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Abstract. We conduct a theoretical and practical comparison of two Ring-LWE-based, scale-invariant,
leveled homomorphic encryption schemes – Fan and Vercauteren’s adaptation of BGV and the YASHE

scheme proposed by Bos, Lauter, Loftus and Naehrig. In particular, we explain how to choose param-
eters to ensure correctness and security against lattice attacks. Our parameter selection improves the
approach of van de Pol and Smart to choose parameters for schemes based on the Ring-LWE problem
by using the BKZ-2.0 simulation algorithm.
We implemented both encryption schemes in C++, using the arithmetic library FLINT, and compared
them in practice to assess their respective strengths and weaknesses. In particular, we performed a
homomorphic evaluation of the lightweight block cipher SIMON. Combining block ciphers with homo-
morphic encryption allows to solve the gargantuan ciphertext expansion in cloud applications.

1 Introduction

In 2009, Gentry proposed the first fully homomorphic encryption scheme [Gen09]. A fully homomorphic
encryption (FHE) scheme is an encryption scheme that allows, from ciphertexts E(a) and E(b) encrypting
bits a, b, to obtain encryptions of ¬a, a ∧ b and a ∨ b without using the secret key. Clearly, this allows
to publicly evaluate any Boolean circuit given encryptions of the input bits. This powerful primitive has
become an active research subject in the last four years. Numerous schemes based on different hardness
assumptions have been proposed [Gen09,vDGHV10,BGV12,Bra12,LTV12,GSW13] and have improved upon
previous approaches.

In all of the aforementioned schemes, a ciphertext contains a noise that grows with each homomorphic
operation. The noise is minimal when the ciphertext is a fresh encryption of a plaintext bit and has not yet
been operated on. Homomorphic operations as those above can be (and are often) expressed as homomorphic
addition and multiplication operations, i.e. addition and multiplication in the binary field F2. Both increase
the noise in ciphertexts, which means that the noise in a resulting encryption is larger than the noise in the
respective input encryptions. In particular, homomorphic multiplication increases the noise term significantly.

After a certain amount of such homomorphic computations have been carried out, the noise reaches a
certain maximal size after which no more homomorphic operations can be done without losing correctness
of the encryption scheme. At this point, the ciphertext needs to be publicly refreshed to allow subsequent
homomorphic operations. This refreshing procedure is called bootstrapping and is very costly. As a conse-
quence, only few of the FHE schemes have been fully implemented [GH11,CNT12,CCK+13] and the resulting
performances are rather unsatisfactory.

However, real-world applications do not necessarily need to handle any input circuit. One might avoid
using the bootstrapping procedure if the multiplicative depth of the circuit to be evaluated is known in
advance and small enough (cf. [NLV11,GLN12,Lau12,BLLN13] and even [GHS12b]). Unfortunately, for the
schemes of [GH11,CNT12,CCK+13] the noise grows exponentially with the depth of the circuit being evalu-
ated, severely limiting the circuits that can be evaluated with reasonable parameters. To mitigate this noise
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growth, Brakerski, Gentry and Vaikuntanathan introduced the notion of leveled homomorphic encryption
schemes [BGV12]. In such a scheme, the noise grows only linearly with the multiplicative depth of the cir-
cuit being evaluated. Therefore for a given circuit of reasonable depth, one can select the parameters of the
scheme to homomorphically evaluate the circuit in a reasonable time. They describe a leveled homomorphic
encryption scheme called BGV using a modulus switching technique. Furthermore, this scheme and other
ring-based homomorphic encryption schemes allow the use of larger plaintext spaces, where bits are replaced
by polynomials with coefficients modulo a plaintext modulus possibly different from 2. Such plaintext spaces
allow the encryption of more information in a single ciphertext, for example via batching of plaintext bits.
The BGV scheme was subsequently implemented and used to perform a homomorphic evaluation of the AES
circuit in [GHS12b]. Unfortunately, to homomorphically evaluate a circuit of multiplicative depth d using the
modulus switching technique, the public key needs to contain d distinct versions of a so-called evaluation key.
Thus, to homomorphically evaluate AES, the authors of [GHS12b] required a very large memory machine
(256 GB of RAM) to store the public key.

At Crypto 2012, Brakerski proposed the new notion of scale-invariance [Bra12] for leveled homomorphic
encryption schemes. In contrast to a scheme that uses modulus switching, the ciphertexts for a scale-invariant
scheme keep the same modulus during the whole homomorphic evaluation and only one copy of the scale-
invariant evaluation key has to be stored. This technique has been adapted to the BGV scheme [BGV12]
by Fan and Vercauteren [FV12], and to López-Alt, Tromer and Vaikuntanathan’s scheme [LTV12] by Bos,
Lauter, Loftus and Naehrig [BLLN13].3 The resulting schemes are called FV and YASHE, respectively. No
implementation of the FV scheme is known (except for a proof-of-concept implementation in a computer
algebra system that is used in [GLN12]). The YASHE scheme [BLLN13] was the first (and only) scale-
invariant leveled homomorphic encryption scheme implemented so far. Very satisfactory timings are claimed
for a small modulus (then able to handle only circuits of multiplicative depth at most 2) on a personal
computer. Unfortunately the implementation is not openly available for the community.

Sending Data to the Cloud. In typical real-world scenarios for using FHE with cloud applications, one or
more clients communicate with a cloud service. They upload data encrypted with an FHE scheme under
the public key of a specific user. The cloud can process this data homomorphically and return an encrypted
result. Unfortunately, ciphertext expansion (i.e. the ciphertext size divided by the plaintext size) of cur-
rent FHE schemes is prohibitive (thousands to millions). For example using techniques in [CNT12] (for 72
bits of claimed security), sending 4MB of data on which the cloud is allowed to operate, would require to
send more than 73TB of encrypted data over the network. Batching several plaintexts into a single cipher-
text [GHS12a,CCK+13] can improve on the required bandwidth; using [CCK+13] for example, the network
communication would be lowered to around 280GB. However, this is still completely impractical.

To solve this issue, it was proposed in [NLV11] to instead send the data encrypted with a block cipher (in
particular AES). The cloud service then encrypts the ciphertexts with the FHE scheme and the user’s public
key and homomorphically decrypts them before they are processed. Therefore, network communication is
lowered to the data size (which is optimal) plus a costly one-time setup that consists of sending the FHE
public key and an FHE encryption of the block cipher secret key (cf. Figure 1).

This suggestion requires a homomorphic evaluation of the block cipher decryption, which was success-
fully implemented for AES in [GHS12b] and [CCK+13,CLT14], based on two different homomorphic schemes
(resp. over lattices and over the integers). The authors of the aforementioned papers used bitslicing tech-
niques [Bih97,KS09] and batching. The batching allowed to perform several independent AES decryption
operations in parallel (or AES in counter mode). The resulting homomorphic evaluation of AES took 65
hours4 and processed 720 blocks in parallel for [GHS12b] (that is a relative time of 5 minutes per block) and
took 102 hours5 and processed 1875 blocks in parallel for [CLT14] (that is a relative time of 3 minutes per
block).

3 This technique was also adapted to the homomorphic encryption scheme over the integers [vDGHV10] by Coron,
Lepoint and Tibouchi [CLT14].

4 On a Intel Xeon CPU running at 2.0 GHz.
5 On a Intel Xeon E5-2690 at 2.9 GHz.
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Fig. 1. Optimized communication with the cloud for homomorphic cryptography using AES.

The AES circuit was chosen as a standard circuit to evaluate because it is nontrivial (but still reasonably
small) and has an algebraic structure that works well with the plaintext space of certain homomorphic
encryption schemes [GHS12b]. However, there might be other ciphers that are more suitable for being
evaluated under homomorphic encryption. In June 2013, the U.S. National Security Agency unveiled a
family of lightweight block ciphers called SIMON [BSS+13]. These block ciphers were engineered to be
extremely small, easy to implement and efficient in hardware. SIMON has a classical Feistel structure and
each round only contains one AND. This particularly simple structure is a likely candidate for homomorphic
cryptography.

Our Contributions. In this work, we provide a concrete comparison of the supposedly most practical leveled
homomorphic encryption schemes FV and YASHE. (To our knowledge, this is the first comparison of leveled
homomorphic encryption schemes.) In particular, we revisit and provide precise upper bounds for the norm
of the noises in the FV scheme, as done for the YASHE scheme in [BLLN13]. It appears from our work that
the FV scheme has a theoretical smaller noise growth than YASHE.

We revisit van de Pol and Smart’s approach [vdPS13] to derive secure parameters for these schemes.
They use the BKZ-2.0 simulation algorithm [CN11,CN13] (the most up-to-date lattice basis reduction algo-
rithm) to determine an upper bound on the modulus to ensure a given level of security. We show that their
methodology has some small limitations and we describe how to resolve them. The resulting method yields
a more conservative but meaningful approach to select parameters for lattice-based cryptosystems.

Finally, we propose proof-of-concept implementations of both FV and YASHE in C++ using the arithmetic
library FLINT [H+13]. This allows us to practically compare the noise growth and the performances of
the FV and YASHE schemes. The implementations provide insights into the behavior of these schemes for
circuits of multiplicative depth larger than 2 (contrary to the implementation described in [BLLN13]). For
this purpose, we implemented SIMON-32/64 and SIMON-64/128 using FV, YASHE and the batch integer-
based scheme from [CLT14]. Our implementations are publicly available for the community to reproduce our
experiments [Lep14]. Due to the similarity in the design of the FV and YASHE schemes and the common basis
of our implementations, we believe that our comparison gives meaningful insights into which scheme to use
according to the desired application, and on the achievable performance of leveled homomorphic encryption.

2 Preliminaries

In this section, we provide a succinct background on lattices, the (Ring) Learning With Errors problem and
recall the FV [FV12] and YASHE [BLLN13] leveled homomorphic encryption schemes.

2.1 Lattices

A (full-rank) lattice of dimension m is a discrete additive subgroup of Rm. For any such lattice L 6= {0},
there exist linearly independent vectors b1, . . . ,bm ∈ Rm such that L = b1Z⊕· · ·⊕bmZ. This set of vectors
is called a basis of the lattice. Thus a lattice can be represented by its basis matrix B ∈ Rm×m, i.e. the
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matrix consisting of the rows bi in the canonical basis of Rm. In particular, we have L = {z ·B : z ∈ Zm}.
The determinant (or volume) of a lattice is defined as

det(L) =
(

det(BBt)
)1/2

= |det(B)| ,

where B is any basis of L. This quantity is well-defined since it is independent of the choice of basis: if B′ is
another basis of L, then there exists a unimodular matrix U (integer matrix of determinant ±1) such that
B′ = U · B. Note also that since L is a discrete structure, it has a vector of minimal norm (for any fixed
norm on Rm, e.g. the ℓ2-norm ‖ · ‖) and one can define the quantity

λ1(L) = min{‖v‖ : v ∈ L \ {0}} .

Among all the bases of a lattice L, some are ‘better’ than others. The goal of lattice basis reduction is
to shorten the basis vectors and thus, since the determinant is invariant, to make them more orthogonal. In
particular, any basis B = (b1, . . . ,bm) can be uniquely written as B = µ ·D ·Q where µ = (µij) is lower
triangular with unit diagonal, D is diagonal with positive coefficients and Q has orthogonal row vectors. We
call B∗ = D ·Q the Gram-Schmidt orthogonalization of B, and D = diag(‖b∗

1‖, . . . , ‖b
∗

m‖) is the diagonal
matrix formed by the ℓ2-norms ‖b∗

i ‖ of the Gram-Schmidt vectors.
Following the approach popularized by Gama and Nguyen [GN08], we say that a specific basis B has root

Hermite factor γ if its element of smallest norm b1 (i.e. we assume that basis vectors are ordered by their
norm) satisfies

‖b1‖ = γm · |det(B)|1/m .

By using lattice basis reduction algorithms, one aims to determine an output lattice basis with guaranteed
norm and orthogonality properties. A classical lattice basis reduction algorithm is LLL (due to Lenstra,
Lenstra and Lovász [LLL82]), which ensures that for all i < m, δLLL‖b

∗

i
‖2 6 ‖b∗

i+1 + µi+1ib
∗

i ‖
2 for a given

parameter δLLL ∈ (1/4, 1]. The LLL algorithm runs in polynomial-time and provides bases of quite decent
quality. For many cryptanalytic applications, Schnorr and Euchner’s blockwise algorithm BKZ [SE94] is the
most practical algorithm for lattice basis reduction in high dimensions. It provides bases of higher quality
but its running time increases significantly with the blocksize. Now if A denotes a lattice basis reduction
algorithm, applying it to B yields a reduced basis B′ = A(B). Thus we can define γA(B) as the value such
that

‖b′

1‖ = γm
A(B) · |det(B

′)|1/m = γm
A(B) · |det(B)|1/m .

It is conjectured [GN08,CN11] that the value γA(B) depends mostly on the lattice basis reduction algorithm,
and not on the input basis B (unless it has a special structure and cannot be considered random). Thus, in
this paper, we refer to this value as γA. For example for LLL and BKZ-20 (i.e. BKZ with a blocksize β = 20),
in the literature one can find the well-known values γLLL ≈ 1.021 and γBKZ-20 ≈ 1.013.

2.2 Ring-LWE

In this section, we briefly introduce notation for stating the Ring-LWE-based homomorphic encryption
schemes FV and YASHE, and formulate the Ring Learning With Errors (RLWE) Problem relating to the
security of the two schemes. For further details, we refer to [LPR10], [FV12], and [BLLN13].

Let d be a positive integer and let Φd(x) ∈ Z[x] be the d-th cyclotomic polynomial. Let R = Z[x]/(Φd(x)),
i.e. the ring R is isomorphic to the ring of integers of the d-th cyclotomic number field. The elements of R are
polynomials with integer coefficients of degree less than n = ϕ(d). For any polynomial a =

∑n
i=0 aix

i ∈ Z[x],
let ‖a‖∞ = max{|ai| : 0 6 i 6 n} be the infinity norm of a. When multiplying elements of R, the norm of the
product grows at most with a factor δ = sup{‖ab‖∞/‖a‖∞‖b‖∞ : a, b ∈ R}, the so-called expansion factor.
For an integer modulus q > 0, define Rq = R/qR. If t is another positive integer, let rt(q) be the reduction
of q modulo t into the interval [0, t), and let ∆ = ⌊q/t⌋, then q = ∆t + rt(q). Denote by [·]q reduction
modulo q into the interval (−q/2, q/2] of an integer or integer polynomial (coefficient wise). Fix an integer

base w and let ℓw,q = ⌊logw(q)⌋ + 1. Then a polynomial a ∈ Rq can be written in base w as
∑ℓw,q−1

i=0 aiw
i,
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where ai ∈ R with coefficients in (−w/2, w/2]. Define WordDecompw,q(a) = ([ai]w)
ℓw,q−1
i=0 ∈ Rℓw,q and

PowersOfw,q(a) = ([awi]q)
ℓw,q−1
i=0 ∈ Rℓw,q . Note that

〈WordDecompw,q(a),PowersOfw,q(b)〉 = ab (mod q) .

Let χkey and χerr be two discrete, bounded probability distributions on R. In practical instantiations, the
distribution χerr is typically a truncated discrete Gaussian distribution that is statistically close to a discrete
Gaussian. The distribution χkey is chosen to be a very narrow distribution, sometimes even such that the
coefficients of the sampled elements are in the set {−1, 0, 1}. We denote the bounds corresponding to these
distributions by Bkey and Berr, respectively. This means that ‖e‖∞ < Berr for e ← χerr and ‖f‖∞ < Bkey

for f ← χkey. With the help of χkey and χerr, we define the Ring-LWE distribution on Rq × Rq as follows:
sample a← Rq uniformly at random, s← χkey and e← χerr, and output (a, [as+ e]q).

Next, we formulate a version of the Ring-LWE problem that applies to the schemes FV and YASHE

considered in this paper.

Definition 1 (Ring-LWE problem). With notation as above, the Ring-Learning With Errors Problem is
the problem to distinguish with non-negligible probability between independent samples (ai, [ais+ei]q) from the
Ring-LWE distribution and the same number of independent samples (ai, bi) from the uniform distribution
on Rq ×Rq.

In order for FV and YASHE to be secure, the RLWE problem as stated above needs to be infeasible. We
refer to [FV12] and [BLLN13] for additional assumptions and detailed discussions of the properties of χkey

and χerr.

2.3 The Fully Homomorphic Encryption Scheme FV

Fan and Vercauteren [FV12] port Brakerski’s scale-invariant FHE scheme introduced in [Bra12] to the RLWE
setting. Using the message encoding as demonstrated in an RLWE encryption scheme presented in an ex-
tended version of [LPR10] makes it possible to avoid the modulus switching technique for obtaining a leveled
homomorphic scheme. We briefly summarize (a slightly generalized version of) the FV scheme in this sub-
section.

• FV.ParamsGen(λ): Given the security parameter λ, fix a positive integer d that determinesR, moduli q and
t with 1 < t < q, distributions χkey, χerr on R, and an integer base w > 1. Output (d, q, t, χkey, χerr, w).

• FV.KeyGen(d, q, t, χkey, χerr, w): Sample s ← χkey, a ← Rq uniformly at random, and e ← χerr and

compute b = [−(as+ e)]q. Sample a← R
ℓw,q
q uniformly at random, e← χ

ℓw,q
err , compute

γ = ([PowersOfw,q(s
2)− (e+ a · s)]q,a) ∈ Rℓw,q ,

and output (pk, sk, evk) = ((b, a), s,γ).
• FV.Encrypt((b, a),m): The message space is R/tR. For a message m+tR, sample u← χkey, e1, e2 ← χerr,

and output the ciphertext c = ([∆[m]t + bu+ e1]q, [au+ e2]q) ∈ R2.

• FV.Decrypt(s, c): Decrypt a ciphertext c = (c0, c1) by m =
[⌊

t
q · [c0 + c1s]q

⌉]

t
∈ R.

• FV.Add(c1, c2): Given ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), output cadd = ([c1,0 + c2,0]q,
[c1,1 + c2,1]q).

• FV.ReLin(c̃mult, evk): Let (b,a) = evk and let c̃mult = (c0, c1, c2). Output the ciphertext

([c0 + 〈WordDecompw,q(c2),b〉]q, [c1 + 〈WordDecompw,q(c2),a〉]q).

• FV.Mult(c1, c2, evk): Output the ciphertext cmult = FV.ReLin(c̃mult, evk), where

c̃mult = (c0, c1, c2) =

(

[⌊

t

q
· c1,0 · c2,0

⌉]

q

,

[⌊

t

q
· (c1,0 · c2,1 + c1,1 · c2,0)

⌉]

q

,

[⌊

t

q
· c1,1 · c2,1

⌉]

q

)

.
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2.4 The Fully Homomorphic Encryption Scheme YASHE

In [BLLN13], a fully homomorphic encryption scheme is introduced that is based on the modified version
of NTRU by Stehlé and Steinfeld [SS11] and the multi-key fully homomorphic encryption scheme presented
in [LTV12]. In this subsection, we state the more practical variant of the leveled homomorphic scheme
from [BLLN13].

• YASHE.ParamsGen(λ): Given the security parameter λ, fix a positive integer d that determines R,
moduli q and t with 1 < t < q, distributions χkey, χerr on R, and an integer base w > 1. Output
(d, q, t, χkey, χerr, w).
• YASHE.KeyGen(d, q, t, χkey, χerr, w): Sample f ′, g ← χkey and let f = [tf ′ + 1]q. If f is not invertible
modulo q, choose a new f ′. Compute the inverse f−1 ∈ R of f modulo q and set h = [tgf−1]q. Sample

e, s← χ
ℓw,q
err , compute γ = [PowersOfw,q(f) + e+ h · s]q ∈ Rℓw,q and output (pk, sk, evk) = (h, f,γ).

• YASHE.Encrypt(h,m): The message space is R/tR. For a message m+ tR, sample s, e← χerr, and output
the ciphertext c = [∆[m]t + e+ hs]q ∈ R.

• YASHE.Decrypt(f, c): Decrypt a ciphertext c by m =
[⌊

t
q · [fc]q

⌉]

t
∈ R.

• YASHE.Add(c1, c2): Output cadd = [c1 + c2]q.
• YASHE.KeySwitch(c̃mult, evk): Output the ciphertext[〈WordDecompw,q(c̃mult), evk〉]q.
• YASHE.Mult(c1, c2, evk): Output the ciphertext

cmult = YASHE.KeySwitch(c̃mult, evk), where c̃mult =

[⌊

t

q
c1c2

⌉]

q

.

3 Parameter Derivation

In this section, we explain how to derive parameters for the fully homomorphic encryption schemes FV [FV12]
and YASHE [BLLN13]. For security, we follow van de Pol and Smart’s approach to derive the maximal size
of the modulus achievable in a given dimension [vdPS13] and consider the distinguishing attack against
RLWE. In particular, we use Chen and Nguyen’s simulation algorithm for the state-of-the-art lattice basis
reduction algorithm BKZ-2.0 [CN11,CN13]. For correctness, we provide a lower bound on the modulus in a
given dimension and for a targeted number of levels (depending on the application), for both schemes FV

and YASHE. Therefore for a given application, it suffices to combine these upper and lower bounds to select
a suitable modulus.

3.1 BKZ-2.0

Schnorr and Euchner’s blockwise algorithm BKZ [SE94] takes as input parameter the blocksize β, which
impacts both the running time and the quality of the resulting basis. In [GN08], it is mentioned that BKZ-β
for β > 30 for non trivial dimensions does not terminate in reasonable time. As a consequence, parameter
derivation for most of the cryptosystems which can be attacked by lattice basis reduction (e.g. [CMNT11],
[LP11], [GHS12b], or[BLLN13]) has been based on BKZ-β for β 6 30.

In 2011, Chen and Nguyen proposed a modification of BKZ using recent progress on lattice enumeration,
called BKZ-2.0 [CN11] (see also the full version of the paper in [CN13]). This state-of-the-art implementation
incorporates the latest improvements of lattice basis reduction: namely, the sound pruning technique of
Gama, Nguyen and Regev [GNR10], early-abortion, preprocessing of local bases and shorter enumeration
radius. In particular these improvements allow to consider blocksizes β > 50. We refer the interested reader
to [CN11,CN13] for additional information.

The algorithm BKZ-2.0N,β is parametrized by two parameters: the maximal number of rounds N and the
blocksize β, and takes as input an LLL-reduced m-dimensional basis. The rough idea is that in each round,
it iterates over an index i 6 m− β, considers the β-dimensional lattice spanned by the current basis vectors
bi, . . . ,bi+β−1 and projects it onto the orthogonal complement of the first i − 1 basis vectors b1, . . . ,bi−1.
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It then performs an enumeration using extreme pruning on this projected lattice to find the shortest vector,
and this vector is inserted into the main lattice basis at the i-th position. Note that BKZ-2.0N,β can be
aborted before reaching the N -th round if the basis has not been modified in the current round, i.e. a fix
point has been attained.

Chen and Nguyen proposed an efficient simulation algorithm to model the behavior of BKZ-2.0 in high
dimensions with large blocksizes > 50.6 The simulation algorithm takes as input the Gram-Schmidt norms of
an LLL-reduced basis, a blocksize β ∈ {50, . . . ,m} and a number N of rounds, and outputs a prediction for
the Gram-Schmidt norms after N rounds of BKZ-β reduction. A python implementation of this simulation
algorithm has been made available by the authors in [CN13].

3.2 Revisiting van de Pol and Smart’s Approach

In [vdPS13], van de Pol and Smart use the formula of [CN11,CN13],

cost(BKZ-2.0N,β) 6 N × (m− β)× cost(Enumeration in dimension β) +O(1) (1)

to estimate the cost of BKZ-2.0N,β (in terms of the number of nodes visited) on an m-dimensional basis, and
to generate secure parameters.7 Instead of using BKZ-2.0 to verify heuristically selected parameters, they
rather propose a rational method to tackle the parameter selection, which we describe below.

For a given security parameter λ and a dimension m, van de Pol and Smart propose to derive the smallest
root Hermite factor γ(m) on an m-dimensional lattice achievable using BKZ-2.0 by an adversary limited to
a computational cost of at most cost(BKZ-2.0) 6 2λ. By Equation (1), this means that for all β and N , we
need to have

N × (m− β)× cost(Enumeration in dimension β) 6 2λ .

Thus, for each β and using the enumeration costs in [CN11] (or [CN13]), one obtains an upper bound Nmax

on the number of BKZ-2.0 rounds with blocksize β that an adversary bounded as above can afford to run, i.e.
such that this latter inequality is still verified. Next, the quality of the resulting basis is estimated by running
the BKZ-2.0Nmax,β

simulation algorithm on a random lattice with blocksize β and Nmax rounds. This yields
a root Hermite factor γ(m,β) for this specific blocksize β. By taking the minimum value over all blocksizes,
one obtains the minimum root Hermite factor γ(m) achievable in dimension m for the security parameter λ
using BKZ-2.0.

Van de Pol and Smart show that, for the homomorphic evaluation of the AES circuit of [GHS12b], by
using their new approach for a given security level, it is possible to work with significantly smaller lattice
dimensions than what previous methods recommended, which affects the performance of the underlying
lattice-based homomorphic encryption scheme.8

Limitations of [vdPS13]. However, the approach presented in [vdPS13] has some limitations. First of all,
van de Pol and Smart only consider dimensions that are a power of two. They use linear interpolation for
the missing values and therefore obtain a simplified model which does not reflect the real behavior of the
minimal root Hermite factor. Also, the enumeration costs used in [vdPS13] are based on the proceedings
version [CN11] of the BKZ-2.0 paper. Recently a full version [CN13] with smaller enumeration costs has been
published, which forces one to revisit van de Pol and Smart’s results. Last but not least, they only consider
blocksizes that are a multiple of 10 (due to the tables in [CN11]). This leads to a phenomenon of plateaus
(cf. Fig 2) and might lead to a choice of parameters ensuring less than λ bits of security.

6 This simulation algorithm is an ideal simulation procedure [CN13]. In particular, it assumes that the probability
of success of extreme pruning is p ≈ 1 and it does not model the behavior for blocksizes β < 50 correctly.

7 The term O(1) occurs due to the fact that in high dimension, the enumeration time is usually dominant compared
to the time spent on computing the Gram-Schmidt orthogonalization and LLL reduction [CN11,CN13]. Note again
that Chen and Nguyen provide an ideal simulation algorithm – experimental applications of BKZ-2.0 might yield
a basis with a larger root Hermite factor. Therefore, using Equation (1) to estimate parameters is conservative.

8 Indeed, one could estimate for example that working with a dimension n = 65500 instead of n = 93623 for the
computation in [GHS12b] might yield 30% faster operations.

7



0.1 0.5 1 1.5 2 2.5 3 4 5 6

·104

1.0076

1.0079

1.0081

1.0084

1.0088

1.0092

m

γ
(m

)

[vdPS13] values (with linear interpolation)

∆β = 10 and [CN11] values

∆β = 10 and [CN13] values

∆β = 1 and [CN11] values

∆β = 1 and [CN13] values

Fig. 2. Minimal root Hermite factor γ(m) achievable with a complexity less than 280, in function of the dimension
m.

Overcoming the limitations of [vdPS13]. To overcome these issues, we performed the same experiments as
van de Pol and Smart but for all dimensions from 1000 up to 65000. We also considered both the enumeration
costs given in Chen and Nguyen’s proceedings paper [CN11] as well as those in the full version [CN13]. We
plotted the results in Fig. 2. As expected, the linear interpolation of [vdPS13] does not fully reflect the
behavior of the experiments for the other dimensions.

However, when performing the experiments for all dimensions, but only avoiding linear interpolation,
we still observe the plateau phenomenon. This can be explained by the fact that the enumeration costs
from [CN11] are only used for blocksizes that are a multiple of ∆β = 10 (which are the only values given
in [CN11]), and only those are considered in [vdPS13]. Each plateau consists of the minimal root Hermite
factor achievable for a specific blocksize β. Now for the whole plateau, BKZ-2.0Nmax,β

terminates in less than
Nmax rounds, i.e. a fix-point is attained at some round i < Nmax. The next plateau corresponds to a blocksize
β −∆β = β − 10. Between plateaus, the number Nmax is the limiting factor in BKZ-2.0 (i.e. BKZ-2.0Nmax,β

terminates at round Nmax) and determines the achievable root Hermite factor (therefore this latter value
increases until a blocksize of size β − 10 instead of β is more useful).
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(a) Enumeration cost in [CN11] interpolated by
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(b) Enumeration cost in [CN13] interpolated by
β 7→ 0.64β − 28 for β ∈ {100, . . . , 250}.

Fig. 3. Evolution of the enumeration costs in [CN11] and [CN13].

To resolve this issue, we used the least squares method to interpolate the enumeration costs for blocksizes
β that are not a multiple of 10 as described in Fig. 3. Considering the costs given in [CN11], we interpolate
the enumeration cost by a quadratic function in the blocksize since this seems to provide a sufficiently
accurate interpolation. For the costs from [CN13], a linear function is a better fit.These new costs allowed us
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to perform the experiments with all blocksizes β ∈ {100, . . . , 250} (i.e. with steps ∆β = 1) and we obtained
the plain lines in Fig. 2.9 As one can see there, parameters selected from plateaus might yield attacks of
complexity smaller than 2λ if the attacker chooses a blocksize that actually allows to achieve a smaller root
Hermite factor.

Therefore, to be more conservative than [vdPS13] in our parameter selection, in the rest of the paper,
we use the values of γ(m) for ∆β = 1 using the enumeration costs of [CN13]. Note that there is a significant
difference in the achievable values compared to [vdPS13]; we provide some values for λ = 64, 80, 128 in
Table 1.

Table 1. Minimal root Hermite factor γ(m) achievable with a complexity less than 2λ, in function of the dimension
m using ∆β = 1 and [CN13] values.

Dimension m 1000 5000 10000 15000 20000 25000 30000 40000 50000 60000

λ = 64 1.00851 1.00896 1.00918 1.00931 1.00940 1.00948 1.00954 1.00964 1.00972 1.00979

λ = 80 1.00763 1.00799 1.00811 1.00826 1.00833 1.00839 1.00846 1.00851 1.00857 1.00862

λ = 128 1.00592 1.00609 1.00619 1.00624 1.00628 1.00629 1.00634 1.00638 1.00641 1.00644

3.3 Security Requirements for RLWE: the Distinguishing Attack

In this section, we restate and extend the security analysis of [vdPS13]. Namely, we consider the distinguishing
attack against RLWE (see [MR09,LP11]). In the following, we denote by 0 < ǫ < 1 the advantage with which
we allow the adversary to distinguish an RLWE instance (a, b = a · s+ e) ∈ R2

q from a uniform random pair
(a, u) ∈ R2

q (i.e. the advantage of the adversary for solving the Decisional-RLWE problem). For any a ∈ Rq,
we denote by Λq(a) the lattice

Λq(a) = {y ∈ Rq : ∃ z ∈ R, y = a · z mod q}.

Recall that, for an n-dimensional lattice Λ, we denote by Λ× its dual, i.e. the lattice defined by Λ× = {v ∈
Rn : ∀ b ∈ Λ, 〈v, b〉 ∈ Z}. The distinguishing attack consists in finding a small vector v ∈ q · Λq(a)

×. Then,
for all y ∈ Λq(a), 〈v, y〉 = 0 mod q. To distinguish whether a given pair (a, u) was sampled according to
the RLWE distribution or the uniform distribution, one tests whether the inner product 〈v, u〉 is ‘close’ to 0
modulo q (i.e. whether |〈v, u〉| < q/4) or not.

Indeed, when u is uniformly distributed in Rq and n > 2λ+ 1, 〈v, u〉 is statistically close to the uniform
distribution by the leftover hash lemma and the test accepts with probability 1/2− negl(λ). However, when
(a, u) is an RLWE sample, i.e. there exists s ∈ Rq and e ← χerr such that u = a · s + e, we have 〈v, u〉 =
〈v, e〉 mod q, which is essentially a sample from a Gaussian (reduced modulo q) with standard deviation
‖v‖ ·σerr. Now when this parameter is not much larger than q, 〈v, e〉 can be distinguished from uniform with
advantage exp(−πτ2) with τ = ‖v‖ · σerr/q, for details see [MR09,LP11].

The distinguishing attack against LWE is more efficient when working with a m × n matrix with m >
n [MR09,LP11,vdPS13]. Moreover, it is unknown how to exploit the ring structure of RLWE to improve
lattice reduction [GN08,CN11]. Therefore, we will embed our RLWE instance into an LWE lattice. Next we
apply the distinguishing attack against LWE and the result can be used to distinguish the RLWE instance
from uniform. Define an LWE matrix A ∈ Zm×n

q associated to a as the matrix whose first n lines are the

coefficient vectors of xi · a for i = 0, . . . , n− 1 and the m− n last lines are small linear combinations of the
first n lines. Denote the LWE lattice

Λq(A) = {y ∈ Zm : ∃ z ∈ Zn, y = Az mod q}.

9 Note that, without loss of generality, we only considered blocksizes larger than 100. Indeed, for β = 100 the cost
of the enumeration of [CN13] is 239 and BKZ-2.0 usually reaches a fix point in less than 100 rounds (cf. [CN13,
Fig.7]). Therefore for a target security level of 80 bits and dimensions up to ≈ 232, one will not be able to obtain
a better reduction with a β < 100.

9



Table 2. Maximal values of log2(q) to ensure λ = 80 bits of security, with distinguishing advantage ǫ = 2−80 and
standard deviation σerr = 8.

n 1024 2048 4096 8192 16384

Maximal log2(q) (method of [LP11]) 40.6 79.4 157.0 312.2 622.7

Maximal log2(q) (our method) 47.5 95.4 192.0 392.1 799.6

Now, we use lattice basis reduction in order to find such a short vector v ∈ q · Λq(A)
×. An optimal use of

BKZ-2.0 would allow us to recover a vector v such that ‖v‖ = γ(m)m · qn/m (because det(qΛq(A)
×) = qn,

cf. [vdPS13]). Therefore, to keep the advantage of the BKZ-2.0-adversary small enough, we need to have

exp(−πτ2) = exp(−π · (γ(m)m · qn/m · σerr/q)
2) 6 ǫ ,

i.e.

γ(m)m · q(n/m)−1 · σerr >
√

− log(ǫ)/π .

Define α =
√

− log(ǫ)/π. To ensure security for all m > n, we obtain the condition

log2(q) 6 min
m>n

m2 · log2(γ(m)) +m · log2(σ/α)

m− n
. (2)

Let us fix the security parameter λ. Following the experiment described in Section 3.2, one can recover
the minimal root Hermite factor γ(m) for all m > n. Therefore, given a target distinguishing advantage ǫ,
a dimension n and an error distribution χerr, one can derive the maximal possible value for log2(q) using
Equation (2). Some interesting values are presented in Table 2. As in [vdPS13], it seems that the parameters
obtained by using Lindner and Peikert’s method [LP11] are more conservative than those obtained with the
BKZ-2.0 simulation.10

3.4 Correctness and Noise Growth of YASHE

Any YASHE ciphertext c carries an inherent noise term, which is an element v ∈ R of minimal norm ‖v‖∞
such that fc = ∆[m]t + v (mod q). If ‖v‖∞ is small enough, decryption works correctly, which means that
it returns the message m modulo t. More precisely, [BLLN13, Lemma 1] shows that this is the case if
‖v‖∞ < (∆− rt(q))/2. A freshly encrypted ciphertext output by YASHE.Encrypt has an inherent noise term
v that can be bounded by ‖v‖∞ < V = δtBkey(2Berr + rt(q)/2), see [BLLN13, Lemma 2].

During a homomorphic addition, the inherent noise terms roughly add up such that the resulting noise
term is bounded by ‖vadd‖∞ 6 ‖v1‖∞ + ‖v2‖∞ + rt(q), where v1 and v2 are the respective noise terms in c1
and c2. For a multiplication operation, noise growth is much larger. It is shown in [BLLN13, Theorem 4 and
Lemma 4] that, when ‖v1‖∞, ‖v2‖∞ < V the noise term after multiplication can be bounded by

‖vmult‖∞ < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t) + δ2tℓw,qwBerrBkey.

For a homomorphic computation with L levels of multiplications (and considering only the noise growth
from multiplications), [BLLN13, Corollary 1 and Lemma 9] give an upper bound on the inherent noise in
the resulting ciphertext as ‖v‖∞ < CL

1 V + LCL−1
1 C2, where

C1 = (1 + ǫ1)δ
2t2Bkey, C2 = δ2tBkey (t(Bkey + t) + ℓw,qwBerr) , ǫ1 = 4(δtBkey)

−1.

In order to choose parameters for YASHE so that the scheme can correctly evaluate such a computation with
L multiplicative levels, the parameters need to satisfy CL

1 V + LCL−1
1 C2 < (∆− rt(q))/2. In Table 3(a), we

provide some values for power-of-two dimensions n and levels L = 0, 1, 10, 50.

10 In [LN13], Lin and Nguyen obtained significant improvements upon Lindner-Peikert’s decoding attack [LP11] using
only pruned enumeration. However, there is no detail on how to compute the success probability, nor on how to
estimate the number of nodes to enumerate, nor on how long an enumeration takes. It remains an interesting open
problem to adapt van de Pol and Smart’s approach to Lin and Nguyen’s attack for parameter selection, as it is
currently unclear how to compute the above values.
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3.5 Correctness and Noise Growth of FV

We can treat FV and YASHE ciphertexts similarly by simply interchanging c0 + c1s and fc. Thus, for an FV

ciphertext (c0, c1) the inherent noise term is an element v ∈ R of minimal norm such that c0+c1s = ∆[m]t+v
(mod q). Since decryption is the same once [c0 + c1s]q or [fc]q are computed, respectively, this also means
that correctness of decryption is given under the same condition ‖v‖∞ < (∆− rt(q))/2 in both schemes. In
an FV ciphertext, the value v = e1 + e2s− eu satisfies c0 + c1s = ∆[m]t + v (mod q) and therefore, we can
bound the noise term in a freshly encrypted FV ciphertext by ‖v‖∞ < V = Berr(1 + 2δBkey).

The same reasoning shows that noise growth during homomorphic addition can be bounded in the same
way by ‖vadd‖∞ 6 ‖v1‖∞+‖v2‖∞+rt(q). Following the exact same proofs as for YASHE as in [BLLN13] (see
the proofs for the more practical variant YASHE’, which we use here), one can show that the noise growth
during a homomorphic multiplication is bounded by

‖vmult‖∞ < δt(4 + δBkey)V + δ2Bkey(Bkey + t2) + δℓw,qwBerr,

where as before, it is assumed that ‖v1‖∞, ‖v2‖∞ < V . Note that the bound on the multiplication noise
growth is smaller than the respective bound for YASHE by roughly a factor t. This means that FV is more
robust against an increase of the parameter t. Similarly as above, when doing a computation in L levels of
multiplications (carried out in a binary tree without taking into account the noise growth for homomorphic
additions), the noise growth can be bounded by ‖v‖∞ < CL

1 V + LCL−1
1 C2, where

C1 = (1 + ǫ2)δ
2tBkey, C2 = δ2Bkey(Bkey + t2) + δℓw,qwBerr, ǫ2 = 4(δBkey)

−1,

and the correctness condition for choosing FV parameters for an L-leveled multiplication is CL
1 V +LCL−1

1 C2

< (∆ − rt(q))/2 as above. In Table 3(b), we provide some values for power-of-two dimensions n and levels
L = 0, 1, 10, 50; these values illustrate the smaller theoretical noise growth for FV in comparison to YASHE.

Table 3. Minimal value of log2(q) to ensure correctness of YASHE and FV, with overwhelming probability, using
standard deviation σerr = 8, plaintext modulus t = 2, integer base w = 232, and Bkey = 1.

(a) YASHE

n 1024 2048 4096 8192 16384

L = 0 20 21 22 23 24

L = 1 62 64 66 68 70

L = 10 265 286 306 326 346

L = 50 1150 1250 1350 1450 1550

(b) FV

n 1024 2048 4096 8192 16384

L = 0 19 20 21 22 23

L = 1 40 43 46 49 52

L = 10 229 250 271 292 313

L = 50 1069 1170 1271 1372 1473

4 Practical Implementations

In order to assess the relative practical efficiency of FV and YASHE, we implemented these leveled homo-
morphic encryption schemes in C++ using the arithmetic library FLINT [H+13]; our implementations are
publicly available at [Lep14].

Timings. In Table 4, we provide timings using the same parameters as in [BLLN13]. As expected from the
structure of the ciphertexts, it takes twice more time to Encrypt or Add using FV compared to YASHE and
three times longer to multiply two ciphertexts. These parameters also allow us to provide estimated timings
for the implementation of [BLLN13] on the same architecture as an illustration of a possible overhead in
performances due to the arithmetic libraries (namely, FLINT) and the C++ wrappers.11 This corroborates

11 Both Intel processors have hyper-threading turned off and over-clocking (‘turbo boost’) disabled; thus timings were
estimated proportionally to the processor speeds of the computers (3.4 GHz versus 2.9 GHz).
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the significant performance gains obtained in recent works in lattice-based cryptography [GOPS13,DDLL13]
using home-made implementations, instead of relying on arithmetic libraries [GHS12b,BB13].

Table 4. Timings of YASHE and FV using the same parameters as in [BLLN13]: R = Z[x]/(x4096 + 1), q = 2127 − 1,
w = 232, t = 210 on an Intel Core i7-2600 at 3.4 GHz with hyper-threading turned off and over-clocking (‘turbo
boost’) disabled.

Scheme KeyGen Encrypt Add Mult KeySwitch or ReLin Decrypt

YASHE 3.4s 16ms 0.7ms 18ms 31ms 15ms

FV 0.2s 34ms 1.4ms 59ms 89ms 16ms

YASHE [BLLN13] (estimation) – 23ms 0.020ms 27ms 4.3ms

Practical Noise Growth. In Sections 3.4 and 3.5, we provide strict theoretical upper bounds on the noise
growth during homomorphic operations in FV and YASHE to ensure correctness with overwhelming prob-
ability. In practice however, one expects a smaller noise growth on average and one could choose smaller
bounds ensuring correctness with high probability only. This yields a huge gain in performance (allowing to
reduce q, and thus n) while still ensuring correctness most of the time. In Figure 4, we depict an average
noise growth for levels 0 to 10 for FV and YASHE. For example, this figure shows that the real noise growth
allows one to reduce the bit size of q by nearly 33% to handle more than 10 levels. Therefore, for optimal
performances in practice, one should select a modulus q as small as possible while still ensuring correctness
with high probability.
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Fig. 4. Evolution of the norm of the noise using a standard deviation σ = 8, a plaintext modulus t = 2, a word
w = 232, and Bkey = 1, R = Z[x]/(x8192 + 1), and q a 392-bit prime

4.1 Homomorphic Evaluation of SIMON

The SIMON Feistel Cipher. In June 2013, the U.S. National Security Agency (NSA) unveiled SIMON, a
family of lightweight block ciphers. These block ciphers were designed to provide an optimal hardware
performance. SIMON has a classical Feistel structure (see Figure 5) with the round block size of 2n bits.
For performance reasons, in what follows we focus on SIMON-32/64 having a block size of 2n = 32 bits, a
64-bit secret key and Nr = 32 rounds. At round i, SIMON operates on the left n-bit half xi of the block
(xi,yi) and applies a non-linear, non-bijective function F : Fn

2 → Fn
2 to it. The output of F is XORed with

the right half along with a round key ki and the two halves are swapped. The function F is defined as
F (x) = ((x ≪ 8)⊗ (x ≪ 1))⊕ (x ≪ 2) where (x ≪ j) denotes left rotation of x by j positions and ⊗ is
binary AND. The round keys ki are very easily derived from a master key k with shifts and XORs. Details
on how these subkeys are generated can be found in [BSS+13].
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xi yi

ki⊕F

xi+1 yi+1

Fig. 5. The SIMON Round Function

Homomorphic Representation of the State. As in [CCK+13,CLT14] for AES, we encrypt the SIMON state
state-wise. More precisely, the left half x = (x1, . . . , xn) ∈ Fn

2 and the right half y = (y1, . . . , yn) ∈ Fn
2 of

the SIMON state are encrypted as a set of 2n ciphertexts c1, . . . , cn, cn+1, . . . , c2n. For each 1 6 j 6 n, cj
encrypts xj ∈ F2 and cn+j encrypts yj . In other words, the 2n bits of the SIMON state are represented in 2n
different ciphertexts. Note that the use of batching12 with ℓ slots allows one to perform ℓ SIMON evaluations
in parallel by encoding the corresponding bit of the state of the i-th SIMON plaintext into the i-th slot.

Homomorphic Operations. This state-wise encrypted representation of the steps allows to do the SIMON

evaluation easily. Swapping the halves consists in modifying the index of the encrypted state cj ↔ cn+j .
Define encryptions eij of the bits kij of the round keys ki, for all i, j. (When using batching, one encrypts
the vector (kij , . . . , kij) ∈ {0, 1}

ℓ.) This simple representation allows to XOR the right half of the state with
the key via n homomorphic additions cn+j ← cn+j + eij . A shift of a positions as used in the function F is
obtained by some index swapping c(i+a) mod n. Finally, the only AND operation in the function F is obtained
by n homomorphic multiplications. Therefore to obtain an encrypted state c′1, . . . , c

′

2n from an encrypted
state c1, . . . , c2n, one can perform:

c′n+j ← cj ; c′j = (c(j+8) mod n · c(j+1) mod n) + c(j+2) mod n + eij .

Since each round of SIMON consists of one homomorphic multiplication, the leveled homomorphic encryption
schemes need to handle at least as many levels as the number of rounds, i.e. at least 32 for SIMON-32/64
and at least 44 for SIMON-64/128.

Practical Results. We homomorphically evaluated SIMON-32/64 and SIMON-64/128 using our C++ implemen-
tations of FV and YASHE (and also the implementation of [CLT14] for the leveled homomorphic encryption
scheme over the integers13).

Results for the homomorphic evaluation of SIMON-32/64 (resp. SIMON-64/128) are provided in Table 5
(resp. Table 6). Note that we selected parameters ensuring as many bits of security for the homomorphic
encryption schemes as the number of bits of the SIMON key.14

12 Recall that the homomorphic operations yield the operation on underlying plaintexts in the polynomial ring R/tR.
Therefore, to evaluate a Boolean circuit, one can select t = 2 and encode each plaintext bit as the constant coefficient
of a plaintext polynomial. However, if one uses batching with ℓ slots, where each ciphertext can represent a number
of ℓ independent plaintexts, one obtains a significant gain in the use of both space and computational resources.
Batching was adapted to the BGV scheme in [GHS12a], and can be made compatible with both FV and YASHE,
as we detail in Appendix A.

13 Note that the parameters for SIBDGHV have been selected to ensure 64 bits of security. The implementation
of [CLT14] did not allow us to run it with 72 bits of security (or more) because it requires more than 32GB of
RAM. Therefore we only evaluated SIMON-32/64 with this scheme.

14 Parameter Set-II ensures more than 80 bits of security (more likely around 120 bits) but the smaller the modulus
q, the faster is the computation.Now the 1025-bit modulus already allowed us to evaluate the full-fledged SIMON-
32/64 circuit and even to perform additional operations (because the norm of the noise is not maximal). Therefore
we did not select a larger modulus.
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Table 5. Homomorphic Evaluations of SIMON-32/64 on a 4-core computer (Intel Core i7-2600 at 3.4 GHz).

Scheme Parameter λ ℓ = # Keygen Encrypt SIMON Relative Norm of Noise
set of slots State Evaluation time Final Maximal

FV Ib 64 2 4 s 7 s 526 s 263 s 509 516

YASHE Ia 64 1 64 s 4 s 200 s 200 s 561 569

YASHE (1 core) Ia 64 1 64 s 14 s 747 s 747 s 557 569

FV II > 80 1800 24 s 209 s 3062 s 1.70 s 918 1024

YASHE II > 80 1800 1300 s 104 s 1029 s 0.57 s 949 1024

SIBDGHV [CLT14] – 64 199 1032 s 1 s 628 s 3.15 s 650 704

λ d n = φ(d) # of slots log2(q) log2(w) σ Bkey

Set-Ia 64 10501 10500 1 570 70 8 1

Set-Ib 64 9551 9550 2 517 65 8 1

Set-II > 80 32767 27000 1800 1025 257 8 1

Table 6. Homomorphic Evaluations of SIMON-64/128 on a 4-core computer (Intel Core i7-2600 at 3.4 GHz).

Scheme Parameter λ ℓ = # Keygen Encrypt SIMON Relative Norm of Noise
set of slots State Evaluation time Final Maximal

FV III 128 2048 50 s 160 s 12418 s 6.06 s 1162 1224

YASHE III 128 2048 2200 s 80 s 4193 s 2.04 s 1223 1224

YASHE (1 core) III 128 2048 2200 s 300 s 16500 s 8.05 s 1223 1224

λ d n = φ(d) # of slots log2(q) log2(w) σ Bkey

Set-III 128 65536 32768 2048 1225 205 8 1

4.2 Some Thoughts about Homomorphic Evaluations

Latency versus Throughput. Let us define the two notions latency and throughput associated to a homomor-
phic evaluation. We say that the latency of a homomorphic evaluation is the time required to perform the
entire homomorphic evaluation. Its throughput is the number of blocks processed per unit of time.

The results presented in Table 5 emphasize an important point: different parameter sets can be selected,
either to minimize the latency (Set-Ia and Set-Ib), or to maximize the throughput (Set-II). In [CLT14]
and [GHS12b,CCK+13], the parameters were selected to maximize the throughput using batching, and
therefore claim a small relative time per block – the latency however is several dozens of hours. However, ‘real
world’ homomorphic evaluations (likely to be used in the cloud) should be implemented in a transparent and
user-friendly way. It is therefore questionable whether the batching technique (to achieve larger throughput
in treating blocks) is suitable for further processing of data. In particular, it might only be suitable when this
processing is identical over each block (which is likely not to be the case in real world scenarios). Overall, one
should rather select parameters to have the latency as small as possible. The throughput can be increased
by running the homomorphic evaluations in a cluster.

Cloud Computations. The purpose of the scenario in which the data is sent encrypted with a block cipher
to the cloud is that, once the data arrives in the cloud and has been homomorphically decrypted, the cloud
can perform more homomorphic operations on it. With a scheme that implements bootstrapping, there is
no restriction to that (e.g. [CCK+13]). But in practice, the homomorphic encryption schemes often are not
implemented with bootstrapping. For example the AES evaluations in [GHS12b,CLT14] choose the param-
eters for the leveled homomorphic scheme such that it can do the AES decryption without bootstrapping,
but not much more. Similarly, the parameters we selected to homomorphically evaluate SIMON (cf. Tables 5
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and 6) do not allow to do much more.15 Taking into account a certain amount of computations after the
homomorphic decryptions, either requires larger parameters to ensure correctness16, or the implementation
of bootstrapping. Following the former approach, it should be noted that parameter selection needs to be
done ensuring correctness for a circuit including the block cipher operation and the desired application func-
tion. Overall, depending on the specific application, performance might become worse than indicated in the
current results.

5 Conclusion

In this work, we revisited van de Pol and Smart’s approach to tackle parameter selection for lattice-based
cryptosystems. We also conducted both a theoretical and practical comparison of FV and YASHE. We ob-
tained that the noise growth is smaller in FV than in YASHE (both theoretically and practically). Conversely,
we obtained that YASHE is, as expected, faster than FV. As a side result, for high performances, it seems
interesting to implement all building blocks of the schemes rather than to rely on external arithmetic libraries.

Next, we homomorphically evaluated the lightweight block cipher SIMON, and discussed the notions of
throughput and latency. We obtain that SIMON-32/64 can be evaluated completely in about 12 minutes on
a single core and in about 3 minutes on 4 cores using OpenMP (when optimizing latency). If several blocks
are processed in parallel, SIMON-32/64 can be evaluated in about 500ms per block (and less than 20 minutes
total) and SIMON-64/128 in about 2s per block (and less than 1h 10min total); and these timings can be
lowered by using additional cores.

Finally, note that our results can certainly be improved further by other optimizations. One could incor-
porate dynamic scaling during the computation as discussed in [FV12] such that it is ensured that ciphertexts
maintain their minimal size. Another possible variant is to use the Chinese Remainder Theorem to pack each
half of the SIMON state into one single ciphertext instead of spreading it out over n ciphertexts. Opera-
tions that need to move data between different plaintext slots can be realized by Galois automorphisms as
explained in [GHS12a]. This can possibly be further combined with batching of several SIMON states into
one ciphertext. To explore the application of these to both schemes and possibly further optimizations for
realizing a fully home-made and fully optimized implementation of a homomorphic SIMON evaluation is left
as future work.

Acknowledgments. We thank the Africacrypt 2013 referees for their interesting reviews, and Frederik
Vercauteren for insightful comments on batching.
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A Details on Batching for FV and YASHE

Recall R = Z[x]/(Φ(x)), and even though Φ is irreducible over Q[x], it might factor modulo t. Assume that
Φ splits into exactly r distinct irreducible factors of degree g = n/r = ϕ(d)/r, i.e.

Φ(x) =
r
∏

j=1

fj(x) .

The Chinese Remainder Theorem yields the natural isomorphism

Rt
∼= Zt[x]/(f1(x))⊗ · · · ⊗ Zt[x]/(fr(x)) .

Note that if t is a prime, each component Zt[x]/(fj(x)) is isomorphic to the finite field extension Ftg . We
denote by ρj : Rt 7→ Zt[x]/(fj(x)) the projection of Rt onto Zt[x]/(fj(x)). In particular, for all m ∈ Rt, we
have

m = CRTf1,...,fr (ρ1(m), . . . , ρr(m)) .

In particular, this allows one to add and multiply in parallel in each slot independently since if m,m′ ∈ R/tR,
we have

ρj(m+m′) = ρj(m) + ρj(m
′) modfj

ρj(m ·m
′) = ρj(m) · ρj(m

′) modfj
.
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Table 7. Exhaustive list of the numbers of slots r > 900 and dimensions of the ring for values of d ∈ [19000, 40000]
and d = 65535.

d 28679 31775 32767 36873 37449 65535

n = ϕ(d) 23040 24000 27000 23040 23328 32768

Number of slots r 960 1200 1800 960 1296 2048

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2

·104
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1,000

1,500

900

d

r

Fig. 6. Number of slots when t = 2 and d ∈ [19000, 40000].

Finally, to encrypt a vector m = (m1, . . . ,mr) ∈ (Zg
t )

r, one computes

m = CRTf1,...,fr

(

g−1
∑

i=0

m1[i]x
i, . . . ,

g−1
∑

i=0

mr[i]x
i

)

,

and encrypts m as in FV or YASHE. To decrypt, one recovers m and then looks at the coefficients of m mod fj
for j = 1, . . . , r.

For the homomorphic evaluation of Boolean circuits, we need to encrypt bits and compute the XOR
and AND of bits homomorphically. For this we select the plaintext modulus to be t = 2. And the batching
procedure allows to work with bit-vectors of length r in parallel. In particular, to encrypt a bit-vector
m = (m1, . . . ,mr) ∈ {0, 1}

r, one computes

m = CRTf1,...,fr (m0, . . . ,mr) ,

and encrypts it in the normal way. Now if m = CRTf1,...,fr (m1, . . . ,mr) and m′ = CRTf1,...,fr (m
′

1, . . . ,m
′

r),
then

m+m′ ∈ R2 = CRTf1,...,fr (m1 +m′

1 mod 2, . . . ,mr +m′

r mod 2) ,

and
m ·m′ ∈ R2 = CRTf1,...,fr (m1 ·m

′

1 mod 2, . . . ,mr ·m
′

r mod 2) .

In particular, the homomorphic addition (resp. multiplication) of the ciphertexts of m and m′ yields an
encryption of the component-wise XOR (resp. AND) of m and m′.

Note that the usual choice d = 2k (thus n = 2k−1) for R, chosen for efficiency reasons [BLLN13,DDLL13],
does not allow to batch when t = 2. Indeed, in that case Φ(x) = xn + 1 = (x+ 1)n mod 2 splits completely
modulo 2 but the factors are not distinct. We provide in Table 7 some values of d, n to obtain the maximal
number of slots when t = 2 between d = 19000 and d = 40000 (see also Figure 6).
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