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A COMPARISON OF THE HART-SMITH MODEL WITH ARRUDA-BOYCE

AND GENT FORMULATIONS FOR RUBBER ELASTICITY

G. CHAGNON, G. MARCKMANN, E. VERRON*

INSTITUT DE RECHERCHE EN GÉNIE CIVIL ET MÉCANIQUE

ECOLE CENTRALE DE NANTES, BP 92101, 44321 NANTES CEDEX 3, FRANCE

ABSTRACT

The present paper demonstrates that the Hart-Smith constitutive model and the more recent Arruda and Boyce eight
chains and Gent constitutive models are closely related. The ability of these three models to predict both small and large
strain responses of rubbers is highlighted and equations that relate their material parameters are established.

INTRODUCTION

Elastomers exhibit a very complex mechanical behavior, that includes large strain, time-
dependent response, hysteresis, and stress-softening (Mullins effect). In the last few years, there
was a significant effort to propose realistic constitutive equations for these materials.1-10 These
models focus on the whole behavior of elastomers or on only one of the previously mentioned
phenomena. Nevertheless, all constitutive equations are based on the general theory of hypere-
lasticity.11 So, consider now the non-linear elastic response of rubber-like material. It is charac-
terized by the existence of a strain energy potential W. Assuming that elastomers are both
isotropic and incompressible, this strain energy function only depends on the two first invariants
of the left Cauchy-Green stretch tensor B:

(1)

with:

(2)

The true stress tensor is defined by the differentiation of W with respect to B:

(3)

This general theory being established, the major difficulty remains the choice of the func-
tion W. Many developments were proposed in the bibliography (see for example the review of
Boyce).12

An efficient hyperelastic model can be defined by four major qualities:
• First, it should be able to accurately reproduce the whole “S” shaped response of rub-

bers,
• Second, the change of deformation modes should not be problematic, i.e. if the model

behaves satisfactorily in uniaxial tension, it should also be quite accurate in simple shear
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or in equibiaxial extension, 
• Third, the number of relevant material parameters must be as small as possible, in order

to reduce the number of experimental tests needed for their identification, 
• Finally, the mathematical formulation has to be quite simple to render possible the

numerical implementation of the model.
Taking into account these four prerequisites, three constitutive equations can be selected: the

recent models of Arruda and Boyce,13 and Gent,14 and the previous formulation of Hart-Smith.15

Through the rest of the paper, they will be referred to as AB, G and HS theories, respectively.
The aim of the present work is to establish the equations that relate these three constitutive

equations. More precisely, their small and large strain characteristics will be thoroughly exam-
ined. As Boyce16 recently compared the AB and G approaches, the emphasize is laid on the
equivalence of the HS model with the two other ones. In the next Section, the three strain ener-
gy functions are briefly recalled. Then, the theoretical relationships between material parameters
of the models are established and the relevance of these results is demonstrated. The relevance
of these results is demonstrated in Section 3. Finally, some concluding remarks are proposed.

STRAIN ENERGY FUNCTIONS

In this section, the strain energy functions that define the HS, AB and G models are briefly
recalled.

THE HS MODEL

In the 60’s, Hart-Smith15 proposed an empirical form of W, that satisfactorily reproduces the
response of rubberlike materials for the entire range of deformation endured by rubbers:

(4)

where C1, C2, C3 are the three material parameters. In this equation, the first right-hand side part
of W describes the global response of the material. It only depends on the first strain invariant I1.
The second term that involves I2 is based on the work of Gent and Thomas17 and improves the
accuracy of the model for moderate strain (less than 150%). It can be related to the Mooney-
Rivlin theory that involves both I1 and I2 and is widely recognized for its ability to satisfactorily
reproduce rubberlike behavior for small and moderate strain.11

THE AB MODEL

The model of Arruda and Boyce13 is a molecular based constitutive equation, also known as
the 8-chains model. Following Kuhn and Grün,18 the behavior of an individual chain is consid-
ered non-gaussian. In order to describe the response of the polymer network, this individual
response should be integrated in an unit sphere defined by its chain density. Nevertheless, the
corresponding constitutive equation necessitates numerical integration.19 So, in order to over-
come this difficulty, privileged directions for chains orientation are defined by the half diagonals
of a unit cube contained in the unit sphere. The corresponding strain energy function is given by:
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(5)

where with L being the Langevin function defined as . In the pre-
vious equation, C

R
and N are the two material parameters. Due to the non-gaussian nature of the

chain modelling, 3N stands for the maximum value that I1 can reach and represents the extensi-
bility limit of chains.

This model only depends on the first strain invariant I1, and it is well-known that its per-
formances at moderate strain are not very good.19 Very recently, Meissner and Matejka20 pro-
posed the improvement of chains models by adding a function of I2 to the strain energy.
Moreover, Fried21 explained the dependance of W on I2 invoking assumptions on the network
deformation.

THE G MODEL

Recently, Gent14 proposed an empirical relation for the strain energy function:

(6)

where E and J
m

are the two material parameters. J
m

represents the maximum value of I1-3 that
can be undergone by the material. It is the empirical counterpart of the extensibility limit of
chains previously defined for the AB model.

COMPARISON OF MATERIAL PARAMETERS

The present section is devoted to the comparison of the three models. As these constitutive
equations are supposed to be qualitatively efficient for the entire range of strains, both small and
large strain responses will be compared. As mentioned above, the I2 terms in constitutive equa-
tions can be seen as corrections of the phantom network theory.11 So, we propose to only com-
pare the part of functions W that involves I1, i.e. the phantom part of constitutive equations.
Consequently, the following HS strain energy will be considered through the rest of the paper:

(7)

in which only two material parameters are considered, i.e. C1 and C3.
Moreover, recalling that a previous work demonstrated the equivalence of the AB and the G

approaches,16 the present work emphasizes the comparison of the HS model with them.

POLYNOMIAL EXPANSION

Before explicitly comparing the models, their polynomial expansion in terms of I1 are estab-
lished. This will highly simplify the comparison of their small strain responses.

The HS strain energy function (7) can be developed into an infinite series of powers of I1:
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(8)

It is to note that this expression is a particular case of the general expansion proposed by Rivlin16:

(9)

where the dependance on I2 is not considered, said s = 0, and only odd powers of I1 are relevant.
The first five terms of the development of W

AB
, given by Equation (5), into a series of pow-

ers of I1 are:

(10)

This expansion is also a particular case of Rivlin’s series (9), but, in comparison with
Equation (8), it is expressed with both odd and even powers of I1.

Similarly to previous expansions, W
G

(see Equation (6)) can be expanded into a series of
powers of I1:

(11)

Here, both odd and even powers of I1 are involved.

SMALL STRAIN BEHAVIOR

The small strain stiffness of the models are respectively defined by first terms of Equations
(8), (10) and (11). Then, the three strain energy functions reduce to the neo-Hookean expres-
sion11:

(12)

where C is a material parameter. Moreover, the first parameters of the HS, AB and G models are
proportional. They are simply related to C by:

(13)

LARGE STRAIN BEHAVIOR

As mentioned above, the three models are characterized by their ability to describe the
strain-hardening of the material that takes place under large strain. This strain-hardening phe-
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nomenon is mainly due to the extensibility limit of polymer chains.
According to Equation (3) and taking into account that the considered strain energy func-

tions do not depend on I2, i.e. ∂W/∂I2=0, the stress-strain relationship reduces to:

(14)

in which only the first derivative of W with respect to I1 is involved.
In the three cases, this derivative is given by:

(15)

(16)

(17)

Examining these equations, it is obvious that the three functions exhibit an upturn for large
values of I1. Moreover, for both AB and G models, ∂W/∂I1 tends asymptotically to infinity as the
first invariant approaches a limiting value. Vertical asymptotes correspond with values of I1 equal
to 3N and J

m
+3 for AB and G constitutive equations, respectively. Thus, the second material

parameters of AB and G models are obviously related by:

(18)

Consider now the HS model. It does not exhibit an asymptotic behavior, because it involves
an exponential-like function. Nevertheless, in order to ensure that models reproduce the same
behavior at large strain, it is important that they admit similar slopes in this range of deforma-
tion. Here, the HS model is only compared with the G model, the equivalence of AB and G mod-
els being already established in Equation (18). Slopes of stress-strain curves can be expressed in
terms of the second derivatives of W with respect to I1 that are:

(19)

(20)

Thus, to ensure that the responses of HS and G models are similar, these two derivatives
should be equal. Eliminating their first material parameters, i.e. C1 and E, respectively, by the use
of Equation (13), it yields to:
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(21)

which lies the second material parameters C3 and J
m

, and depends on I1. This equation means
that the equality of slopes depends on the considered deformation level. In order to solve this
equation, it can be cast under the following form:

(22)

The solution of this equation can be expressed in terms of the Lambert W function, denoted
here WL:

(23)

where is defined to be the function satisfying (see Corless et al.23 and the references herein for
details):

(24)

So, defining now the reduced first strain invariant α by:

(25)

where α∈[0,1] as J
m

represents the asymptotic value of I1-3, and considering some basic alge-
braic manipulations, Equation (23) can be transformed into:

(26)for α∈[0,1]

This equation relates the second material parameters C3 and J
m

that satisfy the equality of
slopes at large strain for HS and G models. As mentioned above, it depends on α, i.e. on the strain
level. 

Nevertheless, as the G model increases asymptotically to infinity in the neighborhood of I1
= J

m
+3, i.e. α = 1, and the HS model is an exponential-like function in this range of I1, Equation

(26) is not defined for α = 1. In practice, the equivalence between the two constitutive equations
can only be demonstrated on a given range of α (or of I1). In this way, a mean constant value of
the function in the right-hand side of Equation (26) can be adopted to relate C3 and J

m
. This per-

mits to omit the dependence on α of C3Jm
2. Let us denote [αmin,1] with αmin>0, the range in which
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the HS and G models are close to. Thus, in this range, the two parameters can be linked by a con-
stant coefficient:

(27)with

So, the value of k depends on the range in which the equivalence of the two models is rec-
ognized. Figure 1 presents the evolution of k as a function of αmin. As shown by the graph, k tends
to infinity as αmin tends to 0 or 1. The practical choice of the bound αmin and the corresponding
value k will be examined in the next section for two examples.

FIG. 1. — Curve of Equation (27): k vs αmin.

EXAMPLES

Finally, two examples are studied to demonstrate the equivalence of the three constitutive
equations, and the relevance of Equations (13), (18) and (27) that lie their material parameters.

FIT OF THE G THEORY

The first example consists in using the G model as a reference. In order to build fictitious
materials and their corresponding data sets to be fitted, the two parameters E and J

m
are consid-

ered to vary in [0,10] and [7,100], respectively. Values of J
m

stand for limits of extensibility
between 200% and 900% in uniaxial tension.

First, J
m

is set to 60 and E adopts the three values 0.1, 1 and 10. In these three cases, the
function ∂W

G
/∂I1 given by Equation (17) is discretized using a large number of values, and the
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corresponding stress functions of HS and AB models, respectively given by Equations (15) and
(16), are fitted with these data. Fitting results are obtained using two different algorithms. First,
an optimization program based on a genetic algorithm estimates approximately the material
parameters. Second, these parameters are precisely determined with the help of a classical steep-
est descent algorithm using the genetic algorithm results as initial guess solutions. The linear
relation Equation (13) between first parameters of the three models is exactly recovered for the
three tests.

Second, the initial stiffness E is set to 1, and J
m

varies between 7 and 100. First parameters
of HS and AB models are calculated according to Equation (13), said C1 = 6 and C

R 
= 3. For the

considered values of J
m

, the method employed above for first parameters is used to determine
both C3 and N. Let us first examine the results for the AB model. Figure 2 shows the compari-
son between fitted results and the theoretical relation of Equation (18). The fitted results agree
well with the theory and the linear relation between the asymptotic limit of the two models is sat-
isfactorily recovered.

FIG. 2. — Comparison of second parameters for the G and AB models:
(ο) fitted results, () theoretical results of Equation (18).

As mentioned above, the case of the HS model is more difficult. Our goal is to verify
Equation (27). Thus, the interval of α should be defined to calculate the integral in this equation.
In order to choose the lower bound αmin, we consider that slopes of HS and G models should not
be compared for small strain, because only the large strain responses of these models are exam-
ined. As proposed by Kucherskii,24 the neo-Hookean formulation is valid in the first third of the
deformation range. Thus, only the two thirds of the deformation range has to be retained for the
large strain response, i.e. αmin ≥1/9. Moreover, as models responses are highly different in the
neighborhood of α = 1, because the G model tends asymptotically to infinity and the HS model
grows exponentially, we consider that the equivalence should be demonstrated for more than a



third of the deformation range, said αmin ≤4/9. Consequently, according to Equation (27) and not-
ing that k does not evolve monotonously in αmin∈ [1/9, 4/9], the range in which k varies can be
easily established:

(28)

Finally, Figure 3 presents the comparison between fitted and theoretical results. The two
boundary values of k given in Equation (28) are considered. This figure shows that fitted results
are satisfactorily reproduced by Equation (27), with a slight dependence on the value of αmin.

FIG. 3. — Comparison of second parameters for G and HS models: (ο) fitted results,
(----) theoretical results of Equation (27) for k = 2.83, ()  theoretical results of Equation ( 27 ) for k = 2.98.

FIT OF TRELOAR’S DATA

The second example focuses on the comparison of models for a real material. Here, experi-
mental data of Treloar25 are considered. The author performed a large number of experiments in
different deformation modes: uniaxial tension, pure shear, equibiaxial tension (by the use of the
bubble inflation technique) and biaxial tension (by combining tension and pure shear). The cor-
responding stress-strain responses were thoroughly examined in the past and are not recalled
here. The reader can refer to Ogden26 for details.

Using these data, material parameters of the three constitutive equations are determined. The
identification was performed using the four tests simultaneously. Fitted results for material
parameters are presented in Table I. The corresponding results for the stress-strain responses are
shown in Figure 4. In this figure, X-axis and Y-axis of each graph correspond to relevant stretch
and nominal stress for the type of experiment considered. The four graphs exhibit the similarity

2 83 2 98. .≤ ≤k

2 83 2 98. .≤ ≤k



of responses for the three models and demonstrate their ability to satisfactorily reproduce differ-
ent deformation modes with only two material parameters.

TABLE I
VALUES OF MATERIAL PARAMETERS

First parameter, MPa Second parameter

HS model C1 = 0.18 C3 = 2.710-4

AB model C
R 

= 0.34 N = 27.9

G model E = 1.0 J
m 

= 92.0

FIG. 4. — Fit of Treloar’s data, (a) uniaxial tension; (b) pure shear; (c) equibiaxial tension;
(d) biaxial tension; (ο) experiments; (—) HS model; (−−−−)  AB model; (…) G model.

Let us now examine the relevance of the previously demonstrated relationships as applied to
the parameters given in Table I. In order to simplify the discussion, G material parameters are
considered as the reference and material parameters of AB and HS theories are compared with
them.

• Concerning the first material parameter of models, we first compute 6C1 = 1.08 for the
HS model and 3C

R 
= 1.02 for the AB theory as proposed in Equation (13). Thus, the

maximum difference between these data and E = 1 is about 8%.
• Second, the large strain parameters J

m
and N of G and AB models are analyzed.

According to Equation (18), the theoretical value of N should be (J
m 

+ 1)/3 = 3.10. The
difference between this predicted value and the fitted result is about 10%.

• Finally, we consider the relationship between J
m

and C
3
. The corresponding theoretical

relation that lies these data is given in Equation (27). In order to compute k, the lower



bound αmin of the definition range should be determined. Examining experimental
results for the uniaxial test shown in Figure 4(a), the small strain range, in which the
neo-Hookean theory is sufficient, can be defined as λ∈[1,4]. This interval corresponds
to I1∈[3,16.5] and the use of Equation (25) yields to αmin≈0.14. In regard to Equation
(27), k is defined by an integral from αmin to 1. Nevertheless, considering that the last
experimental point of the uniaxial tensile test corresponds with λmax = 7.6, i.e. I1 = 58.0,
the upper bound of the integration range is not equal to 1 but should be replaced by αmax
= (I1max-3)/Jm≈0.6. In fact, it is impossible to reach experimentally the extensibility
limit of chains, because samples break for smaller stretches. Finally, the theoretical
value of k to be considered is given by:

(29)

It is to note that this value is not contained in the range of Equation (28). Using this result
in Equation (3), the second parameter of the HS model C3 should have been equal to 3.18 x10-4.
Comparing this value with the fitted result given in Table I leads to a discrepancy of 17.7%. In
regards with differences obtained between our theoretically predicted values and fitted results,
the present developments are validated. The equivalence Equations (13), (18) and (27) can now
be used to switch between HS, AB and G hyperelastic constitutive equations.

CONCLUSIONS

The present work establishes the equations that relate three hyperelastic constitutive equa-
tions: the HS, AB and G models. Here, only the I1 part of the models were compared. As pro-
posed elsewhere,20 the accuracy of the three approaches for moderate strain can be improved by
adding a function of I2 to W. This can be performed with only one additional material parame-
ter. Note that the original Hart-Smith model included this I2 term. The HS model presents an
advantage that will highly simplify the numerical implementation in finite element softwares: its
large strain behavior is governed by an exponential-like function so that its tangent stiffness
always exists. Moreover, the relationships established here will also simplify the identification of
material parameters, because HS parameters can be now related to physical concepts through
their equivalence with AB data.
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