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Abstract: In this paper the device driver architectures entlty used by two of the most popular operating
systems, Linux and Microsoft's Windows, are examdin®river components required when implementing
device drivers for each operating system are ptedeand compared. The process of implementingvardfior
each operating system, that performs I/O to a kdounier is also presented. The paper concludesxhynining
the device driver development environments anditiasi provided to developers by each operatingesys

1. Introduction

Modern operating system kernels consist of a nurabeomponents such as a memory manager, process
scheduler, hardware abstraction layer (HAL) andisgcmanager. For a detailed look at the Windowmkl|
refer to [Russinovich, 98] and for the Linux kerfiRusling, 99], [Beclet al,98]. The kernel can be viewed as
a black box that should know how to interact whk many different types of hardware devices that exd
the many more devices that do not yet exist. Grgadi kernel that has inbuilt functionality for irdeting with
all known hardware devices may be possible bubisractical. It would consume too many system ueses,
needlessly.

11 Kerne Modularity

A kernel is not expected to know how to interadthwiew types of devices that do not yet exist attime
of its creation. Instead modern operating systemels allow their functionality to be extended hg addition
of device driver modules at runtime. A module imnmpits functionality that will allow the kernel totéract
with a particular new device. Each module impletsenroutine that the kernel will call at moduladaime
and a routine that gets called at module remowvak.tiModules also implement various routines thdt wi
implement I/O functionality for transferring dataand from a device as well as a routine for igpuievice I/O
control instructions to a device. The above appbdsoth the Linux and Windows driver architectures

1.2 Organisation of this paper

The material in this paper is divided into thedualing sections:
e General driver architecture of the two operatingiems (section 2)
e Driver architecture components of each operatirstesy (sections 3)
¢ Implementation of a driver that performs I/O toeariel buffer (section 4)
< Driver development environments and facilities teby the two operating systems to developers
(section 5)

13 Related Work

The Windows device driver architecture is documeritg documentation that accompanies the Windows
Device Driver Development kit [Microsoft DDK, 02further, the works produced by Walter Oney [On&Y, 9
and Chris Cant [Cant, 99] present a detailed adcofithe Windows Driver Architecture. The Linux des
driver architecture is documented well by the fyemlailable publication authored by Rubatial [Rubini et al,

01].



2. Device Driver Architectures

A device driver enables the operation of a piecdafiware by exposing a programming interface that
allows a device to be controlled externally by amtlons and parts of an operating system. Thisigec
presents the driver architectures currently in bgetwo of the most commonly used operating systems,
Microsoft's Windows and Linux, and the origin oktharchitecture.

2.1. Origin of theLinux Driver Architecture

Linux is a clone of the UNIX operating system ficstated by Linux Travolds [Linus FAQ, 02], [LinugHl
02]. It follows that the Linux operating systemlises a similar architecture to UNIX systems. UNiperating
systems view devices as file system nodes. Dedppear as special file nodes in a directory detéghby
convention to contain device file system node estfDeitel, 90]. The aim of representing devicefilasystem
nodes is so that applications can access devicageénice independembanner [Massie, 86],[Flynat al, 97].
Applications can still perform device dependentrafiens with a device I/O control operation. Desgicae
identified by major and minor numbers. A major nemberves as an index to an array of drivers améhar
number is used to group similar physical devicesit, 90]. Two types of UNIX devices existhar and
block Char device drivers manage devices that are accesseeérgally with no buffering, anBlock device
drivers manage devices where random access isbfisand data is accessed in blocks. Bufferinglde a
utilised in block device drivers. A block device stibe mounted as a file system node for it to lwessible
[Becket al, 98].

Linux retains much of the UNIX architecture, théfetience being thathar device nodes corresponding to
block devices have to be created in UNIX systenmreas in Linux, the Virtual File System (VFS) nfaee
blurs the distinction betweethar and block devices [Beclet al, 98]. Linux also introduces a third type of
device called anetworkdevice. Network device drivers are accessed inffarent way tochar and block
drivers. A set of APIs different from the file sget /O APIs are used e.g. the socket API, whichsisd for
accessing network devices.

2.2, Origin of theWindows Driver Architecture

In 1980, Microsoft licensed the UNIX operating ®ystfrom Bell labs, later releasing it as the XENIX
operating system. With the first IBM PC, MS DOSsien 1 was released in 1981. MS DOS version 1 had a
similar driver architecture to UNIX systems basedXENIX [Deitel, 90]. The difference to UNIX systes
was that the operating system came with built imeds for common devices. Device entries did nqiegp as
file system nodes. Instead reserved names wergnasisto devices. E.g. CON was the keyboard orescre
PRN the printer and AUX the serial ports. Applioas could open these devices and obtain a handle to
associated drivers as they would with file systemdes, and perform 1/O to them. The operating system
transparent to applications, translated reservettelenames to devices that its drivers managed. DNI&S
version 2 introduced the concept of loadable dsiveSince Microsoft had made the interface to rised
architecture open, this encouraged third partyatemanufacturers to produce new devices [Davis, Bd}ers
for these new devices could then be supplied bgviare manufacturers and be loaded/unloaded atmeritito
the kernel, manually.

Later on, Windows 3.1 was released by Microsofhdt support for many more devices and utilised an
architecture based on MS DOS. With its later ofregatystems, Windows 95, 98 and NT, Microsoft idtroed
the Windows Driver Mode (WDM). The WDM came aboechuse Microsoft wanted to make device drivers
source codecompatible with all of its new operating systemsdidsoft WDM, 02]. Thus, the advantage of
making drivers WDM compliant is that once createdyiver need only be recompiled before it is usalol any
of Microsoft’s later operating systems.

2.3. The Windows Driver Architecture

There are two types of Windows drivers, legacy Bhdy and Play (PnP) drivers. The focus here is only
PnP drivers, as all drivers should be PnP drivdrsrer the possible. PnP drivers are user friendigesivery
little effort is required from users to install theAnother benefit of making drivers PnP is thaytiget loaded
by the operating system only when needed, thusdhayot use up system resources needlessly. Lelyjpeys
were implemented for Microsoft's earlier operatisigstems and their architecture is outdated. Theddvis
Driver Model (WDM) is a standard model specified Kycrosoft [Microsoft DDK, 02]. WDM drivers are
usable on all of Microsoft’s recent operating syseWindows 95 and later).



2.3.1. TheWDM driver architecture

There are three classes of WDM drivers: filter,clional and bus drivers [Oney, 01]. They form theck
illustrated in figure 2.3. In addition, WDM drivensiust be PnP aware, support power management and
Windows Management Instrumentation. Figure 2.3 shbow data and messages are exchanged between the
various driver layers. A standard structure caled!/O Request Packet (IRP) is used for commumicati
Whenever a request is made from an applicationdiwvar, the /O manager builds an IRP and pagsdgwn
to the driver, which processes it, and when darmmpletes’ the IRP [Cant, 99]. Not every IRP fitelown to a

bus driver. Some IRPs get handled by the layervealamd are returned to the /O manager from there.
Hardware access to a device is done through a haedabstraction layer (HAL).
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Figure 2.3 The WDM Driver Architecture

2.4, TheLinux Driver Architecture

Drivers in Linux are represented as modules, whighpieces of code that extend the functionalitthef
Linux kernel [Rubiniet al, 01]. Modules can be layered as shown in figue Zommunication between
modules is achieved using function calls. At loatketa module exports all functions it wants to mplblic to
a symbol table that the Linux kernel maintains. Sehéunctions are then visible to all modules. Ascts

devices is done through a hardware abstractiorr @yaL) whose implementation depends on the hardwar
platform that the kernel is compiled for, e.g. x86SPARC.
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Figure 2.4 The Linux Driver Architecture

2.5. The Linux and Windows Driver Architectures Compared

As can be seen in figures 2.3 and 2.4, a numbsinofarities exist between the two operating syste®n
both systems, drivers are modular components tkigne the functionality of the kernel. Communicatio
between driver layers in Windows is through the o6#O Request Packets (IRPs) supplied as arguartent
standard system and driver defined functions, waseie Linux function calls with parameters custaedizo a
particular driver are used. Windows has separateecke€omponents that manage PnP, I/O and PoweseThe
components send messages to drivers using IRPpmipgiate times.

In Linux, there is no clear distinction betweendi@d modules, i.e. modules are not categorisedugs b
functional or filter drivers. There is no clearlefthed PnP or Power manager in the kernel thatssend
standardised messages to modules at appropriage.tithe kernel may have modules loaded that impleme
Power Management or PnP functionality, but therfate of these modules to drivers is not clearlsced.
This functionality is likely to be incorporated iater Linux kernels as the Linux kernel is always i
development. Once data is passed to a driver shgart of a stack of modules by the kernel, tha dsdy be
shared with other drivers in the stack throughrderface specific to that set of drivers.

In both environments, hardware access through a hdrface is implemented for the specific platform
the kernel is compiled for, i.e. x86, SPARC etc. céinmon feature of both architectures is that dsivare
modules that can be loaded into a kernel at runtitaeh module contains an entry point that theétetnows
to start code execution from. A module will alsot@n routines that the kernel knows to call whenl/®
operation is requested to a device managed bymiwatule. This enables the kernel to provide a device
independent interface to the application layer. érenin-depth comparison of driver components frbm tivo
architectures is presented later in Section 3.3.

3. Drivers Components

The process of creating a device driver requiresnkedge of how the associated hardware device is
expected to operate. For example, just about edevice will allow its clients to read data from andte data
to it. In this section driver components that mostimplemented by all drivers are presented, at ageh
comparison of the two operating systems’ driver gonents. The implementation of a driver that genfol/O
to a kernel buffer is also presented. The sectintlades with a look at the driver development emrnents
and facilities offered by each operating system.



3.1 Windows Driver Components

Drivers in Windows consist of various routines. ®oafe required, others optional. This section prtsse
the routines that every driver must implement. Aickedriver in Windows is represented by a struiealled a
DriverObject It is necessary to represent a driver with acstine such as a driver object because the kernel
implements various routines that can be perfornoed¥ery driver. These routines, discussed in dtleviing
sections, operate on a driver object.

3.1.1. Driver Initialisation

Every device driver in Windows contains a routimfled DriverEntry. As its name suggests, this routine is
the first driver routine executed when a drivelosded and is where initialisation of the deviceel's device
object is performed. Microsoft's DDK [Microsoft DQKD2] states that a driver object represents eentlyr
loaded kernel driver whereas a device object reptssa physical, logical or virtual device. A simdbaded
kernel driver (represented by a driver object) camage multiple devices (represented by devicect#)je
During initialisation, fields in the device objettat specify the driver'snloadroutine,add deviceoutine and
dispatchroutines are set. Thenloadroutine is a routine that is called when the drigeabout to be unloaded so
that it can perform cleanup operations e.g. freeipgnemory allocated off the kernel heagdDeviceis a
routine that is called after tHeriverEntry routine if the driver being loaded is a PnP drivehile thedispatch
routines are routines that implement driver I/Orafiens.

3.1.2. TheAddDevice Routine

PnP drivers implement a routine calldddDevice In this routine a device object is created atictvttime
space for storing global data for a device is alled. Device resource allocation and initialisatisralso
performed. Device objects are referred to by diffiimames depending on where they where creatadiefice
object is created in a currently loaded driver nage that driver, it is called a Function Devidgeot (FDO).
If it is a device object from a lower driver in @k of drivers, it is called a Physical Device &@j(PDO). If it
is a device object from an upper driver in a staoltrivers, it is called a Filter Driver Object (D).

3.1.2.1.Creating a device object

A device object corresponding to a device is cabatgng the /O Manager routine callexCreateDevice
inside theadd deviceroutine. The most important requirements lfi€reateDeviceare a name for the device
object and device type. The name allows applicatemmd other kernel drivers to gain a handle tadtheer, in
order to perform 1/O operations. The device typecHjes the type of device the driver is used for,example
a storage device.

3.1.2.2. Global Driver Data

When a device object is created it is possiblestmaiate with it a block of memory, callBéviceExtension
in Windows, where custom driver data can be stoféds is an important facility, as it eliminatestheed to
use global data structures in driver code, whiah lea difficult to manage. For example, in the cabere a
local variable with the same name as a global blzies declared in a routine mistakenly, the driveiter may
find it difficult to track a bug in the driver. #lso makes it easier to manage device object speiefa, when
more than one device object exists in a singleedrigas is the case when a bus driver manages mtmjisical
device objects for devices present on its bus.

3.1.2.3.Device naming

A device can be named at device object creation.tifhis name can be used for accessing a handle to
driver. The handle is then used for performing K@crosoft recommends not naming functional devibgects
created in filter and functional drivers. As poihteut by Oney [Oney, 99], if a device object is edmany
client can open the device object and perform donbn-disk device drivers. This is because thaulefccess
control status Windows gives to non-disk deviceeoty is an unrestricted one. Another problem i tihea
name specified does not have to follow any namirmgogol, so the name specified may not be a walseh
one. For example two driver writers may come ughwifite same name for their device objects, whichldvou
cause a clash.

Windows supports a second device object namingnsehgsing device interfaces. Device interfaces are
constructed with 128 bit globally unique identifidGUIDs) [Open Group, 97]. A GUID can be generatsithg
a utility provided by the Microsoft DDK. Once geatrd, a GUID can be publicised. A driver registées



GUID for a device interface in it@add deviceroutine through a call to the I/O manager routine
loRegisterDevicelnterfac®©nce registered, the driver must enable the daxiterface through a call to the /O
manager routindoSetDevicelnterfaceStatdhe registration process will add an interfacéadentry to the
Windows registry file, which can be accessed byliegions.

3.1.2.4. Driver Access from an Application

An application that wants to perform 1/O operatiovith a device driver must obtain a handle to aicev
driver through theCreateFileWin32 API call. It requires a path to a devicelsas \\device\devicex. Named
devices will have their names appear in the narmaeespalled \\device, thus the previous path isafdevice
nameddevicex CreateFile also requires access mode flags such as read and file sharing flags for the
device.

Accesses to unnamed devices that have registatetliee interface are performed differently as shawn
figure 3.1.2.4. This requires obtaining a handla wevice information structure using the drivés8ID, and
calling the SetupDiGetClassDewd/in32 API routine. This is only possible if theivdr registered a device
interface, through which applications can accesgslthvice (called a device interface class).

Each time a driver calls the /O manager routimRRegisterDevicelnterface new instance of the device
interface class is created. Once a device infoondiandle is obtained by an application, multigéiscto the
Win32 API routineSetupDiEnumDevicelnterfacesill return device interface data for each instamt the
device interface class. Lastly, a device path &mheof the driver instances can be retrieved frioeniterface
data obtained from the previous call with anothem3¥ API routine, SetupGetDevicelnterfaceDetail
CreateFilecan then be called with the device path for theiageinstance of interest, to obtain a handle for
performing 1/O.
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SetupDiEnumDevicelnterfaces
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\Device SetupDiGetDevicelnterfaceDetail
—— devicea A
| Device Path |
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CreateFile API call |
—— devicex #l Handle for 1/1O

Figure 3.1.2.4 Obtaining a handle an applicatiomasse for 1/0 from a device GUID.

3.1.2.5. Device Object Stacking

When theadd deviceroutine is called by the PnP manager, one of Hrarpeters passed to it is a device
object (PDO) for a driver below the current onevibe object stacking is performed in thed devicaoutine
so that IRPs sent by drivers in the layer belowdheer being loaded can be received by it. Dewbgect



stacking is achieved by a call to the I/O Managrirtine loAttachDeviceToDeviceStads shown in figure
3.1.2.5. A physical device object (PDO) is requingtlich is lower in the stack than the new devibgct when
calling loAttachDeviceToDeviceStackhe routine attaches the specified device objethe top of the driver
stack and returns a device object that is one béiewew one e.g. in the example shown on figute2® this
would be lower device object X. The lower physidalice object (PDO) can be any number of layetawbe
the new device object biAttachDeviceToStaadleturns the device object one below the curreat on

Device object (FDO)

loAttachDeviceToDeviceStack Device object (FDO)

»
»

Lower Device object X

Lower Device object X

Lower Device object Y

Lower Device object Y

Lower Device object Z

Lower Device object Z

Figure 3.1.2.5 Attaching a device object to thedbp device object stack.

3.1.2.6. User to Kernel and Kernel to User Datarisfer Modes in Windows

The mode used to transfer data from kernel spaasdapspace and vice versa is specified in the fliagnl
of a device object. There are three modes: buffé@ddirect I/O and I/O that does not use anyhef latter
methods termed “method neither 1/O”. Figure 3.1.BiBstrates the three modes. In buffered /O mdtiue
operating system allocates a kernel buffer that ltandle a request. In the case of a write operation
operating system validates the supplied user spaffer and copies data from the user space budfe¢he
newly allocated kernel buffer and passes the keonéfer to the driver. In the case of reads, theraiing
system validates the user space buffer and copiesfibm the newly allocated kernel buffer to tlseruspace
buffer. The kernel buffer is accessible to driveessheAssociatedirp.SystemBuffeeld of an IRP. Drivers read
from or write to this buffer to communicate withpsipations when buffered /O is in use.

Direct I/O is the second /O method that can bel dse data exchanges between applications andvardri
An application-supplied buffer is locked into memday the operating system, so that it will not leapped
out, and a memory descriptor list (MDL) for the ked memory is passed to a driver. An MDL is an ogaq
structure. Its implementation details are not Vesilo drivers. The driver then performs DMA to theer space
buffer through the MDL. The MDL is accessible tdvdrs through theMdlAddressfield of an IRP. The
advantage of using direct I/O is that it is fagtem buffered I/O since no copying of data to amdnfuser and
kernel space is necessary and I/O is performedttinato a user space buffer.
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Figure 3.1.2.6 The three ways in which data frommé&kto user and user to kernel
space is exchanged.

The third method for I/O is neither buffered noesiMDLs. Instead the operating system passes tiuglvi
address for a user space buffer to the driver.dFiver is then responsible for checking the validit the buffer
before it makes use of it. In addition, the usexcepbuffer is only accessible if the current threaatext is the
same as the application’s, otherwise a page falllltoscur since the virtual address is valid onlhile that
application’s process is active.

3.1.3. Dispatch Routines

Dispatch routines are routines that handle inconhi@grequests packaged as IRPs (I/O request packets
When an IRP arrives (e.g. when an applicationdtes I/O), an appropriate dispatch routine is setefrom the
array of routines specified in tihdajorFunctionfield of a driver object as shown in figure 3.1TBese dispatch
routines are initialised in the driver's entry riogt  Every IRP is associated with an 1/O staclatimn structure
(used for storing an IRP’s parameters) when credted structure contains a field, which specifies dispatch
routine the IRP is meant for and the relevant patars for that dispatch routine. The I/O managéerdgnes
from an IRP which dispatch routine it will send KRi®.
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The 1/0 Manger selects a dispatch The dispatch routine identified by the
routine to send the IRP to. major function number will be called
The IRP’s 1/0O Stack location contains  from the driver object’s MajorFunction
a field called MajorFunction which field member, which is an array of

identifies the target dispatch routine. routines.

Figure 3.1.3 dispatching IRP’s to dispatch routines

Thus IRPs are routed to an appropriate driver segploutine so that they can be handled there. iRetju
dispatch routine IDs are shown in table 3.1.3. They indexes for the array of routines specifiedthuy
MajorFunction field of a device object. The dispatoutines have custom driver supplied names that a
implemented by the driver. They all accept an IR& @ device object to which the IRP is being sent.

IRP_MJ_PNP Handles PnP messages

IRP_MJ_CREATE Handles the opening of device to gain a handle
IRP_MJ_CLEANUP Handles the closing of the device handle gained above
IRP_MJ_CLOSE Same as clean up, called after cleanup
IRP_MJ_READ Handles a read request to a device

IRP_MJ_WRITE Handles a write request to a device
IRP_MJ_DEVICE_CONTROL Handles a I/O control request to a device

IRP_MJ_INTERNAL_DEVICE_CONTROL Handles driver specific I/O control requests
IRP_MJ_SYSTEM_CONTROL Handles WMI requests

IRP_MJ_POWER Handles power management messages

Table 3.1.3 Required Windows driver dispatch raagin

3.1.4. WindowsDriver Installation

Windows uses installation information containedairiext file called an INF file to install driverShe
creator of a driver is responsible for providinglili file for the driver. A GUI application that govided with
the Windows DDK calledsenInfallows the generation of an INF file for a drivitrrequires a company name
and a Windows Device class under which the drivillirbe installed. Windows has various pre-definedide
classes for installed drivers. The Windows deviamager applet, accessible through the system ¢qane|
applet, shows all installed drivers categorisetigishese device classes. Examples of existingedaae the
1394 and PCMCIA device classes. A custom devicgsalan be added by addinglassinstall32section in the
INF file.

The hardware ID for a PnP-aware device must alsspbeified in the INF file since it will be used the
system to identify the device when the device &eited into the system. A hardware ID is an idiatifon
string used by the PnP manager to identify devibas are inserted into the system. Microsoft piigssPnP
hardware IDs for the various devices that are @salith the Windows operating system. This hardwBrés
stored on the hardware device and read off thecdéy the system when that device is insertedtiresystem.
Once an INF file for a new device is successfuibtalled into the system, the driver for that de\iwhich has
a specific hardware ID) will be loaded each time drevice is inserted into the system and unloadeshvthe
device is removed from the system.



3.1.5. Obtaining Driver Usage I nformation in Windows

The device manager found in the control panel systpplet provides driver information for userslidts
all currently loaded drivers and information on tv®viders of each driver and their resource uségalso
displays drivers that failed to load and their eoades.

3.2 Linux Driver Architecture Components

Device drivers in Linux are similar to those in \Waws in that they too are made up of various rastin
that perform I/O and device control operations.réhis no driver object visible to a driver, instedrivers are
internally managed by the kernel.

3.2.1. Driver Initialisation

Every driver in Linux contains a register driveutioe and a deregister driver routine. The regidterer
routine is the counterpart to the Windows drivertrgrroutine. Driver writers use thenodule_init and
module_exitkernel defined macros to specify custom routirtest will be designated as the register and
deregister routines.

3.2.1.1. Driver Registration and Deregistration

The routine designated by timeodule_initmacro as the registration routine is the first irmitexecuted
when a driver is loaded. The driver is registeredehby using a kernel character device registratbortine
called register_chrdev The important requirements for this routine areaae for the driver, a driver major
number (discussed later in section 3.2.2) and afsetutines for performing file operations. Ottdbiver-
specific initialisation should take place in thisitine. The deregistration routine gets executeenathe driver
is being unloaded. Its function is to perform clgamperations before a driver is unloaded. A aathe kernel
routineunregister_chrdewith a device name and major number is necesshenwleregistering a driver that
was previously registered withregister_chrdecall.

3.22. Device Naming

In Linux, devices are named using numbers in tmgead to 255, called device major numbers. This
implies that there can be a maximum of 256 usablécds i.e. devices that an application can gdiaralle to,
but each driver for such a major device can maragmany as 256 additional devices. These drivelageth
devices are numbered using numbers in the rang®b3, called device minor numbers. It is therefussible
for applications to gain access up to 65535 (256)x2tevices. Major numbers are assignhed to well know
devices for example major number 171 is assigndBE& 1394 devices. The fiBocumentation/devices.tit
the Linux kernel source tree contains all major harmassignments and a contact address for theedewiober
registration authority. Currently, major numbersO264 are available for experimental use. A drizan
specify a major number of 0 to request automasgasnent of a major number for a device, if onavailable.
The use of major number 0 for this purpose doesaate problems, as it is reserved for the nullcdeand no
new driver should register itself as a the nullicedriver.

3.2.2.1. Driver Access from an Application

Drivers are accessed by applications through filstesn entries (nodes). By convention, the drivers
directory is/devon a particular system. Applications that warpedorm I/O with a driver use th@pensystem
call to obtain a handle to a particular driver.eBipensystem call requires a device node name suchea#tid
and access flags. After obtaining a handle, théicgipn can use the handle in calls to other sysf© calls
such as read, write and IOCTL.

3.23. Fileoperations

In Windows, dispatch routines were set up in theedrentry routine of a driver. In Linux, these phsch
routines are known as file operations and are sepited by a structure calléie_operations A typical driver
would implement the file operations listed in taBl2.3.

Open Handles the opening of device to gain a handle

Release Handles the closing of device handled gained above



Read Handles a read request to a device

Write Handles a write request to a device
Liseek Handles a seek operation on a device
loCtl Handles a device control request for a device

Table 3.2.3 Most commonly defined driver file ofieres in Linux

These file operations are specified during driegistration. A structure calldde is created by the kernel
whenever an application requests a handle to aceland is supplied to the driver whenever one effille
operation routines is called. The file operationties serve many clients, each represented Hylersructure.
The structure has a field namédp. This field is a pointer to the original set dfefioperations that were
specified at registration time of a major driverisl therefore possible to change the original diferations
during a call to any of the file operation routidsschanging the value of the field nanfedpto point to a new
set of file operations.

3.2.3.1. Global Driver Data

Whenever an application issues the systpencall on a device file node idey the application, gets back
a handle to a device from the operating systemthist time the driver'sopen function is called with a file
structure created for that open call. This filaisture is passed by the kernel to the driver whenemy of the
file operations routines are executed. Tnwvate_datafield of thefile structure can be any driver-supplied
custom data structure. Driver private data is uglst up in theopenfile operations function by allocating
memory, and freed in the release file operationstfan. The private data field of tliiée structure can be used
to point to data that is global to a driver instefdsing global variables.

3.24. HowDriver Mgjor and Minor Numbers Work

3.2.4.1.The Problem

In Linux only one driver can register itself to nage a device with a particular major number i.évedr
registration uses only a major number. If for exeEmnjwo device nodes /dev/devicel (major no 4 mifjoand
/devi/device2 (major number 4 minor number 2) exily one driver can handle requests, from apphcati to
these two device nodes. This restriction existabse no driver registration facility exists wherebgriver can
register itself to manage a device with major nunxbend minor number y.

3.2.4.2.The Workaround

e A driver is loaded to manage devices with major bend. This driver registers itself with the
kernel (see section 3.2.1.1 for how this is done).

¢ Two separate drivers are loaded. One manages @edeith major number 4 minor 1 and the other
a device with major number 4 minor 2. These drivdaot register themselves with the kernel,
but with the driver that manages devices with majamber 4. This driver responsible for
implementing the registration facility and keeptrak of drivers that register with it.

« When an application opens any one of the two denambes (/dev/devicel or /dev/device2), the
open routine of the driver registered to managedcesvwith major number 4 is called by the
kernel. Afile structure that represents the opened device s&gds this open routine.

e At this point, the driver that manages devices withjor number 4 alters the file operation
function pointers f( op member of thdile structure) to point to I/O routines implementedtbg
driver that manages the opened device. Opensrairrdievices by applications are identified by
the driver that manages devices with major numhartde following manner:

0 A structure callednodeis also passed to tlopenroutine. This structure contains a field
namedi_rdev, which specifies the major and minor numbers f@ tievice the open
operation was targeted at. The kernel macros MING& MAJOR can be used to extract
these values from thierdev field. In this example the MAJOR number would bant
the minor number either 1 or 2. The driver that ag@s devices with major number 4 can
then locate a minor device driver from its regitradatabase using this information.



3.25. User toKernd and Kernd to User Data Transfer Modesin Linux

In Linux, three ways exist for drivers and applicas to exchange data to and from kernel and ymeres
These are buffered I/O, direct I/O and mmap. Irfdyefl /O mode, data is copied by the kernel fr@erispace
to a kernel space buffer before it is used insidkiger. Unlike Windows the Linux kernel does narform
buffering for I/O automatically. Instead, kernekbuspace access routines are made available tatcdpying
of data to and from user space by drivers. In tiV€ mode, drivers can read and write data to famich user
space buffers directly. This is achieved throughktbbufinterface, which involves mapping a user spacéebuf
to akiobufdefined structure throughkéobufkernel call. The operation locks a user spaceebsf that it does
not get swapped out and is always available forogelO. The third method, called mmap, involves thiver
mapping a chunk of kernel memory to user spacegusimap kernel calls, so that applications can perfiéO
to the mapped kernel memory. [Rubatial, 01].

3.2.6. Linux Driver Installation

Drivers are installed in Linux by transferring ttiever files into a system specific directory. hetRedHat
distribution [Redhat, 02], modules are locatechia directorylib/modules/kernel_versiowherekernel_version
specifies the version of the kernel currently l@hdeg. 2.4.19. A configuration file called modudemf located
in the system’s configuration file directory elgtc, is used by the kernel while loading modules. it ba used
to override the location for a particular driverisl also used for defining other module loadinga@ys, such as
defining parameters to be passed to a driver wbadlirig it.

Module loading and unloading is performed usinggprms that come with the kernel module utilities
package called insmod, modprobe and rmnimsinodandmodprobeload the binary image of a driver into the
kernel and rmmod removes it. Another program caledod lists all currently loaded modules. Insmod will
attempt to load a module and return an error ifrtfeelule being loaded depends on other modutesiprobe
will try to satisfy module dependencies by attemptio load any modules the current module may dijpen
before loading it. The module dependency infornmaisoobtained from a file called modules.dep lodatethe
system’s modules directory.

Before a driver can be accessible to applicatiardgvice node (see sections 2.1 and 3.2.2.1 forLiaux
represents devices in the system) for that drivéh the devices major and minor numbers, mustrbated in
the devices directoridev A system program calleshknodis used for this purpose. When creating a device
node, it is necessary to specify whether the nederia character device or a block device.

3.27. Obtaining Driver Usage I nformation in Linux

It is often necessary to check the status of loalfie@rs in a system. In Linux, the proc file syst&s used
to publish kernel information for application usagée proc file system is just like any other figstem. It
contains directories and file nodes that applicatican access and perform I/O operations with. dfference
between files on the proc file system and ordiriéeyg is that data from I/O operations on a prde éintry gets
passed to and from kernel memory instead of dimlage. The proc file system is a communication madior
applications and kernel components. For exampseling data from the filgproc/moduleswill return currently
loaded modules and their dependencies. The precsfistem is very useful for obtaining driver status
information and publishing driver specific data &pplication use.

3.3 The Windows and Linux Driver Architecture Components Compared

Drivers in both Windows and Linux are dynamicathgdlable modules that consist of various routinas th
perform 1/0. When loading a module, the kernel Watlate a the routine designated by the particytarating
system as the driver entry routine and It will tsthiver code execution from there.

3.3.1. Driver Routines

Drivers in both systems have initialisaton andmdgalisation routines. In Linux, both these ro@sncan
have custom names. In Windows, the initialisationtine name is fixed (calleBriverEntry) but the de-
initialisation routine can be a custom one. Windenanages a driver object structure for each loablizebr.
Multiple instances of a driver are each represerfigda device object. In Linux, the Kernel maintains
information for each driver registered to managkeece major number. i.e. for each driver that aste major
device driver.



Both operating systems require drivers to implem&mandard I/O routines, which are called dispatch
routines in Windows and file operations in Linun.Linux, a different set of file operations cangvevided for
each device handle returned to an application. lmddivs, dispatch routines are defined once in the
DriverEntry routine inside a driver object. Since there is dnieer object for each loaded driver, it is not
advisable to modify the dispatch routines assigneti when an application requests a handle thramlopen
call. Windows drivers have aadd devicaoutine that gets called by the PnP manager for &wite devices.
There is no PnP manager in Linux and such a rodides not exist in Linux.

Dispatch routines in Windows operate on deviceabjand IRPs. In Linux, file operations operateadite
structure. Custom global driver data is storedeawick objects in Windows and in thike structure in Linux. A
device object is created at load time in Windowgrehs in Linux dile structure is created when an application
requests a handle to a driver with a systgrancall. An important implication of this is that linux global
data per application can be kept in fibe operationsstructure. In Windows, global data can only besent in
the FDO that the driver manages. Global data peliGgtion in Windows has to be kept in a list stase
contained within the FDO’s custom data structure.

3.32. Device Naming

Drivers in Windows are named using driver-definethgs and are found in the \\device namespace. In
Linux, drivers are given textual names but appiicet are not required to know these. Driver idés#tfon is
performed through the use of a major-minor numtagr. Major and minor numbers are in the range 0-255
since a 16 bit number is used to represent thermajoor pair thus allowing a maximum of 65535 degdo be
installed in a system.

Devices in Linux are accessible to applicationsulgh file system nodes. In most Linux distributidhs
directory/devcontains device file system nodes. Each nodeeat@d with a driver's major and minor number.
Applications obtain a handle to a driver, for perig I/O, through th®pensystem call targeted at a device
file system node. In Windows, another driver nantimgthod exists, whereby a 128 bit GUID is registerg
each driver. Applications access the Windows regtst obtain a textual name in the \\device namespeing
the GUID. This textual name is used to obtain rdhafor performing 1/0O with a driver through teeateFile
Win32 API call.

3.33. User-Kerne Space Data Exchanges

Data exchanges to and from user space are perfosngthrly by both operating systems, enabling
buffered data transfer, performed by the /O Managé&Vindows and by the driver in Linux. Direct I/© a
user space buffer is achieved in both operatingesys by locking the user space buffer so thatayssin
physical memory. This arises from the fact thavehs cannot always access user space bufferslgirsicice
they will not always be executing in the same pseceontext as the application that owns the usacesp
buffers. The application has its own virtual addrggace, which is only valid in its own processtexin Thus
when the driver accesses a virtual address frone splication outside of that application’s processtext, it
will be accessing an invalid address.

3.34. Driver Installation and Management

Driver installation is through a text file called aNF file in Windows. Once installed, the drivear fa
device will be automatically loaded by the PnP ngamavhen the device is present in the system. Limax
system, programs are used to load driver binargasanto the kernel. Entries need to be insertatlally into
system start up files, so that driver loading pamgs likemodprobeare executed with a driver image path or an
alias to the driver as a parameter. Driver ali@sesdefined in the filéetc/modules.confyhich programs like
modprobeinspect before loading a driver. An example ofadias entry inmodules.confwould be “alias
sounddriver testdriver”, which aliases the nasoanddriverto the driver binary image testdriver. Executing
modprobewith sounddriveras a parameter would makedprobdoad testdriver.In this way, users can use a
standard and simpler name suclsa@snddriverto load a sound driver without having to know wtiet name of
a specific driver for a sound card is. Driver stalnformation is available in Windows through thevide
manager applet, or directly reading the data freendystem registry. In Linux, driver informationasailable
through entries in the proc file system. The fideoc/moduleor example contains a list of loaded modules.



4. A Kernel Buffer Driver

This section presents the implementation of a frdplver that performs I/O to blocks of kernel mema
hypothetical virtual device. Discussion of the was components needed to make the driver work ¢im bo
Windows and Linux is presented, so that the siitidsr and differences in the driver components axthe
operating system can be highlighted. The virtualia® managed by the driver, is shown in figure. 4t0
consists of a number of blocks of kernel memorypligations can perform I/O operations on the virtlevice.
The driver will be able to select the memory banwants to access and the offset within a memonk’ba
block.

| Bank 1 | | Block 1 |
| Bank 2 | | Block 2 |
| Bank n | | Block n |

Figure 4.0 A simple virtual device

4.1. Required Driver Components.

Both the Windows and Linux drivers will implememietread, write and IOCTL driver routines. Required
driver routines for each operating system are shiowfigure 4.1. Naming of the driver routines isxXible. In
figure 4.1 the routines for the different operatgygtems could have been given the same namesadngte
conventional platform names have been utilised.

Required Windows Driver Routines Required Linux Driver Routines
DriverEntry RegisterDriver
DriverUnload UnRegisterDriver
AddDevice
Create Open
Close Release
Read Read
Write Write
10CtI loCtl
DispatchPnp

Figure 4.1 The Windows and Linux basic driver ioes

4.1.1. Driver Load and Unload Routines

In Windows, the step performed in the driver loadtine, DriverEntry, is the setting up of I/O dispatch
routines as shown in figure 4.1.1a.

driverObject->DriverUnload = DriverUnload;
driverObject->DriverExtension->AddDevice = AddDevi ce;
driverObject->MajorFunction[IRP_MJ_READ] = Read,;
driverObject->MajorFunction[IRP_MJ_WRITE] = Write;
driverObject->MajorFunction[IRP_MJ_CREATE] = Creat e;
driverObject->MajorFunction[IRP_MJ_CLOSE] = Close;



driverObject->MajorFunction[IRP_MJ_PNP] = Dispatch Pnp;
driverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = loctl;

Figure 4.1.1a Initialisation of a driver Object the driver entry routine

In Linux, the step performed in the driver loadtine, RegisterDriver is the registration of a driver major
number as shown in figure 4.1.1b. The tagged fileration initialisation, specific only to the GCGnapiler, is
shown in figure 4.1.1b in the declaration of theigurefops,which is not valid ANSI C syntax. The compiler
will initialise the various fields of théile_operationsstructure (fops) with the supplied driver implerseh

routine names i.@penis a field name in the structure a@genis a routine implemented by the driver and the
compiler will assign a function pointer f@pento open

struct file_operations fops
{ open: Open,

release: Release,

read: Read,

write: Write,

joctl: loCtl,
}
result = register_chrdev(major_number,"testdriver”, &fops);
if(result < 0) PRINT_ERROR(“driver didn't load succ essfully”);

Figure 4.1.1b Registration of a driver major numioetinux

In the driver unload routine for the Linux drivéret registered driver must be unregistered as shiown
figure 4.1.1c.

unregister_chrdev(major_number,"testdriver”);

Figure 4.1.1c Driver major number deregistrationLimux

4.1.2. Global Driver Structure

A structure must be defined for storing global dridata that will be operated on by the driverts i
routines. For the memory device the same structiltdoe used for both Windows and Linux versionsttoé
driver. It is defined as shown in figure 4.1.2.

#define MAX_BANK_SIZE 4
typedef char byte_t;
#define BLOCK_SIZE 1024,

typedef struct _DEVICE_EXTENSION
{ byte_t * memoryBank[MAX_BANK_SIZE];
int currentBank;

int offsets[]MAX_BANK_SIZE];



}DEVICE_EXTENSTION, *PDEVICE_EXTENSION;

Figure 4.1.2 Structure used to store global datagfeneric driver

memoryBankis an array of 4 blocks of memory where the sikza dlock is 1K.currentBankindicates the
currently selected block of memory anfisetsrecords offsets within each of the blocks of mgmor

4.1.3. Add Device Routine

The add deviceroutine is only specific to Windows. Linux doestrttave an add device routine. All
initialisation must be done in the driver load ipnatinstead. The operations performed in the Wirglow
addDeviceroutine are shown in figure 4.1.3. A device objectreated with a call to the I/O manager routine
loCreateDevice

An interface that applications will use to gain eexto a handle for the driver is then created thighl/O
manager routine calloRegisterDevicelnterfaceOne of the arguments to this routine is a GUIDnuadly
generated with the systeguidgenapplication. The different ways data could be exded by drivers and
applications to and from kernel space in Windowsengresented in section 3.1.2.6. A driver indicatbst
form of data exchange method it wants to use hingeteflagsfield of its device object (see sections 3.1 and
3.1.2 for a discussion of device objects). In thiample thdlagsfield is set so that the driver performs buffered
I/O. Space for each of the blocks of memory to seduby the memory device is then allocated with afrtee
kernel memory allocation routines callegAllocatePoal The memory is allocated from the kernel’s nongehg
pool of memory, thus the device’s memory will alwdoe in physical memory.

Create a device object }—>| loCreateDevice

Register a device Interface loRegisterDevicelnterface
and activate it loSetDevicelnterfaceState

Initialise the bank of memory }—P ExAllocatePool

( memoryBank)

Figure 4.1.3 Operations performed in the Windowsedts add device routine

4.1.4. Open and Close Routines

Most of the initialisation required for the Windowsiver has already been done in #u# deviceroutine
so there is nothing to be done in tEenroutine. TheDpenroutine in Linux performs the operations shown in
figure 4.1.4a. Firstly, memory for storing globaivér data is allocated and the file structurptssate_data
field set to point to it. Blocks of memory for tineemory device are then allocated in exactly theesanay as
for Windows. Only the name of the memory allocationtine differs ExAllocatePooin Windows andmalloc
in Linux.

A 4

Create space for global data kmalloc
And set private_data field of (file->private_data)
file structure

Initialise the bank of memory }—P kmalloc

(memoryBank)




Figure 4.1.4a Operations performed in Linux’s geéaeériver open routine

In Linux’s close routine, the space allocated fobgl driver data as well as space allocated femtiemory
device are freed as shown in figure 4.1.4b. Indbims, the freeing up of allocated memory is donegponse
to the PnRremove devicenessage, which is discussed later in this section.

Release memory allocated > kfree
for global driver data (file->private_data)

Release bank of memory }—P kfree

(memoryBank)

Figure 4.1.4b Operations performed in Linux’s géaériver close routine

4.15. Read and Write Routines

Theread andwrite routines will transfer data to and from the cutieselected kernel memory bank. In
Windows, the read routine is performed as showfigure 4.1.5a. The length of the data to be reaobtained
from an IRP’s I/O stack location (see section 3.fb3what an I/O stack location is), in the fieldmed
Parameters.Read.LengtlData of the requested size is read from the ntiyreselected bank of memory
(applications perform memory bank selection throtigh driver's IOCTL routine discussed later) ustheg
kernel runtime routine calleRtIMoveMemory. RtIMoveMemoiyoves the data from the memory device'’s
space to the buffer allocated for buffered I/O iy YO manager i.e. thissociatedIrp.SystemBuffieeld of the
IRP. The IRP is then completed, which informs @ hanager that this driver has finished procestiingRP
and that the I/O manager should return the IRBémtiginator of the IRP.

Transfer data of the RtIMoveMemory
requested length from
to the IRP’s buffer current memoryBank
to
Irp->Associatedlrp.SystemBuffer

Complete the IRP |—>| loCompleteRequest

Figure 4.1.5a Performing a read operation in thedéws driver

The write routine performs the opposite of the &memory move operation as shown in figure 4.1.5b.



Transfer data of the » RtIMoveMemory
requested length from
from the IRP’s buffer Irp->Associatedlrp.SystemBuffer
to
current memoryBank

Complete the IRP |—>| loCompleteRequest

Figure 4.1.5b Performing a write operation in théndbws driver

In Linux, the read routine appears as shown inrigh1.5c. A reference to the global driver data i
obtained from theprivate_data member of the file structure. From the global datareference to the
memoryBanks obtained. Data is then transferred from thisnoey bank to user space using the user space
access kernel routine calledpy_to_user

Transfer data of the copy_to_user
requested length from
to a user space buffer current memoryBank
to
userbuffer

Figure 4.1.5c Performing a read operation in theux driver

The write routine performs the same operationsbasey except this time data is transferred fronrt tse
kernel space as shown in figure 4.1.5d.

Transfer requested length > copy_from_user
of data to memoryBank from
userbuffer

to
current memoryBank

Figure 4.1.5d Performing a write operation in thielx driver

4.1.6. Device Control Routines

Device control routines are used to set variougstaf a device. Applications make IOCTL calls tivets
by using the win32 routin®eviceloContral This routine requires an IOCTL code defined bgriver. An
IOCTL code tell a driver what control operationaplication is wanting to perform. In this example driver
implemented IOCTL routine is used to select theentrbank number. Driver-specific IOCTL codes mipest
defined prior to use. IOCTL codes in Windows aréireel as shown in figure 4.1.6a. The macro CTL_CO®E
used to define a particular device IOCTL code [Qri@9]. The first argument to the CTL_CODE macro
indicates the device ID. Device ID numbers arehia tange 0-65535. Codes 0-32767 are reserved dor th
operating system. Codes 32768-65535 are availableustom use. The code chosen should be the sathe a



device code specified during theCreateDevicecall in the driver'saddDeviceroutine (see section 4.1.3 for
what happens in theddDeviceroutine).

The second argument indicates the function codeisri2 bits long. Codes 0 to 2047 are reserved by
Microsoft so a function code greater than 2047 laad than 212 is used. It use used to define wrattol
code is being defined. l.e. it distinguishes the t®CTL codes shown in figure 4.1.6a. The thirduangnt
specifies the method used to pass parameters enmspace to kernel space, and the fourth arguimgiottes
the access rights that applications have to thizelev

#define MEMORY_DEVICE 61000

#define IOCTL_SELECT BANK \

CTL_CODE(MEMORY_DEVICE, 3000, METHOD BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_GET_VERSION_STRING \

CTL_CODE(MEMORY_DEVICE, 3001, METHOD_BUFFERED, FILE_ANY_ACCESS)

Figure 4.1.6a IOCTL code definition in Windows

In Linux, applications make IOCTL calls to driveoy using the system routiriectl. IOCTL codes are
specified in the fileDocumentation/ioctl-numbers.txtyhich can be found in the Linux kernel source .tree
Experimental drivers select an unused code, clyrémFF and above. The IOCTL codes for this drigee
defined as shown in figure 4.1.6b. Macro _IOWR daties that data will be transferred to and frorméker
space. Other macros available are _IO which ineécab parameters, _IOW which indicates that daliabei
passed from user space to kernel space only ayl 188R which indicates that data will be passexf kernel
space to user space only. The above macros retipairsize of the IOCTL parameter that will be exayeth
between kernel and user space. Rubiral [Rubini et al 01] suggest that for the driver to be portabiées size
should be set to 255 (8bits) although current &echire dependent data ranges from 8-14 bits. €hensl
argument is similar to the Windows function numbeis eight bits wide, i.e. ranges from 0-255.

#define IOCTL_PARAM_SIZE 255
#define MEMORY_DEVICE OxFF

#define IOCTL_SELECT BANK \
_IOWR(MEMORY_DEVICE, 1, IOCTL_PARAM_SIZE)

#define IOCTL_GET_VERSION_STRING \
_IOWR(MEMORY_DEVICE, 2, IOCTL_PARAM_SIZE)

Figure 4.1.6b IOCTL code definition in Windows

Once the IOCTL codes have been selected, the IOGUtines can be defined. In Windows, the IOCTL
routine is defined as shown in figure 4.1.6c. Tw@®CTL codes are handled. The first,
IOCTL_SELECT_BANK, sets the current bank number.e Téecond, IOCTL_GET_VERSION_STRING,
returns a driver version string. Data returnedaitecs of the IOCTL routine is handled in the sansgy as for
the read and write requests.



| Application DeviceloControl call |

| Examine IOCTL code }—P irpStack’s

Parameters.DeviceloControl.loControlCode

IOCTL_SELECT_BANK IOCTL_GET_VERSION_STRING
A A
change value of currentBank Return version string
RtIMoveMemory RtIMoveMemory
from from
Irp- Version String Buffer
>AssociatedIrp.SystemBuffe to
r Irp->Associatedlrp.SystemBuffer

A

Complete the IRP }—>| loCompleteRequest

Figure 4.1.6¢ IOCTL routine definition in Windows

The Linux IOCTL routine definition is shown in figei4.1.6d. The IOCTL codes handled are the same as
for Windows. The only difference is that of syntspecific to each kernel. Data handling is perforrimethe
same way as for reads and writes.



| Application ioctl call |

y

| Examine IOCTL code l—b cmd parameter of IOCTL routine

IOCTL_SELECT_BANK IOCTL_GET_VERSION_STRING
y y
change value of currentBank Return version string
copy_from_user copy_to_user
from from

user variable Version String Buffer
To to

currentBank user buffer

Figure 4.1.6d IOCTL routine definition in Linux

4.1.7. PnP Message Handling Routines

In Windows, PnP messages are dispatched to therdrappropriate times. E.g. when a device inriade
into the system or removed from the system. Thesssages are handled by a driver that implementsPa P
dispatch routine. In Linux, the kernel does notdsBnP messages to the driver thus a PnP routirsersibeexist
in the Linux driver. The Windows PnP message hariglehown in figure 4.1.7.

Only one of the PnP messages is handled for byrémory device driver in this example. Tramove
devicemessage is sent when the driver is unloaded fransylstem. At this time, the driver's interface is
disabled with a call to the I/O manager routioBetDevicelnterfacand the driver’s functional device object is

deleted as well as the generic driver’'s blocks efmory.

IRP_MN_REMOVE_DEVICE

PnP messge
A 4
| Disable device interface |—>| loSetDevicelnterfaceState |
| Delete device object |—>| loDeleteDevice |
| Release memory bank I—P ExFreePool
(memoryBank)

Figure 4.1.7 PnP Message handler routine



5. Driver Development Environments

Developing drivers for the two operating systenssdssed so far, namely Microsoft's Windows and kjnu
requires the use of software development toolsiipéo each platform. The operating system kemrelboth
Windows and Linux is constructed using the C Progning Language. It follows that drivers for both
operating systems are created using the C prognagnianguage. Windows supports driver constructisingi
the object oriented programming language C++, waselénux does not.

5.1. The Windows Driver Development Environment

Microsoft Windows is a proprietary, commercial qdérg system i.e. it must be purchased for a fee. A
number of commercially available driver developmemtvironments aimed at Windows exist. One such
example is the NuMega DriverStudio™ Suit [Compuwd&] which comes with class libraries and driver
construction wizards that aid in the developmendifers, as well as an integrated debugger tHatval
debugging of driver code.

5.1.1. TheWindowsDevice Driver Development Kit

The standard route for driver development on Winsl@gvto obtain a Device Driver Kit (DDK) from
Microsoft and use its facilities to build drivei®he latest version of the DDK is available to Mewé Software
Development Network (MSDN) subscribers. The DDK tedms programs required to build drivers. The DDK
installation program will install batch files thsg¢t up a shell window to enable building of drivenseach of
Microsoft's operating systems. The DDK release ugelthis investigation of the Windows driver ar@gture,
Windows DDK 3590, has build environments for WindoME, 2000, XP and .NET drivers. There are two
build environments for each platform. The firstcaled a checked build environment i.e. debuggiymtmls
are added to the driver code. The second is calfege build environment i.e. drivers built in tleisvironment
are not built with debugging symbols. The latteviemment is where production drivers are built.

5.1.2. WindowsDriver Makefiles

Once a DDK shell window is active the simple comchbnild will build a driver. AMakefileis used to
define driver source files from which a driver askie built. The entries for thdakefileare specified in a file
calledsourceswhich resides in the directory where théld command is issued. Figure 5.1.2 shows the format
of a Makefile used to build a simple driver. The environmentialde TARGETNAME specifies the driver
output filename. For this example the final driveill be called mydriver.sys as drivers in Windows a
assigned a .sys extension. TARGETPATH specifieg@vtiee object code for the driver will be produc&dere
is a file called_objects.madn the directory calledbj where additional paths for object file dump dicgiets are
defined. On Windows 2000, the default object filergh directories arebjchk_w2kfor checked builds and
objfre_w2kfor free builds. INCLUDES specifies the path foclude files necessary to build drivers and finally
SOURCES specifies the driver source file from wittoh driver will be built.

TARGETNAME=mydriver
TARGETPATH=0bj
TARGETTYPE=DRIVER
DRIVERTYPE=WDM

INCLUDES=$(BASEDIR)\inc;
SOURCES= mydriver.c

Figure 5.1.2 A Makefile used for building a WDMwi with the Windows DDK

5.1.3. Windows DDK Documentation and Tods

The Windows DDK contains well organised API docutaéinn as well as example driver source files from
which newcomers to driver writing can learn to teedrivers. The DDK also contains utility prograthat aid
in the driver development process. One of thetwytiirograms is the device tree application thats lill



currently loaded drivers listed in the \\device maspace (see section 3.1.2.4 which discusses deaive
spaces) in a hierarchical manner, showing anyiegisdlriver stacks as well as driver implementadtirees and
driver object memory addresses. Other programsateafprovided with the Windows DDK are an INF file
generation application callegeninf used to generate INF files for driver installatiand a PnP driver test
application used to test if drivers are PnP complia

5.2 TheLinux Driver Development Environment

The driver development environment on Linux is eliéint from that on Windows. There is no counterpart
to the Windows DDK on Linux i.e. there is no subing as a Linux Device Driver Kit supplied by therkel's
creators. Instead the kernel's creators make alkéinel source code available to everyone. Theekéreader
files are all that are required for creating dréveDrivers are built using the GNU C compiler, GQ@ich is
also used to build applications. Similarly to Windn aMakefileis used to specify how a driver is to be built.

5.2.1. Linux Driver Makefiles

Once aMakefileis defined, the simple commamabakeis used to build the driver. Figure 5.2.1 shows an
exampleMakefilefor building a driver, callednydriver, in Linux with a source file nammaydriver.c The first
entry, KERNELDIR, defines an environment variabhattspecifies where the kernel header files aratént
The next line includes the current kernel configiora Before a kernel and its drivers are builtieexally
definable kernel variables are specified in a dédled .config which is stored in the kernel soure®’s root
directory. These are included so that the keredader files can make use of them. CFLAGS is useskt
additional flags to the compiler (GCC). ‘-O’ turna code optimisation, ‘-Wall’ prints out all codeakmings.
The ‘all’ section is the default section examineldew the ‘make’ command is executed. It providearget
called mydriver, which depends on the object file calledydriver.g which is built by using GCC. The
environment variable LD specifies the GNU linkerb® used to build the final driver module. The opti-r’
specifies that output should be relocatable i.emorg locations within it will be offsets to someskaaddress
not known at compile time. ‘$" is an alias fmrydriver.oand ‘$@’ is an alias fomydriveri.e. it requests the
linker to produce relocatable code from the ohbjiéetmydriver.o and produce an output called myelriv

KERNELDIR=/ustr/src/linux
include $(KERNELDIRY)/.config
CFLAGS=-D__KERNEL__ -DMODULE -I $(KERNELDIR)/include —O -Wall

all: mydriver

mydriver: mydriver.o
$(LD) —r $" -0 $@

Figure 5.2.1 Makefile used to build a driver in W

Kernel module management programs sucinssodandlsmodcan then be used to load the driver into the
kernel and to observe currently loaded modulepecs/ely.

5.22. Linux Driver Develogpment Documentation

There is some documentation on the various partsthef Linux kernel in the directory called
“Documentation” found under the kernel source tiag, is not as complete and descriptive as the Wvisd
DDK documentation. The Linux driver book written BRubini et al [Rubini et al, 01] is a better source of
information for device driver writers. There are example drivers that come with the Linux kernelf bode
for existing production drivers is available, whichn be used as a basis for starting a new devigerd
However, this does not provide a good introducfamovice device driver developers.



5.3. Debugging drivers

The creation of just about every piece of softwarpiires it to be debugged sometime during the tifiiies
development as there are always obscure bugsrthabadiscovered by examining source code manutis
is especially true for device drivers. At worst,gbun applications might cause the application'scpss to
become unstable. Serious bugs in drivers will ctluseentire system to become unstable.

Debugging applications is a straightforward procésbreak statement is set at a place of interesburce
code using a debugger’s debugging facilities. Tissually debugger specific. In Windows, using iMsoft's
Visual Studio debugger, setting break points isiample as clicking a line in the source code ediitre same
applies to DDD (a GUI debugger found on Linux thsg¢s the popular command line debugger GDB). When a
program is executed in debug mode and a break moieached, the execution of that program is phasel
the program can be single stepped i.e. instrucfiams it executed one at a time and their effettseoved. A
debugger will usually allow the values of variabesl variable memory addresses in a running pro¢paine
observed. The debugging facilities discussed thuark also available for debugging device driviers, certain
extent, on each operating system.

5.3.1. Debugging Drivers on Windows

Debugging drivers under Windows can be performédgua number of different methods. The simplest of
these is to use thBbgPrint debugging routine which allows printing of message the Windows debugger
buffer. If a Windows debugger such as WinDbg isniog, then the messages can be observed from there,
otherwise a special application that can retrieessages from the debugger’s buffer has to be @Geel such
application isDebugView a free application provided by the Sysinternatsp@ration [Russinovich, 01]. The
DbgBreakPointroutine sets a break point in a program. When weelc the system pauses and driver code
execution is passed to the system debuggerASkertmacro transfers driver execution to the system dgéu
based on the value of a test condition.

The Microsoft kernel debuggewinDbg, requires two PCs for operation. The first PC isxehthe driver
code is developed and tested. The second PC iscmanto the driver development PC via a serial. gor
developer can interact with the debugger runninghenfirst PC through a serial console from theoedcPC.
The NuMega DriverStudio ™ [Compuware, 01] providedebugger that allows drivers to be debugged &tom
single PC, which can be the driver development imagtand acts like an application debugger. It jples a
console Window from which command line instructicas be issued to control it.

5.3.2. Debugging Driverson Linux

In the same way as Windows, debugging of driver&iiux can be performed by using debug routines
provided by the kernel such pantk, which is the equivalent of the WindowdgPrint routine. It behaves in
the same way as the C standard /O roypiriretf except that it takes an additional argument thati§ies where
the message will be printed to. A kernel debuggei$so available as a patch that can be applitieté&ernel
sources. The patch for the built-in Linux kernebdgger (kdb) can be obtained from the KDB projeage
[KDB, 02]. It allows the same operations as a saatidlebugger i.e. setting break points, singlepstepdriver
code, and examining driver memory.

6. Conclusion

Windows and Linux are two of the most popular ofiegasystems in use today. Windows has the biggest
market share, and Linux is gaining in popularitwefy new device that gets released to the publiaby
hardware manufacturer will almost certainly comaipped with a device driver that will make it operan the
Windows operating system. The two operating systeinger architectures are different in many ways bave
some similarities.

6.1. Device Driver Architectures

Comparison of the driver architectures used byt operating systems has shown that the Windows
operating system has a more developed archite¢hae Linux. This does not mean that the Windows
architecture offers better functionality than tbétLinux, rather it has a more formally definedweri model,
which driver developers are encouraged to follokth@ugh driver writers can ignore the Windows drive
model and construct their own monolithic drivetsyas found that most driver writers did not takis troute.

No formally defined driver model exists for the uoperating system. Linux driver writers producevels



based on their own personal designs. Unless twapgrof driver developers cooperate and producedrithat
work together, drivers from different developersmat operate together under the Linux operatintesys

Under Windows, drivers from two or more sets of@lepers can be made to work together, provided the
developers have followed the Windows Driver Mod&O(M) to construct their drivers. The Windows driver
architecture supports PnP (Plug and Play) and Pmaeagement, by dispatching messages at approjpnias
to device drivers which have been implemented tadleathese messages. No such facility is offeredhley
current Linux driver architecture.

6.2. Designing device drivers

When designing device drivers the facilities ofteey an operating system should be evaluated. The
Windows and Linux operating systems are both modeperating systems. They make available
implementations for data structures such as stagiepes and spin locks, as well as HAL (Hardware
Abstraction Layer) routines for performing hardwameependent operations. This enables device driter
operate on different architectures such as 1A6&(h64 bit platform) and SPARC.

Driver functionality on both operating systems dam broken up into modules, which can be stacked
together and that communicate using a standardis¢a structure. Under Windows this standardised dat
structure is the IRP (I/O Request Packet) and umhdarx it can be any driver-defined structure, sinm
standardised structure exists on that operatingsys

6.3. Implementing Device Drivers

Device drivers on both operating systems are maefua set of routines that each operating system
expects all drivers to implement. They include e for standard I/O such as reading from andngito a
device, and for sending device /O control commatads device. Every driver for each operating syste
implements a routine that will be executed whendtieer is loaded for the first time, and a routthat gets
executed when a driver is unloaded. It is posdibleonstruct a driver for each operating systent tisas
identical naming for the various driver routinekhaugh the usual approach is to use conventioaaies for
each operating system. The device driver namingrmehon Windows (using device interfaces) is a lotem
flexible than the current device driver naming sohaused by Linux. Driver naming clashes are mdeylito
occur in Linux as compared to Windows, which us€8HD (Globally Unique Identifier) for each device.

6.4. Driver Development Environments

The Windows operating system provides a DDK (DeWcver Developer’s Kit), which contains relevant
documentation and development tools that help dser¢he time required for learning to create newers.
The Linux operating system does not provide a DBterefore initially some time will have to be spémyt
device driver developers to gather other sourcesdan the driver development process. Once tiae theen
spent in getting familiar with the two driver despiment environments, developers will find it eastecreate
Linux drivers than Windows drivers, because althaf Linux kernel source code is available to th&ims
enables driver developers to trace problems i théiers by having a closer look at the kernelectiwhat their
drivers rely on. Under Windows, only binary debugldls of the operating system’s components arelablai
These contain debug symbols such as function namés/ariable names and are not as useful as héwing
operating system’s source code.

6.5. Conduding Remarks

Drivers should be designed so that use of theminejwery little interaction from end users, andodla
driver's functionality is made available to appticas. The former is one of the strong points oftiws,
which fully supports PnP. Linux is an open souragget, which is still actively being improved.i$t expected
that in the future Linux’s driver architecture wilecome as formalised as Windows’, which for exants a
driver model such as the WDM. Growth of hardwaraedar support for Linux is also expected as more and
more individuals and organisations adopt it.
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