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Abstract: In this paper the device driver architectures currently used by two of the most popular operating 
systems, Linux and Microsoft’s Windows, are examined. Driver components required when implementing 
device drivers for each operating system are presented and compared. The process of implementing a driver, for 
each operating system, that performs I/O to a kernel buffer is also presented. The paper concludes by examining 
the device driver development environments and facilities provided to developers by each operating system. 

1. Introduction 

Modern operating system kernels consist of a number of components such as a memory manager, process 
scheduler, hardware abstraction layer (HAL) and security manager. For a detailed look at the Windows kernel 
refer to [Russinovich, 98] and for the Linux kernel [Rusling, 99], [Beck et al, 98].  The kernel can be viewed as 
a black box that should know how to interact with the many different types of hardware devices that exist and 
the many more devices that do not yet exist. Creating a kernel that has inbuilt functionality for interacting with 
all known hardware devices may be possible but is not practical. It would consume too many system resources, 
needlessly.   

1.1. Kernel Modularity  

A kernel is not expected to know how to interact with new types of devices that do not yet exist at the time 
of its creation. Instead modern operating system kernels allow their functionality to be extended by the addition 
of device driver modules at runtime. A module implements functionality that will allow the kernel to interact 
with a particular new device.  Each module implements a routine that the kernel will call at module load time 
and a routine that gets called at module removal time. Modules also implement various routines that will 
implement I/O functionality for transferring data to and from a device as well as a routine for issuing device I/O 
control instructions to a device. The above applies to both the Linux and Windows driver architectures. 

1.2. Organisation of this paper 

The material in this paper is divided into the following sections: 
• General driver architecture of the two operating systems (section 2) 
• Driver architecture components of each operating system (sections 3) 
• Implementation of a driver that performs I/O to a kernel buffer (section 4) 
• Driver development environments and facilities offered by the two operating systems to developers 

(section 5) 

1.3. Related Work 

The Windows device driver architecture is documented by documentation that accompanies the Windows 
Device Driver Development kit [Microsoft DDK, 02]. Further, the works produced by Walter Oney [Oney, 99] 
and Chris Cant [Cant, 99] present a detailed account of the Windows Driver Architecture. The Linux device 
driver architecture is documented well by the freely available publication authored by Rubini et al [Rubini et al, 
01]. 



2. Device Driver Architectures 

A device driver enables the operation of a piece of hardware by exposing a programming interface that 
allows a device to be controlled externally by applications and parts of an operating system. This section 
presents the driver architectures currently in use by two of the most commonly used operating systems, 
Microsoft‘s Windows and Linux, and the origin of their architecture. 

2.1. Origin of  the Linux Driver Architecture 

Linux is a clone of the UNIX operating system first created by Linux Travolds [Linus FAQ, 02], [LinuxHQ, 
02]. It follows that the Linux operating system utilises a similar architecture to UNIX systems.  UNIX operating 
systems view devices as file system nodes. Devices appear as special file nodes in a directory designated by 
convention to contain device file system node entries [Deitel, 90]. The aim of representing devices as file system 
nodes is so that applications can access devices in a device independent manner [Massie, 86],[Flynn et al, 97]. 
Applications can still perform device dependent operations with a device I/O control operation. Devices are 
identified by major and minor numbers. A major number serves as an index to an array of drivers and a minor 
number is used to group similar physical devices [Deitel, 90].  Two types of UNIX devices exist, char and 
block. Char device drivers manage devices that are accessed sequentially with no buffering, and Block device 
drivers manage devices where random access is possible, and data is accessed in blocks. Buffering is also 
utilised in block device drivers. A block device must be mounted as a file system node for it to be accessible 
[Beck et al, 98].  

Linux retains much of the UNIX architecture, the difference being that char device nodes corresponding to 
block devices have to be created in UNIX systems, whereas in Linux, the Virtual File System (VFS) interface 
blurs the distinction between char and block devices [Beck et al, 98].  Linux also introduces a third type of 
device called a network device. Network device drivers are accessed in a different way to char and block 
drivers. A set of APIs different from the file system I/O APIs are used e.g. the socket API, which is used for 
accessing network devices. 

2.2. Origin of  the Windows Driver Architecture 

In 1980, Microsoft licensed the UNIX operating system from Bell labs, later releasing it as the XENIX 
operating system. With the first IBM PC, MS DOS version 1 was released in 1981. MS DOS version 1 had a 
similar driver architecture to UNIX systems based on XENIX [Deitel, 90].  The difference to UNIX systems 
was that the operating system came with built in drivers for common devices. Device entries did not appear as 
file system nodes. Instead reserved names were assigned to devices. E.g.  CON was the keyboard or screen, 
PRN the printer and AUX the serial ports. Applications could open these devices and obtain a handle to 
associated drivers as they would with file system nodes, and perform I/O to them. The operating system, 
transparent to applications, translated reserved device names to devices that its drivers managed.  MS DOS 
version 2 introduced the concept of loadable drivers.  Since Microsoft had made the interface to its driver 
architecture open, this encouraged third party device manufacturers to produce new devices [Davis, 83]. Drivers 
for these new devices could then be supplied by hardware manufacturers and be loaded/unloaded at runtime into 
the kernel, manually.  

Later on, Windows 3.1 was released by Microsoft. It had support for many more devices and utilised an 
architecture based on MS DOS. With its later operating systems, Windows 95, 98 and NT, Microsoft introduced 
the Windows Driver Mode (WDM). The WDM came about because Microsoft wanted to make device drivers 
source code compatible with all of its new operating systems [Microsoft WDM, 02]. Thus, the advantage of 
making drivers WDM compliant is that once created, a driver need only be recompiled before it is usable on any 
of Microsoft’s later operating systems. 

2.3. The Windows Driver Architecture 

There are two types of Windows drivers, legacy and Plug and Play (PnP) drivers. The focus here is only on 
PnP drivers, as all drivers should be PnP drivers where the possible. PnP drivers are user friendly since very 
little effort is required from users to install them. Another benefit of making drivers PnP is that they get loaded 
by the operating system only when needed, thus they do not use up system resources needlessly. Legacy drivers 
were implemented for Microsoft’s earlier operating systems and their architecture is outdated. The Windows 
Driver Model (WDM) is a standard model specified by Microsoft [Microsoft DDK, 02]. WDM drivers are 
usable on all of Microsoft’s recent operating systems (Windows 95 and later).  



2.3.1. The WDM driver architecture 

There are three classes of WDM drivers: filter, functional and bus drivers [Oney, 01]. They form the stack 
illustrated in figure 2.3. In addition, WDM drivers must be PnP aware, support power management and 
Windows Management Instrumentation. Figure 2.3 shows how data and messages are exchanged between the 
various driver layers. A standard structure called an I/O Request Packet (IRP) is used for communication. 
Whenever a request is made from an application to a driver, the I/O manager builds an IRP and passes it down 
to the driver, which processes it, and when done, ‘completes’ the IRP [Cant, 99]. Not every IRP filters down to a 
bus driver. Some IRPs get handled by the layers above and are returned to the I/O manager from there. 
Hardware access to a device is done through a hardware abstraction layer (HAL).  

 

Figure 2.3 The WDM Driver Architecture 

2.4. The Linux Driver Architecture 

Drivers in Linux are represented as modules, which are pieces of code that extend the functionality of the 
Linux kernel [Rubini et al, 01]. Modules can be layered as shown in figure 2.4. Communication between 
modules is achieved using function calls. At load time a module exports all functions it wants to make public to 
a symbol table that the Linux kernel maintains. These functions are then visible to all modules. Access to 
devices is done through a hardware abstraction layer (HAL) whose implementation depends on the hardware 
platform that the kernel is compiled for, e.g. x86 or SPARC. 
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Figure 2.4 The Linux Driver Architecture 

2.5. The Linux and Windows Driver Architectures Compared 

As can be seen in figures 2.3 and 2.4, a number of similarities exist between the two operating systems. On 
both systems, drivers are modular components that extend the functionality of the kernel. Communication 
between driver layers in Windows is through the use of I/O Request Packets (IRPs) supplied as arguments to 
standard system and driver defined functions, whereas in Linux function calls with parameters customized to a 
particular driver are used. Windows has separate kernel components that manage PnP, I/O and Power. These 
components send messages to drivers using IRPs at appropriate times. 

In Linux, there is no clear distinction between layered modules, i.e. modules are not categorised as bus, 
functional or filter drivers. There is no clearly defined PnP or Power manager in the kernel that sends 
standardised messages to modules at appropriate times. The kernel may have modules loaded that implement 
Power Management or PnP functionality, but the interface of these modules to drivers is not clearly specified. 
This functionality is likely to be incorporated in later Linux kernels as the Linux kernel is always in 
development. Once data is passed to a driver that is part of a stack of modules by the kernel, the data may be 
shared with other drivers in the stack through an interface specific to that set of drivers.  

In both environments, hardware access through a HAL interface is implemented for the specific platform 
the kernel is compiled for, i.e. x86, SPARC etc.  A common feature of both architectures is that drivers are 
modules that can be loaded into a kernel at runtime. Each module contains an entry point that the kernel knows 
to start code execution from. A module will also contain routines that the kernel knows to call when an I/O 
operation is requested to a device managed by that module. This enables the kernel to provide a device 
independent interface to the application layer. A more in-depth comparison of driver components from the two 
architectures is presented later in Section 3.3. 

3. Drivers Components 
The process of creating a device driver requires knowledge of how the associated hardware device is 

expected to operate. For example, just about every device will allow its clients to read data from and write data 
to it. In this section driver components that must be implemented by all drivers are presented, as well as a 
comparison of the two operating systems’ driver components.  The implementation of a driver that performs I/O 
to a kernel buffer is also presented. The section concludes with a look at the driver development environments 
and facilities offered by each operating system. 
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3.1. Windows Driver Components 

Drivers in Windows consist of various routines. Some are required, others optional. This section presents 
the routines that every driver must implement. A device driver in Windows is represented by a structure called a 
DriverObject. It is necessary to represent a driver with a structure such as a driver object because the kernel 
implements various routines that can be performed for every driver. These routines, discussed in the following 
sections, operate on a driver object.  

3.1.1. Driver Initialisation 

Every device driver in Windows contains a routine called DriverEntry. As its name suggests, this routine is 
the first driver routine executed when a driver is loaded and is where initialisation of the device driver’s device 
object is performed. Microsoft’s DDK [Microsoft DDK, 02] states that a driver object represents a currently 
loaded kernel driver whereas a device object represents a physical, logical or virtual device. A single loaded 
kernel driver (represented by a driver object) can manage multiple devices (represented by device objects). 
During initialisation, fields in the device object that specify the driver’s unload routine, add device routine and 
dispatch routines are set. The unload routine is a routine that is called when the driver is about to be unloaded so 
that it can perform cleanup operations e.g. freeing up memory allocated off the kernel heap. addDevice is a 
routine that is called after the DriverEntry routine if the driver being loaded is a PnP driver, while the dispatch 
routines are routines that implement driver I/O operations. 

3.1.2. The AddDevice Routine 

PnP drivers implement a routine called AddDevice. In this routine a device object is created at, which time 
space for storing global data for a device is allocated. Device resource allocation and initialisation is also 
performed. Device objects are referred to by different names depending on where they where created. If a device 
object is created in a currently loaded driver to manage that driver, it is called a Function Device Object (FDO). 
If it is a device object from a lower driver in a stack of drivers, it is called a Physical Device Object (PDO). If it 
is a device object from an upper driver in a stack of drivers, it is called a Filter Driver Object (FIDO). 

3.1.2.1.Creating a device object 

A device object corresponding to a device is created using the I/O Manager routine called IoCreateDevice 
inside the add device routine. The most important requirements for IoCreateDevice are a name for the device 
object and device type. The name allows applications and other kernel drivers to gain a handle to the driver, in 
order to perform I/O operations. The device type specifies the type of device the driver is used for, for example 
a storage device.  

3.1.2.2. Global Driver Data 

When a device object is created it is possible to associate with it a block of memory, called DeviceExtension 
in Windows, where custom driver data can be stored. This is an important facility, as it eliminates the need to 
use global data structures in driver code, which can be difficult to manage. For example, in the case where a 
local variable with the same name as a global variable is declared in a routine mistakenly, the driver writer may 
find it difficult to track a bug in the driver. It also makes it easier to manage device object specific data, when 
more than one device object exists in a single driver, as is the case when a bus driver manages child physical 
device objects for devices present on its bus.  

3.1.2.3.Device naming 

A device can be named at device object creation time. This name can be used for accessing a handle to a 
driver. The handle is then used for performing I/O. Microsoft recommends not naming functional device objects 
created in filter and functional drivers. As pointed out by Oney [Oney, 99], if a device object is named, any 
client can open the device object and perform I/O for non-disk device drivers. This is because the default access 
control status Windows gives to non-disk device objects is an unrestricted one. Another problem is that the 
name specified does not have to follow any naming protocol, so the name specified may not be a well chosen 
one. For example two driver writers may come up with the same name for their device objects, which would 
cause a clash.  

Windows supports a second device object naming scheme using device interfaces. Device interfaces are 
constructed with 128 bit globally unique identifiers (GUIDs) [Open Group, 97]. A GUID can be generated using 
a utility provided by the Microsoft DDK. Once generated, a GUID can be publicised.  A driver registers the 



GUID for a device interface in its add device routine through a call to the I/O manager routine 
IoRegisterDeviceInterface. Once registered, the driver must enable the device interface through a call to the I/O 
manager routine IoSetDeviceInterfaceState. The registration process will add an interface data entry to the 
Windows registry file, which can be accessed by applications.  

3.1.2.4. Driver Access from an Application 

An application that wants to perform I/O operations with a device driver must obtain a handle to a device 
driver through the CreateFile Win32 API call. It requires a path to a device such as \\device\devicex. Named 
devices will have their names appear in the name space called \\device, thus the previous path is for a device 
named devicex. CreateFile also requires access mode flags such as read, write and file sharing flags for the 
device.   

Accesses to unnamed devices that have registered a device interface are performed differently as shown in 
figure 3.1.2.4. This requires obtaining a handle to a device information structure using the driver’s GUID, and 
calling the SetupDiGetClassDevs Win32 API routine. This is only possible if the driver registered a device 
interface, through which applications can access the device (called a device interface class).  

Each time a driver calls the I/O manager routine IoRegisterDeviceInterface, a new instance of the device 
interface class is created. Once a device information handle is obtained by an application, multiple calls to the 
Win32 API routine SetupDiEnumDeviceInterfaces will return device interface data for each instance of the 
device interface class. Lastly, a device path for each of the driver instances can be retrieved from the interface 
data obtained from the previous call with another Win32 API routine, SetupGetDeviceInterfaceDetail. 
CreateFile can then be called with the device path for the device instance of interest, to obtain a handle for 
performing I/O.  
 

 

Figure 3.1.2.4 Obtaining a handle an application can use for I/O from a device GUID. 

3.1.2.5. Device Object Stacking 

When the add device routine is called by the PnP manager, one of the parameters passed to it is a device 
object (PDO) for a driver below the current one. Device object stacking is performed in the add device routine 
so that IRPs sent by drivers in the layer below the driver being loaded can be received by it.  Device object 
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stacking is achieved by a call to the I/O Manager routine IoAttachDeviceToDeviceStack as shown in figure 
3.1.2.5. A physical device object (PDO) is required, which is lower in the stack than the new device object when 
calling IoAttachDeviceToDeviceStack. The routine attaches the specified device object to the top of the driver 
stack and returns a device object that is one below the new one e.g. in the example shown on figure 3.1.2.5 this 
would be lower device object X.  The lower physical device object (PDO) can be any number of layers below 
the new device object but IoAttachDeviceToStack returns the device object one below the current one. 
 

 

 

Figure 3.1.2.5 Attaching a device object to the top of a device object stack. 

3.1.2.6. User to Kernel and Kernel to User Data Transfer Modes in Windows 

The mode used to transfer data from kernel space to user space and vice versa is specified in the flags field 
of a device object. There are three modes: buffered I/O, direct I/O and I/O that does not use any of the latter 
methods termed “method neither I/O”. Figure 3.1.2.6 illustrates the three modes. In buffered I/O mode the 
operating system allocates a kernel buffer that can handle a request. In the case of a write operation, the 
operating system validates the supplied user space buffer and copies data from the user space buffer to the 
newly allocated kernel buffer and passes the kernel buffer to the driver. In the case of reads, the operating 
system validates the user space buffer and copies data from the newly allocated kernel buffer to the user space 
buffer.  The kernel buffer is accessible to drivers as the AssociatedIrp.SystemBuffer field of an IRP. Drivers read 
from or write to this buffer to communicate with applications when buffered I/O is in use.  

Direct I/O is the second I/O method that can be used for data exchanges between applications and a driver. 
An application-supplied buffer is locked into memory by the operating system, so that it will not be swapped 
out, and a memory descriptor list (MDL) for the locked memory is passed to a driver. An MDL is an opaque 
structure. Its implementation details are not visible to drivers. The driver then performs DMA to the user space 
buffer through the MDL. The MDL is accessible to drivers through the MdlAddress field of an IRP. The 
advantage of using direct I/O is that it is faster than buffered I/O since no copying of data to and from user and 
kernel space is necessary and I/O is performed directly into a user space buffer. 
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Figure 3.1.2.6 The three ways in which data from kernel to user and user to kernel 
space is exchanged. 

 
The third method for I/O is neither buffered nor uses MDLs. Instead the operating system passes the virtual 

address for a user space buffer to the driver. The driver is then responsible for checking the validity of the buffer 
before it makes use of it. In addition, the user space buffer is only accessible if the current thread context is the 
same as the application’s, otherwise a page fault will occur since the virtual address is valid only while that 
application’s process is active. 

3.1.3. Dispatch Routines 

Dispatch routines are routines that handle incoming I/O requests packaged as IRPs (I/O request packets). 
When an IRP arrives (e.g. when an application initiates I/O), an appropriate dispatch routine is selected from the 
array of routines specified in the MajorFunction field of a driver object as shown in figure 3.1.3. These dispatch 
routines are initialised in the driver’s entry routine.  Every IRP is associated with an I/O stack location structure 
(used for storing an IRP’s parameters) when created. This structure contains a field, which specifies the dispatch 
routine the IRP is meant for and the relevant parameters for that dispatch routine. The I/O manager determines 
from an IRP which dispatch routine it will send IRPs to. 
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Figure 3.1.3 dispatching IRP’s to dispatch routines. 

 
Thus IRPs are routed to an appropriate driver supplied routine so that they can be handled there. Required 
dispatch routine IDs are shown in table 3.1.3. They are indexes for the array of routines specified by the 
MajorFunction field of a device object. The dispatch routines have custom driver supplied names that are 
implemented by the driver. They all accept an IRP and a device object to which the IRP is being sent. 
 

IRP_MJ_PNP Handles PnP messages 

IRP_MJ_CREATE Handles the opening of device to gain a handle 

IRP_MJ_CLEANUP Handles the closing of the device handle gained above 

IRP_MJ_CLOSE Same as clean up, called after cleanup 

IRP_MJ_READ Handles a read request to a device 

IRP_MJ_WRITE Handles a write request to a device 

IRP_MJ_DEVICE_CONTROL Handles a I/O control request to a device 

IRP_MJ_INTERNAL_DEVICE_CONTROL Handles driver specific I/O control requests 

IRP_MJ_SYSTEM_CONTROL Handles WMI requests 

IRP_MJ_POWER Handles power management messages 

Table 3.1.3 Required Windows driver dispatch routines 

3.1.4. Windows Driver Installation 

Windows uses installation information contained in a text file called an INF file to install drivers. The 
creator of a driver is responsible for providing an INF file for the driver. A GUI application that is provided with 
the Windows DDK called GenInf allows the generation of an INF file for a driver. It requires a company name 
and a Windows Device class under which the driver will be installed. Windows has various pre-defined device 
classes for installed drivers. The Windows device manager applet, accessible through the system control panel 
applet, shows all installed drivers categorised using these device classes. Examples of existing classes are the 
1394 and PCMCIA device classes. A custom device class can be added by adding a ClassInstall32 section in the 
INF file.  

The hardware ID for a PnP-aware device must also be specified in the INF file since it will be used by the 
system to identify the device when the device is inserted into the system. A hardware ID is an identification 
string used by the PnP manager to identify devices that are inserted into the system. Microsoft publishes PnP 
hardware IDs for the various devices that are usable with the Windows operating system. This hardware ID is 
stored on the hardware device and read off the device by the system when that device is inserted into the system.  
Once an INF file for a new device is successfully installed into the system, the driver for that device (which has 
a specific hardware ID) will be loaded each time the device is inserted into the system and unloaded when the 
device is removed from the system. 
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3.1.5. Obtaining Driver Usage Information in Windows 

The device manager found in the control panel system applet provides driver information for users. It lists 
all currently loaded drivers and information on the providers of each driver and their resource usage. It also 
displays drivers that failed to load and their error codes. 

3.2. Linux Driver Architecture Components 

Device drivers in Linux are similar to those in Windows in that they too are made up of various routines 
that perform I/O and device control operations. There is no driver object visible to a driver, instead drivers are 
internally managed by the kernel. 

3.2.1. Driver Initialisation 

Every driver in Linux contains a register driver routine and a deregister driver routine. The register driver 
routine is the counterpart to the Windows driver entry routine. Driver writers use the module_init and 
module_exit kernel defined macros to specify custom routines that will be designated as the register and 
deregister routines.   

3.2.1.1. Driver Registration and Deregistration 

The routine designated by the module_init macro as the registration routine is the first routine executed 
when a driver is loaded. The driver is registered here by using a kernel character device registration routine 
called register_chrdev. The important requirements for this routine are a name for the driver, a driver major 
number (discussed later in section 3.2.2) and a set of routines for performing file operations.  Other driver-
specific initialisation should take place in this routine. The deregistration routine gets executed when the driver 
is being unloaded. Its function is to perform cleanup operations before a driver is unloaded. A call to the kernel 
routine unregister_chrdev with a device name and major number is necessary when deregistering a driver that 
was previously registered with a register_chrdev call. 

3.2.2. Device Naming 

In Linux, devices are named using numbers in the range 0 to 255, called device major numbers. This 
implies that there can be a maximum of 256 usable devices i.e. devices that an application can gain a handle to, 
but each driver for such a major device can manage as many as 256 additional devices. These driver-managed 
devices are numbered using numbers in the range 0 to 255, called device minor numbers. It is therefore possible 
for applications to gain access up to 65535 (256x256) devices. Major numbers are assigned to well known 
devices for example major number 171 is assigned to IEEE1394 devices. The file Documentation/devices.txt in 
the Linux kernel source tree contains all major number assignments and a contact address for the device number 
registration authority. Currently, major numbers 240-254 are available for experimental use. A driver can 
specify a major number of 0 to request automatic assignment of a major number for a device, if one is available. 
The use of major number 0 for this purpose does not cause problems, as it is reserved for the null device and no 
new driver should register itself as a the null device driver. 

3.2.2.1. Driver Access from an Application 

Drivers are accessed by applications through file system entries (nodes). By convention, the drivers 
directory is /dev on a particular system. Applications that want to perform I/O with a driver use the open system 
call to obtain a handle to a particular driver.  The open system call requires a device node name such as /dev/tty 
and access flags. After obtaining a handle, the application can use the handle in calls to other system I/O calls 
such as read, write and IOCTL. 

3.2.3. File operations 

In Windows, dispatch routines were set up in the driver entry routine of a driver. In Linux, these dispatch 
routines are known as file operations and are represented by a structure called file_operations. A typical driver 
would implement the file operations listed in table 3.2.3.  
 

Open Handles the opening of device to gain a handle 

Release Handles the closing of device handled gained above 



Read Handles a read request to a device 

Write Handles a write request to a device 

Llseek Handles a seek operation on a device 

IoCtl Handles a device control request for a device 

Table 3.2.3 Most commonly defined driver file operations in Linux 

 
These file operations are specified during driver registration. A structure called file is created by the kernel 

whenever an application requests a handle to a device and is supplied to the driver whenever one of the file 
operation routines is called. The file operation routines serve many clients, each represented by the file structure. 
The structure has a field named f_op. This field is a pointer to the original set of file operations that were 
specified at registration time of a major driver. It is therefore possible to change the original file operations 
during a call to any of the file operation routines by changing the value of the field named f_op to point to a new 
set of file operations.  

3.2.3.1. Global Driver Data 

Whenever an application issues the system open call on a device file node in /dev, the application, gets back 
a handle to a device from the operating system. At this time the driver’s open function is called with a file 
structure created for that open call. This file structure is passed by the kernel to the driver whenever any of the 
file operations routines are executed. The private_data field of the file structure can be any driver-supplied 
custom data structure. Driver private data is usually set up in the open file operations function by allocating 
memory, and freed in the release file operations function. The private data field of the file structure can be used 
to point to data that is global to a driver instead of using global variables. 

3.2.4. How Driver Major and Minor Numbers Work 

3.2.4.1.The Problem 

In Linux only one driver can register itself to manage a device with a particular major number i.e. driver 
registration uses only a major number. If for example, two device nodes /dev/device1 (major no 4 minor 1) and 
/dev/device2 (major number 4 minor number 2) exit, only one driver can handle requests, from applications, to 
these two device nodes. This restriction exists because no driver registration facility exists whereby a driver can 
register itself to manage a device with major number x and minor number y. 

3.2.4.2.The Workaround 

• A driver is loaded to manage devices with major number 4. This driver registers itself with the 
kernel (see section 3.2.1.1 for how this is done). 

• Two separate drivers are loaded. One manages a device with major number 4 minor 1 and the other 
a device with major number 4 minor 2. These drivers do not register themselves with the kernel, 
but with the driver that manages devices with major number 4. This driver responsible for 
implementing the registration facility and keeping track of drivers that register with it. 

• When an application opens any one of the two device nodes (/dev/device1 or /dev/device2), the 
open routine of the driver registered to manage devices with major number 4 is called by the 
kernel. A file structure that represents the opened device is passed to this open routine. 

• At this point, the driver that manages devices with major number 4 alters the file operation 
function pointers (f_op member of the file structure) to point to I/O routines implemented by the 
driver that manages the opened device.  Opens of minor devices by applications are identified by 
the driver that manages devices with major number 4 in the following manner: 

o A structure called inode is also passed to the open routine. This structure contains a field 
named i_rdev, which specifies the major and minor numbers for the device the open 
operation was targeted at. The kernel macros MINOR and MAJOR can be used to extract 
these values from the i_rdev field. In this example the MAJOR number would be 4 and 
the minor number either 1 or 2. The driver that manages devices with major number 4 can 
then locate a minor device driver from its registration database using this information. 



3.2.5. User to Kernel and Kernel to User Data Transfer Modes in Linux 

In Linux, three ways exist for drivers and applications to exchange data to and from kernel and user space. 
These are buffered I/O, direct I/O and mmap. In buffered I/O mode, data is copied by the kernel from user space 
to a kernel space buffer before it is used inside a driver. Unlike Windows the Linux kernel does not perform 
buffering for I/O automatically. Instead, kernel user space access routines are made available that allow copying 
of data to and from user space by drivers. In direct I/O mode, drivers can read and write data to and from user 
space buffers directly. This is achieved through the kiobuf interface, which involves mapping a user space buffer 
to a kiobuf defined structure through a kiobuf kernel call. The operation locks a user space buffer so that it does 
not get swapped out and is always available for device I/O. The third method, called mmap, involves the driver 
mapping a chunk of kernel memory to user space using mmap kernel calls, so that applications can perform I/O 
to the mapped kernel memory. [Rubini et al, 01].  

3.2.6. Linux Driver Installation 

Drivers are installed in Linux by transferring the driver files into a system specific directory. In the RedHat 
distribution [Redhat, 02], modules are located in the directory /lib/modules/kernel_version where kernel_version 
specifies the version of the kernel currently loaded e.g. 2.4.19. A configuration file called modules.conf located 
in the system’s configuration file directory e.g. /etc, is used by the kernel while loading modules. It can be used 
to override the location for a particular driver. It is also used for defining other module loading options, such as 
defining parameters to be passed to a driver when loading it.  

Module loading and unloading is performed using programs that come with the kernel module utilities 
package called insmod, modprobe and rmmod. Insmod and modprobe load the binary image of a driver into the 
kernel and rmmod removes it. Another program called lsmod lists all currently loaded modules. Insmod will 
attempt to load a module and return an error if the module being loaded depends on other modules. modprobe 
will try to satisfy module dependencies by attempting to load any modules the current module may depend on 
before loading it. The module dependency information is obtained from a file called modules.dep located in the 
system’s modules directory. 

Before a driver can be accessible to applications, a device node (see sections 2.1 and 3.2.2.1 for how Linux 
represents devices in the system) for that driver, with the devices major and minor numbers, must be created in 
the devices directory /dev. A system program called mknod is used for this purpose. When creating a device 
node, it is necessary to specify whether the node is for a character device or a block device.  

3.2.7. Obtaining Driver Usage Information in Linux 

It is often necessary to check the status of loaded drivers in a system. In Linux, the proc file system is used 
to publish kernel information for application usage. The proc file system is just like any other file system. It 
contains directories and file nodes that applications can access and perform I/O operations with.  The difference 
between files on the proc file system and ordinary files is that data from I/O operations on a proc file entry gets 
passed to and from kernel memory instead of disk storage. The proc file system is a communication medium for 
applications and kernel components. For example, reading data from the file /proc/modules will return currently 
loaded modules and their dependencies. The proc file system is very useful for obtaining driver status 
information and publishing driver specific data for application use. 

3.3. The Windows and Linux Driver Architecture Components Compared 

Drivers in both Windows and Linux are dynamically loadable modules that consist of various routines that 
perform I/O. When loading a module, the kernel will locate a the routine designated by the particular operating 
system as the driver entry routine and It will start driver code execution from there. 

3.3.1. Driver Routines 

Drivers in both systems have initialisaton and de-initialisation routines. In Linux, both these routines can 
have custom names. In Windows, the initialisation routine name is fixed (called DriverEntry) but the de-
initialisation routine can be a custom one. Windows manages a driver object structure for each loaded driver. 
Multiple instances of a driver are each represented by a device object. In Linux, the Kernel maintains 
information for each driver registered to manage a device major number. i.e. for each driver that acts as a major 
device driver. 



Both operating systems require drivers to implement standard I/O routines, which are called dispatch 
routines in Windows and file operations in Linux. In Linux, a different set of file operations can be provided for 
each device handle returned to an application. In Windows, dispatch routines are defined once in the 
DriverEntry routine inside a driver object. Since there is one driver object for each loaded driver, it is not 
advisable to modify the dispatch routines assigned to it when an application requests a handle through an open 
call. Windows drivers have an add device routine that gets called by the PnP manager for PnP aware devices. 
There is no PnP manager in Linux and such a routine does not exist in Linux.  

 
Dispatch routines in Windows operate on device objects and IRPs. In Linux, file operations operate on a file 

structure. Custom global driver data is stored in device objects in Windows and in the file structure in Linux. A 
device object is created at load time in Windows whereas in Linux a file structure is created when an application 
requests a handle to a driver with a system open call. An important implication of this is that in Linux global 
data per application can be kept in the file operations structure. In Windows, global data can only be present in 
the FDO that the driver manages. Global data per application in Windows has to be kept in a list structure 
contained within the FDO’s custom data structure.  

3.3.2. Device Naming 

Drivers in Windows are named using driver-defined strings and are found in the \\device namespace. In 
Linux, drivers are given textual names but applications are not required to know these. Driver identification is 
performed through the use of a major-minor number pair. Major and minor numbers are in the range 0-255, 
since a 16 bit number is used to represent the major-minor pair thus allowing a maximum of 65535 devices to be 
installed in a system.  

Devices in Linux are accessible to applications through file system nodes. In most Linux distributions the 
directory /dev contains device file system nodes. Each node is created with a driver’s major and minor number. 
Applications obtain a handle to a driver, for performing I/O, through the open system call targeted at a device 
file system node. In Windows, another driver naming method exists, whereby a 128 bit GUID is registered by 
each driver. Applications access the Windows registry to obtain a textual name in the \\device namespace using 
the GUID.  This textual name is used to obtain a handle for performing I/O with a driver through the CreateFile 
Win32 API call. 

3.3.3. User-Kernel Space Data Exchanges 

Data exchanges to and from user space are performed similarly by both operating systems, enabling 
buffered data transfer, performed by the I/O Manager in Windows and by the driver in Linux. Direct I/O to a 
user space buffer is achieved in both operating systems by locking the user space buffer so that it stays in 
physical memory. This arises from the fact that drivers cannot always access user space buffers directly, since 
they will not always be executing in the same process context as the application that owns the user space 
buffers. The application has its own virtual address space, which is only valid in its own process context. Thus 
when the driver accesses a virtual address from some application outside of that application’s process context, it 
will be accessing an invalid address. 

3.3.4. Driver Installation and Management 

Driver installation is through a text file called an INF file in Windows. Once installed, the driver for a 
device will be automatically loaded by the PnP manager when the device is present in the system. In a Linux 
system, programs are used to load driver binary images into the kernel. Entries need to be inserted manually into 
system start up files, so that driver loading programs like modprobe are executed with a driver image path or an 
alias to the driver as a parameter. Driver aliases are defined in the file /etc/modules.conf, which programs like 
modprobe inspect before loading a driver. An example of an alias entry in modules.conf would be “alias 
sounddriver testdriver”, which aliases the name sounddriver to the driver binary image testdriver. Executing 
modprobe with sounddriver as a parameter would make modprobe load testdriver. In this way, users can use a 
standard and simpler name such as sounddriver to load a sound driver without having to know what the name of 
a specific driver for a sound card is. Driver status information is available in Windows through the device 
manager applet, or directly reading the data from the system registry. In Linux, driver information is available 
through entries in the proc file system. The file /proc/module for example contains a list of loaded modules. 



4. A Kernel Buffer Driver 

This section presents the implementation of a simple driver that performs I/O to blocks of kernel memory, a 
hypothetical virtual device. Discussion of the various components needed to make the driver work on both 
Windows and Linux is presented, so that the similarities and differences in the driver components of each 
operating system can be highlighted. The virtual device, managed by the driver, is shown in figure 4.0. It 
consists of a number of blocks of kernel memory. Applications can perform I/O operations on the virtual device. 
The driver will be able to select the memory bank it wants to access and the offset within a memory bank’s 
block. 
 

 

Figure 4.0 A simple virtual device 

4.1. Required Driver Components. 

Both the Windows and Linux drivers will implement the read, write and IOCTL driver routines. Required 
driver routines for each operating system are shown in figure 4.1. Naming of the driver routines is flexible. In 
figure 4.1 the routines for the different operating systems could have been given the same names, instead the 
conventional platform names have been utilised. 

 

 

Figure 4.1 The Windows and Linux basic  driver routines 

4.1.1. Driver Load and Unload Routines 

In Windows, the step performed in the driver load routine, DriverEntry, is the setting up of I/O dispatch 
routines as shown in figure 4.1.1a. 
 

 driverObject->DriverUnload = DriverUnload; 

 driverObject->DriverExtension->AddDevice = AddDevi ce; 

 driverObject->MajorFunction[IRP_MJ_READ] = Read; 

 driverObject->MajorFunction[IRP_MJ_WRITE] = Write;  

 driverObject->MajorFunction[IRP_MJ_CREATE] = Creat e; 

 driverObject->MajorFunction[IRP_MJ_CLOSE] = Close;  
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 driverObject->MajorFunction[IRP_MJ_PNP] = Dispatch Pnp; 

 driverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL]  = Ioctl; 

Figure 4.1.1a Initialisation of a driver Object in the driver entry routine 

 
In Linux, the step performed in the driver load routine, RegisterDriver, is the registration of a driver major 

number as shown in figure 4.1.1b. The tagged file operation initialisation, specific only to the GCC compiler, is 
shown in figure 4.1.1b in the declaration of the structure fops, which is not valid ANSI C syntax. The compiler 
will initialise the various fields of the file_operations structure (fops) with the supplied driver implemented 
routine names i.e. open is a field name in the structure and Open is a routine implemented by the driver and the 
compiler will assign a function pointer for Open to open.  
 

 

struct file_operations fops 

{ open: Open, 

 release: Release, 

 read: Read, 

 write: Write, 

 ioctl: IoCtl, 

} 

result = register_chrdev(major_number,”testdriver”, &fops); 

if(result < 0) PRINT_ERROR(“driver didn’t load succ essfully”); 

Figure 4.1.1b Registration of a driver major number in Linux 

 
In the driver unload routine for the Linux driver the registered driver must be unregistered as shown in 

figure 4.1.1c.  
 

unregister_chrdev(major_number,”testdriver”); 

Figure 4.1.1c Driver major number deregistration in Linux 

4.1.2. Global Driver Structure 

A structure must be defined for storing global driver data that will be operated on by the driver in its 
routines. For the memory device the same structure will be used for both Windows and Linux versions of the 
driver. It is defined as shown in figure 4.1.2.  
 

#define MAX_BANK_SIZE 4 

typedef char byte_t; 

#define BLOCK_SIZE 1024; 

 

typedef struct _DEVICE_EXTENSION 

{ byte_t * memoryBank[MAX_BANK_SIZE]; 

 int currentBank; 

 int offsets[MAX_BANK_SIZE]; 

  



}DEVICE_EXTENSTION, *PDEVICE_EXTENSION; 

Figure 4.1.2 Structure used to store global data for generic driver 

memoryBank is an array of 4 blocks of memory where the size of a block is 1K. currentBank indicates the 
currently selected block of memory and offsets records offsets within each of the blocks of memory.  

4.1.3. Add Device Routine 

The add device routine is only specific to Windows. Linux does not have an add device routine. All 
initialisation must be done in the driver load routine instead. The operations performed in the Windows 
addDevice routine are shown in figure 4.1.3. A device object is created with a call to the I/O manager routine 
IoCreateDevice.  

An interface that applications will use to gain access to a handle for the driver is then created with the I/O 
manager routine call IoRegisterDeviceInterface. One of the arguments to this routine is a GUID manually 
generated with the system guidgen application.  The different ways data could be exchanged by drivers and 
applications to and from kernel space in Windows were presented in section 3.1.2.6. A driver indicates what 
form of data exchange method it wants to use by setting the flags field of its device object (see sections 3.1 and 
3.1.2 for a discussion of device objects). In this example the flags field is set so that the driver performs buffered 
I/O. Space for each of the blocks of memory to be used by the memory device is then allocated with one of the 
kernel memory allocation routines called ExAllocatePool. The memory is allocated from the kernel’s non-paged 
pool of memory, thus the device’s memory will always be in physical memory. 
 

 

Figure 4.1.3 Operations performed in the Windows driver’s add device routine 

4.1.4. Open and Close Routines 

Most of the initialisation required for the Windows driver has already been done in the add device routine 
so there is nothing to be done in the open routine. The Open routine in Linux performs the operations shown in 
figure 4.1.4a. Firstly, memory for storing global driver data is allocated and the file structure’s private_data 
field set to point to it. Blocks of memory for the memory device are then allocated in exactly the same way as 
for Windows. Only the name of the memory allocation routine differs, ExAllocatePool in Windows and kmalloc 
in Linux. 
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Figure 4.1.4a Operations performed in Linux’s generic driver open routine 

 
In Linux’s close routine, the space allocated for global driver data as well as space allocated for the memory 

device are freed as shown in figure 4.1.4b.  In Windows, the freeing up of allocated memory is done in response 
to the PnP remove device message, which is discussed later in this section. 
 

 

Figure 4.1.4b Operations performed in Linux’s generic driver close routine 

4.1.5. Read and Write Routines 

The read and write routines will transfer data to and from the currently selected kernel memory bank. In 
Windows, the read routine is performed as shown in figure 4.1.5a.  The length of the data to be read is obtained 
from an IRP’s I/O stack location (see section 3.1.3 for what an I/O stack location is), in the field named 
Parameters.Read.Length. Data of the requested size is read from the currently selected bank of memory 
(applications perform memory bank selection through the driver’s IOCTL routine discussed later) using the 
kernel runtime routine called RtlMoveMemory. RtlMoveMemory moves the data from the memory device’s 
space to the buffer allocated for buffered I/O by the I/O manager i.e. the AssociatedIrp.SystemBuffer field of the 
IRP. The IRP is then completed, which informs the I/O manager that this driver has finished processing the IRP 
and that the I/O manager should return the IRP to the originator of the IRP. 
 

 

Figure 4.1.5a Performing a read operation in the Windows driver 

 
The write routine performs the opposite of the above memory move operation as shown in figure 4.1.5b. 
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Figure 4.1.5b Performing a write operation in the Windows driver 

 
In Linux, the read routine appears as shown in figure 4.1.5c.  A reference to the global driver data is 

obtained from the private_data member of the file structure. From the global data, a reference to the 
memoryBank is obtained. Data is then transferred from this memory bank to user space using the user space 
access kernel routine called copy_to_user. 
 

 

Figure 4.1.5c Performing a read operation in the Linux driver 

 
The write routine performs the same operations as above, except this time data is transferred from user to 

kernel space as shown in figure 4.1.5d. 
 

 

Figure 4.1.5d Performing a write operation in the Linux driver 

4.1.6. Device Control Routines 

Device control routines are used to set various states of a device. Applications make IOCTL calls to drivers 
by using the win32 routine DeviceIoControl. This routine requires an IOCTL code defined by a driver. An 
IOCTL code tell a driver what control operation an application is wanting to perform. In this example, the driver 
implemented IOCTL routine is used to select the current bank number. Driver-specific IOCTL codes must be 
defined prior to use. IOCTL codes in Windows are defined as shown in figure 4.1.6a. The macro CTL_CODE is 
used to define a particular device IOCTL code [Oney, 99]. The first argument to the CTL_CODE macro 
indicates the device ID. Device ID numbers are in the range 0-65535. Codes 0-32767 are reserved for the 
operating system. Codes 32768-65535 are available for custom use. The code chosen should be the same as the 

Transfer requested length 
of data to memoryBank 

copy_from_user 
from 

userbuffer 
to 

current memoryBank 

Transfer data of the 
requested length 

 to a user space buffer 

copy_to_user 
from 

current memoryBank 
to 

userbuffer 

Transfer data of the 
requested length 

from the IRP’s buffer 

Complete the IRP 

RtlMoveMemory 
from 

Irp->AssociatedIrp.SystemBuffer 
to 

current memoryBank 

IoCompleteRequest 



device code specified during the IoCreateDevice call in the driver’s addDevice routine (see section 4.1.3 for 
what happens in the addDevice routine).  

 The second argument indicates the function code and is 12 bits long. Codes 0 to 2047 are reserved by 
Microsoft so a function code greater than 2047 and less than 2^12 is used.  It use used to define what control 
code is being defined. I.e. it distinguishes the two IOCTL codes shown in figure 4.1.6a. The third argument 
specifies the method used to pass parameters from user space to kernel space, and the fourth argument indicates 
the access rights that applications have to the device.  
 

#define MEMORY_DEVICE 61000  

 

#define IOCTL_SELECT_BANK \ 

    CTL_CODE(MEMORY_DEVICE, 3000, METHOD_BUFFERED, FILE_ANY_ACCESS) 

#define IOCTL_GET_VERSION_STRING \ 

    CTL_CODE(MEMORY_DEVICE, 3001, METHOD_BUFFERED, FILE_ANY_ACCESS) 

Figure 4.1.6a IOCTL code definition in Windows 

 
In Linux, applications make IOCTL calls to drivers by using the system routine ioctl. IOCTL codes are 

specified in the file Documentation/ioctl-numbers.txt, which can be found in the Linux kernel source tree. 
Experimental drivers select an unused code, currently 0xFF and above. The IOCTL codes for this driver are 
defined as shown in figure 4.1.6b. Macro _IOWR indicates that data will be transferred to and from kernel 
space. Other macros available are _IO which indicates no parameters, _IOW which indicates that data will be 
passed from user space to kernel space only and lastly _IOR which indicates that data will be passed from kernel 
space to user space only. The above macros require the size of the IOCTL parameter that will be exchanged 
between kernel and user space. Rubini et al [Rubini et al, 01] suggest that for the driver to be portable, this size 
should be set to 255 (8bits) although current architecture dependent data ranges from 8-14 bits. The second 
argument is similar to the Windows function number. It is eight bits wide, i.e. ranges from 0-255. 
 

#define IOCTL_PARAM_SIZE 255 

#define MEMORY_DEVICE 0xFF 

 

#define IOCTL_SELECT_BANK \ 

    _IOWR(MEMORY_DEVICE, 1, IOCTL_PARAM_SIZE) 

#define IOCTL_GET_VERSION_STRING \ 

    _IOWR(MEMORY_DEVICE, 2, IOCTL_PARAM_SIZE)     

Figure 4.1.6b IOCTL code definition in Windows 

 
Once the IOCTL codes have been selected, the IOCTL routines can be defined. In Windows, the IOCTL 

routine is defined as shown in figure 4.1.6c. Two IOCTL codes are handled. The first, 
IOCTL_SELECT_BANK, sets the current bank number. The second, IOCTL_GET_VERSION_STRING, 
returns a driver version string. Data returned to callers of the IOCTL routine is handled in the same way as for 
the read and write requests. 
 



 

Figure 4.1.6c IOCTL routine definition in Windows 

 
The Linux IOCTL routine definition is shown in figure 4.1.6d. The IOCTL codes handled are the same as 

for Windows. The only difference is that of syntax specific to each kernel. Data handling is performed in the 
same way as for reads and writes. 
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Figure 4.1.6d IOCTL routine definition in Linux 

4.1.7. PnP Message Handling Routines 

In Windows, PnP messages are dispatched to the driver at appropriate times. E.g. when a device in inserted 
into the system or removed from the system. These messages are handled by a driver that implements a PnP 
dispatch routine. In Linux, the kernel does not send PnP messages to the driver thus a PnP routine does not exist 
in the Linux driver. The Windows PnP message handler is shown in figure 4.1.7.  

Only one of the PnP messages is handled for by the memory device driver in this example. The remove 
device message is sent when the driver is unloaded from the system. At this time, the driver’s interface is 
disabled with a call to the I/O manager routine IoSetDeviceInterface and the driver’s functional device object is 
deleted as well as the generic driver’s blocks of memory. 
 

 

Figure 4.1.7 PnP Message handler routine 
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5. Driver Development Environments 

Developing drivers for the two operating systems discussed so far, namely Microsoft’s Windows and Linux, 
requires the use of software development tools specific to each platform. The operating system kernel on both 
Windows and Linux is constructed using the C Programming Language. It follows that drivers for both 
operating systems are created using the C programming language. Windows supports driver construction using 
the object oriented programming language C++, whereas Linux does not. 

5.1. The Windows Driver Development Environment 

Microsoft Windows is a proprietary, commercial operating system i.e. it must be purchased for a fee. A 
number of commercially available driver development environments aimed at Windows exist. One such 
example is the NuMega DriverStudio™ Suit [Compuware, 01] which comes with class libraries and driver 
construction wizards that aid in the development of drivers, as well as an integrated debugger that allows 
debugging of driver code.  

5.1.1.  The Windows Device Driver Development Kit 

The standard route for driver development on Windows is to obtain a Device Driver Kit (DDK) from 
Microsoft and use its facilities to build drivers. The latest version of the DDK is available to Microsoft Software 
Development Network (MSDN) subscribers. The DDK contains programs required to build drivers. The DDK 
installation program will install batch files that set up a shell window to enable building of drivers for each of 
Microsoft’s operating systems. The DDK release used in this investigation of the Windows driver architecture, 
Windows DDK 3590, has build environments for Windows ME, 2000, XP and .NET drivers.  There are two 
build environments for each platform. The first is called a checked build environment i.e. debugging symbols 
are added to the driver code. The second is called a free build environment i.e. drivers built in this environment 
are not built with debugging symbols. The latter environment is where production drivers are built. 

5.1.2.  Windows Driver Makefiles 

Once a DDK shell window is active the simple command build will build a driver. A Makefile is used to 
define driver source files from which a driver is to be built. The entries for the Makefile are specified in a file 
called sources which resides in the directory where the build command is issued. Figure 5.1.2 shows the format 
of a Makefile used to build a simple driver. The environment variable TARGETNAME specifies the driver 
output filename. For this example the final driver will be called mydriver.sys as drivers in Windows are 
assigned a .sys extension. TARGETPATH specifies where the object code for the driver will be produced. There 
is a file called _objects.mac in the directory called obj where additional paths for object file dump directories are 
defined. On Windows 2000, the default object file dump directories are objchk_w2k for checked builds and 
objfre_w2k for free builds. INCLUDES specifies the path for include files necessary to build drivers and finally 
SOURCES specifies the driver source file from which the driver will be built. 
 

TARGETNAME=mydriver 

TARGETPATH=obj 

TARGETTYPE=DRIVER 

DRIVERTYPE=WDM       

 

INCLUDES=$(BASEDIR)\inc; 

SOURCES= mydriver.c  

Figure 5.1.2 A Makefile used for building a WDM driver with the Windows DDK 

5.1.3. Windows DDK Documentation and Tools 

The Windows DDK contains well organised API documentation as well as example driver source files from 
which newcomers to driver writing can learn to create drivers. The DDK also contains utility programs that aid 
in the driver development process. One of the utility programs is the device tree application that lists all 



currently loaded drivers listed in the \\device name space (see section 3.1.2.4 which discusses device name 
spaces) in a hierarchical  manner, showing any existing driver stacks as well as driver implemented routines and 
driver object memory addresses. Other programs that are provided with the Windows DDK are an INF file 
generation application called geninf used to generate INF files for driver installation and a PnP driver test 
application used to test if drivers are PnP compliant. 

5.2. The Linux Driver Development Environment 

The driver development environment on Linux is different from that on Windows. There is no counterpart 
to the Windows DDK on Linux i.e. there is no such thing as a Linux Device Driver Kit supplied by the kernel’s 
creators. Instead the kernel’s creators make all the kernel source code available to everyone. The kernel header 
files are all that are required for creating drivers. Drivers are built using the GNU C compiler, GCC, which is 
also used to build applications. Similarly to Windows, a Makefile is used to specify how a driver is to be built.  

5.2.1.  Linux Driver Makefiles 

Once a Makefile is defined, the simple command make is used to build the driver. Figure 5.2.1 shows an 
example Makefile for building a driver, called mydriver, in Linux with a source file name mydriver.c.  The first 
entry, KERNELDIR, defines an environment variable that specifies where the kernel header files are located. 
The next line includes the current kernel configuration. Before a kernel and its drivers are built, externally 
definable kernel variables are specified in a file called .config which is stored in the kernel source tree’s root 
directory. These are included so that the kernel’s header files can make use of them. CFLAGS is used to set 
additional flags to the compiler (GCC). ‘-O’ turns on code optimisation, ‘-Wall’ prints out all code warnings. 
The ‘all’ section is the default section examined when the ‘make’ command is executed. It provides a target 
called mydriver, which depends on the object file called mydriver.o, which is built by using GCC. The 
environment variable LD specifies the GNU linker to be used to build the final driver module. The option ‘-r’ 
specifies that output should be relocatable i.e. memory locations within it will be offsets to some base address 
not known at compile time. ‘$^’ is an alias for mydriver.o and ‘$@’ is an alias for mydriver i.e. it requests the 
linker to produce relocatable code from the object file mydriver.o and produce an output called mydriver. 
 

KERNELDIR=/usr/src/linux 

include $(KERNELDIR)/.config 

CFLAGS=-D__KERNEL__ -DMODULE –I $(KERNELDIR)/include –O –Wall 

 

all: mydriver 

 

mydriver: mydriver.o 

 $(LD) –r $^ -o $@ 

Figure 5.2.1 Makefile used to build a driver in Linux 

 
Kernel module management programs such as insmod and lsmod can then be used to load the driver into the 
kernel and to observe currently loaded modules, respectively.  

5.2.2.  Linux Driver Development Documentation 

There is some documentation on the various parts of the Linux kernel in the directory called 
“Documentation” found under the kernel source tree, but is not as complete and descriptive as the Windows 
DDK documentation. The Linux driver book written by Rubini et al [Rubini et al, 01] is a better source of 
information for device driver writers. There are no example drivers that come with the Linux kernel, but code 
for existing production drivers is available, which can be used as a basis for starting a new device driver. 
However, this does not provide a good introduction for novice device driver developers.  



5.3. Debugging drivers  

The creation of just about every piece of software requires it to be debugged sometime during the time of its 
development as there are always obscure bugs that are not discovered by examining source code manually. This 
is especially true for device drivers. At worst, bugs in applications might cause the application’s process to 
become unstable. Serious bugs in drivers will cause the entire system to become unstable.  

Debugging applications is a straightforward process. A break statement is set at a place of interest in source 
code using a debugger’s debugging facilities. This is usually debugger specific. In Windows, using Microsoft’s 
Visual Studio debugger, setting break points is as simple as clicking a line in the source code editor. The same 
applies to DDD (a GUI debugger found on Linux that uses the popular command line debugger GDB). When a 
program is executed in debug mode and a break point is reached, the execution of that program is paused and 
the program can be single stepped i.e. instructions from it executed one at a time and their effects observed. A 
debugger will usually allow the values of variables and variable memory addresses in a running program to be 
observed. The debugging facilities discussed thus far are also available for debugging device drivers, to a certain 
extent, on each operating system. 

5.3.1.  Debugging Drivers on Windows 

Debugging drivers under Windows can be performed using a number of different methods. The simplest of 
these is to use the DbgPrint debugging routine which allows printing of messages to the Windows debugger 
buffer. If a Windows debugger such as WinDbg is running, then the messages can be observed from there, 
otherwise a special application that can retrieve messages from the debugger’s buffer has to be used. One such 
application is DebugView, a free application provided by the SysInternals Corporation [Russinovich, 01]. The 
DbgBreakPoint routine sets a break point in a program. When executed, the system pauses and driver code 
execution is passed to the system debugger. The Assert macro transfers driver execution to the system debugger 
based on the value of a test condition.  

The Microsoft kernel debugger, WinDbg, requires two PCs for operation. The first PC is where the driver 
code is developed and tested. The second PC is connected to the driver development PC via a serial port. A 
developer can interact with the debugger running on the first PC through a serial console from the second PC. 
The NuMega DriverStudio ™ [Compuware, 01] provides a debugger that allows drivers to be debugged from a 
single PC, which can be the driver development machine, and acts like an application debugger. It provides a 
console Window from which command line instructions can be issued to control it. 

5.3.2.  Debugging Drivers on Linux 

In the same way as Windows, debugging of drivers in Linux can be performed by using debug routines 
provided by the kernel such as printk, which is the equivalent of the Windows DbgPrint routine. It behaves in 
the same way as the C standard I/O routine printf except that it takes an additional argument that specifies where 
the message will be printed to. A kernel debugger is also available as a patch that can be applied to the kernel 
sources. The patch for the built-in Linux kernel debugger (kdb) can be obtained from the KDB project page 
[KDB, 02]. It allows the same operations as a standard debugger i.e. setting break points, single stepping driver 
code, and examining driver memory. 

6. Conclusion 

Windows and Linux are two of the most popular operating systems in use today. Windows has the biggest 
market share, and Linux is gaining in popularity. Every new device that gets released to the public by a 
hardware manufacturer will almost certainly come equipped with a device driver that will make it operate on the 
Windows operating system. The two operating systems’ driver architectures are different in many ways but have 
some similarities.  

6.1. Device Driver Architectures 

Comparison of the driver architectures used by the two operating systems has shown that the Windows 
operating system has a more developed architecture than Linux. This does not mean that the Windows 
architecture offers better functionality than that of Linux, rather it has a more formally defined driver model, 
which driver developers are encouraged to follow. Although driver writers can ignore the Windows driver 
model and construct their own monolithic drivers, it was found that most driver writers did not take this route. 
No formally defined driver model exists for the Linux operating system. Linux driver writers produce drivers 



based on their own personal designs. Unless two groups of driver developers cooperate and produce drivers that 
work together, drivers from different developers cannot operate together under the Linux operating system.  

Under Windows, drivers from two or more sets of developers can be made to work together, provided the 
developers have followed the Windows Driver Model (WDM) to construct their drivers. The Windows driver 
architecture supports PnP (Plug and Play) and Power management, by dispatching messages at appropriate times 
to device drivers which have been implemented to handle these messages. No such facility is offered by the 
current Linux driver architecture.  

6.2. Designing device drivers 

When designing device drivers the facilities offered by an operating system should be evaluated.  The 
Windows and Linux operating systems are both modern operating systems. They make available 
implementations for data structures such as stacks, queues and spin locks, as well as HAL (Hardware 
Abstraction Layer) routines for performing hardware independent operations. This enables device drivers to 
operate on different architectures such as IA64 (Intel’s 64 bit platform) and SPARC.  

Driver functionality on both operating systems can be broken up into modules, which can be stacked 
together and that communicate using a standardised data structure. Under Windows this standardised data 
structure is the IRP (I/O Request Packet) and under Linux it can be any driver-defined structure, since no 
standardised structure exists on that operating system. 

6.3. Implementing Device Drivers 

Device drivers on both operating systems are made up of a set of routines that each operating system 
expects all drivers to implement. They include routines for standard I/O such as reading from and writing to a 
device, and for sending device I/O control commands to a device. Every driver for each operating system 
implements a routine that will be executed when the driver is loaded for the first time, and a routine that gets 
executed when a driver is unloaded. It is possible to construct a driver for each operating system that uses 
identical naming for the various driver routines, although the usual approach is to use conventional names for 
each operating system. The device driver naming scheme on Windows (using device interfaces) is a lot more 
flexible than the current device driver naming scheme used by Linux. Driver naming clashes are more likely to 
occur in Linux as compared to Windows, which uses a GUID (Globally Unique Identifier) for each device. 

6.4. Driver Development Environments 

The Windows operating system provides a DDK (Device Driver Developer’s Kit), which contains relevant 
documentation and development tools that help decrease the time required for learning to create new drivers. 
The Linux operating system does not provide a DDK, therefore initially some time will have to be spent by 
device driver developers to gather other sources to aid in the driver development process. Once time has been 
spent in getting familiar with the two driver development environments, developers will find it easier to create 
Linux drivers than Windows drivers, because all of the Linux kernel source code is available to them. This 
enables driver developers to trace problems in their drivers by having a closer look at the kernel code that their 
drivers rely on. Under Windows, only binary debug builds of the operating system’s components are available. 
These contain debug symbols such as function names and variable names and are not as useful as having the 
operating system’s source code. 

 

6.5. Concluding Remarks 

Drivers should be designed so that use of them requires very little interaction from end users, and all of a 
driver’s functionality is made available to applications. The former is one of the strong points of Windows, 
which fully supports PnP. Linux is an open source project, which is still actively being improved. It is expected 
that in the future Linux’s driver architecture will become as formalised as Windows’, which for example has a 
driver model such as the WDM. Growth of hardware vendor support for Linux is also expected as more and 
more individuals and organisations adopt it.  
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