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This article evaluates and compares the performance
of two ratio scaling methods, the eigenvalue method
proposed by Saaty (1977, 1980) and the geometric
mean procedure advocated by Williams and Crawford
(1980), given random data. The two methods were ex-
amined in a series of monte carlo simulations for two

response methods (direct estimation and constant sum)
and various numbers of stimuli and response scales.

The sampling distributions of the measures of consist-
ency of the two methods were tabulated, rules for de-
tecting and rejecting inconsistent respondents are out-
lined, and approximation formulas for other designs
are derived. Overall, there was a high level of agree-
ment and correspondence between the results from the
two scaling techniques even when the data were ran-
dom.

The development of analytical procedures and experimental techniques for constructing ratio mea-
surement scales has long been a major topic and important challenge in psychophysics and other areas
of psychology. The interest in ratio scales is obviously related to their high level of invariance (unique
up to a power transformation) and the associated statistical operations they allow to be performed (Stevens,
1946). To obtain ratio scales, S. S. Stevens and his colleagues (Stevens, Mack, & Stevens, 1960)
developed the &dquo;cross modality matching&dquo; paradigm, which was originally applied to variables with a
corresponding physical continuum and later generalized to social and other psychological stimuli (e.g.,
Lodge, 1981). Although Stevens’ techniques have been widely used in numerous areas (e.g., Lodge,
1981; Stevens, 1972, 1975), their precise characterization is still a topic of debate among measurement
specialists (e.g., Shepard, 1981).

Following two decades of development of ordinal level scales, which culminated in the development
of nonmetric multidimensional scaling, there has recently been a renewed interest in the problem of ratio
scale measurement. To a large extent, the interest in this problem is due to the development of a new
ratio scaling procedure and its successful use in a variety of experimental and practical situations. The
most salient characteristic of this method was apparently first discovered by Gulliksen (1959), but the
procedure was fully developed, investigated, described, and applied by Saaty (1977, 1980).
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Saaty’s Eigenvalue Method (EM)

Consider a set of n stimuli with unknown scale values, s’ = (s ...... s.). Following a process of
pairwise comparisons, an aa x n matrix of ratios, R, is constructed such that

All the entries in R are positive, satisfying the reciprocity condition: rji = 1/rji’ In reality, this constraint
is artificially enforced because typically only n(n - 1)/2 judgments are obtained and the remaining ratios
are calculated by the reciprocal transformation and by assuming that rij = 1 (i = 1, ... , n) .

Saaty’s eigenvalue method (EM) procedure is based on a relatively simple and elementary property
of R-when postmultiplied by the vector of scale values, the result is a vector related to the scale values
by a constant. This constant turns out to be the size of the matrix R. Thus,
Rs = ns . (2)
This formulation suggests that the unknown scale values can be obtained by an eigenvalue-eigenvector
decomposition of R. Saaty’s solution to this problem when the data are perturbed is to use the normalized
right eigenvector associated with the largest eigenvalue of R, denoted by X~_, as an estimate of the scale
values.

The matrix R is said to be consistent if the ratios rij satisfy

for all i, j, and k. A consistent matrix is of unit rank; moreover, its only nonzero eigenvalue must be n
(see Equation 2). It can be shown that Xm~,x > aa when consistency is violated. Therefore, Saaty (1977,
1980) recommended using the normalized difference

as a measure of inconsistency. If R is consistent, [L = 0; if not, ii is monotonically increasing in the
magnitude of departure from consistency (for more details of the properties of this method, see Saaty,
1977, 1980).

Saaty’s method has attracted much attention, having been successfully applied to such diverse areas
as marketing (Wind & Saaty, 1980), political science (Saaty & Bennett, 1977), and the measurement of
subjective probabilities (Yager, 1979). However, the EM has had its share of criticism. In particular,
Johnson, Beine, and Wang (1979) have pointed out that for inconsistent matrices of order n -- 4 the
solution is not invariant under transposition. In other words, the right eigenvector of R’ (i.e., the left
eigenvector of ) is not necessarily the reciprocal of the right eigenvector of R’ . This may cause difficulties
in the interpretation of the scale values (see also Budescu, 1984).

The Geometric Means Procedure (GM)

Another criticism was leveled by Williams and Crawford (1980), who argued that, unlike most
estimation procedures, Saaty’s procedure does not optimize any of the regular loss functions, and is
difficult to interpret in a statistical fashion. Moreover, it requires complex calculations since the maximum
eigenvalue and the associated eigenvector are calculated by an iterative technique. Therefore, Williams
and Crawford proposed estimating the scale values by the geometric means. This geometric means (GM)
procedure is invariant under transposition and can be easily calculated by hand. It has long been recognized
that the GMS are least squares estimates of the logarithms of the scale values (e.g., Torgerson, 1958).
Williams and Crawford have shown that if the true scores are perturbed by independent lognormally
distributed errors with zero mean and variance U2, the GMS are also maximum likelihood estimates of the
scale values (for a theoretical justification of the lognormal distribution of errors in the judgment of
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dissimilarities, see Ramsay, 1977). To measure the inconsistency of R, Williams and Crawford proposed
using the residual mean square

where S2 is an estimate of a2. S2 = 0 if R is consistent, and as the departure from consistency increases,
S2 increases monotonically.

A Comparison Based on Perturbed Scale Values

For a consistent judgment matrix of any order, or for any reciprocal matrix of order a~ ~ 3, the
eigenvector of R (associated with Àmax) and the vector of row GMS are equal except for a similarity
transformation (e.g., Budescu, 1984). The procedures differ, however, when consistency is violated. To
compare the two procedures, Williams and Crawford (1980) conducted a monte carlo study in which
reciprocal matrices of order 5, 7, and 10 were perturbed by multiplying each ratio silsj by errors drawn
(1) from a lognormal distribution with zero mean and variance or or (2) from a population of ratios of
uniform random variables with the same mean and variances as in the first case. Five values of a2 were

examined, and each condition was repeated 1,000 times. In all cases the GM procedure outperformed
Saaty’s EM procedure according to both the least squares and the log-least squares criteria. Moreover,
the relative advantage of the GM procedure increased with both the size of the judgment matrix and
the variability of error.

A particularly attractive feature of Saaty’s EM is the availability of a consistency index pL (Equation
4) that separates between judgment matrices that can be maintained and interpreted and judgment matrices
that must be rejected as &dquo;randomly generated data.&dquo; As a rule of thumb, Saaty (1980, 1983) recommended
using a consistency ratio denoted by C.R. and defined by

where p,n is an empirical measure computed from Equation 4 for randomly generated reciprocal matrices
of order n. The rule of thumb (presumably for 1 to 9 response scales) is to accept only judgment matrices
for which C. R. -- . 1.

Although Williams and Crawford (1980) have suggested the statistic SZ as a measure of inconsistency
for the GM procedure, no corresponding rules are available for its use. More importantly, because p1 and
52 are based on two different scaling models and do not necessarily reflect the same properties of the
data, it is still an open question how the two procedures compare in the null case-when the data are
known to be random (rather than consistent judgments perturbed by error).

Objectives

A major purpose of this study was to contrast and evaluate the two scaling procedures in the null
case and to provide guidelines for their use with real data. In this case both scaling procedures were
expected to reject, by means of p, and S2, the null hypothesis of consistency. The methodology employed
in the present article is similar to that used by Saaty (1977, 1980): (1) a large number of reciprocal
matrices consisting of random entries were generated, (2) solutions and indices of inconsistency were
calculated, and (3) the rejection rules were compared to each other.

A second purpose was to generalize the findings from the comparison of the two scaling procedures
to a nonnumerical method of obtaining ratio judgments. Saaty’s EM directly obtains numerical estimates
of ratios in the tradition of S.S. Stevens’ (1972, 1975) magnitude estimation. Furthermore, Saaty (1977,
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1980) strongly recommended restricting the response scale to the positive integers 1 through 9 and their
reciprocals (a total of 17 possible different values). Another, equally popular, experimental procedure
for eliciting ratio judgments is the &dquo;constant sum&dquo; method (e.g., Torgerson, 1958), in which a judge is
required to divide a constant number of units between two stimuli in accordance to their ratio.

When the constant sum technique is employed, the derived ratio judgments are not necessarily
identical to those obtained from direct ratio judgments. In particular, they are not necessarily integer
values and they are likely to yield extreme ratios near the end points and more densely clustered ratios
elsewhere. Because the scale values and, consequently, the two inconsistency measures are highly sensitive
to the response scale (see Saaty, 1980), the two scaling procedures for the constant sum method were
compared as well.

Method

A monte carlo study was conducted to compare the EM and GM procedures for scaling ratio judgments.
Thirty different conditions were generated by factorially combining three independent variables:
1. The number of stimuli to be scaled: n = 4, 6, 8, 10, and 12.
2. The experimental method for eliciting ratio judgments: direct estimation and constant sum.
3. The number of different responses allowed: k = 17, 25, and 99.

The third factor of the present design reflects an assumption regarding the level of differentiation
and precision which the judge may achieve when selecting a particular response. For the direct estimation
method the three values of k imply that the integers 1-9 (as suggested by Saaty), 1-13, 1-50, and their
reciprocals are used, respectively. When the constant sum method was employed, it was assumed that

the judge could divide the total number of units specified by the experimenter (or the total length of a
line) in only a finite number (k) of equally spaced categories. The first two levels of the third factor (k
= 17, 25) are representative of the constrained response scales used in the psychological literature. The
third level (k = 99) was included as a reasonable approximation to the unconstrained situation in which
the judge may select any real number in making his or her judgment.

For each of the 30 conditions in the 3-way factorial design described above, 1,000 matrices were
generated by independently choosing n(n - 1)/2 uniformly distributed integers within the range of values
dictated by k and the method for eliciting ratio judgments. The numbers were randomly placed in the
cells of an n X n matrix (but excluding the diagonal entries, which were all 1 s), and assigning their
reciprocal values to the corresponding transposed positions. For each matrix q (q = 1, ..., 1,000) in
each of the 30 conditions, four solutions were obtained: the geometric means of Rq’s rows: (s,,), the right
eigenvector of q: (S,.y), the left eigenvector of R~: (s,,), and the geometric mean of the right and left
eigenvectors of R~: (s,n9). The estimated scale values under each model and the two measures of incon-
sistency J.1 and S, were then computed.

Results

The sampling distributions of J.1 and 52 for the direct estimation and the constant sum methods of
eliciting ratio judgments were examined. The mean and median of the distribution of p increased in both
k and n, whereas for S2 they only increased in k. For a given k, and regardless of which method was
used to elicit responses, J.1 increased, on the average, as the number of stimuli grew, whereas remained
unchanged. Inspection of the variability and skewness measures showed that all 60 sampling distributions
became more stable (i.e., less variable) and symmetric as the number of stimuli increased, and both
effects were stronger for the direct estimation procedure. (Detailed statistics for these sampling distributions
are reported in a technical report, see Budescu, Zwick, & Rapoport, 1985.)
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To illustrate the increasing stability of the sampling distributions as the number of stimuli increases,
Figure 1 portrays 10 sampling distributions under direct estimation for k = 17 (the response scale advocated
by Saaty, 1977, 1980) and n = 4, 6, 8, 10, and 12. The right panel of the figure displays the sampling
distributions for the EM and the left panel for the GM procedure. The reduction in variability and skewness
is evident in Figure 1. Tables I and 2 present the critical values of the null sampling distributions (at
ot = .10, .05, and .01) for testing the null hypothesis of randomly generated responses. Because both R
and S2 vanish when the ratio judgments are consistent, the null hypothesis is rejected (and the derived
scale values may be safely accepted and properly interpreted) at a given level whenever a value smaller
than that listed in the appropriate table is obtained.

Because Tables I and 2 are most important for practical purposes, it is desirable to generalize their
results to values of n and k other than those examined in the present study. This was achieved by fitting
relatively simple multiple regression equations based on n, k, or some monotonic transformations of these
two parameters. For the constant sum method, the critical values of the sampling distribution of ~L are
approximated by:

whereas the critical values for the sampling distribution of S2 are given by:

Equations 7 through 12 fit the monte carlo results extremely well; they all have adjusted squared multiple
correlations of at least .99, and all residuals are less than .085.

For the direct estimation procedures, the critical values of [L are approximated by:

The critical values for S2 are approximated by:

The fit of Equations 13 through 18, though very good, is not as impressive as the fit reported above
for the constant sum method. All the adjusted squared multiple correlations exceed .97, but some of the
residuals for the case k = 99 seem larger than desired.

Several measures of agreement between ~L and S2 were examined and found to be quite high: the
mean rank order correlation between jjL and S2 was .813 for the direct estimation and .832 for the constant

sum method, and the corresponding mean percentage of agreement in rejection at a = .05 was 81 and
86, respectively. The two measures of inconsistency are in closer agreement for the constant sum method.
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Figure 1
. I
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Table 1
Critical Values of the Sampling Distribution
of p and S2 for the Direct Estimation Method

The level of agreement depends on the number of stimuli-as ~a increases, the agreement between vL and
S2 declines.

The relations between the four solutions to the scaling probletn-sg, s,, Sn and s,,-were also

investigated. Table 3 presents the median Pearson product moment correlations between any two solutions
across the 1,000 replications for the constant sum method. All the correlations are high, indicating that
the four solutions yield similar scale values in the null case as well as in the unidimensional perturbed
case (Williams & Crawford, 1980). An examination of Table 3 reveals several systematic effects: There
is a strong and consistent inverse relationship between the number of stimuli (~c) and the degree of
association between the various pairs of solutions. Also, there are no systematic differences among the
correlations due to the response scale (k). Because of space considerations the correlations for the direct
estimation method are not presented here. However, the same systematic effects can be observed in that
case as well. In fact, the correlations between the solutions are slightly higher than under the constant
sum method (see Budescu et al., 1985).

When the six correlations within a condition (row) are compared to one another, an interesting
pattern emerges. In all the cases examined the lowest correlation is between the left and right eigenvectors
(sl,sp) and the highest correlation is between the geometric mean solution and the geometric mean of the

two-eigenvector solution (s,,s ). Interestingly, of the four solutions, only s, and s. are invariant under
transposition of the judgment matrix R.

Discussion

The present study provides a much needed service to those who employ ratio scaling procedures
routinely in their work and who are often concerned with the reliability and consistency of their data.
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Table 2
Critical Values of the Sampling Distribution

of p and S2 for the Constant Sum Method

Tables 1 and 2 provide these researchers a sound basis for detecting inconsistent judgments and subjects.
They supply decision rules for accepting or rejecting judgment matrices for both the EM and GM procedures.
In the former case, it is contended that use of the traditional approach to hypothesis testing, in which the
null hypothesis is rejected with a predetermined probability of Type I error, is superior to any rule of
thumb. In the latter case, the present results fill a gap in the long line of psychometric studies on the
properties of the geometric means.

Like any other simulation, the present results are limited to those combinations of parameters tested.
As such, they lack the generality achievable by a theoretical development. However, the values of n and
k employed in the present study are representative of the choices usually encountered in applications, so
that many users should find the tables of this study useful. Those using different response scales and a
larger number of stimuli will benefit from the approximation formulas developed for the critical points
of the sampling distributions. Undoubtedly, these formulas may be further refined in similar studies
covering a larger range of parameter values.

At a more general methodological level it is concluded that there is a very high level of agreement
between the EM and GM procedures in the null case. This conclusion is based on (1) the high correlations
between the estimated scale values, (2) the large concordance between the rank orderings of the various
matrices by means of 1.1 and 52, and (3) the high agreement between the two rejection rules for various
levels of a . It was pointed out above that one interpretational problem of the EM stems from its lack of
invariance under transposition of R. This problem is well documented in Table 3 where the right and
left eigenvectors are shown to intercorrelate lower than any other pair of solutions. This finding reinforces
the warning of Johnson et al. (1979) regarding the use of the right eigenvector. It is reassuring to note
in the same tables that the highest correlations are typically those between the two invariant solutions.
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Table 3
Median Correlations* Between the Four
Solutions for the Constant Sum Method

* Decimal I points are omitted.

The EM and GM are not the first, nor the only, methods available for scaling ratio judgments. A
large number of additional techniques have been proposed, ranging from relatively simple averages
(Comrey, 1950; Sjoberg, 1963) to more complicated and sophisticated methods, such as the least squares
solutions (Eckart & Young, 1936; Jensen, 1984a), weighted least squares (Chu, Kalaba, & Spingam,
1979), and minimum chi-square (Jensen, 1984b). Although there is a large consensus that in most cases
the solutions are very similar to each other, a heated argument has developed recently in the literature
regarding the &dquo;best&dquo; solution. Saaty and Vargas (1984a, 1984b) argued for the absolute superiority of
mvt, and Williams and Crawford (1980) and de Jong (1984) make the case for GM. Jensen’s (1984b) lucid
analysis of four methods according to five theoretical criteria clearly demonstrated that this dispute is
futile-each method is best by at least one criterion (usually one it explicitly seeks to optimize), but
neither is best by all, or most, criteria. In light of this observation and given that there is no agreement
regarding the relative importance of the various criteria, it would be inappropriate to claim that the present
results can cause rejection, or unconditional acceptance, of any single method. Jensen’s view that multiple
solutions should be reported is more acceptable. The results of this study should help evaluate scale values
obtained from two of the many possible solutions.

References

Budescu, D. V. (1984). Scaling binary comparison mat-
rices: A comment on Narasimhan’s proposal and other
methods. Fuzzy Sets and Systems, 14, 187-192.

Budescu, D. V., Zwick, R., & Rapoport, A. (1985). A
comparison of the analytic hierarchy process and the
geometric mean procedure for ratio scaling (Report

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



78

No. 172). Chapel Hill NC: The L. L. Thurstone Psy-
chometric Laboratory.

Chu, A. T. W., Kalaba, R. E., & Spingam, K. (1979).
A comparison of two methods for determining the
weights of belonging to fuzzy sets. Journal of Opti-
mization Theory and Applications, 27, 531-538.

Comrey, A. L. (1950). A proposed method for absolute
ratio scaling. Psychometrika, 15, 317-325.

de Jong, P. (1984). A statistical approach to Saaty’s
scaling method for priorities. Journal of Mathematical
Psychology, 28, 467-478.

Eckart, C. D., & Young, G. (1936). The approximation
of one matrix by another of lower rank. Psychome-
trika, 1, 211-217.

Gulliksen, H. (1959). Mathematical solutions for psy-
chological problems. American Scientist, 47, 178-
201.

Jensen, R. E. (1984a). An alternative scaling method
for priorities in hierarchical structures. Journal of
Mathematical Psychology, 28, 317-332.

Jensen, R. E. (1984b). Comparisons of eigenvectors,
least squares, chi square and logarithmic least squares
methods of scaling a reciprocal matrix (Working Pa-
per No. 127). San Antonio TX: School of Business,
Trinity University.

Johnson, C. R., Beine, W. B., & Wang, T. Y. (1979).
Right-left asymmetry in an eigenvector ranking pro-
cedure. Journal of Mathematical Psychology, 18, 61-
64.

Lodge, M. (1981). Magnitude scaling&mdash;Quantitative
measurement of opinion. Beverly Hills CA: Sage Pub-
lications.

Ramsay, J. O. (1977). Maximum likelihood estimation
in multidimensional scaling. Psychometrika, 42, 241-
266.

Saaty, T. L. (1977). A scaling method for priorities in
hierarchical structures. Journal of Mathematical Psy-
chology, 15, 234-281.

Saaty, T. L. (1980). The analytic hierarchy process.
New York: McGraw-Hill.

Saaty, T. L. (1983). Foundations of the logical choice
to harness complexity. Unpublished manuscript, School
of Business, The University of Pittsburgh.

Saaty, T. L., & Bennett, J. P. (1977). A theory of an-
alytical hierarchies applied to political candidacy. Be-
havioral Science, 33, 237-245.

Saaty, T. L., & Vargas, L. G. (1984a). Comparison of
eigenvalue logarithmic least squares and least squares
methods in estimating ratios. Mathematical Modell-
ing, 5, 309-324.

Saaty, T. L., & Vargas, L. G. (1984b). Inconsistency
and rank preservation. Journal of Mathematical Psy-
chology, 28, 205-214.

Shepard, R. N. (1981). Psychological relations and psy-
chophysical scales: On the status of "direct" psycho-
physical measurement. Journal of Mathematical Psy-
chology, 24, 21-57.

Sjoberg, L. (1963). An empirical application of a new
case of the law of comparative judgment. Scandina-
vian Journal of Psychology, 4, 97-107.

Stevens, J. C., Mack, J. D., & Stevens, S. S. (1960).
Growth of sensation on seven continua as measured

by force of handgrip. Journal of Experimental Psy-
chology, 59, 60-67.

Stevens, S. S. (1946). On the theory of scales of mea-
surement. Science, 103, 677-680.

Stevens, S. S. (1972). Psychophysics and social scaling.
Morristown NY: General Learning Press.

Stevens, S. S. (1975). Psychophysics: Introduction to
its perceptual, neural, and social prospects. New York:
Wiley.

Torgerson, W. S. (1958). Theory and methods of scal-
ing. New York: Wiley.

Williams, C., & Crawford, G. (1980). Analysis of sub-
jective judgment matrices (Report R-2572-AF). Santa
Monica CA: Rand Corporation.

Wind, Y., & Saaty, T. L. (1980). Marketing applica-
tions of the analytic hierarchy process. Management
Science, 26, 641-658.

Yager, R. R. (1979). An eigenvalue method of obtaining
subjective probabilities. Behavioral Science, 24, 382-
387.

Acknowledgments

This research was fcacilitated by Contract MDA 903-83-
K-0347 from the U. ,S. Army Research Institute for the
Behavioral and Social Sciences to the L. L. Thurstone

Psychometric Laboratory, University of IVorth Carolina
at Chapel Hill. The views, opinions, and findings con-
tained in this paper are those of’ the authors and should
not be construed as an official Department of the Army
position, policy, or decision. David Budescu’s work was
partially supported by a grant from the Faculty of Social
Sciences and Mathematics at the University of Haifa.
The authors thank Thomas Wallsten for his help and
comments.

Author’s Address

Send requests for reprints or further information to David
Budescu, Department of Psychology, University of Haifa,
Haifa 31999, Israel.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  

May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 




