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ABSTRACT 

Computer generated Monte Carlo techniques were used to 
compare the power of Wilcoxon's rank-sum test to the power of 
the two independent means t test for situations in which 
samples were drawn from (1) uniform, (2) Laplace, (3) half- 
normal, (4) exponential, (5) mixed-normal, and (6) mixed- 
uniform distributions. Sample sizes studied were (n ,n) = 

(3,9), (6,6), (9,27), (18,18), (27,81), and (54,54). 

It was concluded that (1) generally speaking, the Wil- 
coxon statistic held very large power advantages over the t 
statistic, (2) asymptotic relative efficiencies were reason- 
ably good indicators of the relative power of the two statis- 
tics, (3) results obtained from smaller samples were often 
markedly different from the results obtained from larger 
samples, and (4) because of the narrow ranges of population 
shapes and sample sizes investigated in some widely cited 
previous studies of this type, the conclusions reached in 
those studies must now be deemed questionable. 
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BACKGROUND 

Although nonparametric statistical tests enjoyed some 
popularity among educational and psychological researchers 
during the 1950's (Glass, Peckham, & Sanders, 1972), atti- 
tudes concerning the usefulness of such procedures have 
changed markedly since that time. This change in attitude 
is reflected by Glass et al. (1972) who characterize the 
1950's movement toward nonparametrics as "unnecessary" and 
"unproductive." These authors go on to imply that re- 
searchers who use such procedures are not doing so on the 
basis of an informed decision, but rather, are simply caught 
up in a "herd" psychology. 

Unlike Glass et al. (1972), Guilford and Fruchter (1978) 
seem to feel that nonparametric tests may be of some very 
limited use in analyzing research data, but go on to ad- 
monish the reader that "Where there is any choice...we 
should prefer a parametric test, except where a quick, rough 
test will do." (p. 212) 

Why do these authors and so many others discourage the 
use of nonparametric tests? First, it is argued that, al- 
though nonnormal data may be encountered with some frequency 
in educational and psychological research, the commonly used 
t and F tests are quite insensitive to this violation of 
their underlying assumptions, thereby making the use of non- 
parametric tests unnecessary (Boneau, 1960; Glass et al., 
1972). Second, it is often argued that nonparametric tests 
are less powerful than parametric tests, thereby making them 
the less desirable alternative (Gay, 1976; Guilford & Fruch- 
ter, 1978; Kerlinger, 1973; Popham & Sirotnick, 1973). Al- 
though the first part of the rationale outlined above is 
questionable to some degree (Bradley, 1978), it is the second 
part, that is, the assertion that parametric tests are more 
powerful than nonparametric tests, that gives rise to the 
focus of this study. 

THE PROBLEM 

In education and psychology, the most commonly used two 
sample test for shift is, of course, the Student t test. A 
major reason for its popularity lies in the fact that it is 
said to be (a) robust to deviations of populations from 
normality, and (b) more powerful than nonparametric counter- 
parts that might be used in its stead (Boneau, 1960; 1962). 
Thus, researchers who face the task of analyzing data that 
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have been drawn from populations whose shapes are nonnormal 
or unknown, are assured that the t test is still the most 
appropriate procedure. 

Generally unrecognized, or at least not made apparent 
to the reader, is the fact that the t test's claim to power 
superiority rests on certain optimal power properties that 
are obtained under normal theory. Thus, when the shape of 
the sampled population(s) is unspecified, there are no mathe- 
matical or statistical imperatives to ensure the power 
superiority of this statistic. Unfortunately, not much is 
known of the relative power performance of the t test and 
its nonparametric counterparts when samples of various sizes 
are drawn from a wide variety of population shapes. Such 
information would, however, be very useful in choosing an 
appropriate test when population shapes are nonnormal or 
unknown. The present study is designed, therefore, to assess 
the relative power of the t test and its most popular non- 
parametric counterpart (Bradley, 1972), Wilcoxon's rank sum 
test, under a wide variety of sample size and population 
shape combinations. 

RELEVANT LITERATURE 

Sampling experiments, mathematical calculations, and 
asymptotic theory have all been used to demonstrate the 
fact that the t test and Wilcoxon's test have nearly equiva- 
lent power when samples are drawn from normally distributed 
populations (Dixon, 1954; Hodges & Lehmann, 1956; Lehmann, 
1975; Neave & Granger, 1968). The slight power advantage 
that is obtained in this circumstance is, of course, in 
favor of the t test. 

An interesting and potentially important asymptotic 
result was obtained by Hodges and Lehmann (1956) who demon- 
strated that while the asymptotic relative efficiency (or 
Pitman efficiency) of the Wilcoxon test relative to the t 
test can be as high as infinity, it can never be lower than 
.864. Commenting on this result, Hodges and Lehmann state 
that: 

To the extent that the above concept of efficiency 
adequately represents what happens for the sample 
sizes and alternatives arising in practice, this 
result shows that the use of the Wilcoxon test 
instead of the Student's t test can never entail 
a serious loss of efficiency for testing against 
shift. (On the other hand, it is obvious...that 
the Wilcoxon test may be infinitely more efficient 
than the t test.) (p. 356) 
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Unfortunately, asymptotic relative efficiencies are calcu- 
lated under a rather unrealistic set of assumptions prompt- 
ing Bradley (1968, p. 58) to state: "No experimenter takes 
infinitely large samples, and virtually no one is interested 
in power to reject hypotheses that differ only infinitesi- 
mally from the null hypotheses." 

Boneau (1962) used computer generated Monte Carlo tech- 
niques to study the relative power of the t and Wilcoxon 
statistics when sampling is from normal, rectangular, and 
exponential distribution. He concluded that, "In general 
the t test is more powerful than the Mann-Whitney U (Wil- 
coxon) test, but never by much." In addition, he implied 
that the asymptotic results obtained by Hodges and Lehmann 
may not carry over to the situation in which sample sizes 
are finite. 

Blair, Higgins, and Smitley (1980) used computer simu- 
lation to study the relative power of the two tests at hand 
under the exponential distribution. They concluded that the 
small sample sizes employed by Boneau (1962) had led him to 
a faulty conclusion and that the Wilcoxon test attains large 
power advantages over the t test under the exponential dis- 
tribution. 

Toothaker (1972) used computer simulation to draw 
samples from normal, uniform, and skewed populations in 
order to compare the power of the two statistics under dis- 
cussion. Sample sizes used in this study were < 5 and the 
results obtained were much the same as those reported by 
Boneau (1962); that is, there was little difference between 
the powers of the two tests. 

Neave and Granger (1968) drew samples of size 
"n1 = n2 = 20 and nI = 20, n2 = 40 from a population that 

is formed by the super position of two normal distributions. 
After comparing the power of the statistics of interest, 
they concluded that the Wilcoxon statistic is "much superior" 
to the t statistic under the particular nonnormal distribu- 
tion that they studied. In this study, the difference in 
proportions of null hypotheses rejected by the two tests was 
as high as .12 with the Wilcoxon having the larger propor- 
tion. 

The literature reviewed above is confusing in that it 
presents what appears to be conflicting pictures of the 
relative power of the two tests. The asymptotic results of 
Hodges and Lehmann (1956) suggest that, while the Wilcoxon 



PoweA Compartisons 313 

test may be much more powerful than the t test, the t test 
can never show more than a modest advantage over the Wil- 
coxon test. But, as Bradley (1968) has warned, asymptotic 
results must be suspect because of the unrealistic assump- 
tions underlying their calculation. Added to this warning 
is the fact that Boneau (1962) has denied, on the basis of 
his sampling experiments, the utility of the Hodges and 
Lehmann finding. Results obtained from Toothaker (1972) 
seem to support the Boneau (1962) position. On the other 
hand, Blair et al. (1980) have questioned the usefulness of 
the finding of Boneau (1962) and Toothaker (1972) by point- 
ing out that (a) sample sizes employed by these two authors 
were smaller than those commonly found in educational and 
psychological research, and (b) results obtained from small 
samples may be very different from those obtained with more 
moderate-sized samples. 

THE PRESENT STUDY 

The general purpose of the present study was to deter- 
mine whether the t test or Wilcoxon's test is typically the 
more powerful procedure when samples are drawn from a wide 
variety of population shapes. In order to accomplish this 
in a manner that will be most useful to educational and 
psychological researchers, two distinct voids in the present 
literature had to be filled. 

First, as was mentioned earlier, previous studies have 
often considered sample sizes that in educational and psy- 
chological research contexts would be characterized as very 
small (< 5) or very large (infinite). Therefore, this study 
considered a more moderate range of sample sizes. Second, 
Bradley (1977) has criticized previous studies for consider- 
ing too marrow a range of distribution shapes. Therefore, 
this study dealt with a larger variety of population shapes 
than is found in previous studies of this type. 

The present study used, as its primary means of inves- 
tigation, computer generated Monte Carlo methods. Through 
this technique, samples of various sizes were drawn from 
populations with known characteristics. The two statistics 
of interest were calculated on the drawn samples, tests of 
significance were carried out, and the reject/fail-to-reject 
decision was recorded. Because the populations were con- 
structed to simulate the situation in which the null hypoth- 
esis was not true, the proportion of samples that resulted 
in a rejection of the null hypothesis was a statement of the 
power of the test. (In this study all power functions are 
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one-tailed.) Details of the populations studied and the 
simulation techniques employed are given below. 

The first population investigated was the uniform (or 
rectangular) distribution whose functional form is as 
follows: 

f(x) = 1, 0 < x < 1. 

This population was included in the study because it repre- 
sents one extreme in the family of symmetric power distri- 
butions, and as such, is a good example of a light-tailed 
symmetric distribution. The asymptotic relative efficiency 
of the Wilcoxon to the t test is 1.0 under this distribution. 

The second population studied was the Laplace (or 
double exponential) distribution whose functional form is as 
follows: 

f(x) = 1 expI{- lx-1,-c < x < o. 
It was included in this study because it represents one 
extreme (the opposite extreme of the uniform distribution) 
in the family of symmetric power distributions and, as such, 
is a good example of a heavy-tailed symmetric distribution. 
The asymptotic relative efficiency of the Wilcoxon to the 
t test is 1.5 under this distribution. 

The third population studied was the truncated (or half) 
normal distribution whose functional form is as follows: 

f(x) = (2/021) expi-(x--p) /20 2, x>. 

This may be thought of as the upper half of a normal distri- 
bution, and as such, is a good example of a nonsymmetric 
distribution whose tail descends at the same rate as would 
be found in a normal curve function. This function is also 
useful in modeling data that is gathered in connection with 
certain compensatory education programs. The asymptotic 
relative efficiency of the Wilcoxon to the t test is approxi- 
mately 1.2 under this distribution. 

The fourth population studied was the exponential dis- 
tribution whose functional form is as follows: 

f(x) = e-(x-) x 

This may be thought of as the upper half of the Laplace dis- 
tribution and, as such, is a good example of a heavy-tailed 
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nonsymmetric distribution. The asymptotic relative effici- 
ency of the Wilcoxon to the t test is 3.0 under this distri- 
bution. 

The fifth population studied was the mixed normal whose 
functional form is as follows: 

.95 ex /2 + .05 e(x-33)2200 
f(x)r - 0 < x < 2. 

10 PY i02 

This distribution was included because it represents a radi- 
cal departure from normality that nonethless appears to 
model data collected in certain social science research 
contexts (Allport, 1934; Bradley, 1977). At the same time, 
it is a good example of a highly skewed population. The 
asymptotic relative efficiency of the Wilcoxon to the t test 
is approximately 45.0 under this distribution. 

The last population studied was the mixed uniform whose 
functional form is as follows: 

943o 0< x < 13, 
f(x) = 

9 1 < x < 40. 

This distribution was included for essentially the same 
reasons outlined in connection with the fifth population. 
The asymptotic relative efficiency of the Wilcoxon to the 
t test is approximately 58.0 under this distribution. 

The six populations described above are extremely di- 
verse in terms of both skew and kurtosis, thereby providing 
a broad base for the present study. 

Sample sizes investigated in connection with each of 
the six populations were: (nl, n2) = (3,9), (6,6), (9,27), 

(18,18), (27,81), and (54,54). The sequence of events in 
the simulation were as follows: (1) Two independent samples 
of sizes n1 and n2 were selected from the population being 

studied. (2) A constant was added to the scores of the 
designated "treatment" group (i.e., the group having sample 
size nl), thus simulating the condition under which 'l > >2" 
(3) The t and Wilcoxon statistics were computed for the two 
sammples. (4) The calculated statistics were compared with 
the appropriate critical values and the reject/fail-to-reject 
decision was recorded. 
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After 5,000 repetitions of the above sequence, the 
value of the added constant (i.e., p -P2) was increased 

and the process repeated. This was continued until a wide 
range of the respective power functions were obtained. 
(Data were generated by means of the GGUSN and GGUS3 sub- 
routines of the International Mathematical and Statistical 
Laboratories (1977) computer package.) 

It should be noted that critical t values were obtained 
by simulating the null distribution of the t statistic for 
all sample sizes under each of the six population shapes. 
The critical t value chosen for a particular power com- 
parison was the t value whose associated probability was 
equal to the probability associated with the corresponding 
critical value of the Wilcoxon test. For example, if a 
particular critical Wilcoxon value had an associated prob- 
ability of .048, then the t value chosen was the one that, 
for the particular distribution being studied, also had an 
associated probability of .048. This procedure was neces- 
sary because, under the Neyman and Pearson (1933) concept 
of power, comparisons of this type must be made at the same 
level of significance. 

RESEARCH QUESTIONS 

Questions specifically addressed by this study are 
listed below. 

1. In the case of moderate sample sizes (operationally 
defined as 1n + n2 = 36 and n1 + n2 = 108), does Wil- 
coxon's test tend to be more powerful than the t test under 
some distributions? 

2. In the case of moderate sample sizes, does the t 
test tend to be more power than Wilcoxon's test under some 
distributions? 

3. Given circumstances in which Wilcoxon's test is 
more powerful than the t test and vice versa, do the magni- 
tudes of the power advantages differ for the two tests? 

4. When samples are of moderate sizes, do asymptotic 
relative efficiencies provide an adequate indication as to 
which of the two tests being studied is the more powerful 
under a particular distribution? 
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5. Are the results obtained from small samples (oper- 
ationally defined as n1 + n2 = 12) generalized to the mod- 

erate sample size situation? 

RESULTS AND CONCLUSIONS 

The amount of data generated by this study make pub- 
lication of all results impractical. Therefore, data are 
represented in two summary forms. First, the one-tailed 
power functions of the two statistics as calculated under 
each of the six populations, are presented graphically in 
Figures 1 through 6. These graphs depict situations in 
which nI = n2 and a = .025. 

TABLE I 

Maximum Power Advantages Attained by the t and Wilcoxon 
Statistics at Various Sample Size/Significance Level Combi- 
nations for Samples Drawn From Uniform Distributions 

Level of Significance 
"n1,n2 Statistic .005 .010 .025 .050 

3,9 w .00 .00 <.01 <.01 
t .13 .13 .09 .06 

6,6 w .02 .01 .01 .01 
t <.01 .01 .05 .06 

9,27 w <.01 .01 <.01 .01 
t .07 .08 .07 .05 

18,18 w .00 .00 <.01 <.01 
t .09 .07 .05 .04 

27,81 w .00 .01 .00 .00 
t .07 .05 .05 .04 

54,54 w .00 .01 <.01 .00 
t .07 .04 .04 .03 
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TABLE II 

Maximum Power Advantages Attained by the t 
and Wilcoxon Statistics at Various Sample Size/ 

Significance Level Combinations for Samples 
From Laplace (Double Exponential) Distributions 

Level of Significance 
"nl,n2 Statistic .005 .010 .025 .050 

3,9 w .00 .01 .02 .04 
t .13 .07 .04 .02 

6,6 w <.01 <.01 .01 .01 
t .07 .05 .04 .01 

9,27 w .09 .08 .08 .07 
t .00 <.01 .00 .00 

18,18 w .10 .10 .09 .10 
t .00 .00 .00 .00 

27,81 w .17 .17 .12 .12 
t .00 .00 .00 .00 

54,54 w .17 .14 .15 .15 
t .00 .00 .00 .00 

TABLE III 

Maximum Power Advantages Attained by the t 
and Wilcoxon Statistics at Various Sample Size/ 

Significance Level Combinations for Samples 
Drawn From Truncated Normal Distributions 

Level of Significance 
nl,n2 Statistic .005 .010 .025 .050 

3,9 w .08 .02 .05 .07 
t .00 <.01 <.01 .00 

6,6 w .00 .01 <.01 .01 
t .10 .04 .03 .02 

9,27 w .07 .08 .08 .14 
t <.01 <.01 .00 .00 

18,18 w .05 .06 .05 .04 
t <.01 .00 .00 .00 

27,81 w .14 .11 .11 .11 
t .00 <.01 .00 .00 

54,54 w .12 .11 .09 .09 
t .00 .00 .00 .00 
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TABLE IV 

Maximum Power Advantages Attained by the t 
and Wilcoxon Statistics at Various Sample Size/ 

Significance Level Combinations for Samples 
Drawn From Exponential Distributions 

Level of Significance 
n1,n2 Statistic .005 .010 .025 .050 

3,9 w .02 .02 .06 .12 
t .00 .03 .01 .00 

6,6 w .02 <.01 .02 .05 
t .09 .11 .05 .01 

9,27 w .27 .28 .29 .30 
t <.01 .00 .00 .00 

18,18 w .17 .19 .22 .21 
t .00 .00 .00 .00 

27,18 w .44 .42 .37 .33 
t .00 .00 .00 .00 

54,54 w .36 .35 .32 .29 
t .00 .00 .00 .00 

TABLE V 

Maximum Power Advantages Attained by the t 
and Wilcoxon Statistics at Various Sample Size/ 

Significance Level Combinations for Samples 
Drawn From Mixed Normal Distributions 

nIn2 Statistic .005 .010 .025 .050 

3,9 w .08 .05 .03 .30 
t .08 .16 .17 .00 

6,6 w .19 .18 .20 .30 
t .14 .15. .12 .02 

9,27 w .75 .74 .73 .71 
t .00 .00 .00 .00 

18,18 w .68 .63 .61 .58 
t .00 .00 .00 .00 

27,81 w .94 .92 .89 .85 
t .00 .00 .00 .00 

54,54 w .89 .88 .84 .79 
t .00 .00 .00 .00 
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TABLE VI 

Maximum Power Advantages Attained by the t 
and Wilcoxon Statistics at Various Sample Size/ 

Significance Level Combinations for Samples 
Drawn From Mixed Uniform Distributions 

Level of Significance 
"n",n2 Statistic .005 .010 .025 .050 

3,9 w .05 .00 .02 .03 
t .02 .04 .06 .05 

6,6 w .01 .01 .04 .08 
t .16 .16 .13 .09 

9,27 w .06 .08 .09 .14 
t .05 .04 .04 .02 

18,18 w .16 .14 .17 .20 
t .06 .06 .04 .03 

27,81 w .29 .27 .34 .37 
t .00 .00 .00 .00 

54,54 w .31 .34 .38 .44 
t .01 .01 .01 .00 

TABLE VII 

Maximum Power Advantages Attained by the t and 
Wilcoxon Statistics When Small and Moderate Sized Samples 

Are Drawn From Certain Nonnormal Distributions 

Small Moderate 
Distribution Statistic Samples Samples 

Uniform w .00 .01 
t .13 .09 

Laplace w .04 .17 
t .13 .00 

Truncated Normal w .08 .14 
t .10 .00 

Exponential w .12 .44 
t .11 .00 

Mixed Normal w .30 .94 
t .17 .00 

Mixed Uniform w .08 .44 
t .16 .06 
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TABLE VIII 

Frequency of Occurrence of the Maximum Power Advantages 
of the t and Wilcoxon Tests 

W t 
f percent f percent 

x = .00 27 19 76 53 

.00 < x < .05 26 18 38 26 

.05 < x < .10 23 16 18 13 

.10 < x < .20 28 19 12 8 

.20 < x < .30 11 .8 0 0 

.30 < x < .40 10 7 0 0 

.40 < x < .50 3 2 0 0 

.50 < x < .60 0 0 0 0 

.60 < x < .70 4 3 0 0 

.70 < x < .80 5 3 0 0 

.80 < x < .90 5 3 0 0 

.90 < x < .100 2 1 0 0 
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One-Tailed Power Functions of the Two Independent Means t 
Test and Wilcoxon's Rank Sum Test for Samples Drawn From a 

Laplace Distribution. ca=.025. 
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Figure 3 

One-Tailed Power Functions of the Two Independent Means 
t Test and Wilcoxon's Rank Sum Test for Samples Drawn From 
a Truncated Normal Distribution. ac-.025. 
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Test and Wilcoxon's Rank Sum Test for Samples Drawn From an 
Exponential Distribution. a=.025 
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One-Tailed Power Functions of the Two Independent Means t 
Test and Wilcoxon's Rank Sum Test for Samples Drawn from a 
Mixed Normal Distribution. a=.025. 
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One-Tailed Power Functions of the Two Independent Means t 
Test and Wilcoxon's Rank Sum Test for Samples Drawn From a 
Mixed Uniform Distribution. a=.025. 
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Tables I through VI show the largest power advantages 
attained by each statistic for each sample size and signifi- 
cance level combination. Power advantage refers to the 
quantity obtained when the proportion of hypotheses re- 
jected by the less powerful statistic is subtracted from the 
proportion of rejections by the more powerful statistic with 
both proportions being calculated at a particular value of 

FI -P2" Thus, the largest power advantage of a given sta- 
tistic was obtained by considering all values of  - 112 

for which the given statistic held the advantage. 

Tables VII and VIII are further distillations of the 
data contained in Tables I-VI. Table VII gives maximum 
power advantages attained by the two statistics for 
small- and moderate-sized samples by distribution. Table 
VIII is explained later. 

Attention is now turned to the previously stated re- 
search questions. Because of their similarity, research 
questions 1 and 2 will be addressed jointly. 

Figures 1-6, Tables I-VI, and in a more succinct fash- 
ion, Table VII indicate that clear patterns of power superi- 
ority emerge when the moderate sample size case is consid- 
ered across the six distributions. Specifically, the t test 
holds power superiority under the uniform distribution, 
while the Wilcoxon dominates under the other five distri- 
butions. A minor exception occurred when samples of sizes 
n1 + n2 = 36 were drawn from the mixed uniform distribution. 

In this situation the t test shows definite, though modest, 
power advantages over some ranges of the power functions. 
This intermittent advantage virtually disappears for samples 
of sizes n1 + n2 = 108 and the Wilcoxon test becomes the 

more powerful test over the full range of power functions 
except where both functions approach 1.0 

From the results outlined about it can be concluded 
that the answers to research questions 1 and 2 are both in 
the affirmative. 

Figures 1 through 6 as well as Tables I through VII 
give the impression that, in those circumstances where the 
t test is the more powerful statistic, the magnitude of its 
power superiority is typically quite modest. On the other 
hand, in those circumstances where the Wilcoxon is the more 



Powet CompaAisons 329 

powerful statistic, the magnitude of its power superiority 
is oftentimes quite large. For example, while Figure 1 in- 
dicates that that the t test is typically the more powerful 
statistic under the uniform distribution, Tables I and VII 
show that the magnitude of that advantage never exceeded .13 
and was usually about half that amount. On the other hand, 
Figure 5 as well as Tables V and VII indicate not only that 
the Wilcoxon test is the more powerful statistic under the 
mixed normal distribution, but also that the magnitude of 
the advantage can reach as high as .94 with maximum advantage 
in the .60 to .80 range being common. Further insights per- 
taining to research question 3 can be gained from Table VIII. 

Because four levels of significance were investigated 
for each combination of sample sizes, and because six com- 
binations of sample sizes were investigated for each of the 
six populations, there were 4 x 6 x 6 = 144 pairs of entries 
in Tables I through VI. Table VIII classifies the 144 
entries for each of the two statistics by their magnitudes. 
For example, Table VIII indicates that of the 144 entries 
for the Wilcoxon test in Table I through VI, 7 percent of 
these entries are in the range .30 < x < .40 where x is the 
value of the maximum power advantage. 

Table VIII indicates that for 19 percent of the power 
function comparisons, the Wilcoxon test never held an 
advantage. The comparable figures for the t test are a much 
larger 53 percent. It is also intresting to note that only 
8 percent of the maximum power advantages of the t test 
exceed .10, while the comparable figure for the Wilcoxon 
statistic was 46 percent. While the t test never showed 
maximum power advantages greater than .20, some 27 percent 
of the Wilcoxon's entries exceeded this figure. 

Summarizing the results related to research question 
3, it appears that while the t test is sometimes more power- 
ful than the nonparametric procedure, the magnitude of that 
advantage is never very large and is usually quite modest. 
On the other hand, the Wilcoxon test often shows power ad- 
vantages that are very large. As a result, research ques- 
tion 3 must also be answered in the affirmative. Attention 
is now turned to research question 4. 

As was mentioned previously, the asymptotic relative 
efficiency of the Wilcoxon test relative to the t test is 
unity under the uniform distribution. This would indicate 
that the two tests have equivalent power under this dis- 
tribution. In contrast to this expectation, however, the 



330 Btait and Higgins 

t test held a definite, though modest, power advantage when 
moderate-sized samples were taken from this distribution. 
It can be concluded, therefore, that the asymptotic relative 
efficiency is slightly misleading in this set of circum- 
stances. 

The asymptotic relative efficiency of approximately 
1.2 obtained under the truncated normal distribution would 
suggest a slight power advantage for the Wilcoxon statistic. 
As was noted earlier, the Wilcoxon test did show a power 
advantage under this distribution leading to the conclusion 
that the asymptotic relative efficiency was a good indi- 
cator in this case. 

As was noted earlier, an asymptotic relative efficiency 
of 1.5 is obtained under the Laplace distribution, suggest- 
ing a power advantage for the Wilcoxon statistic. In addi- 
tion, it might be expected that the magnitude of the advan- 
tage obtained under this distribution would be slightly 
larger than that obtained under the truncated normal distri- 
bution. Comparison of Tables II and III support these 
expectations. 

The asymptotic relative efficiency of 3 obtained under 
the exponential distribution suggests that the power advan- 
tage obtained under this distribution would be larger than 
that associated with the Laplace distribution. This supposi- 
tion is fully supported by the data in Tables II and IV. 

The asymptotic relative efficiency of 45 obtained under 
the mixed normal distribution suggests that the advantage 
here would be substantially larger than that obtained under 
the exponential distribution. Again, this expectation is 
fully supported by the data in Tables IV and V. 

The two statistics of interest have an asymptotic rela- 
tive efficiency of approximately 58 under the mixed uniform 
distribution. This efficiency would suggest that the power 
advantage of the nonparametric test would be greater under 
this distribution than under the mixed normal distribution. 
Comparisons of the data in Tables V and VI indicated that 
while the Wilcoxon is generally the more powerful statistic 
under this distribution, the magnitude of its advantage 
tends to be far less than that attained under the mixed 
normal distribution. It can be concluded, therefore, that 
while asymptotic relative efficiency is a good indicator as 
to which of the two statistics is the more powerful under the 
mixed uniform distribution, it is somewhat misleading as an 
indicator of the magnitude of that advantage. 
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Based on the six distributions investigated, it can be 
concluded that, in general, asymptotic relative efficiencies 
often provide an adequate indication as to which of the two 
tests investigated is the more powerful under a particular 
distribution when samples are of moderate sizes. It should 
be noted, however, that these efficiencies are not unerring 
in this regard, as was demonstrated with the uniform distri- 
bution. Research question 4 can thus be answered with a qual- 
ified yes. Attention is now turned to research question 5. 

Small sample sizes were operationally defined, for the 
purposes of this study, as n1 + n2 = 12. Table I indicates 

that, with some exceptions, the t test was the more powerful 
statistic when samples were small and were drawn from uni- 
form distributions. This is essentially the same result as 
was obtained with moderate-sized samples. 

Table II indicates that, with some exceptions, the t 
test was the more powerful test when samples were small and 
were drawn from Laplace distributions. This result is con- 
trary to that obtained with moderate-sized samples where 
the Wilcoxon test dominated. 

Table III shows a rather mixed pattern of power advan- 
tages for the situation in which samples are small and drawn 
from truncated normal distributions. When samples were of 
sizes 3 and 9, it was the Wilcoxon test that dominated, but 
it was the t test that showed superior power when samples 
were of sizes 6 and 6. This contrasts with the moderate 
sample size situation where the advantage was with the Wil- 
coxon test for both balanced and unbalanced data. 

Table IV also shows a mixed pattern of power advantages 
for the situation in which samples are small and drawn from 
exponential distributions. In this situation, each of the 
tests dominated in a given set of circumstances. This con- 
trasts with the moderate sample size situation where the 
Wilcoxon clearly dominated. 

Table V again shows a mixed pattern of advantages for 
the case of small sample sizes. As was noted previously 
in regard to other distributions, the mixed pattern gives 
way to clear domination by the nonparametric test when 
samples are of moderate sizes. 

Table VI shows that, with some exceptions, it was the 
t test that showed power dominance when samples were small 
and drawn from mixed uniform distributions. This contrasts 
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with the moderate sample size situation where, with some 
exceptions that occurred when n1 + n2 = 36, it was the 

Wilcoxon statistic that attained power dominance. 

From the results outlined above, it can be concluded 
that the results obtained from small sample studies that 
compare the power of the two statistics in question do not, 
typically, generalize to situations involving samples of 
moderate sizes. In fact, conclusions reached on the basis 
of small sample studies are oftentimes in direct opposition 
to those reached on the basis of moderate sample size 
studies. 

COMMENTS 

Perhaps the most important consequence of this study is 
the fact that it raises serious questions about the validity 
of some of the more "authoritative" literature dealing with 
the relative usefulness of parametric and nonparametric 
procedures. 

For example, Boneau (1960), in one of the most widely 
cited articles on the subject, has maintained that the 
t test rather than a nonparametric test should be employed 
when the population shape is not normal. Boneau (1960) 
based his position on the assertion that the t test is 
robust, in terms of Type I errors, to population nonnormal- 
ity. But as this study has demonstrated, a researcher may 
choose to use a nonparametric counterpart of the t test, 
not only because of the advantage of obtaining a stable 
Type I error rate but also because of large advantages 
gained in terms of relative Type II error rates. This same 
logic can be used to refute the arguments of Glass et al. 
(1972) who strongly condemned the use of nonparametric tests 
but, like so many others, failed to identify and investigate 
the issue of relative power. 

In addition, this study further strengthens the position 
taken by Blair et al. (1980) that Boneau (1962) erred seri- 
ously in basing his assessment of the relative power of the 
two tests in question on experiments that employed, for the 
most part, small sample sizes (nl = n2 = 5). Boneau (1962) 

concluded on the basis of his small sample studies that the 
t test tends to be more powerful than Wilcoxon's test in the 
nonnormal case and implied, by his conclusion, that 
asymptotic relative efficiencies may not be useful in the 
case of finite sample sizes. It should be noted that 



PoweA Compat4ison6 333 

Boneau's (1962) conclusions are quite contrary to those 
reached here but are in accord with the conclusions that 
would have been reached if this study had considered only 
small samples. 

Finally, the conclusion that much of the conventional 
wisdom related to this topic is flawed leads to the further 
conclusion that much more research is needed. 
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