought this user compared to other Twitter useln® \&re regular people (as opposed to
celebrities, news organizations, companies, etdeims of degree (1 = “has many fewer
followers than the average user” to 7 = “has mamyarfollowers than the average user”),
activity (1 = “is less active in tweeting than thegerage user” to 7 = “is more active in
tweeting than the average user”), and in genera (5 very rare, these characteristics are
very uncommon” to 7 = “is very typical, these clthesistics are very common”). To confirm
that our activity and connectivity manipulations need as intended, we expected that,
compared to participants in the low activity (coctngty) condition, participants in the high
activity (connectivity) condition would rate thedgat user higher on the comparison based on
activity (degree). We expected no differences betweonditions on the general comparison
to confirm that the target user was not considésduk particularly unusual or extreme.

We compared means of these three scales for eticityagnd connectivity condition
using a multivariate analysis of variance. The Itesconfirmed our expectations. For the
comparison based on degree, there was a significaim effect of connectivity (M, = 2.37,
Mhigh = 5.12,F(1, 104) = 84.86p < .001) but not activity or the interactiop £ .18 ando =
.65, respectively). For the comparison based amiggtthere was a significant main effect of
activity (Miow = 2.37, Migh = 5.40,F(1,104) = 118.13p < .001) but not connectivity or the
interaction p = .08 andp = .35, respectively). Finally, for the general qg@arison no
differences were foun@@ .21 for all effects).

Effects on retransmissiohe likelihood of retransmission variable was caneg
across activity and connectivity conditions using analysis of covariance, with the

probability of clicking on the link to view (i.econsume) the referred content as a covariate,
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Pr(view). Put simply, we examined how the targedrigsactivity and connectivity affect the
retransmission probability conditional on inten8do view/consume content.

Least-squares means for retransmission probabili(edjusted for the Pr(view)
covariate) are plotted in Figure 1. Activity hadignificant main effect on the conditional
probability of retransmissionF(1, 104) = 4.71p = .03). Connectivity, however, had no
effect F(1, 104) = .73p = .40), and neither did the interactidf(X, 104) = .45p = .51). The
effect of the covariate was positive and significas would be expecte&((, 104) = 18.40,

p < .001). Note that the same pattern of results feasd if we excluded the Pr(view)
covariate from the analysis.
[INSERT FIGURE 1 ABOUT HERE]

The effect of activity but not connectivity on tildended conditional probability of
retransmission is consistent with our suggestiat teceivers are more likely to pass on
information from transmitters who are more actived d'pump out” information more
frequently than others. We found no evidence togesf that connectivity affected
retransmission.

Mediation analysisin our earlier discussion about activity and hawnight affect
retransmission behaviors we posited that infornmasbared by more active transmitters
might be perceived as fresher and more novel tmdormation shared by less active
transmitters, and that this could explain a posigffect of activity on retransmission. We
tested this hypothesized process using the conepibsins based on the 10 perception scale
items. We performed a standard mediation analydlswing Baron and Kenny's (1986)
procedure, and report the results for the sepaegiession models in Table 2 for “quality,”
“speed,” and “trust” as potential mediators of éffect of activity on retransmissidn.

[INSERT TABLE 2 ABOUT HERE]

* Note that this analysis is not intended to fulscribe the underlying process (which is beyondstiape of
the current paper), but rather to offer some pet@sed support for our main arguments.
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Our hypothesis suggests that “speed” in particaladiates the effect of activity on
retransmission. Consistent with this, we found ernte of complete mediation of the effect
of activity on retransmission through speed (Sdesi: Z = 2.39,p = .02). When the target
user has higher activity, participants believed tinansmitted information from the target
user would be fresher, more novel, and deliverstefawhich in turn increased their stated
conditional probability of retransmitting informati from the target user. We also found
support for “trust” in the transmitter as a rel@btrustworthy source of information as a
second mediator (Sobel te&:= 2.17,p = .03). The perception of the information quality
(“quality™), however, did not mediate the activity retransmission effect (Sobel te&t=
1.00, p = .32)> Note, however, that we would generally expect ip&if content to drive
retransmission decisions, but we deliberately dat provide content (and hence no
manipulation of content quality) in this study seta focus entirely on transmitter activity
and connectivity. We consider the effect of contgumlity on diffusion in study 3 when we

examine the actual spreading of links in Twitter.

STUDY 2. AN AGENT-BASED MODEL OF THE EFFECTS OF TRANSMITTER
ACTIVITY AND CONNECTIVITY ON DIFFUSION
Overview

Study 1 demonstrated that at the individual leveltamsmitter's activity (but not
connectivity) can positively influence retransmissi We now move to considering macro-
level aggregate diffusion consequences of retrassan behaviors. In this study we examine
how transmitter activity and connectivity affectgaggate diffusion in a social network. The

individual, micro-level social transmission procés$ased on the process described above.

® These findings were based on separate sets ofr@jr8ssions, as reported in Table 2. Regressichstwo or
more mediators was not possible due to multicadliitg concerns given the moderate to high positive
correlations between the composite variables: (speest) = .47, (speed, quality) = .50, and (trastality) =
.69.
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Our focus is on the relative effects of activitydazonnectivity on macro diffusion outcomes.
We use agent-based modeling (ABM) methods thatiswally used when the focus is on the
collective dynamics of a system that occur as altre$ individual behaviors (Lusch and Tay
2004; Rand and Rust 2009). While we report theltesaf an empirical analysis of link
sharing in Twitter in study 3, the full collectivdynamics of these complex systems and
social interactions cannot be fully understood vatitual diffusion data (cf. Garber et al.
2004). Hence, to more rigorously analyze and compansmitter activity and connectivity
in driving the dissemination of shared information online social networks we take a
simulation-based approach.
Model

We use a network withl nodes and undirected ties between pairs of nodes. Each
node (indexed bi) represents a person and each tie can be thotigbta“friendship” in an
online social network. We endow each node with tlaracteristics: degree (connectivity)
and transmission delay (which is used to represeintity; see below for details).

Degree.Denoted byk;, this is the number of ties connecting nade other nodes
(and E :Ez:ilki)- We assume that the social network has the comsuale-free property

exhibited in many offline and online networks (Ba&ai and Albert 1999), including e-
commerce settings (Stephen and Toubia 2009). Teenmthak; is power-law distributed
across theN nodes; i.e.,P(k) ~ k™ with scale parameter (usually between 2 and 3 in real
social networks; Barabasi and Albert 1999). Thigribution ensures the presence of nodes
with exceptionally high degrees.

Transmission delayT'he notion of activity in this model is operatized in terms of
the speed with which a person transmits or retrgssanpiece of information to the people
connected to them. In study 1, speed was an immgortactor driving micro-level

retransmission behaviors, and for this reason wesf@n speed in operationalizing activity in
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this model. When exposed to a piece of informateach node will take some amount of
time (here, measured in discrete time periods)redftey retransmit that information (if they
decide to retransmit the information; see below)—ea# this delays. High (low) activity

nodes will have low (highg. Activity is defined asa, = max{s,s,,....S,} — S Like degree,

we assume that activity is power-law distributeddépendent of degree); i.e?(a) ~ a™*
with scale parameter (assumed to be between 2 and 3, similar to dpfiéete, as for the
degree distribution, the results we report below @bust to different assumptions on the
delay distribution, including Poisson and Gaussiatributions as alternatives.

Social transmission procesgirst, a single seed node is selected (repregemiie
person who introduces the piece of information i network from some outside source in
the form of a post (e.g., a tweet, a status updatsjmilar). This occurs at time= 0. By
introducing the information into the network theedehas transmitted the post to kKgeq
friends, who are now all exposed to the message i@hhe transmission mechanism used in
Twitter, Facebook, etc).

Second, thé&seegnodes exposed to the information each independdatiide whether
to consume the information with probabildy This is equivalent to clicking on the link and
viewing the content. This exposure-to-consumptidep sapplies for all successive
generations.

Third, the nodes that were exposedna consumed the information then must decide
whether or not to pass this information along teeos. They retransmit the information to
their friends with probabilityr and, if they do, with a delay (number of periodsemaf
consumption) according to the delay distributidrthey retransmit, more nodes are exposed

to the information and the process repeats itk#lgwing the same rules in each period.

® Assuming a power-law distribution for activity éensistent with our belief that very few people highly
frequent (and short delay) transmitters. This afs@ans that so-called “pumps” in this model are.rtrghould
be harder to find activity to be a driving forcermacro diffusion outcomes if exceptionally activedes are
rare, and thus provides a more conservative tastifrwe assumed other distributions for activitythis ABM.
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Also, consistent with traditional diffusion modeised in marketing, we also allow for
the possibility that nodes can be exposed to theesaformation contained in the post from
external sources (e.g., advertising, other netwtrkg belong to, searches for information on
the web, etc). This exposure occurs with probabgiin each period for each node that has
not already been exposed to the information.

Results

Simulation setup and procedur&Ve allowed this process unfold over several
connected networks, varying the numbers of nodeks teas across multiple runs of the
simulation for the sake of robustness (ranging fiém 10,000 to 500,000 nodes, aBd=
100,000 to 5,000,000 ties). The results reportddvbeualitatively hold for all different
network sizes and densities, as well as for vamation the type of network based on
different degree distributions (i.e., scale-freenasntioned above, as well as Poisson and
Gaussian).

The main parameters that we varied in the simulatvere the seed node’s activity,
the seed node’s connectivity (degree), the scalanpeters for the distributions of activity
and degree/(andy, respectively; both in the empirically common 2aBge), the probability
of a node consuming the information given exposiuoen another nodeqj, and the
probability of a node retransmitting the informatigiven consumptionr).” We examined
combinations of these parameters across a wide rainpe joint parameter space (see Table
3).

[INSERT TABLE 3 ABOUT HERE]

For each simulation run with each combination afapzeters, a specific node was

chosen as the seed that would start the informaiffuision. This node had a certain activity

(delay) and connectivity (degree). A wide rangeaibinations of activity and connectivity

" We also varied the probability of consuming thésimation when exposed from an external soupeb(it
kept this very small so that the social transmissiovithin the network were always dominant drivefs
diffusion.
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were tested. We then allowed the social transmmsgrocess to unfold from this seed node
across the entire network. After the diffusion mes has ended (i.e. there were no more
information consumptions) we observed the exterdifbfision or “cascade size,” measured
as the proportion of the nodes in the network trad retransmittedthe information. We
focused on retransmission instead of consumptincesias already discussed, in the online
social networking context information must be resmitted for it to spread widely.
Therefore, the aggregate macro-level diffusion oone of interest is reflected by how many
nodes retransmit.

Analysis. Since multiple simulations (i.e., diffusion process were run for each
combination of parameters and the diffusion outcevas observed each time, the output of
the ABM was a dataset much like that of an expeanimenultiple cells, each with multiple
observations on a dependent variable of interes. Sbjected this data to a regression
analysis where we regressed the extent of diffuascade size) for each simulation run on
the seed node’s activity and connectivity, as &slthe other parameters as controls.

[INSERT FIGURE 2 & TABLE 4 ABOUT HERE]

Figure 2 plots the average diffusion/cascade siegti€al axis) as a function of
activity and connectivity (averaging over the otpbarameters and simulation runs). Clearly,
as both activity and degree increase, so doesstbfiu The question is, what are their relative
effects? Also, are there some regions of the paerrspace where one dominates the other?

Column 1 in Table 4 reports standardized regresgaameter estimates for the full
set of simulations (using network sike= 90,000, ana = 1; results hold for different-sized
networks and different values of Both activity and degree positively affectedfulion (s
< .001). The estimates for these two effects wemy gimilar (activity .80 vs. degree .86).
We investigated whether these effects were nonlinsang quadratic terms. Interestingly,

while we found a diminishing marginal effect of ieasing degree on diffusion (negative
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degreé effect,p < .001), we found an increasing marginal effecaatfvity (positive activity
effect,p < .001). Compared to seeds with moderate levetiegfee, seeds with exceptionally
high degree (i.e., hubs) do little to increase wadely information diffuses (because of the
diminishing marginal return to increasing degréd¢dwever, increasing a seed’s activity is
beneficial and increases their effect on diffusioecause of the increasing marginal return to
increasing activity).

The non-significance af (probability of information consumption once exedsis
likely becauseq does not have a critical effect on the final diftn outcome but rather
controls the ease of consuming information afteéndpexposed to it (“easier” with highg).
However, the positive interaction of with activity (p < .001) suggests that the effect of
activity on diffusion gets stronger as informatigats easier to consume. Information is
typically very easy to consume in online sociawweks: e.g., simply clicking a link in a
tweet or status update.

These results indicate that, in general, both #gtand connectivity play a role and
that the positive effect of activity on diffusiols not weaker than that of connectivity.
However, we do not see across-the-board evidenaetivity dominating connectivity. Since
the effects of activity and degree in column 1 able 4 are at the averages of the other
varied parameters, it may be the case that und&irceonditions activity dominates whereas
under other conditions connectivity does. The qarss whether in instances where activity
dominates are the network and distribution pararsetalues realistic in that they match
conditions of social transmissions in real onlireeial networks. Significant interactions
between either activity or degree and the distrdoutscale parameterg (for degree
distribution) andi (for activity distribution) suggest this may betbase. These distribution
parameters control the extremes on the activity degree distributions and the average

node’s activity and degree, and therefore can afféiusion. In Figure 3 we illustrate this by
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plotting the relative effect of activity versus cattivity (i.e., the ratio of the standardized
regression coefficients for activity to connectvitom column 1 of Table 4) against the
distribution scale exponents. Activity dominatesmectivity when the ratio is above 1.
Based on this figure, it appears that activity doaes connectivity in the parameter subspace
in which the exponents are low (< 2.5).

[INSERT FIGURE 3 ABOUT HERE]

Is this space where activity dominates a reflectoidrreal online social networks?
With respect to the two distribution parameters,nhost real networks, both human and non-
human, past research finds that the average defisgéution exponent (for a scale-free
network) is approximately = 2.2 (Albert and Barabasi 2002). Since we arer@sted in
online social networks and, in study 3 use datenfiiavitter, it pays to consider networks in
our simulation that are similar to these. Compateence research on Twitter found a power-
law degree distribution, thus indicating that Testhas a scale-free network consistent with
the assumption in this ABM study, with Twitter'sade-free exponent approximately= 2.4
(Java et al. 2007).

Column 2 in Table 4 reports the standardized regyagparameter estimates when the
degree distribution exponent js= 2.4; i.e., for a “Twitter-like” network structer The
advantage is now clearly on activity’s side with d@ffect larger than degree’s (.84 vs. .70).
The other effects discussed above also generally, hecluding, importantly, the positive
interaction betweerg and activity indicating that the effect of actwibn diffusion is
particularly strong and positive for things thatvléaa higherg (e.g., because it is easy to

consume them once exposed).
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STUDY 3. AN EMPIRICAL COMPARISON OF THE EFFECTS OF TRANSMITTER
ACTIVITY AND CONNECTIVITY ON LINK DIFFUSION IN TWITTER
Overview

The previous two studies have shown that transamsactivity can influence how
shared information diffuses in online social netkgotike Facebook and Twitter, and that
transmitters’ network connectivity (degree) may fact play less of a role in driving
information diffusion and information sharing ordithan previously thought. Here we again
compare transmitter activity and connectivity audion drivers, this time using data on the
sharing of links (URLs pointing to websites andestbnline content) among users of Twitter.
Data

Our data come from Twitter. In Twitter, users ptvgeets that are short (up to 140
characters) text messages, which get transmittedl o their followers (who are other users
in the Twitter network). Users decide who to folloand when and what to post in their
tweets. As we mentioned above, a common use fottdws to share links to external online
content by embedding links in tweets. In this stuayfocus on the diffusion of links shared
through tweets across the Twitter network.

Over a 44-day period in May-June 2009 we obsemyed activity and network
connections for a panel of 2,500 Twitter users. Bueattrition and some accounts being
deactivated by Twitter during this period (e.g.edw suspicious behavior), our effective
panel size was 2,461 users. The users were randeetdgted and screened to ensure that
none were media organizations, celebrities, congsamr any other account that was, to the

best of our knowledge, not an actual person. Eaghfar each user we collected data on (1)
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number of tweets (posts), (2) number of followensit{degree), and (3) the text of their
tweets. No other information was available on thesss®

Dependent variable: link diffusioWe focused on the spread of URLs (links) that
were embedded in tweets. We do not examine theifgp&etransmissions of tweets
themselves because they cannot be easily trackdelssua retransmitter included the tag
“RT” (for “retweet”) in the new tweet (and even theetweeted tweets are sometimes edited
versions of the original; more commonly, users dbaiways include “RT” even though it is
considered good etiquette to do so). According &hoo’s recent analysis (Singh 2009),
“RT” in tweets is rare (only 1% of tweets). This @jurse does not mean that Twitter users
do not retransmit other users’ tweets, just thas ifficult to reliably track’ On the other
hand, tracking the spread of outside-Twitter contarked to by URLs within Twitter
(tweets) is easier and more reliable (althoughrsdil straightforward). Thus, we focus on the
spread throughout the Twitter network of conteratt tbxists outside of Twitter on the web
(e.q., videos, news, blogs).

Importantly, although we use URLs included in tvgetet track the spread of content,
we consider the linked-to source itself and not tHeL as the unit of analysis, because
different URLs can link to the same source. Thigagicularly common in Twitter due to the
140-character length restriction for tweets andwidespread use of URL shorteners (e.g.,
http://bit.ly) that take long URLs and convert tharto short URLs for posting into tweets.

Full details of how we compiled the diffusion dét@am URLs contained in tweets are
given in Appendix A. Here we provide a brief deptidn of the many steps involved. To
compile the diffusion data for this study we fiparsed out URLsS from the 114,711 tweets

that we collected from the 2,461 users over theddys. Of these tweets, 21,430 (18.7%)

8 Note that additional data, such as user demographiere not available and could not be manualligcied.
Twitter user profiles, unlike the user profiles ather online networks such as Facebook, are typicary
sparse and do not require inputting even basic desmphic information.

° Twitter now has a formal retweeting system andkireg has improved. However, this did not exist Tovitter
during the time of our data collection.
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contained URLs. These URLs were mostly short URltgch we converted back to original
long URLs using a tool called LongURL (http://wwanigurl.org). For each original long
URL we were given data from BackTweets (http://whacktweets.com) counting URLS
posted in Twitter (both in long URL and short URarrh). Using the date the URL-
containing tweet was posted, we obtained data emtimber of times that piece of linked-to
content (i.e., whatever was to be found at theimaiglong URL) was referenced in tweets
immediately before it was posted, and then 7 andal after it was posted.

In the analysis below we use the 14-day diffusiatadwherediffusion; is a count of
the number of times contentvas referenced in Twitter after it was first palsby transmitter
i. The mean 14-day diffusion was 117.64 (SD = 126/é&nd was a heavily skewed
distribution ranging from 0 to 30,204. Based oreaamination of the data it appears that the
diffusion processes quickly ran their courses. lemcl4-day horizon is reasonable in this
case.

Transmitter characteristics: independent variabl€onnectivity was measured by
the number of followers a user has (out-degreelivily was measured by the average
number of tweets made per day by a user (irresedti whether they contained URLS).
Both of these variables appeared to be approxignat@her-law distributed, consistent with
assumptions made in study 2. Descriptive statistiegeported in Table 5.

[INSERT TABLE 5 ABOUT HERE]

Information content characteristics: control variab Certain characteristics of the
content could also drive diffusion. Compared toteahthat is perceived to be low quality
and/or appealing to only a niche audience, conteitis perceived to be high quality and/or
appealing to a broader range of people should ddrether. To control for the effects that
these content characteristics might have on ddfuswe had judges from a large

representative online panel rate each piece ofecbrft.e., whatever was on the webpage a
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URL linked to, such as a video; they did not ré&ie website itself, such as YouTube) on an
overall quality scale (1 = “very bad quality” to=5"very good quality”), and a breadth of
appeal scale (1 = “content would appeal to almosbme” to 5 = “content would appeal to
almost everyone”). The content linked to by eachLURas rated by three independent
judges. Each judge saw only one piece of contewerGhat judges’ perceptions of content
guality and appeal can be highly subjective, our here was not to find agreement among
each set of three judges. Rather, for each URLowmk mean ratings on quality and appeal
for use in the analysis.

EndogeneityA concern when modeling any social interactionsadatendogeneity.
Our main concern in this context is that diffusiontcomes could influence a user’s
connectivity and activity. For example, if a persanbeds a URL to a YouTube video in one
of her tweets and over the subsequent days shevebsathers also posting this video then
this feedback could make her speed up her twe@tmgincrease her activity), or conversely,
if it does not appear to be spreading she couldi$souraged and slow down her tweeting
(i.e., decrease her activity). Also, if the usertoiving her see the content and dislike it they
might decide to “unfollow” her (i.e., decrease bat-degree), or conversely if other users not
following her can trace the content back to her et it then they might decide to follow
her (i.e. increase her out-degree).

To mitigate the chances of these types of diredtiadirect feedback effects on the
independent variables, we temporally separated tHesm the dependent variable.
Specifically, we used the first 28 days of data feeasuring the two transmitter-related
independent variables, and only used content tret posted during days 29 to 44 for
diffusion. For transmitter connectivity we used thenber of followers they had at the end of

day 28, and for activity we took the average nundfdweets posted by per day during days
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1 to 28 Over the 16 days (days 29 to 44) used for difiusiatcomes, 312 of the sampled
users posted 13,810 links.

As a further safeguard against endogeneity-relasdnation bias, we only used
“fresh” content that had been introduced into Tevifor the first time; i.e., content that, at the
time of it being posted, had never previously besfarred to by any URLs in Twitter. This
helps because (1) it reduces the possibility thaside factors unrelated to transmitter
activity and connectivity could be driving resul{®) it means that a piece of content’s
history in Twitter could not play a role (e.g.,a%social proof” signal), and (3) it allows us to
examine only how the activity and connectivity @dweristics of the transmittevho first
introduced the conten.e., the seed within Twitter) affect that contsndiffusion in the
network.

The resultant dataset included complete data &, fresh” URL-linked pieces of
content (70% of all content introduced by the sadplsers in days 29 to 44). All 312 users
who posted at least one link during days 29 to ddd(who had nonzero activity and
connectivity) introduced this content. The numbiepieces of content per user was between
1 and 399 (mean = 30.95, SD = 53.79, median = 15).

Results

We used a random effects Poisson regression madalegress diffusion on
transmitter characteristics of activity and conntyt controlling for content characteristics
of quality and breadth of appéealFor transmittei who posts unique content itenauring
days 29 to 44, using maximum likelihood we estirdatiee parameters in the following

model:

9 The choice of 28 days was arbitrary. In robustreesks we split the data at days 14 and 21 amidfoo
qualitative differences in the results.

™ See Appendix B for an alternative model that,lémge networks such as Twitter where users typidadive
quite large “reach” into the network (i.e., the rhen of other users they are connected to direcityiadirectly
through others is large), is equivalent to the smismodel used here.
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i i~ Dayld __ :
diffusion; Poisson(d; )

In(6;) = 5+ Bk + B, & + B quality; + 5, appea|, + v, +¢;
v, ~N(0,7%), & ~N(0,0%

where, for transmitter or URL j posted by transmitter :
k, = connectivity

a = activity

quality; = mean perceived content quality

appeal, = mean perceived content breadth of appeal

The parameter estimates and fit statistics arerteghan Table 6. The best-fitting
model (column 5) shows that, controlling for qualiand appeal (both of which have
significant positive effects on diffusion), actiitbut not connectivity, positively affects
diffusion.

[INSERT TABLE 6 ABOUT HERE]

Interactions. We also tested whether transmitter and informatbaracteristics
interacted in meaningful ways. Specifically, we atedd whether there were significant
activity x quality and activityx appeal interactions. Both interactions were sigaift @ <
.001). The effect of transmitter activity on diffos is strengthened by increasing content
quality and decreasing breadth of appeal. Putreffidy, highly active “pumps” are most
influential on link diffusion in Twitter when thenks they post refer to high quality content
of interest to niche or specialized audiences.theowords, these types of transmitters are
most effective for spreading quality content thabsimpeople may not otherwise find
particularly appealing. This suggests that contdahe is not enough to get something to
spread, but that transmitter characteristics—ini@aar how active a transmitter they are—
also matter. This interaction suggests even comit@t on its own, may be unlikely to spread
widely (e.g., because of limited appeal), can sprfeaher if transmitted by the right person

(e.g., a high activity “pump”).
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Robustness checkBirst, we estimated a zero-inflated Poisson modehllow for
some of the zeros idiffusion; to come from the Poisson distribution and otherised@ mass
at zero. The log-linear regression model for thes$tm rate was the same as above, and the
same specification was made for the latent probpltiiat an observediffusion, = 0 value
came from either a mass at zero or the Poissonbdison. We once again found that,
controlling for quality and appeal, activity hagasitive effect on diffusion but connectivity
did not.

Second, we used 7-day diffusion instead of 14-ddfusion as our dependent
variable. In the Poisson model with both activitydaconnectivity regressors the same
patterns of effects reported in Table 5 were fouwtithough in both models the activity effect
only approached marginal significange=.11 in both models).

Third, we removed users from the sample who pdsteg numbers of URLs during
days 29 to 44 in case they were driving the resWle used the median average daily
tweeting rate in our sample (2.61) times the nunddedays (16) to determine the cut-off
number of URLSs posted: just under 42 pieces ofauniVe excluded users who posted more
than 42 URLs. The positive effect of activity bt monnectivity was again found.

Fourth, we included links that were both fresle.(iwith no prior diffusion within
Twitter before being posted by transmitigrand not (i.e., with some prior diffusion in
Twitter and therefore not introduced by transmittbut by someone else who was not in our
sample). The positive effect of activity on diffasishould hold regardless of whether a piece
of content is fresh and introduced for the firgtdito Twitter or whether it has already been
around because this effect is driven by the undeglpsychological process demonstrated in
study 1 whereby freshness and novelty are attribtweinformation coming from highly
active transmitters. Thus, activity should matteespective of prior diffusion. Using all

links, fresh and pre-existing, we once again foansignificant positive activity effect and
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non-significant connectivity effect. The activitffext was slightly weaker, which might have
been caused by a small number of URLs that hag¢mely large prior diffusion counts (in
excess of 5,000). The activity effect was strongece these well-established pieces of
content were excluded from the dataset. This makese since information that already
spread a lot would be closer to its maximum petietrathus resulting in transmitter-related

factors being less likely to make a difference.

DI SCUSSION AND CONCLUSION

Across three studies—a behavioral experiment, gentabased model, and an
empirical analysis of data we have consistentlywshdhat transmitter activity plays an
important role in driving information diffusion ovenline social networks. Moreover, it
appears that the role of activity is at least asnst if not stronger, than the role of
connectivity. In fact, once a transmitter’'s aciyvis considered, their connectivity may play
less of a role than previously thought in the &tare. These findings are consistent with the
theory advanced above. Further, they suggest traing information and digital content
over social ties in online social networks—whiclguiges explicit retransmission decisions
after being exposed to and having consumed rec@nednation—may not be the same as
other kinds of diffusion and social transmissioeyiously studied in marketing. Although
past studies have found that connectivity can ptaymportant role in driving diffusion (e.g.,
Goldenberg et al. 2009), it is evident that thiaas always the case and that other transmitter
behaviors and characteristics can be at leastasriamnt as connectivity, if not more.

An explanation for the dramatic differences betwtdenresults supporting the role of
connectivity (e.g., Goldenberg et al. 2009) anddheent findings in favor of activity is as
follows. In a social media environment, informatitivat is seeded in the network at hand

diffuses in parallel with other networks. The demisto introduce this information into the
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network is therefore critical. Those individuals avlre consistently active and have the
shortest delay are perceived as more reliable rmsteof “information freshness,” and by
avoiding lagging behind in transmitting informatidhey increase the chances that the
information they pump into the system is retrangeditbecause it is genuinely fresher. In
other kinds of online social networks (e.g., theitBdorean network “Cyworld” studied by
Goldenberg et al. 2009) involving adoptions of watt goods that do not require
retransmissions, activity may not be observable ilikother social media, leaving space for
hubs to make a difference. Future research shalddeas other kinds of online networks
where activity and connectivity are both observadtd compare their roles in driving key
macro-level outcomes for different types of infotioa or goods and different types of social
transmission mechanisms.

In the case of social media and online network$ siscFacebook and Twitter, large-
scale diffusion of information such as YouTube wsleand online news articles relies on
people retransmitting this information. This aspedtich is less important in many of the
diffusion contexts studied in past literature thaams in social media, suggests that micro,
individual-level drivers of diffusion may differ tihose previously studied. Theoretically, our
findings provide some insight into the characterssof transmitters that people pay attention
to and are affected by when deciding whether ortmoétransmit information. We of course
do not claim that our findings generalize beyorel¢hrrent context of information sharing in
online networks.

Practically, the robust finding in favor of transtar activity as a driver of online
information diffusion has obvious implications faosituations where managers or
policymakers want to spread information over onlisecial networks. For example,
marketers can relatively easily measure network b&a activity rates (e.g., average tweets

per day or status updates per week) and use floisriation to select seeds for kick-starting

30



campaigns. We do not advocate moving away from ectnity as a criterion for seeding
(e.q., hubs are still useful at exposing many pedplsomething in one transmission, which
might be good for raising awareness but not faggering subsequent actions such as
retransmission). Instead, we suggest that actshtyuld also be considered in seed selection.
Exceptionally active transmitters in online sogiatlworks—pumps—may be good seeds for
viral campaigns where passing along informationrigcal to campaign success. Also, it is
important to note that while identifying hubs regsi network mapping (which can be
difficult to do), activity can be measured by loogiat nodes alone and observing what they
do without information on network structure.

While we have tried our best to provide a robusieseof tests of our propositions,
using a wide variety of methodologies and analy#®s,current research is of course not
without limitations. Our aim was to test the hypsis that activity plays a role in driving
diffusion, which we did across three studies. We mibt, however, fully explore boundary
conditions and potential moderators of this effédtre work is obviously warranted. We
encourage work on this and related questions abeutoles of activity and connectivity in
driving diffusion in social networks, for differetypes of information and different social

transmission processes.
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FIGURE 1

MEAN CONDITIONAL RETRANSMISSION PROBABILITIESIN STUDY 1
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FIGURE 2

DIFFUSION ASA FUNCTION OF ACTIVITY AND CONNECTIVITY IN STUDY 2
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FIGURE 3
COMPARISON OF EFFECT SIZE OF ACTIVITY VERSUS CONNECTIVITY IN

STUDY 2
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TABLE 1

SCALE ITEMSUSED IN STUDY 1

QUALITY: Transmitter’s information quality (a =.94)

This person’s content suggestions are probably.good

The information this person posts is likely to hdigh quality.

The information this person posts is likely to bteresting.

The information this person posts is likely to lseful to myself and others.
The information this person posts is likely to barmative.

arwnE

SPEED: Transmitter's speed(a = .88)
6. This person is quick to provide information to othe
7. This person gets information sooner than others.
8. This person is faster in finding out new informatio

TRUST: Transmitter’s trustworthiness (a = .81)
9. This person is trustworthy.
10.This person is reliable.
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TABLE 2
MEDIATION ANALYSISIN STUDY 1

Parameter Estimate
(std. error)
“Speed” “Trust” “Quality”
mediator mediator mediator

Model 1: Activity - mediator

Intercept 2.93 (.26) 3.72 (.24) 3.79 (.29)
Activity? 1.27 (.33) 78 (.31) .38(.37)
Degree -.54 (.39) .01 (.36) 19 (.43)
Activity x Degree 1.00 (.49)  -.69 (.46) -.31 (.55)

.34 .09 .01
Model 2: mediator = Pr(retransmit|view)
Intercept -4.62 (5.88) -16.83 (7.02) -11.84 (6.22)
Pr(view) .24 ( .08) 21 ( .07 17 ( .08y
mediatof 4.48 (1.47Y 7.64 (1.77) 6.93 (1.65)
R 22 28 28
Model 3: Activity, mediator - Pr(retransmit|view)
Intercept -6.13 (7.01) -17.73 (7.84) -14.29 (7.00)
Pr(view) .25 ( .08) .21 ( .08y .16 ( .08)
Activity 6.78 (6.22) 6.48 (5.72) 9.32 (5.50)
Degree .72 (6.75) -2.09 (6.48) -3.89 (6.44)
Activity x Degree -8.86 (8.64) .98 (8.41) -.92 B2
mediatof 4.23 (1.81) 7.08 (1.87) 6.74 (1.64)
R 24 24 32
Model 4: Activity = Pr(retransmit|view)
Intercept 2.54 (6.08)
Pr(view) .32 ( .08)
Activity? 12.34 (5.85)
Degree -.76 (6.87)
Activity x Degree -5.85 (8.73)
R 20

"p<.05," p<.01.

Activity and degree are dummy-coded: low = 0, high.

& Effect must be significant for complete mediation.

® Effect must be non-significant for complete meidiat

Sobel mediation test for activitp speed> Pr(retransmit|view) procesg:= 2.39,p = .02.
Sobel mediation test for activity trust-> Pr(retransmit|view) procesg:=2.17,p = .03.
Sobel mediation test for activity quality > Pr(retransmit|view) procesgd:= 1.00,p = .32.
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TABLE 3

RANGES OF PARAMETER VALUESTESTED IN STUDY 2

Parameter Range

g (prob. of consuming | exposure) 1t01.0

r 11t01.0

y (degree distribution exponent parameter) 2.0@o 3.

/. (activity distribution exponent parameter) 2.(8t0

M (market potential) 10,000 to 500,000
p (prob. of consuming due to external factors) 2 1910°
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TABLE 4

EFFECTS OF SIMULATION PARAMETERS ON EXTENT OF DIFFUSION IN STUDY 2

1 2
Parameter Full Parameter Twitter-like

Space Network
Intercept .270 (.002) .127 (.008)
Degree .859 (.002) .700 (.005)
Degreé -.035 (.002) .005 (.005)
Activity .796 (.003) .843 (.008)
Activity? .093 (.002) .138 (.006)
Degreex Activity 284 (.002) .342 (.006)
g (prob. of consuming | exposure) .002 (.092) -.012 (.005)
Degreex q -.009 (.002)° -.007 (.005)
Activity x g .049 (.002) .043 (.005)
y (degree distribution exponent parameter) .3832).00
Degreex y .232 (003)
Activity X y .015 (.002)°
A (activity distribution exponent parameter) ATIOR) .533 (.007)
Degreex A .158 (.002) .205 (.006)
Activity x A .378 (.003) .459 (.010)
Y% .023 (.002)
Number of total nodes 90000 9000
Number of simulated 900 90
Adjusted R .66 .84

" p < .0001™ not significant. Standardized parameter estimagpsrted, with standard errors in parentheses.

42



TABLE 5

DESCRIPTIVE STATISTICS FOR CONNECTIVITY AND ACTIVITY IN STUDY 3

Variable Mean St.Dev. Median Min. Max.

Connectivity (number 893.76 190351 279 2 15,957
of followers)

Activity (average

8.77 14.86 2.61 .04 79.28
tweets per day)
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TABLE 6

ESTIMATES FOR RANDOM EFFECTS POISSON REGRESSION IN STUDY 3

44

Model 1 2 3 4 5
Parameter Estimate Estimate Estimate Estimate Estimate
(std. error) (std. error) (std. error) (std. error) (std. error)
Intercept 1.70 (14) 1.67(.15) 152 (15) 1.52(.16) -3.99 (.16)
Connectivity
(number of followers) <.01 (<.01) <.01 (<.01) <.01 (<.01)
Activity « +
(avg. daily tweeting rate) 03 (.01] 04 (01] 04 (.01
Content quality 1.10 (<.01)
Content broad appeal .39 (<.01)
Random effect variance 6.13(52) 6.11(51) 5.97(50) 5.97(50)  5.85(.49)
-2 log likelihood (x 16)  7,482.38 7,482.36 7,482.29 7,482.28 7,252.85
Nusers 312 312 312 312 312
Ncontent 9,656 9,656 9,656 9,656 9,656
"p<.05~ p<.01.



APPENDIX A

DATA COLLECTION AND PROCESSING STEPSFOR STUDY 3

Step 1: Preparelist of Twitter users and generate random sample

» Using Twitterholic.com list of Twitter users ancetiwitter API.

* From Twitterholic, get a list of the users with thest friends.

* For each user on this list, get their Twitter uger

* For each user on this list, using the Twitter ARt a&he user’'s ID, get a list of their
friends and their friends’ Twitter user IDs.

» Continue this web crawling process using the Twi&&8l. Compile a list of user IDs and
remove any duplicates from the list at each iterati

* This generated a list of approximately 3 millionifter user IDs in early May 2009.

« Random sample (without replacement) of users drirm this list of user IDs. The
sampled users were checked to ensure that they tvememal’ people and not

organizations (e.g., media organizations) or cdlebr(e.g., Oprah Winfrey).

Step 2: Collect data from Twitter

» Using the Twitter API.

* For each user in the sample, gather publicly abllaata on their activity every 24
hours: total number of posts, current number @fnitiis, current number of followers, time
since joined Twitter, list of friends’ user IDs (oot followers’ user IDs because that is
not publicly available), text of posts (and theedat each post).

+ Gather the same data on each of a user’s friends.
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Step 3: Analyze text of posts

» Each post is a string a text (up to 140 characiteckyding spaces)

* For each post, identify if a URL is present (subgtistarting with “http://”)

Step 4: Resolve, check, and analyze URL s

* Using LongURL.com API and BackTweets.com API.

» If a post contained a URL this URL needed to belwes (if it was a “short” URL that
redirected to a true “long” URL), checked (to emstlrat the webpage existed), and then
analyzed (to see how prevalent it was in Twittesraaneasure of diffusion).

* Each URL was passed through the LongURL API. Tesolved short URLs into their
true long URL form, or left already true long URIdact. Short URLs are popular in
Twitter (e.g., http://bit.ly/12bG5c). However, ai¢rlong URL could have multiple short
URLSs representing it. Thus, any short URL had tods®lved into its long URL to allow
for proper analysis. Each URL was also checkeatastence.

» Each resolved URL (all in true long URL form) waassped through the BackTweets API.
This API provides diffusion data for any submittéd®L. l.e., for a given URL, it will
provide a count of the number of posts in Twittéthim a given date range that contain
that URL. We collected this diffusion count for Baesolved URL at a number of time
points: immediately before the post was made, hed ¥ days and 14 days after the post

was made.
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APPENDIX B

BINOMIAL PROCESS MODEL OF LINK-SHARING IN TWITTER

This appendix describes an alternative specifioatar the random effects Poisson
regression model used in study 3. This specificasomore closely aligned with the “true”
social transmission process described early inpdy@er (i.e., exposure to informatiot
consumption of information> retransmission of information), however becausedata
limitations in study 3, this model cannot be estedawithout making certain assumptions.
We describe this alternative model and estimatietaits (assumptions and results) for the
sake of completeness and to demonstrate that the issults as those reported in study 3 can
be obtained under a different model specification.

The social transmission process outlined in theepapsted in study 1, and used to
construct the ABM in study 2 can be summarized#sws: (1) transmitter posts a tweet
containing a link to content itemand this tweet is broadcast to all of the trami=ms k;
followers; (2) the probability that any followermsumes the content (i.e., clicks on the link)
is g; and (3) the conditional probability that followeretransmits the content in a tweet of
their own after having consumed itrisStep 2 implies that the number of consumers of
transmitten’s content isX; ~ Binomial, g), and the expected number of consumers will be
E(X;) = gk. Step 3 implies that the number of retransmissadnikis content i¥j ~
Binomial(gk, r), and the expected number of times that contentjipposted by transmitteér
will be retransmitted i&(Y;) = rgk.. The expected extent of diffusion of it¢rthroughout the
network over a fixed period of time will be the sofrexpected retransmissions taken over
multiple generations of retransmitters. Furthegsdabon our results from studyrlandg may

depend on transmitter characteristics. For example,
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g =expla,+ak +a,a)/[1+expla, + ak + a,a)] and
. =explg, + gk + B.a)/[1+explf + Bk + B3a)], whereg; is transmittel’s activity rate.

Since we do not have Twitter data on each retrédtesnof each piece of content (only
who started it and the diffusion in Twitter afte¥ days), this constraint of our dataset makes
it impossible to estimate the parameters in thisehaand further, not knowing the clicks on
the links (i.e., consumption) makes it impossibls¢parately identify andg. A
simplification can be made whereby the two stepsagrged (i.er, andq are combined) and
assumptions about the total reach or audiencd@izetransmitter are made. The total reach
is the sum of their followers, their followers’ folers, their followers’ followers’ followers,
and so on (in graph theory this is the out-domdto). Twitter, it is safe to assume that the
total reach for most usei3, is large*? An approximation can be made wherefyy-

Binomial(Z, (rq);). With these assumptions,

(ra); =exply, + yki + y,a) [[1+expiy, + jk; + ),a)] and the parameters can be estimated
using maximum likelihood with data féy, &, anddiffusion; (divided byZ). Although the
estimates will be approximate, they nevertheleter gieneral, preliminary empirical insight
into whether activity, connectivity, or both affébe probability of consumingnd
retransmitting content in Twitter.

We estimated this preliminary, approximate modelaarandom effects Binomial
regression (with the random effect added to coritnmotepeated content postings by the same
transmitters) assuming that the total reach Was 1 million users and constant over

transmitters> As expected and consistent with the previous sgidindings, transmitter

12 For example, one of the authors has a mere 64&éhbllowers but, according to a website that suzas
second-degree followers (i.e., followers-of-folloaesee http://www.twinfluence.com), he has 285,58&ond-
degree followers from just 64 first-degree follosidrlence, we can expect most Twitter users—evesethdth
small out-degrees—to have a large reach,

13 As of July 2009 the average number of followers doTwitter user was 126 (Guardian 2009). If we
conservatively assume reach of only three degrésspmaration from an average transmitter their ench is
126 (direct 1 degree followers) + 12gindirect 2“ degree followers’ followers) + 13gindirect 3¢ degree
followers’ followers’ followers) = 2,016,378 (assing each follower at each degree of separatiorahasique,
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activity had a significant effect on the joint paddility (j, = .035,p < .01). Connectivity,
however, did not g, = -.00001)** These results were robust across a wide rangssofized
values forZ.*® These results also held when the quality and apmesent-related control
variables were added to the linear regression madlgiough approximate, these results
suggest that, averaging over multiple generatioris emposure, consumption, and
retransmission, transmitter activity but not coringly is an important factor affecting the
likelihood that information flows through the netko

Note that a property of a binomial random variablthat as the number of trials (i.e.,
Z) gets large, the variable’s distribution converggeRoisson. In this case, the total number of
successes diffusion;, the number of trials is assumed to be very laagd,we can model the
Poisson rate as a log-linked linear function ofivétgt and connectivity. In other words,
assuming the underlying behavior process desciibdige paper and a large potential reach
for pieces of content, a Poisson model is apprtgriaf course, a Poisson regression is also a
standard model for modeling count data such aslifusion; dependent variable. For these

reasons we report the Poisson regression modegipdper.

non-overlapping set of followers). If we assume riamping follower sets (due to clustering; see Waihd
Strogatz 1998), then this reach is reduced. E0g25% overlap the total audience is approximatebymillion,
for 50% overlap it is approximately 1 million, afat a very high overlap of 75% it is around 500,000

4 Note that connectivityk() and activity &) are positively correlated but not strongty=(.34,p < .001).

15 We tried total reach = 25,000; 50,000; 75,000;00; 250,000; 500,000 and the results were unathng
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