

A Comparison of the Reliability Growth of Open Source and In-House Software

Sharifah Mashita Syed-Mohamad Tom McBride
Faculty of Engineering and Information Technology, University of Technology, Sydney

{sharifah, mcbride}@it.uts.edu.au

Abstract

As commercial developers have established processes to
assure software quality, open source software depends
largely on community usage and defect reporting to
achieve some level of quality. Thus, quality of open
source software may vary. We examined defects
reported in two active and popular open source
software projects and an in-house project. The results of
this analysis indicate that the reliability growth of each
is quite distinct and that the defect profile of open
source software appears to be a consequence of the
open source software development method itself.

Key Words- Software Reliability, Open Source
Software, In-house Software, Orthogonal Defect
Classification (ODC), Defect Profile

1 Introduction

Open source software is being accepted as a viable
alternative to commercial software. While commercial
developers have established processes to assure software
quality, open source software depends largely on
community usage and defect reporting to achieve some
level of quality. As a consequence open source software
quality may vary. Such a potential for varying levels of
quality may not be uppermost in the mind of someone
intending to acquire open source software and they may
assume instead that all software products are of
equivalent quality. However, despite some early
research [21] little is known of the reliability growth or
quality characteristics of open source software.

In this research we consider the question of whether
or not open source software has the same reliability
growth as commercial software. If it does then the same
tests of product reliability can be applied. If not, then
new models and new tests of product reliability growth
must be developed. To investigate, we examined defects
reported in both open source software development and
in-house software development to determine if the
defect profile differed between the two.

This paper proceeds by first describes models
commonly used to characterise reliability growth of
software products during their development. We then

briefly describe Orthogonal Defect Classification before
describing the data collection method, analysis and
comparison of open source and in-house developed
software defect profiles. Finally we discuss our findings
before drawing some conclusions.

2 Reliability models

Software reliability models have been used for
examining the degree of reliability, and thus quality, of
the developed product. The fundamental approach is to
model failure data to observe reliability progress and to
predict future behaviour. Although there are a number of
analytical models of software reliability [13], concave
and S-shaped models are the two most classes models
fall into [26]. The basic idea of the two models is
defined as mathematical relationship that exists between
time span of using (or testing) a program versus
cumulative number of errors discovered. The name of
the models represents their growth shapes as illustrated
in Figure 1.

Figure 1: Concave and S-shaped reliability growth
models

Goel-Okumoto nonhomogeneous Poisson model [9]
and Musa model [16] are among the earliest reliability
models that show concave growth curve (also called
exponential). The Goel-Okumoto model describes that a
software system is subject to failures at random times
cause by defects present in the system, thus takes
number of defects per unit of time as independent
Poisson random variables. Note that Poisson distribution
has been found to be an excellent model in many fields

C
um

ul
at

iv
e

nu
m

be
r o

f e
rr

or
s

Cumulative usage time

S-shaped growth

Concave growth

of application where interest is in the number of
occurrences [8].

S-shaped type derives from a modification of the
Goel-Okumoto model [26]. The curve reflects to the
initial learning period at the beginning, as testing people
become familiar with the software, followed by growth
and then stabilizes as the residual faults become more
difficult to discover.

In this research, initially we will adopt an inflection
S-shaped growth (extension of the S-shaped) model as
proposed by Ohba [19]. This model basically assumes
that the defect discovery rate increases throughout a test
period and it will have the basic exponential growth
curve if the parameter r equals 1. The inflection S-
shaped growth function is:

)
)(1

1()(bt

bt

er
eat −

−

+
−=

ψ
μ where 0,1)(>−= r

r
rrψ

)(tμ The expected number of defects occurrences

for any time, t
a The expected total number of defects to be

observed eventually
b The shape factor or defect detection rate per

defect
)(rψ r is the inflection rate that indicates the ratio of

detectable defects to the total number of
defects.

We choose this model because it built on previous

findings by Chillarege et al. [3] and Chillarege and
Biyani [2]. Also, the S-shaped model is often observed
in real projects [19].

3 Defect classification

3.1 Orthogonal Defect Classification

Orthogonal Defect Classification (ODC) is a
classification scheme for software processes based on
the attributes contained in the defect stream [1]. It
provides guidance in the analysis of a classification for
software defects to get a better insight into the software
development process during the later parts of testing.
‘Orthogonal’ much like in geometry, refers to the
independent characteristic captured by the defect
attributes and their values that are used to classify
defects. These attributes and their values are significant
in exploring and understanding most software
development issues.

Several studies have previously shown that defect
types can be used as valuable attributes to study the
behaviour of the overall reliability growth curve. The
defect classification is supposedly a causal analysis
mechanism which provides feedback on each individual

defect, as a means to identify the nature of problems
inherent in the software process. Cause-effect
relationships between defect types and the consequent
development efforts are presented in the ODC papers [3;
1; 2].

The ODC attributes of ‘type’ and ‘qualifier’ help to
reveal the kinds of errors occurring in the software
development processes. Examining relationships
between the two attributes can reveal weaknesses in the
explicit areas of software development, i.e. which phase
of process a defect is associated with, thus, locating and
fixing the process as well as the defect can be quite
straight forward. The ‘qualifier’ attribute can take a
value of either missing or incorrect. Information of the
ODC types and its process associations are summarized
in Table 1.

Table 1: The defect type and process associations–[1]

Defect type Description of defect type Process
Associations

Function/Class/
Object

missing or incorrect
functionality

Design

Interface/O-O
Messages

affects the interaction of
components via macros,
call statements and/or
parameter lists

Low Level
Design

Timing/Serializ
ation

serialization of shared
resource is wrong or
missing

Low Level
Design

Algorithm/Met
hod

efficiency or correctness of
an algorithm

Low Level
Design

Checking missing or incorrect data
validation in conditional
statements.

Low Level
Design/Code

Assignment/Ini
tialization

values assigned incorrectly
or not assigned at all

Code

Build/Package/
Merge

Missing or incorrect
build/package/merge

Library
Tools

Documentation Missing or incorrect
documentation

Publications

4 Data collection

4.1 Defect data

To conduct this study, we first identified two
notable and active open source projects from
SourceForge.net (http://sourceforge.net/). We will refer
to these projects as Open Source A and Open Source B,
to consider ethical issues in doing research which
consistent with standard software engineering ethics [7].
These are two of the most successful and widely used
among open source communities. Both of the chosen
projects are considered stable, in production as
characterized in Table 2 and Table 3.

We collected defect data from Open Source A and
B from SourceForge.net bug tracking system. This

captures all of the standard defect attributes such
product version, failure occurrence time, priority rating
and users comment on what have been observed at the
time the defect was discovered. In order to obtain a
reliable defect profile, and for the purpose of this study,
we restrict our attention from medium to high priority (4
– 9 in a scale where 1=lowest severity and 9=highest
severity) bugs reported only. Nearly all the defects are
in rank-5. Due to the reliability analysis, we excluded
defect reports such duplicated defect, deleted defect,
platform configuration, programming language specific
problems and cosmetic design such ‘look and feel’
problem. As can be seen in the tables, total number of
accepted defects is lower than the overall after we
performed the rule. To compare the defect profile of the
open source project, we focused on defect reports during
2007 for Open Source B. The total number of accepted
defects is 75 out of 136.

Table 2: Open Source A details

Register
date

Developer Topic Defects over the
project lifetime

Overall Accepted
Nov
2000

7 Software
development

300 130

Table 3: Open Source B details

Register
date

Developer Topic Defects over the
project lifetime

Overall Accepte
d

June
2000

8 Visualization 514 362

Defect data for a software project developed using

normal commercial software processes was collected
from an organization in the telecommunications industry
so called ‘in-house’. Defect that is found in-house refers
to any fault that occurs in software that is developed in-
house by the product/component development team
[18]. The data is maintained in a web-based bug
tracking system Again, we perform the same activities
to the defect data and a summary of the in-house project
is shown in Table 4.

Table 4: In-house project details

Defect
record
since

Overall
defects over
project life
time

Overall
defects
over year
2007

Accepted
defects over
year 2007

Sept
2005

926 106 100

4.2 Defect Profiles

Our primary goal is to systematically profile defects
from open source and in-house projects to observe shape
of the reliability growth. The classification is done
manually as automatic methods of classifying defects
are not usually accurate due to inherent ambiguities in
language. Even so, accuracy in classifying defects may
become an issue although the ‘orthogonality’ defect
classes reduce the probability of misclassification.

We adopted the classification scheme from ODC
version 5.11 [18] in our experiment. Each defect the
qualifier was classified either as missing or incorrect.

To demonstrate the relative growth of defect types,
separate growth curves can be generated for each of
them. We collapsed the classes into their process
associations to better observe the growth in group. This
was done by dividing all the classified defect data
(types) into three categories: function, interface +
serialization + algorithm and assignment + checking.
These categories of defects are correlated to the phases
of software development process. As shown in Table 1,
if a function defect is found in the system test or unit
test, it points to the high-level design phase that the
defect should be associated with, interface +
serialization + algorithm refer to low level design and
assignment + checking refers to coding phase.

5 Analysis and Findings

Our defect data collection are examined and
transformed into several models for analysis using a
statistical tool (SPSS). We compare defect profiles of
open source and in-house source software to determine
if the defect growth and decline differed between the
two types of software development.

5.1 Compare defect profile

We plotted cumulative number of defects found to
the growth model over the life of open source and in-
house projects as presented in Figure 2. The model
represents the phenomenon of software reliability
growth that enables us to establish the likely pattern of
open source reliability growth model.

The open source lifetimes represent the projects are
in the community for over seven years by the end of
2007. Whereas the lifetime of in-house represents two
final stages of software development; system testing and
maintenance (field) for over two and the half years. The
in-house project was in testing for two weeks before it
has been officially used to provide service to customers.

Obviously, the growth curve of Open Source A and
B did not exhibit the inflection S-shaped growth pattern
in contrast to the in-house. In addition to the in-house

model, we have Chillarege’s findings [3; 2] of
reliability growth curve to be compared to our findings.
Their results also demonstrate an S-shaped model, as
same as the in-house.

The curve of Open Source A exhibits a reverse S-
shaped curve to the in-house in which the curve at first
ramp-up and levels off for sometime and begins to climb
up rapidly at the half period of the calculated project life
span. Meanwhile, Open Source B growth curve shows
different pattern. The growth defects increases slowly in
early stage and very rapidly in later stage without any

sign of slowing down. Overall, both of the open source
projects share a similar feature in their growth defect i.e.
no sign of stabilization.

We then focus to the growth defects of Open
Source B and In-house project during the recent year
(2007) only (Figure 3). The timeline for the projects has
been divided into three periods: period 0, 1 and 2. The
periods were arbitrary, chosen only to better observe and
analyze defect developments and do not have any
process or event significance.

Figure 2: Cumulative defects over the life of open source and in-house project

Figure 3: Overall cumulative number of
development defects for open source versus in-house
project over one year (2007)

Clearly, the open source growth curve illustrates a
convex shape in contrast to the in-house, reflecting the
fact that the two projects are at different maturity levels.
This assumption is made based on the typical reliability
growth models. Note the dramatic increase of the open
source reported bugs in period 2 without any sign of
slowing down or decrease indicates that the project (the
latest version) in unstable. In contrast the number of
defects for in-house increases rapidly in the first two
periods and thereafter the increase noticeably slow down
in period 2. The concave shape of the in-house appears
to be the end of the S-curve growth model, as a signal of
stabilization. The S-shaped reliability growth curve is
typically caused by the continuous fixing errors during
software development.

To ascertain the validity of the assumptions, we
utilize the overall growth curves by combining it with
the ODC defect types, as widely covered in ODC papers
[3; 1; 23; 2; 21; 4]. Defect data are classified into their
types and grouped according to their process
associations, thus, an extension of growth model can be
portrayed as shown in Figure 4. The ODC literatures
establish the idea that defect type describes the nature
and scope of the defect fixes, helps a development team
to see what is happening in the software development.
As expected, a different insight can be gleaned from this
method.

Figure 4 illustrates the growth curves for the
collapsing of the categories, makes the relative
comparison comprehensible. Observe that the open
source project does not suffer major function or
assignment + checking defects and both of these
categories are expected to stabilize very soon.

Figure 4: Growth curves for the collapsing of
categories based on ODC defect type

The interface + serialization + algorithm defects are
clearly rising very rapidly in period 2 and show no sign
of stabilization. This means that the open source project
is functionality stable yet low level design unstable.
Basically, a latest version of open source software is
released in alpha and beta in which known issues have
been fixed and new features have been added, thus, the
software will suffer from low-level design issues.

5.2 Defect distributions

In addition to the reliability growth models,
exploiting the defect type attribute of the ODC
classification on defects reveals an extra defect
signature. The change in defect type distribution as
software moves through development can be examined
by monitoring increase and decline number of defects
for a specific defect type.

Figure 5 shows the change of defect type
distribution of open source as the project goes through
different periods during 2007. Each bar in the
distribution corresponds to the fraction of defect types in
the three periods. Clearly, the open source experiences
significant interface defects as the project gets to the end
of 2007, quite the opposite distribution to the in-house,
as can be seen in Figure 6.

Figure 5: ODC defect type distribution of open
source per year 2007

Figure 6: ODC defect type distribution of in-house
per year 2007

The number of interface defects keeps decreasing
along the periods, as well as other defects for the in-
house project. Interface type of defect signs
communication problems between separate software
components/modules/devices. Despite a decline in
function defects, it is clearly that the in-house suffers
significant function issues compared to the open source
project.

6 Discussion

What do defects and defect profiles tell us about the
software product or development?

Our initial study reveals that open source software
projects do have a different defect profile to in-house
software products. Evidently, open source projects do
not always conform to the S-shape (sigmoid) software
reliability growth model. Other empirical studies in
open source software show the same findings [12; 24].
Basically, the S-shape growth curve reflects to the initial
learning phase, as testers become familiar with the
software, followed by growth and stabilizes when there
is no further defect or the residue defects become more
difficult to discover.

This finding indicates that open source developers
make rapid changes between subsequent releases, in
which results in changes in code structure and hence bug
arrival rate. Rapid development in open source software
affects growth and decline of defects, as defects may be
found and fixed or new functionality added quickly.
Indirectly this tells us two factors that may affect the
growth of defects, i.e. familiarity of open source projects
and size of community. In our study, Open Source A is a
software development tool for developers. In contrast,
Open Source B is a visualization application for end-
users, so it has larger community to post issues and
request changes and thus has higher defect reports than
Open Source A. In open source development, defects
are located and fixed through the contribution of a large
number of users and developers [17; 21; 15; 20].
Empirical studies suggest that open source projects that
have more than seven developers and 100 bug reports
are comparatively successful. Having several developers
and bug reports indicates teamwork in a software project
and at least this project achieve to attract and maintain
developers over time [5; 6]. We chose our open source
projects in line with these criteria.

Furthermore, it is worth mentioning that we
analyzed reliability on filtered defect data, where we
observed that many invalid, duplicated and cosmetic
defects are being reported in open source software
development. Data filtering is essential to obtain an
accurate reliability analysis [10]. Our data so far
indicates that open source software has a different
reliability growth profile than in-house software.

We find that both open source and in-house
software suffer the same low level design problems,
indicated by the number of interface, serialization and
algorithm defects. However, in-house project seems to
show stabilization in their growth curve, while open
source projects do not.

A notable signature that we discovered in our study
is relatively low number of functionality issues in open
source software in spite of the rapid changes between
subsequent releases that occur in open source products.

These findings are interesting and point toward further
research.

2. What is the cause of the difference between In-
house and OS? What does this tell us about OS
development?

The remarkably short of defect fix times [14] results
in extremely rapid evolution of the open source software
projects. We deduce that the philosophy ‘release early
and release often’ [21] does play important role in the
open source software development. Thus, it is unlikely
to see the sign of stabilization in the reliability growth
model of open source projects.

Even though there are rapid fixing activities and
releases do occur in in-house project, interestingly yet
we can see they follow the s-shape growth model. One
reason this happens, we believe, is because of new
feature requests by the open source community. This
interesting feature draws our attention upon an issue
which demands further scrutiny.

Aside from those already discussed, there are some
other reasons explain the difference between in-house
and open source software

1) Different strategies to manage open source
quality when considering the activities of traditional
software engineering. Quality assurance activities are
unorganized, but extensive field testing helps improve
quality [25; 27]. The software quality highly depends on
the post-delivery fault reporting and correction in
contrast to close source software. The quality of
commercial source software is largely achieved through
the systematic testing before the product release, thus
post delivery fault reporting and correction play a small
role [27].

2) Unmoderated changes in open source code.
Without having to get permission from a principal
developer [17], people can build their own work. This
feature compels the code to have numerous feature
requests, bug fixes and patches.

3) Co-operative development in open source. The
strength of the open source community in which users as
co-developers speed up debugging [17]. This can be
linked to the fact of lively interest in open source
software, because of the problem domain usually is
well-known among technical communities. In addition,
open source developers are generally end users of the
product they develop, whereas in traditional software
requirements engineering effort, developers and users
are separate entity and developers tend not to routinely
use the system they develop [22; 11].

7 Conclusion and further research

This paper presents novel and interesting findings,
which are appropriate for a case study. We set out to
examine whether or not open source software exhibited

the same reliability growth as commercial software. Our
initial research indicates that the reliability growth of
each is quite distinct and that the defect profile of open
source software appears to be a consequence of the open
source software development method itself.
 However, these are initial findings from a study of
only two open source software projects and more
projects need to be examined before reaching any firm
conclusions.
 Defect analysis has provided a useful
characterization of product reliability and we will
continue with this line of investigation. Our aim is to
find out what method can be used to evaluate the
reliability of open source products, so the community
can assess the reliability of whatever open source
product they want to adopt.

8 References

[1] Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M.
J., Moebus, D. S., Ray, B. K. and Wong, M. Y. (1992),
'Orthogonal defect classification-a concept for in-process
measurements', Software Engineering, IEEE
Transactions on, Vol.18, no 11, pp. 943-956.

[2] Chillarege, R. and Biyani, S. (1994), 'Identifying risk
using ODC based growth models', Proceedings Software
Reliability Engineering 5th International Symposium, pp.
282-288

[3] Chillarege, R., Kao, W.-L. and Condit, R. G. (1991),
'Defect type and its impact on the growth curve ',
Proceedings of the 13th international conference on
Software engineering Austin, Texas, United States pp.
246-255

[4] Chillarege, R. and Ram Prasad, K. (2002), 'Test and
development process retrospective - a case study using
ODC triggers', Dependable Systems and Networks on
International Conference, pp. 669-678

[5] Crowston, K., Annabi, H. and Howison, J. (2003),
'Defining open source software project success',
Proceedings of the 24th International Conference on
Information Systems (ICIS 2003), pp. 327-340

[6] Crowston, K., Annabi, H., Howison, J. and Masango, C.
(2004), 'Effective work practices for software
engineering: free/libre open source software development
', Proceedings of the 2004 ACM workshop on
Interdisciplinary software engineering research Newport
Beach, CA, USA pp. 18-26

[7] El-Emam, K. (2001), 'Ethics and Open Source', Empirical
Softw. Engg., Vol.6, no 4, pp. 291-292.

[8] Goel, A. L. (1985), 'Software Reliability Models:
Assumptions, Limitations, and Applicability', Software
Engineering, IEEE Transactions on, Vol.SE-11, no
no.12, pp. 1411-1423.

[9] Goel, A. L. and Okumoto, K. (1979), 'A Time Dependent
Error Detection Rate Model for Software Reliability and
Other Performance Measures', IEEE Transactions on
Reliability, Vol.28, no 3, pp. 206-211.

[10] Kanoun, K., Kaniche, M. and Laprie, J.-C. (1997),
'Qualitative and Quantitative Reliability Assessment',
IEEE Softw., Vol.14, no 2, pp. 77-87.

[11] Koru, A. G. and Tian, J. (2004), 'Defect handling in
medium and large open source projects', Software, IEEE,
Vol.21, no 4, pp. 54-61.

[12] Li, P. L., Herbsleb, J. and Shaw, M. (2005), 'Finding
predictors of field defects for open source software
systems in commonly available data sources: a case study
of OpenBSD', Software Metrics, 2005. 11th IEEE
International Symposium, pp. 10 pp.

[13] Lyu, M. R. (1996), Handbook of Software Reliability
Engineering, Michael, R. L. (Ed), McGraw-Hill, Inc.

[14] McConnell, S. (1999), 'Open-source methodology: ready
for prime time?' IEEE Software July/August Vol.16, no 4,
pp. 6-11.

[15] McLaughlin, L. (2004), 'Automated bug tracking: the
promise and the pitfalls', Software, IEEE, Vol.21, no 1,
pp. 100-103.

[16] Musa, J. D. (1975), 'A theory of software reliability and
its application', IEEE transactions on software
engineering, Vol.1, no 3, pp. 312-327.

[17] O'Reilly, T. (1999), 'Lessons from open-source software
development', Commun. ACM Vol.42, no 4 pp. 32-37.

[18] ODC ODC-5.11 (2004), IBM research, Available:
http://www.research.ibm.com/softeng/ODC/ODC.HTM,
accessed 14th Nov 2007

[19] Ohba, M. (1984), 'Software reliability analysis models',
IBM Journal of Research and Development, Vol.28, no 4,
pp. 428-443.

[20] Paulson, J. W., Succi, G. and Eberlein, A. (2004), 'An
Empirical Study of Open-Source and Closed-Source
Software Products', IEEE Trans. Softw. Eng., Vol.30, no
4, pp. 246-256.

[21] Raymond, E. S. (2000) The Cathedral and the Bazaar,
Vol. version 3.0.

[22] Scacchi, W. (2002), 'Understanding the requirements for
developing open source software systems', Software, IEE
Proceedings -, Vol.149, no 1, pp. 24-39.

[23] Sullivan, M. and Chillarege, R. (1992), 'A comparison of
software defects in database management systems and
operating systems', Fault-Tolerant Computing, 1992.
FTCS-22. Digest of Papers., Twenty-Second International
Symposium on, pp. 475-484

[24] Tamura, Y. and Yamada, S. (2006), 'A Method of User-
oriented Reliability Assessment for Open Source
Software and Its Applications', Systems, Man and
Cybernetics, 2006. ICSMC '06. IEEE International
Conference on, pp. 2185-2190

[25] Vixie, P. (1999) Software Engineering In Open Sources:
Voices from the Open Source Revolution O'Reilly &
Associates.

[26] Wood, A. (1996), 'Predicting software reliability',
Computer, Vol.29, no 11, pp. 69-77.

[27] Yu, L. and Chen, K. (2007), 'Evaluating the Post-
Delivery Fault Reporting and Correction Process in
Closed-Source and Open-Source Software', Software
Quality, 2007. WoSQ'07: ICSE Workshops 2007. Fifth
International Workshop on, pp. 8-8

