
A Comparison of the Linux and Windows Device Driver Architectures

Melekam Tsegaye
Rhodes University, South Africa

g98t4414@campus.ru.ac.za

Richard Foss
Rhodes University, South Africa

r.foss@ru.ac.za

Abstract: In this paper the device driver architectures currently used by two of the most popular operating
systems, Linux and Microsoft’s Windows, are examined. Driver components required when implementing
device drivers for each operating system are presented and compared. The process of implementing a driver, for
each operating system, that performs I/O to a kernel buffer is also presented. The paper concludes by examining
the device driver development environments and facilities provided to developers by each operating system.

1. Introduction

Modern operating system kernels consist of a number of components such as a memory manager, process
scheduler, hardware abstraction layer (HAL) and security manager. For a detailed look at the Windows kernel
refer to [Russinovich, 98] and for the Linux kernel [Rusling, 99], [Beck et al, 98]. The kernel can be viewed as
a black box that should know how to interact with the many different types of hardware devices that exist and
the many more devices that do not yet exist. Creating a kernel that has inbuilt functionality for interacting with
all known hardware devices may be possible but is not practical. It would consume too many system resources,
needlessly.

1.1. Kernel Modularity

A kernel is not expected to know how to interact with new types of devices that do not yet exist at the time
of its creation. Instead modern operating system kernels allow their functionality to be extended by the addition
of device driver modules at runtime. A module implements functionality that will allow the kernel to interact
with a particular new device. Each module implements a routine that the kernel will call at module load time
and a routine that gets called at module removal time. Modules also implement various routines that will
implement I/O functionality for transferring data to and from a device as well as a routine for issuing device I/O
control instructions to a device. The above applies to both the Linux and Windows driver architectures.

1.2. Organisation of this paper

The material in this paper is divided into the following sections:
• General driver architecture of the two operating systems (section 2)
• Driver architecture components of each operating system (sections 3)
• Implementation of a driver that performs I/O to a kernel buffer (section 4)
• Driver development environments and facilities offered by the two operating systems to developers

(section 5)

1.3. Related Work

The Windows device driver architecture is documented by documentation that accompanies the Windows
Device Driver Development kit [Microsoft DDK, 02]. Further, the works produced by Walter Oney [Oney, 99]
and Chris Cant [Cant, 99] present a detailed account of the Windows Driver Architecture. The Linux device
driver architecture is documented well by the freely available publication authored by Rubini et al [Rubini et al,
01].

2. Device Driver Architectures

A device driver enables the operation of a piece of hardware by exposing a programming interface that
allows a device to be controlled externally by applications and parts of an operating system. This section
presents the driver architectures currently in use by two of the most commonly used operating systems,
Microsoft‘s Windows and Linux, and the origin of their architecture.

2.1. Origin of the Linux Driver Architecture

Linux is a clone of the UNIX operating system first created by Linux Travolds [Linus FAQ, 02], [LinuxHQ,
02]. It follows that the Linux operating system utilises a similar architecture to UNIX systems. UNIX operating
systems view devices as file system nodes. Devices appear as special file nodes in a directory designated by
convention to contain device file system node entries [Deitel, 90]. The aim of representing devices as file system
nodes is so that applications can access devices in a device independent manner [Massie, 86],[Flynn et al, 97].
Applications can still perform device dependent operations with a device I/O control operation. Devices are
identified by major and minor numbers. A major number serves as an index to an array of drivers and a minor
number is used to group similar physical devices [Deitel, 90]. Two types of UNIX devices exist, char and
block. Char device drivers manage devices that are accessed sequentially with no buffering, and Block device
drivers manage devices where random access is possible, and data is accessed in blocks. Buffering is also
utilised in block device drivers. A block device must be mounted as a file system node for it to be accessible
[Beck et al, 98].

Linux retains much of the UNIX architecture, the difference being that char device nodes corresponding to
block devices have to be created in UNIX systems, whereas in Linux, the Virtual File System (VFS) interface
blurs the distinction between char and block devices [Beck et al, 98]. Linux also introduces a third type of
device called a network device. Network device drivers are accessed in a different way to char and block
drivers. A set of APIs different from the file system I/O APIs are used e.g. the socket API, which is used for
accessing network devices.

2.2. Origin of the Windows Driver Architecture

In 1980, Microsoft licensed the UNIX operating system from Bell labs, later releasing it as the XENIX
operating system. With the first IBM PC, MS DOS version 1 was released in 1981. MS DOS version 1 had a
similar driver architecture to UNIX systems based on XENIX [Deitel, 90]. The difference to UNIX systems
was that the operating system came with built in drivers for common devices. Device entries did not appear as
file system nodes. Instead reserved names were assigned to devices. E.g. CON was the keyboard or screen,
PRN the printer and AUX the serial ports. Applications could open these devices and obtain a handle to
associated drivers as they would with file system nodes, and perform I/O to them. The operating system,
transparent to applications, translated reserved device names to devices that its drivers managed. MS DOS
version 2 introduced the concept of loadable drivers. Since Microsoft had made the interface to its driver
architecture open, this encouraged third party device manufacturers to produce new devices [Davis, 83]. Drivers
for these new devices could then be supplied by hardware manufacturers and be loaded/unloaded at runtime into
the kernel, manually.

Later on, Windows 3.1 was released by Microsoft. It had support for many more devices and utilised an
architecture based on MS DOS. With its later operating systems, Windows 95, 98 and NT, Microsoft introduced
the Windows Driver Mode (WDM). The WDM came about because Microsoft wanted to make device drivers
source code compatible with all of its new operating systems [Microsoft WDM, 02]. Thus, the advantage of
making drivers WDM compliant is that once created, a driver need only be recompiled before it is usable on any
of Microsoft’s later operating systems.

2.3. The Windows Driver Architecture

There are two types of Windows drivers, legacy and Plug and Play (PnP) drivers. The focus here is only on
PnP drivers, as all drivers should be PnP drivers where the possible. PnP drivers are user friendly since very
little effort is required from users to install them. Another benefit of making drivers PnP is that they get loaded
by the operating system only when needed, thus they do not use up system resources needlessly. Legacy drivers
were implemented for Microsoft’s earlier operating systems and their architecture is outdated. The Windows
Driver Model (WDM) is a standard model specified by Microsoft [Microsoft DDK, 02]. WDM drivers are
usable on all of Microsoft’s recent operating systems (Windows 95 and later).

2.3.1. The WDM driver architecture

There are three classes of WDM drivers: filter, functional and bus drivers [Oney, 01]. They form the stack
illustrated in figure 2.3. In addition, WDM drivers must be PnP aware, support power management and
Windows Management Instrumentation. Figure 2.3 shows how data and messages are exchanged between the
various driver layers. A standard structure called an I/O Request Packet (IRP) is used for communication.
Whenever a request is made from an application to a driver, the I/O manager builds an IRP and passes it down
to the driver, which processes it, and when done, ‘completes’ the IRP [Cant, 99]. Not every IRP filters down to a
bus driver. Some IRPs get handled by the layers above and are returned to the I/O manager from there.
Hardware access to a device is done through a hardware abstraction layer (HAL).

Figure 2.3 The WDM Driver Architecture

2.4. The Linux Driver Architecture

Drivers in Linux are represented as modules, which are pieces of code that extend the functionality of the
Linux kernel [Rubini et al, 01]. Modules can be layered as shown in figure 2.4. Communication between
modules is achieved using function calls. At load time a module exports all functions it wants to make public to
a symbol table that the Linux kernel maintains. These functions are then visible to all modules. Access to
devices is done through a hardware abstraction layer (HAL) whose implementation depends on the hardware
platform that the kernel is compiled for, e.g. x86 or SPARC.

I/O Request
Packet

PnP
Manager

Upper Filter

Functional

Lower Filter

Bus

HAL

Hardware bus

IRP

IRP

IRP

IRP

IRP

IRP

I/O
Manager

Power
Manager

IRP IRP

IRP

User space

Kernel space

Applications

Win32 API

Figure 2.4 The Linux Driver Architecture

2.5. The Linux and Windows Driver Architectures Compared

As can be seen in figures 2.3 and 2.4, a number of similarities exist between the two operating systems. On
both systems, drivers are modular components that extend the functionality of the kernel. Communication
between driver layers in Windows is through the use of I/O Request Packets (IRPs) supplied as arguments to
standard system and driver defined functions, whereas in Linux function calls with parameters customized to a
particular driver are used. Windows has separate kernel components that manage PnP, I/O and Power. These
components send messages to drivers using IRPs at appropriate times.

In Linux, there is no clear distinction between layered modules, i.e. modules are not categorised as bus,
functional or filter drivers. There is no clearly defined PnP or Power manager in the kernel that sends
standardised messages to modules at appropriate times. The kernel may have modules loaded that implement
Power Management or PnP functionality, but the interface of these modules to drivers is not clearly specified.
This functionality is likely to be incorporated in later Linux kernels as the Linux kernel is always in
development. Once data is passed to a driver that is part of a stack of modules by the kernel, the data may be
shared with other drivers in the stack through an interface specific to that set of drivers.

In both environments, hardware access through a HAL interface is implemented for the specific platform
the kernel is compiled for, i.e. x86, SPARC etc. A common feature of both architectures is that drivers are
modules that can be loaded into a kernel at runtime. Each module contains an entry point that the kernel knows
to start code execution from. A module will also contain routines that the kernel knows to call when an I/O
operation is requested to a device managed by that module. This enables the kernel to provide a device
independent interface to the application layer. A more in-depth comparison of driver components from the two
architectures is presented later in Section 3.3.

3. Drivers Components
The process of creating a device driver requires knowledge of how the associated hardware device is

expected to operate. For example, just about every device will allow its clients to read data from and write data
to it. In this section driver components that must be implemented by all drivers are presented, as well as a
comparison of the two operating systems’ driver components. The implementation of a driver that performs I/O
to a kernel buffer is also presented. The section concludes with a look at the driver development environments
and facilities offered by each operating system.

Function call
with custom
data

Module Y

Module Z

HAL

Hardware bus

Module X

System Call Interface

User space

Kernel space

Applications

3.1. Windows Driver Components

Drivers in Windows consist of various routines. Some are required, others optional. This section presents
the routines that every driver must implement. A device driver in Windows is represented by a structure called a
DriverObject. It is necessary to represent a driver with a structure such as a driver object because the kernel
implements various routines that can be performed for every driver. These routines, discussed in the following
sections, operate on a driver object.

3.1.1. Driver Initialisation

Every device driver in Windows contains a routine called DriverEntry. As its name suggests, this routine is
the first driver routine executed when a driver is loaded and is where initialisation of the device driver’s device
object is performed. Microsoft’s DDK [Microsoft DDK, 02] states that a driver object represents a currently
loaded kernel driver whereas a device object represents a physical, logical or virtual device. A single loaded
kernel driver (represented by a driver object) can manage multiple devices (represented by device objects).
During initialisation, fields in the device object that specify the driver’s unload routine, add device routine and
dispatch routines are set. The unload routine is a routine that is called when the driver is about to be unloaded so
that it can perform cleanup operations e.g. freeing up memory allocated off the kernel heap. addDevice is a
routine that is called after the DriverEntry routine if the driver being loaded is a PnP driver, while the dispatch
routines are routines that implement driver I/O operations.

3.1.2. The AddDevice Routine

PnP drivers implement a routine called AddDevice. In this routine a device object is created at, which time
space for storing global data for a device is allocated. Device resource allocation and initialisation is also
performed. Device objects are referred to by different names depending on where they where created. If a device
object is created in a currently loaded driver to manage that driver, it is called a Function Device Object (FDO).
If it is a device object from a lower driver in a stack of drivers, it is called a Physical Device Object (PDO). If it
is a device object from an upper driver in a stack of drivers, it is called a Filter Driver Object (FIDO).

3.1.2.1.Creating a device object

A device object corresponding to a device is created using the I/O Manager routine called IoCreateDevice
inside the add device routine. The most important requirements for IoCreateDevice are a name for the device
object and device type. The name allows applications and other kernel drivers to gain a handle to the driver, in
order to perform I/O operations. The device type specifies the type of device the driver is used for, for example
a storage device.

3.1.2.2. Global Driver Data

When a device object is created it is possible to associate with it a block of memory, called DeviceExtension
in Windows, where custom driver data can be stored. This is an important facility, as it eliminates the need to
use global data structures in driver code, which can be difficult to manage. For example, in the case where a
local variable with the same name as a global variable is declared in a routine mistakenly, the driver writer may
find it difficult to track a bug in the driver. It also makes it easier to manage device object specific data, when
more than one device object exists in a single driver, as is the case when a bus driver manages child physical
device objects for devices present on its bus.

3.1.2.3.Device naming

A device can be named at device object creation time. This name can be used for accessing a handle to a
driver. The handle is then used for performing I/O. Microsoft recommends not naming functional device objects
created in filter and functional drivers. As pointed out by Oney [Oney, 99], if a device object is named, any
client can open the device object and perform I/O for non-disk device drivers. This is because the default access
control status Windows gives to non-disk device objects is an unrestricted one. Another problem is that the
name specified does not have to follow any naming protocol, so the name specified may not be a well chosen
one. For example two driver writers may come up with the same name for their device objects, which would
cause a clash.

Windows supports a second device object naming scheme using device interfaces. Device interfaces are
constructed with 128 bit globally unique identifiers (GUIDs) [Open Group, 97]. A GUID can be generated using
a utility provided by the Microsoft DDK. Once generated, a GUID can be publicised. A driver registers the

GUID for a device interface in its add device routine through a call to the I/O manager routine
IoRegisterDeviceInterface. Once registered, the driver must enable the device interface through a call to the I/O
manager routine IoSetDeviceInterfaceState. The registration process will add an interface data entry to the
Windows registry file, which can be accessed by applications.

3.1.2.4. Driver Access from an Application

An application that wants to perform I/O operations with a device driver must obtain a handle to a device
driver through the CreateFile Win32 API call. It requires a path to a device such as \\device\devicex. Named
devices will have their names appear in the name space called \\device, thus the previous path is for a device
named devicex. CreateFile also requires access mode flags such as read, write and file sharing flags for the
device.

Accesses to unnamed devices that have registered a device interface are performed differently as shown in
figure 3.1.2.4. This requires obtaining a handle to a device information structure using the driver’s GUID, and
calling the SetupDiGetClassDevs Win32 API routine. This is only possible if the driver registered a device
interface, through which applications can access the device (called a device interface class).

Each time a driver calls the I/O manager routine IoRegisterDeviceInterface, a new instance of the device
interface class is created. Once a device information handle is obtained by an application, multiple calls to the
Win32 API routine SetupDiEnumDeviceInterfaces will return device interface data for each instance of the
device interface class. Lastly, a device path for each of the driver instances can be retrieved from the interface
data obtained from the previous call with another Win32 API routine, SetupGetDeviceInterfaceDetail.
CreateFile can then be called with the device path for the device instance of interest, to obtain a handle for
performing I/O.

Figure 3.1.2.4 Obtaining a handle an application can use for I/O from a device GUID.

3.1.2.5. Device Object Stacking

When the add device routine is called by the PnP manager, one of the parameters passed to it is a device
object (PDO) for a driver below the current one. Device object stacking is performed in the add device routine
so that IRPs sent by drivers in the layer below the driver being loaded can be received by it. Device object

devicea

deviceb

devicex

CreateFile API call
Handle for I/O

GUID { }
SetupDiGetClass
Devs

Device Interface
Handle

SetupDiEnumDeviceInterfaces

Interface Data

SetupDiGetDeviceInterfaceDetail

Device Path

Device Name Space

\\Device

stacking is achieved by a call to the I/O Manager routine IoAttachDeviceToDeviceStack as shown in figure
3.1.2.5. A physical device object (PDO) is required, which is lower in the stack than the new device object when
calling IoAttachDeviceToDeviceStack. The routine attaches the specified device object to the top of the driver
stack and returns a device object that is one below the new one e.g. in the example shown on figure 3.1.2.5 this
would be lower device object X. The lower physical device object (PDO) can be any number of layers below
the new device object but IoAttachDeviceToStack returns the device object one below the current one.

Figure 3.1.2.5 Attaching a device object to the top of a device object stack.

3.1.2.6. User to Kernel and Kernel to User Data Transfer Modes in Windows

The mode used to transfer data from kernel space to user space and vice versa is specified in the flags field
of a device object. There are three modes: buffered I/O, direct I/O and I/O that does not use any of the latter
methods termed “method neither I/O”. Figure 3.1.2.6 illustrates the three modes. In buffered I/O mode the
operating system allocates a kernel buffer that can handle a request. In the case of a write operation, the
operating system validates the supplied user space buffer and copies data from the user space buffer to the
newly allocated kernel buffer and passes the kernel buffer to the driver. In the case of reads, the operating
system validates the user space buffer and copies data from the newly allocated kernel buffer to the user space
buffer. The kernel buffer is accessible to drivers as the AssociatedIrp.SystemBuffer field of an IRP. Drivers read
from or write to this buffer to communicate with applications when buffered I/O is in use.

Direct I/O is the second I/O method that can be used for data exchanges between applications and a driver.
An application-supplied buffer is locked into memory by the operating system, so that it will not be swapped
out, and a memory descriptor list (MDL) for the locked memory is passed to a driver. An MDL is an opaque
structure. Its implementation details are not visible to drivers. The driver then performs DMA to the user space
buffer through the MDL. The MDL is accessible to drivers through the MdlAddress field of an IRP. The
advantage of using direct I/O is that it is faster than buffered I/O since no copying of data to and from user and
kernel space is necessary and I/O is performed directly into a user space buffer.

Device object (FDO)

Lower Device object X

IoAttachDeviceToDeviceStack

Lower Device object Y

Lower Device object Z

Device object (FDO)

Lower Device object X

Lower Device object Y

Lower Device object Z

Figure 3.1.2.6 The three ways in which data from kernel to user and user to kernel
space is exchanged.

The third method for I/O is neither buffered nor uses MDLs. Instead the operating system passes the virtual

address for a user space buffer to the driver. The driver is then responsible for checking the validity of the buffer
before it makes use of it. In addition, the user space buffer is only accessible if the current thread context is the
same as the application’s, otherwise a page fault will occur since the virtual address is valid only while that
application’s process is active.

3.1.3. Dispatch Routines

Dispatch routines are routines that handle incoming I/O requests packaged as IRPs (I/O request packets).
When an IRP arrives (e.g. when an application initiates I/O), an appropriate dispatch routine is selected from the
array of routines specified in the MajorFunction field of a driver object as shown in figure 3.1.3. These dispatch
routines are initialised in the driver’s entry routine. Every IRP is associated with an I/O stack location structure
(used for storing an IRP’s parameters) when created. This structure contains a field, which specifies the dispatch
routine the IRP is meant for and the relevant parameters for that dispatch routine. The I/O manager determines
from an IRP which dispatch routine it will send IRPs to.

User Space Buffer

Device Driver

Device driver
performs I/O to a
kernel space
buffer.

Kernel Space Buffer

For reads, the kernel
validates the user
space buffer, creates a
copy of it and passes
the new buffer to the
driver.
For writes, when I/O is
done the kernel copies
the contents of the
kernel space buffer to
the user space buffer.

User Space Buffer

Device Driver

Device driver
performs direct I/O
to the user space
buffer using the
buffer’s virtual
address

1. Buffered I/O 3. Direct I/O

User Space Buffer

Device Driver

2. Direct I/O with
MDLs

MDL to
user

buffer

Device driver
performs
DMA using
the MDL

The kernel creates
an MDL to the
user space buffer
and passes it to
the device driver

Kernel space

User space

Figure 3.1.3 dispatching IRP’s to dispatch routines.

Thus IRPs are routed to an appropriate driver supplied routine so that they can be handled there. Required
dispatch routine IDs are shown in table 3.1.3. They are indexes for the array of routines specified by the
MajorFunction field of a device object. The dispatch routines have custom driver supplied names that are
implemented by the driver. They all accept an IRP and a device object to which the IRP is being sent.

IRP_MJ_PNP Handles PnP messages

IRP_MJ_CREATE Handles the opening of device to gain a handle

IRP_MJ_CLEANUP Handles the closing of the device handle gained above

IRP_MJ_CLOSE Same as clean up, called after cleanup

IRP_MJ_READ Handles a read request to a device

IRP_MJ_WRITE Handles a write request to a device

IRP_MJ_DEVICE_CONTROL Handles a I/O control request to a device

IRP_MJ_INTERNAL_DEVICE_CONTROL Handles driver specific I/O control requests

IRP_MJ_SYSTEM_CONTROL Handles WMI requests

IRP_MJ_POWER Handles power management messages

Table 3.1.3 Required Windows driver dispatch routines

3.1.4. Windows Driver Installation

Windows uses installation information contained in a text file called an INF file to install drivers. The
creator of a driver is responsible for providing an INF file for the driver. A GUI application that is provided with
the Windows DDK called GenInf allows the generation of an INF file for a driver. It requires a company name
and a Windows Device class under which the driver will be installed. Windows has various pre-defined device
classes for installed drivers. The Windows device manager applet, accessible through the system control panel
applet, shows all installed drivers categorised using these device classes. Examples of existing classes are the
1394 and PCMCIA device classes. A custom device class can be added by adding a ClassInstall32 section in the
INF file.

The hardware ID for a PnP-aware device must also be specified in the INF file since it will be used by the
system to identify the device when the device is inserted into the system. A hardware ID is an identification
string used by the PnP manager to identify devices that are inserted into the system. Microsoft publishes PnP
hardware IDs for the various devices that are usable with the Windows operating system. This hardware ID is
stored on the hardware device and read off the device by the system when that device is inserted into the system.
Once an INF file for a new device is successfully installed into the system, the driver for that device (which has
a specific hardware ID) will be loaded each time the device is inserted into the system and unloaded when the
device is removed from the system.

I/O Manager

IRP

The I/O Manger selects a dispatch
routine to send the IRP to.
The IRP’s I/O Stack location contains
a field called MajorFunction which
identifies the target dispatch routine.

Driver Object

The dispatch routine identified by the
major function number will be called
from the driver object’s MajorFunction
field member, which is an array of
routines.

3.1.5. Obtaining Driver Usage Information in Windows

The device manager found in the control panel system applet provides driver information for users. It lists
all currently loaded drivers and information on the providers of each driver and their resource usage. It also
displays drivers that failed to load and their error codes.

3.2. Linux Driver Architecture Components

Device drivers in Linux are similar to those in Windows in that they too are made up of various routines
that perform I/O and device control operations. There is no driver object visible to a driver, instead drivers are
internally managed by the kernel.

3.2.1. Driver Initialisation

Every driver in Linux contains a register driver routine and a deregister driver routine. The register driver
routine is the counterpart to the Windows driver entry routine. Driver writers use the module_init and
module_exit kernel defined macros to specify custom routines that will be designated as the register and
deregister routines.

3.2.1.1. Driver Registration and Deregistration

The routine designated by the module_init macro as the registration routine is the first routine executed
when a driver is loaded. The driver is registered here by using a kernel character device registration routine
called register_chrdev. The important requirements for this routine are a name for the driver, a driver major
number (discussed later in section 3.2.2) and a set of routines for performing file operations. Other driver-
specific initialisation should take place in this routine. The deregistration routine gets executed when the driver
is being unloaded. Its function is to perform cleanup operations before a driver is unloaded. A call to the kernel
routine unregister_chrdev with a device name and major number is necessary when deregistering a driver that
was previously registered with a register_chrdev call.

3.2.2. Device Naming

In Linux, devices are named using numbers in the range 0 to 255, called device major numbers. This
implies that there can be a maximum of 256 usable devices i.e. devices that an application can gain a handle to,
but each driver for such a major device can manage as many as 256 additional devices. These driver-managed
devices are numbered using numbers in the range 0 to 255, called device minor numbers. It is therefore possible
for applications to gain access up to 65535 (256x256) devices. Major numbers are assigned to well known
devices for example major number 171 is assigned to IEEE1394 devices. The file Documentation/devices.txt in
the Linux kernel source tree contains all major number assignments and a contact address for the device number
registration authority. Currently, major numbers 240-254 are available for experimental use. A driver can
specify a major number of 0 to request automatic assignment of a major number for a device, if one is available.
The use of major number 0 for this purpose does not cause problems, as it is reserved for the null device and no
new driver should register itself as a the null device driver.

3.2.2.1. Driver Access from an Application

Drivers are accessed by applications through file system entries (nodes). By convention, the drivers
directory is /dev on a particular system. Applications that want to perform I/O with a driver use the open system
call to obtain a handle to a particular driver. The open system call requires a device node name such as /dev/tty
and access flags. After obtaining a handle, the application can use the handle in calls to other system I/O calls
such as read, write and IOCTL.

3.2.3. File operations

In Windows, dispatch routines were set up in the driver entry routine of a driver. In Linux, these dispatch
routines are known as file operations and are represented by a structure called file_operations. A typical driver
would implement the file operations listed in table 3.2.3.

Open Handles the opening of device to gain a handle

Release Handles the closing of device handled gained above

Read Handles a read request to a device

Write Handles a write request to a device

Llseek Handles a seek operation on a device

IoCtl Handles a device control request for a device

Table 3.2.3 Most commonly defined driver file operations in Linux

These file operations are specified during driver registration. A structure called file is created by the kernel

whenever an application requests a handle to a device and is supplied to the driver whenever one of the file
operation routines is called. The file operation routines serve many clients, each represented by the file structure.
The structure has a field named f_op. This field is a pointer to the original set of file operations that were
specified at registration time of a major driver. It is therefore possible to change the original file operations
during a call to any of the file operation routines by changing the value of the field named f_op to point to a new
set of file operations.

3.2.3.1. Global Driver Data

Whenever an application issues the system open call on a device file node in /dev, the application, gets back
a handle to a device from the operating system. At this time the driver’s open function is called with a file
structure created for that open call. This file structure is passed by the kernel to the driver whenever any of the
file operations routines are executed. The private_data field of the file structure can be any driver-supplied
custom data structure. Driver private data is usually set up in the open file operations function by allocating
memory, and freed in the release file operations function. The private data field of the file structure can be used
to point to data that is global to a driver instead of using global variables.

3.2.4. How Driver Major and Minor Numbers Work

3.2.4.1.The Problem

In Linux only one driver can register itself to manage a device with a particular major number i.e. driver
registration uses only a major number. If for example, two device nodes /dev/device1 (major no 4 minor 1) and
/dev/device2 (major number 4 minor number 2) exit, only one driver can handle requests, from applications, to
these two device nodes. This restriction exists because no driver registration facility exists whereby a driver can
register itself to manage a device with major number x and minor number y.

3.2.4.2.The Workaround

• A driver is loaded to manage devices with major number 4. This driver registers itself with the
kernel (see section 3.2.1.1 for how this is done).

• Two separate drivers are loaded. One manages a device with major number 4 minor 1 and the other
a device with major number 4 minor 2. These drivers do not register themselves with the kernel,
but with the driver that manages devices with major number 4. This driver responsible for
implementing the registration facility and keeping track of drivers that register with it.

• When an application opens any one of the two device nodes (/dev/device1 or /dev/device2), the
open routine of the driver registered to manage devices with major number 4 is called by the
kernel. A file structure that represents the opened device is passed to this open routine.

• At this point, the driver that manages devices with major number 4 alters the file operation
function pointers (f_op member of the file structure) to point to I/O routines implemented by the
driver that manages the opened device. Opens of minor devices by applications are identified by
the driver that manages devices with major number 4 in the following manner:

o A structure called inode is also passed to the open routine. This structure contains a field
named i_rdev, which specifies the major and minor numbers for the device the open
operation was targeted at. The kernel macros MINOR and MAJOR can be used to extract
these values from the i_rdev field. In this example the MAJOR number would be 4 and
the minor number either 1 or 2. The driver that manages devices with major number 4 can
then locate a minor device driver from its registration database using this information.

3.2.5. User to Kernel and Kernel to User Data Transfer Modes in Linux

In Linux, three ways exist for drivers and applications to exchange data to and from kernel and user space.
These are buffered I/O, direct I/O and mmap. In buffered I/O mode, data is copied by the kernel from user space
to a kernel space buffer before it is used inside a driver. Unlike Windows the Linux kernel does not perform
buffering for I/O automatically. Instead, kernel user space access routines are made available that allow copying
of data to and from user space by drivers. In direct I/O mode, drivers can read and write data to and from user
space buffers directly. This is achieved through the kiobuf interface, which involves mapping a user space buffer
to a kiobuf defined structure through a kiobuf kernel call. The operation locks a user space buffer so that it does
not get swapped out and is always available for device I/O. The third method, called mmap, involves the driver
mapping a chunk of kernel memory to user space using mmap kernel calls, so that applications can perform I/O
to the mapped kernel memory. [Rubini et al, 01].

3.2.6. Linux Driver Installation

Drivers are installed in Linux by transferring the driver files into a system specific directory. In the RedHat
distribution [Redhat, 02], modules are located in the directory /lib/modules/kernel_version where kernel_version
specifies the version of the kernel currently loaded e.g. 2.4.19. A configuration file called modules.conf located
in the system’s configuration file directory e.g. /etc, is used by the kernel while loading modules. It can be used
to override the location for a particular driver. It is also used for defining other module loading options, such as
defining parameters to be passed to a driver when loading it.

Module loading and unloading is performed using programs that come with the kernel module utilities
package called insmod, modprobe and rmmod. Insmod and modprobe load the binary image of a driver into the
kernel and rmmod removes it. Another program called lsmod lists all currently loaded modules. Insmod will
attempt to load a module and return an error if the module being loaded depends on other modules. modprobe
will try to satisfy module dependencies by attempting to load any modules the current module may depend on
before loading it. The module dependency information is obtained from a file called modules.dep located in the
system’s modules directory.

Before a driver can be accessible to applications, a device node (see sections 2.1 and 3.2.2.1 for how Linux
represents devices in the system) for that driver, with the devices major and minor numbers, must be created in
the devices directory /dev. A system program called mknod is used for this purpose. When creating a device
node, it is necessary to specify whether the node is for a character device or a block device.

3.2.7. Obtaining Driver Usage Information in Linux

It is often necessary to check the status of loaded drivers in a system. In Linux, the proc file system is used
to publish kernel information for application usage. The proc file system is just like any other file system. It
contains directories and file nodes that applications can access and perform I/O operations with. The difference
between files on the proc file system and ordinary files is that data from I/O operations on a proc file entry gets
passed to and from kernel memory instead of disk storage. The proc file system is a communication medium for
applications and kernel components. For example, reading data from the file /proc/modules will return currently
loaded modules and their dependencies. The proc file system is very useful for obtaining driver status
information and publishing driver specific data for application use.

3.3. The Windows and Linux Driver Architecture Components Compared

Drivers in both Windows and Linux are dynamically loadable modules that consist of various routines that
perform I/O. When loading a module, the kernel will locate a the routine designated by the particular operating
system as the driver entry routine and It will start driver code execution from there.

3.3.1. Driver Routines

Drivers in both systems have initialisaton and de-initialisation routines. In Linux, both these routines can
have custom names. In Windows, the initialisation routine name is fixed (called DriverEntry) but the de-
initialisation routine can be a custom one. Windows manages a driver object structure for each loaded driver.
Multiple instances of a driver are each represented by a device object. In Linux, the Kernel maintains
information for each driver registered to manage a device major number. i.e. for each driver that acts as a major
device driver.

Both operating systems require drivers to implement standard I/O routines, which are called dispatch
routines in Windows and file operations in Linux. In Linux, a different set of file operations can be provided for
each device handle returned to an application. In Windows, dispatch routines are defined once in the
DriverEntry routine inside a driver object. Since there is one driver object for each loaded driver, it is not
advisable to modify the dispatch routines assigned to it when an application requests a handle through an open
call. Windows drivers have an add device routine that gets called by the PnP manager for PnP aware devices.
There is no PnP manager in Linux and such a routine does not exist in Linux.

Dispatch routines in Windows operate on device objects and IRPs. In Linux, file operations operate on a file

structure. Custom global driver data is stored in device objects in Windows and in the file structure in Linux. A
device object is created at load time in Windows whereas in Linux a file structure is created when an application
requests a handle to a driver with a system open call. An important implication of this is that in Linux global
data per application can be kept in the file operations structure. In Windows, global data can only be present in
the FDO that the driver manages. Global data per application in Windows has to be kept in a list structure
contained within the FDO’s custom data structure.

3.3.2. Device Naming

Drivers in Windows are named using driver-defined strings and are found in the \\device namespace. In
Linux, drivers are given textual names but applications are not required to know these. Driver identification is
performed through the use of a major-minor number pair. Major and minor numbers are in the range 0-255,
since a 16 bit number is used to represent the major-minor pair thus allowing a maximum of 65535 devices to be
installed in a system.

Devices in Linux are accessible to applications through file system nodes. In most Linux distributions the
directory /dev contains device file system nodes. Each node is created with a driver’s major and minor number.
Applications obtain a handle to a driver, for performing I/O, through the open system call targeted at a device
file system node. In Windows, another driver naming method exists, whereby a 128 bit GUID is registered by
each driver. Applications access the Windows registry to obtain a textual name in the \\device namespace using
the GUID. This textual name is used to obtain a handle for performing I/O with a driver through the CreateFile
Win32 API call.

3.3.3. User-Kernel Space Data Exchanges

Data exchanges to and from user space are performed similarly by both operating systems, enabling
buffered data transfer, performed by the I/O Manager in Windows and by the driver in Linux. Direct I/O to a
user space buffer is achieved in both operating systems by locking the user space buffer so that it stays in
physical memory. This arises from the fact that drivers cannot always access user space buffers directly, since
they will not always be executing in the same process context as the application that owns the user space
buffers. The application has its own virtual address space, which is only valid in its own process context. Thus
when the driver accesses a virtual address from some application outside of that application’s process context, it
will be accessing an invalid address.

3.3.4. Driver Installation and Management

Driver installation is through a text file called an INF file in Windows. Once installed, the driver for a
device will be automatically loaded by the PnP manager when the device is present in the system. In a Linux
system, programs are used to load driver binary images into the kernel. Entries need to be inserted manually into
system start up files, so that driver loading programs like modprobe are executed with a driver image path or an
alias to the driver as a parameter. Driver aliases are defined in the file /etc/modules.conf, which programs like
modprobe inspect before loading a driver. An example of an alias entry in modules.conf would be “alias
sounddriver testdriver”, which aliases the name sounddriver to the driver binary image testdriver. Executing
modprobe with sounddriver as a parameter would make modprobe load testdriver. In this way, users can use a
standard and simpler name such as sounddriver to load a sound driver without having to know what the name of
a specific driver for a sound card is. Driver status information is available in Windows through the device
manager applet, or directly reading the data from the system registry. In Linux, driver information is available
through entries in the proc file system. The file /proc/module for example contains a list of loaded modules.

4. A Kernel Buffer Driver

This section presents the implementation of a simple driver that performs I/O to blocks of kernel memory, a
hypothetical virtual device. Discussion of the various components needed to make the driver work on both
Windows and Linux is presented, so that the similarities and differences in the driver components of each
operating system can be highlighted. The virtual device, managed by the driver, is shown in figure 4.0. It
consists of a number of blocks of kernel memory. Applications can perform I/O operations on the virtual device.
The driver will be able to select the memory bank it wants to access and the offset within a memory bank’s
block.

Figure 4.0 A simple virtual device

4.1. Required Driver Components.

Both the Windows and Linux drivers will implement the read, write and IOCTL driver routines. Required
driver routines for each operating system are shown in figure 4.1. Naming of the driver routines is flexible. In
figure 4.1 the routines for the different operating systems could have been given the same names, instead the
conventional platform names have been utilised.

Figure 4.1 The Windows and Linux basic driver routines

4.1.1. Driver Load and Unload Routines

In Windows, the step performed in the driver load routine, DriverEntry, is the setting up of I/O dispatch
routines as shown in figure 4.1.1a.

 driverObject->DriverUnload = DriverUnload;

 driverObject->DriverExtension->AddDevice = AddDevi ce;

 driverObject->MajorFunction[IRP_MJ_READ] = Read;

 driverObject->MajorFunction[IRP_MJ_WRITE] = Write;

 driverObject->MajorFunction[IRP_MJ_CREATE] = Creat e;

 driverObject->MajorFunction[IRP_MJ_CLOSE] = Close;

Bank 1

Bank n

Block 1

Block 2

Block n

Bank 2

DriverEntry
DriverUnload
AddDevice
Create
Close
Read
Write
IOCtl
DispatchPnp

RegisterDriver
UnRegisterDriver

Open
Release
Read
Write
IoCtl

Required Windows Driver Routines Required Linux Driver Routines

 driverObject->MajorFunction[IRP_MJ_PNP] = Dispatch Pnp;

 driverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = Ioctl;

Figure 4.1.1a Initialisation of a driver Object in the driver entry routine

In Linux, the step performed in the driver load routine, RegisterDriver, is the registration of a driver major

number as shown in figure 4.1.1b. The tagged file operation initialisation, specific only to the GCC compiler, is
shown in figure 4.1.1b in the declaration of the structure fops, which is not valid ANSI C syntax. The compiler
will initialise the various fields of the file_operations structure (fops) with the supplied driver implemented
routine names i.e. open is a field name in the structure and Open is a routine implemented by the driver and the
compiler will assign a function pointer for Open to open.

struct file_operations fops

{ open: Open,

 release: Release,

 read: Read,

 write: Write,

 ioctl: IoCtl,

}

result = register_chrdev(major_number,”testdriver”, &fops);

if(result < 0) PRINT_ERROR(“driver didn’t load succ essfully”);

Figure 4.1.1b Registration of a driver major number in Linux

In the driver unload routine for the Linux driver the registered driver must be unregistered as shown in

figure 4.1.1c.

unregister_chrdev(major_number,”testdriver”);

Figure 4.1.1c Driver major number deregistration in Linux

4.1.2. Global Driver Structure

A structure must be defined for storing global driver data that will be operated on by the driver in its
routines. For the memory device the same structure will be used for both Windows and Linux versions of the
driver. It is defined as shown in figure 4.1.2.

#define MAX_BANK_SIZE 4

typedef char byte_t;

#define BLOCK_SIZE 1024;

typedef struct _DEVICE_EXTENSION

{ byte_t * memoryBank[MAX_BANK_SIZE];

 int currentBank;

 int offsets[MAX_BANK_SIZE];

}DEVICE_EXTENSTION, *PDEVICE_EXTENSION;

Figure 4.1.2 Structure used to store global data for generic driver

memoryBank is an array of 4 blocks of memory where the size of a block is 1K. currentBank indicates the
currently selected block of memory and offsets records offsets within each of the blocks of memory.

4.1.3. Add Device Routine

The add device routine is only specific to Windows. Linux does not have an add device routine. All
initialisation must be done in the driver load routine instead. The operations performed in the Windows
addDevice routine are shown in figure 4.1.3. A device object is created with a call to the I/O manager routine
IoCreateDevice.

An interface that applications will use to gain access to a handle for the driver is then created with the I/O
manager routine call IoRegisterDeviceInterface. One of the arguments to this routine is a GUID manually
generated with the system guidgen application. The different ways data could be exchanged by drivers and
applications to and from kernel space in Windows were presented in section 3.1.2.6. A driver indicates what
form of data exchange method it wants to use by setting the flags field of its device object (see sections 3.1 and
3.1.2 for a discussion of device objects). In this example the flags field is set so that the driver performs buffered
I/O. Space for each of the blocks of memory to be used by the memory device is then allocated with one of the
kernel memory allocation routines called ExAllocatePool. The memory is allocated from the kernel’s non-paged
pool of memory, thus the device’s memory will always be in physical memory.

Figure 4.1.3 Operations performed in the Windows driver’s add device routine

4.1.4. Open and Close Routines

Most of the initialisation required for the Windows driver has already been done in the add device routine
so there is nothing to be done in the open routine. The Open routine in Linux performs the operations shown in
figure 4.1.4a. Firstly, memory for storing global driver data is allocated and the file structure’s private_data
field set to point to it. Blocks of memory for the memory device are then allocated in exactly the same way as
for Windows. Only the name of the memory allocation routine differs, ExAllocatePool in Windows and kmalloc
in Linux.

Create a device object

Register a device Interface
and activate it

Initialise the bank of memory

IoCreateDevice

IoRegisterDeviceInterface
IoSetDeviceInterfaceState

ExAllocatePool
(memoryBank)

Create space for global data
And set private_data field of

file structure

Initialise the bank of memory

kmalloc
(file->private_data)

kmalloc
(memoryBank)

Figure 4.1.4a Operations performed in Linux’s generic driver open routine

In Linux’s close routine, the space allocated for global driver data as well as space allocated for the memory

device are freed as shown in figure 4.1.4b. In Windows, the freeing up of allocated memory is done in response
to the PnP remove device message, which is discussed later in this section.

Figure 4.1.4b Operations performed in Linux’s generic driver close routine

4.1.5. Read and Write Routines

The read and write routines will transfer data to and from the currently selected kernel memory bank. In
Windows, the read routine is performed as shown in figure 4.1.5a. The length of the data to be read is obtained
from an IRP’s I/O stack location (see section 3.1.3 for what an I/O stack location is), in the field named
Parameters.Read.Length. Data of the requested size is read from the currently selected bank of memory
(applications perform memory bank selection through the driver’s IOCTL routine discussed later) using the
kernel runtime routine called RtlMoveMemory. RtlMoveMemory moves the data from the memory device’s
space to the buffer allocated for buffered I/O by the I/O manager i.e. the AssociatedIrp.SystemBuffer field of the
IRP. The IRP is then completed, which informs the I/O manager that this driver has finished processing the IRP
and that the I/O manager should return the IRP to the originator of the IRP.

Figure 4.1.5a Performing a read operation in the Windows driver

The write routine performs the opposite of the above memory move operation as shown in figure 4.1.5b.

Transfer data of the
requested length
to the IRP’s buffer

Complete the IRP

RtlMoveMemory
from

current memoryBank
to

Irp->AssociatedIrp.SystemBuffer

IoCompleteRequest

Release memory allocated
for global driver data

Release bank of memory

kfree
(file->private_data)

kfree
(memoryBank)

Figure 4.1.5b Performing a write operation in the Windows driver

In Linux, the read routine appears as shown in figure 4.1.5c. A reference to the global driver data is

obtained from the private_data member of the file structure. From the global data, a reference to the
memoryBank is obtained. Data is then transferred from this memory bank to user space using the user space
access kernel routine called copy_to_user.

Figure 4.1.5c Performing a read operation in the Linux driver

The write routine performs the same operations as above, except this time data is transferred from user to

kernel space as shown in figure 4.1.5d.

Figure 4.1.5d Performing a write operation in the Linux driver

4.1.6. Device Control Routines

Device control routines are used to set various states of a device. Applications make IOCTL calls to drivers
by using the win32 routine DeviceIoControl. This routine requires an IOCTL code defined by a driver. An
IOCTL code tell a driver what control operation an application is wanting to perform. In this example, the driver
implemented IOCTL routine is used to select the current bank number. Driver-specific IOCTL codes must be
defined prior to use. IOCTL codes in Windows are defined as shown in figure 4.1.6a. The macro CTL_CODE is
used to define a particular device IOCTL code [Oney, 99]. The first argument to the CTL_CODE macro
indicates the device ID. Device ID numbers are in the range 0-65535. Codes 0-32767 are reserved for the
operating system. Codes 32768-65535 are available for custom use. The code chosen should be the same as the

Transfer requested length
of data to memoryBank

copy_from_user
from

userbuffer
to

current memoryBank

Transfer data of the
requested length

 to a user space buffer

copy_to_user
from

current memoryBank
to

userbuffer

Transfer data of the
requested length

from the IRP’s buffer

Complete the IRP

RtlMoveMemory
from

Irp->AssociatedIrp.SystemBuffer
to

current memoryBank

IoCompleteRequest

device code specified during the IoCreateDevice call in the driver’s addDevice routine (see section 4.1.3 for
what happens in the addDevice routine).

 The second argument indicates the function code and is 12 bits long. Codes 0 to 2047 are reserved by
Microsoft so a function code greater than 2047 and less than 2^12 is used. It use used to define what control
code is being defined. I.e. it distinguishes the two IOCTL codes shown in figure 4.1.6a. The third argument
specifies the method used to pass parameters from user space to kernel space, and the fourth argument indicates
the access rights that applications have to the device.

#define MEMORY_DEVICE 61000

#define IOCTL_SELECT_BANK \

 CTL_CODE(MEMORY_DEVICE, 3000, METHOD_BUFFERED, FILE_ANY_ACCESS)

#define IOCTL_GET_VERSION_STRING \

 CTL_CODE(MEMORY_DEVICE, 3001, METHOD_BUFFERED, FILE_ANY_ACCESS)

Figure 4.1.6a IOCTL code definition in Windows

In Linux, applications make IOCTL calls to drivers by using the system routine ioctl. IOCTL codes are

specified in the file Documentation/ioctl-numbers.txt, which can be found in the Linux kernel source tree.
Experimental drivers select an unused code, currently 0xFF and above. The IOCTL codes for this driver are
defined as shown in figure 4.1.6b. Macro _IOWR indicates that data will be transferred to and from kernel
space. Other macros available are _IO which indicates no parameters, _IOW which indicates that data will be
passed from user space to kernel space only and lastly _IOR which indicates that data will be passed from kernel
space to user space only. The above macros require the size of the IOCTL parameter that will be exchanged
between kernel and user space. Rubini et al [Rubini et al, 01] suggest that for the driver to be portable, this size
should be set to 255 (8bits) although current architecture dependent data ranges from 8-14 bits. The second
argument is similar to the Windows function number. It is eight bits wide, i.e. ranges from 0-255.

#define IOCTL_PARAM_SIZE 255

#define MEMORY_DEVICE 0xFF

#define IOCTL_SELECT_BANK \

 _IOWR(MEMORY_DEVICE, 1, IOCTL_PARAM_SIZE)

#define IOCTL_GET_VERSION_STRING \

 _IOWR(MEMORY_DEVICE, 2, IOCTL_PARAM_SIZE)

Figure 4.1.6b IOCTL code definition in Windows

Once the IOCTL codes have been selected, the IOCTL routines can be defined. In Windows, the IOCTL

routine is defined as shown in figure 4.1.6c. Two IOCTL codes are handled. The first,
IOCTL_SELECT_BANK, sets the current bank number. The second, IOCTL_GET_VERSION_STRING,
returns a driver version string. Data returned to callers of the IOCTL routine is handled in the same way as for
the read and write requests.

Figure 4.1.6c IOCTL routine definition in Windows

The Linux IOCTL routine definition is shown in figure 4.1.6d. The IOCTL codes handled are the same as

for Windows. The only difference is that of syntax specific to each kernel. Data handling is performed in the
same way as for reads and writes.

change value of currentBank

Complete the IRP

Return version string

IoCompleteRequest

Examine IOCTL code irpStack’s
Parameters.DeviceIoControl.IoControlCode

field

IOCTL_SELECT_BANK IOCTL_GET_VERSION_STRING

RtlMoveMemory
from

Version String Buffer
to

Irp->AssociatedIrp.SystemBuffer

RtlMoveMemory
from
Irp-

>AssociatedIrp.SystemBuffe
r

Application DeviceIoControl call

Figure 4.1.6d IOCTL routine definition in Linux

4.1.7. PnP Message Handling Routines

In Windows, PnP messages are dispatched to the driver at appropriate times. E.g. when a device in inserted
into the system or removed from the system. These messages are handled by a driver that implements a PnP
dispatch routine. In Linux, the kernel does not send PnP messages to the driver thus a PnP routine does not exist
in the Linux driver. The Windows PnP message handler is shown in figure 4.1.7.

Only one of the PnP messages is handled for by the memory device driver in this example. The remove
device message is sent when the driver is unloaded from the system. At this time, the driver’s interface is
disabled with a call to the I/O manager routine IoSetDeviceInterface and the driver’s functional device object is
deleted as well as the generic driver’s blocks of memory.

Figure 4.1.7 PnP Message handler routine

IRP_MN_REMOVE_DEVICE
PnP messge

Disable device interface IoSetDeviceInterfaceState

Delete device object IoDeleteDevice

Release memory bank ExFreePool
(memoryBank)

change value of currentBank Return version string

Examine IOCTL code cmd parameter of IOCTL routine

IOCTL_SELECT_BANK IOCTL_GET_VERSION_STRING

copy_to_user
from

Version String Buffer
to

user buffer

copy_from_user
from

user variable
To

currentBank

Application ioctl call

5. Driver Development Environments

Developing drivers for the two operating systems discussed so far, namely Microsoft’s Windows and Linux,
requires the use of software development tools specific to each platform. The operating system kernel on both
Windows and Linux is constructed using the C Programming Language. It follows that drivers for both
operating systems are created using the C programming language. Windows supports driver construction using
the object oriented programming language C++, whereas Linux does not.

5.1. The Windows Driver Development Environment

Microsoft Windows is a proprietary, commercial operating system i.e. it must be purchased for a fee. A
number of commercially available driver development environments aimed at Windows exist. One such
example is the NuMega DriverStudio™ Suit [Compuware, 01] which comes with class libraries and driver
construction wizards that aid in the development of drivers, as well as an integrated debugger that allows
debugging of driver code.

5.1.1. The Windows Device Driver Development Kit

The standard route for driver development on Windows is to obtain a Device Driver Kit (DDK) from
Microsoft and use its facilities to build drivers. The latest version of the DDK is available to Microsoft Software
Development Network (MSDN) subscribers. The DDK contains programs required to build drivers. The DDK
installation program will install batch files that set up a shell window to enable building of drivers for each of
Microsoft’s operating systems. The DDK release used in this investigation of the Windows driver architecture,
Windows DDK 3590, has build environments for Windows ME, 2000, XP and .NET drivers. There are two
build environments for each platform. The first is called a checked build environment i.e. debugging symbols
are added to the driver code. The second is called a free build environment i.e. drivers built in this environment
are not built with debugging symbols. The latter environment is where production drivers are built.

5.1.2. Windows Driver Makefiles

Once a DDK shell window is active the simple command build will build a driver. A Makefile is used to
define driver source files from which a driver is to be built. The entries for the Makefile are specified in a file
called sources which resides in the directory where the build command is issued. Figure 5.1.2 shows the format
of a Makefile used to build a simple driver. The environment variable TARGETNAME specifies the driver
output filename. For this example the final driver will be called mydriver.sys as drivers in Windows are
assigned a .sys extension. TARGETPATH specifies where the object code for the driver will be produced. There
is a file called _objects.mac in the directory called obj where additional paths for object file dump directories are
defined. On Windows 2000, the default object file dump directories are objchk_w2k for checked builds and
objfre_w2k for free builds. INCLUDES specifies the path for include files necessary to build drivers and finally
SOURCES specifies the driver source file from which the driver will be built.

TARGETNAME=mydriver

TARGETPATH=obj

TARGETTYPE=DRIVER

DRIVERTYPE=WDM

INCLUDES=$(BASEDIR)\inc;

SOURCES= mydriver.c

Figure 5.1.2 A Makefile used for building a WDM driver with the Windows DDK

5.1.3. Windows DDK Documentation and Tools

The Windows DDK contains well organised API documentation as well as example driver source files from
which newcomers to driver writing can learn to create drivers. The DDK also contains utility programs that aid
in the driver development process. One of the utility programs is the device tree application that lists all

currently loaded drivers listed in the \\device name space (see section 3.1.2.4 which discusses device name
spaces) in a hierarchical manner, showing any existing driver stacks as well as driver implemented routines and
driver object memory addresses. Other programs that are provided with the Windows DDK are an INF file
generation application called geninf used to generate INF files for driver installation and a PnP driver test
application used to test if drivers are PnP compliant.

5.2. The Linux Driver Development Environment

The driver development environment on Linux is different from that on Windows. There is no counterpart
to the Windows DDK on Linux i.e. there is no such thing as a Linux Device Driver Kit supplied by the kernel’s
creators. Instead the kernel’s creators make all the kernel source code available to everyone. The kernel header
files are all that are required for creating drivers. Drivers are built using the GNU C compiler, GCC, which is
also used to build applications. Similarly to Windows, a Makefile is used to specify how a driver is to be built.

5.2.1. Linux Driver Makefiles

Once a Makefile is defined, the simple command make is used to build the driver. Figure 5.2.1 shows an
example Makefile for building a driver, called mydriver, in Linux with a source file name mydriver.c. The first
entry, KERNELDIR, defines an environment variable that specifies where the kernel header files are located.
The next line includes the current kernel configuration. Before a kernel and its drivers are built, externally
definable kernel variables are specified in a file called .config which is stored in the kernel source tree’s root
directory. These are included so that the kernel’s header files can make use of them. CFLAGS is used to set
additional flags to the compiler (GCC). ‘-O’ turns on code optimisation, ‘-Wall’ prints out all code warnings.
The ‘all’ section is the default section examined when the ‘make’ command is executed. It provides a target
called mydriver, which depends on the object file called mydriver.o, which is built by using GCC. The
environment variable LD specifies the GNU linker to be used to build the final driver module. The option ‘-r’
specifies that output should be relocatable i.e. memory locations within it will be offsets to some base address
not known at compile time. ‘$^’ is an alias for mydriver.o and ‘$@’ is an alias for mydriver i.e. it requests the
linker to produce relocatable code from the object file mydriver.o and produce an output called mydriver.

KERNELDIR=/usr/src/linux

include $(KERNELDIR)/.config

CFLAGS=-D__KERNEL__ -DMODULE –I $(KERNELDIR)/include –O –Wall

all: mydriver

mydriver: mydriver.o

 $(LD) –r $^ -o $@

Figure 5.2.1 Makefile used to build a driver in Linux

Kernel module management programs such as insmod and lsmod can then be used to load the driver into the
kernel and to observe currently loaded modules, respectively.

5.2.2. Linux Driver Development Documentation

There is some documentation on the various parts of the Linux kernel in the directory called
“Documentation” found under the kernel source tree, but is not as complete and descriptive as the Windows
DDK documentation. The Linux driver book written by Rubini et al [Rubini et al, 01] is a better source of
information for device driver writers. There are no example drivers that come with the Linux kernel, but code
for existing production drivers is available, which can be used as a basis for starting a new device driver.
However, this does not provide a good introduction for novice device driver developers.

5.3. Debugging drivers

The creation of just about every piece of software requires it to be debugged sometime during the time of its
development as there are always obscure bugs that are not discovered by examining source code manually. This
is especially true for device drivers. At worst, bugs in applications might cause the application’s process to
become unstable. Serious bugs in drivers will cause the entire system to become unstable.

Debugging applications is a straightforward process. A break statement is set at a place of interest in source
code using a debugger’s debugging facilities. This is usually debugger specific. In Windows, using Microsoft’s
Visual Studio debugger, setting break points is as simple as clicking a line in the source code editor. The same
applies to DDD (a GUI debugger found on Linux that uses the popular command line debugger GDB). When a
program is executed in debug mode and a break point is reached, the execution of that program is paused and
the program can be single stepped i.e. instructions from it executed one at a time and their effects observed. A
debugger will usually allow the values of variables and variable memory addresses in a running program to be
observed. The debugging facilities discussed thus far are also available for debugging device drivers, to a certain
extent, on each operating system.

5.3.1. Debugging Drivers on Windows

Debugging drivers under Windows can be performed using a number of different methods. The simplest of
these is to use the DbgPrint debugging routine which allows printing of messages to the Windows debugger
buffer. If a Windows debugger such as WinDbg is running, then the messages can be observed from there,
otherwise a special application that can retrieve messages from the debugger’s buffer has to be used. One such
application is DebugView, a free application provided by the SysInternals Corporation [Russinovich, 01]. The
DbgBreakPoint routine sets a break point in a program. When executed, the system pauses and driver code
execution is passed to the system debugger. The Assert macro transfers driver execution to the system debugger
based on the value of a test condition.

The Microsoft kernel debugger, WinDbg, requires two PCs for operation. The first PC is where the driver
code is developed and tested. The second PC is connected to the driver development PC via a serial port. A
developer can interact with the debugger running on the first PC through a serial console from the second PC.
The NuMega DriverStudio ™ [Compuware, 01] provides a debugger that allows drivers to be debugged from a
single PC, which can be the driver development machine, and acts like an application debugger. It provides a
console Window from which command line instructions can be issued to control it.

5.3.2. Debugging Drivers on Linux

In the same way as Windows, debugging of drivers in Linux can be performed by using debug routines
provided by the kernel such as printk, which is the equivalent of the Windows DbgPrint routine. It behaves in
the same way as the C standard I/O routine printf except that it takes an additional argument that specifies where
the message will be printed to. A kernel debugger is also available as a patch that can be applied to the kernel
sources. The patch for the built-in Linux kernel debugger (kdb) can be obtained from the KDB project page
[KDB, 02]. It allows the same operations as a standard debugger i.e. setting break points, single stepping driver
code, and examining driver memory.

6. Conclusion

Windows and Linux are two of the most popular operating systems in use today. Windows has the biggest
market share, and Linux is gaining in popularity. Every new device that gets released to the public by a
hardware manufacturer will almost certainly come equipped with a device driver that will make it operate on the
Windows operating system. The two operating systems’ driver architectures are different in many ways but have
some similarities.

6.1. Device Driver Architectures

Comparison of the driver architectures used by the two operating systems has shown that the Windows
operating system has a more developed architecture than Linux. This does not mean that the Windows
architecture offers better functionality than that of Linux, rather it has a more formally defined driver model,
which driver developers are encouraged to follow. Although driver writers can ignore the Windows driver
model and construct their own monolithic drivers, it was found that most driver writers did not take this route.
No formally defined driver model exists for the Linux operating system. Linux driver writers produce drivers

based on their own personal designs. Unless two groups of driver developers cooperate and produce drivers that
work together, drivers from different developers cannot operate together under the Linux operating system.

Under Windows, drivers from two or more sets of developers can be made to work together, provided the
developers have followed the Windows Driver Model (WDM) to construct their drivers. The Windows driver
architecture supports PnP (Plug and Play) and Power management, by dispatching messages at appropriate times
to device drivers which have been implemented to handle these messages. No such facility is offered by the
current Linux driver architecture.

6.2. Designing device drivers

When designing device drivers the facilities offered by an operating system should be evaluated. The
Windows and Linux operating systems are both modern operating systems. They make available
implementations for data structures such as stacks, queues and spin locks, as well as HAL (Hardware
Abstraction Layer) routines for performing hardware independent operations. This enables device drivers to
operate on different architectures such as IA64 (Intel’s 64 bit platform) and SPARC.

Driver functionality on both operating systems can be broken up into modules, which can be stacked
together and that communicate using a standardised data structure. Under Windows this standardised data
structure is the IRP (I/O Request Packet) and under Linux it can be any driver-defined structure, since no
standardised structure exists on that operating system.

6.3. Implementing Device Drivers

Device drivers on both operating systems are made up of a set of routines that each operating system
expects all drivers to implement. They include routines for standard I/O such as reading from and writing to a
device, and for sending device I/O control commands to a device. Every driver for each operating system
implements a routine that will be executed when the driver is loaded for the first time, and a routine that gets
executed when a driver is unloaded. It is possible to construct a driver for each operating system that uses
identical naming for the various driver routines, although the usual approach is to use conventional names for
each operating system. The device driver naming scheme on Windows (using device interfaces) is a lot more
flexible than the current device driver naming scheme used by Linux. Driver naming clashes are more likely to
occur in Linux as compared to Windows, which uses a GUID (Globally Unique Identifier) for each device.

6.4. Driver Development Environments

The Windows operating system provides a DDK (Device Driver Developer’s Kit), which contains relevant
documentation and development tools that help decrease the time required for learning to create new drivers.
The Linux operating system does not provide a DDK, therefore initially some time will have to be spent by
device driver developers to gather other sources to aid in the driver development process. Once time has been
spent in getting familiar with the two driver development environments, developers will find it easier to create
Linux drivers than Windows drivers, because all of the Linux kernel source code is available to them. This
enables driver developers to trace problems in their drivers by having a closer look at the kernel code that their
drivers rely on. Under Windows, only binary debug builds of the operating system’s components are available.
These contain debug symbols such as function names and variable names and are not as useful as having the
operating system’s source code.

6.5. Concluding Remarks

Drivers should be designed so that use of them requires very little interaction from end users, and all of a
driver’s functionality is made available to applications. The former is one of the strong points of Windows,
which fully supports PnP. Linux is an open source project, which is still actively being improved. It is expected
that in the future Linux’s driver architecture will become as formalised as Windows’, which for example has a
driver model such as the WDM. Growth of hardware vendor support for Linux is also expected as more and
more individuals and organisations adopt it.

Acknowledgements

This research was made possible through the Andrew Mellon Foundation scholarship at Rhodes University,
Grahamstown, South Africa.

References

[Beck et al, 98] Beck, Bohme, Dziadzka, Kunitz, Magnus, Verworner, Linux Kernel Internals,
Addison Wesley, 1998.

[Cant C, 99] Cant C, Writing Windows WDM Device Drivers, CMP Books, 1999.

[Compuware, 01] Compuware, NuMega DriverStudio Version 2.5, http://www.compuware.com, 2001.

[Compuware, 01] Compuware, Using Driver Works, Version 2.5, Compuware, 2001.

[Deitel, 90] Deitel HM, Operating Systems, 2nd Edition, Addison Wesley, 1990.

[Davis, 83] Davis W, Operating Systems, 2nd Edition, Addison Wesley, 1983.

[Flynn et al, 91] Flynn IM, McHoes AM, Understanding Operating Systems, Brooks/Cole, 1991.

[Katzan, 73] Katzan H, Operating Systems: A Pragmatic Approach, Reinhold, 1973.

[KDB, 02] KDB, The Linux Built in Kernel Debugger, http://oss.sgi.com/projects/kdb, 2002.

[Laywer, 01] Lawyer D S, Plug and Play HOWTO/Plug-and-Play-HOWTO-1.html,
http://www.tldp.org/HOWTO, 2001.

[Linus FAQ, 02] The Rampantly Unofficial Linus Torvalds FAQ,
http://www.tuxedo.org/~esr/faqs/linus/index.html, 2002.

[Linux HQ, 02] The Linux Headquarters, http://www.linuxhq.com, 2002.

[Lorin et al, 81] Lorin H, Deitel HM, Operating systems, Addison Wesley, 1981.

[Microsoft DDK, 02] Microsoft ,DDK- Kernel Mode Driver Architecture, Microsoft, 2002.

[Microsoft WDM, 02] Microsoft, Introduction to the Windows Driver Model,
http://www.microsoft.com/hwdev/driver/wdm, 2002.

[Oney, 99] Oney W, Programming the Microsoft Windows Driver Model, Microsoft, 1999.

[Open Group, 97] Open Group, Universal Unique Identifier,
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm, 1997.

[Redhat,02] Redhat, http://www.redhat.com,2002.

[Rubini et al, 01] Rubini A, Corbet J, Linux Device Drivers, 2nd Edition, Oreilly, 2001.

[Russinovich, 98] Russinovich M, Windows NT Architecture,
http://www.winnetmag.com/Articles/Index.cfm?ArticleID=2984, 1998.

[Russinovich, 01] Russinovich M, SysInternals, http://www.sysinternals.com, 2001.

[Rusling, 99] Rusling D A, The Linux Kernel, http://www.tldp.org/LDP/tlk/tlk.html, 1999.

