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The TempO-SeqTM platform allows for targeted transcriptomic analysis and is currently

used by many groups to perform high-throughput gene expression analysis. Herein

we performed a comparison of gene expression characteristics measured using 45

purified RNA samples from the livers of rats exposed to chemicals that fall into one

of five modes of action (MOAs). These samples have been previously evaluated using

AffymetrixTM rat genome 230 2.0 microarrays and Illumina® whole transcriptome RNA-

Seq. Comparison of these data with TempO-Seq analysis using the rat S1500+ beta

gene set identified clear differences in the platforms related to signal to noise, root mean

squared error, and/or sources of variability. Microarray and TempO-Seq captured the

most variability in terms of MOA and chemical treatment whereas RNA-Seq had higher

noise and larger differences between samples within a MOA. However, analysis of the

data by hierarchical clustering, gene subnetwork connectivity and biological process

representation of MOA-varying genes revealed that the samples clearly grouped by

treatment as opposed to gene expression platform. Overall these findings demonstrate

that the results from the TempO-Seq platform are consistent with findings on other more

established approaches for measuring the genome-wide transcriptome.

Keywords: TempO-Seq, S1500+, microarray, RNA-Seq, mode of action, chemicals, toxicants, toxicogenomics

INTRODUCTION

High-throughput transcriptomics (HTT) is increasingly being adopted for screening in chemical
and toxicological genomics in part due to advances in technological (i.e., direct from lysate
transcriptomics) and greater efficiency (e.g., target screening using sentinel genes; Subramanian
et al., 2017). The National Toxicology Program has pursued the development of the S1500+ gene
set (Mav et al., 2018) screening platform utilizing the TempO-SeqTM technology from BioSpyderTM

(Yeakley et al., 2017). Before there is widespread adoption of a new transcriptomic technology such
as the TempO-Seq S1500+ platform, it will be important to establish its performance and degree
of reproducibility compared to other more established techniques for gene expression assessment
including microarray and whole transcriptome RNA-Seq. In addition to baseline performance
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issues such as signal to noise and identification of appropriate
normalization procedures (Su et al., 2014), it is also critical to
determine reproducibility of findings from established legacy
platforms particularly in the case where large compendium
data such as the Connectivity Map (Lamb et al., 2006) or the
Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
System (Igarashi et al., 2015) have been generated and serve as
means to interpret new findings derived from newer technologies
such as TempO-Seq. In addition, it is important for biologists
that stand-alone assessments of gene set enrichment yield valid
findings consistent with established modes or mechanisms of
action and scalability of machine learning classifiers established
using older technology (Waters et al., 2010).

To address the absolute and relative performance metrics
of the rat S1500+ beta gene set TempO-Seq platform we
have measured the transcriptome of identical liver RNA
samples from the DrugMatrix database that were used to
evaluate the performance of whole transcriptome RNA-
Seq compared to microarray toward the SEquence Quality
Control (SEQC)/MicroArray Quality Control III (MAQC3)
toxicogenomics study in which the transcripts from the latter two
platforms were matched for a fair comparison (Gong et al., 2014).
The training data set consists of 63 samples measured using
TempO-Seq S1500+, Illumina R© whole transcriptome RNA-Seq,
and AffymetrixTM Rat 230 2.0 microarrays. From the exposures
of the rats to the chemicals, five different modes of action
(MOAs) in the liver are represented in the samples including
orphan nuclear hormone receptors (CAR/PXR) activation, aryl
hydrocarbon receptor (AhR) activation, peroxisome proliferator-
activated receptor alpha (PPARA) activation, cytotoxicity, and
DNA Damage (Table 1). The treatments used vary considerably
in their elicited transcriptomic signal (i.e., number of MOA-
varying genes) and reveal degrees of distinctiveness in the
altered gene sets which is ideal for establishing the level of
granularity/resolution by which the technologies produce
similarity in their resultant findings. Using the DrugMatrix
samples we provide here a systematic comparison of the TempO-
Seq technology relative to microarray and whole transcriptome
RNA-Seq.

MATERIALS AND METHODS

Samples and Exposures
Mode of action (MOA) samples, preparation of them, RNA
extraction and microarray and RNA-Seq analyses are as
previously described (Wang et al., 2014). Briefly, male Sprague-
Dawley rats (aged 6–8 weeks and weighing 200–260 g) were
dosed once daily in triplicate for 3, 5, or 7 days, depending on
the test chemical, and livers were harvested 24 h after the last
dose. Animals were handled in accordance with the United States
Department of Agriculture and Code of Federal Regulations
Animal Welfare Act (9 CFR Parts 1, 2, and 3). Details on the
design and in life portion of these studies can be found elsewhere.
For each of the five MOAs there were three test chemicals
(Table 1). RNAs from the treated rats were extracted and stored
in the National Toxicology Program (NTP) DrugMatrix Frozen
Tissue Library.

Microarray Analysis
cRNA was labeled and hybridized to the Affymetrix (Santa Clara,
CA, United States) whole genome GeneChip R© Rat Genome
230 2.0 Array as previously described (Wang et al., 2014).
The arrays were scanned using the GeneChip Scanner 3000
7G and CEL files generated using the GeneChip Operating
Software (GCOS). The data was then log2 transformed and
normalized using the robust multichip average (RMA) algorithm
(Irizarry et al., 2003a,b). The transformed/normalized data
is available at the DrugMatrix ftp site (ftp://anonftp.niehs.
nih.gov/drugmatrix/Affymetrix_data/Normalized_data_by_
organ/). Raw data files and processed data in various file
formats are available in the Gene Expression Omnibus (GEO)
(Edgar et al., 2002; Barrett et al., 2013) under accession number
GSE47875.

RNA-Seq Analysis
Poly-A RNA was extracted from each RNA sample, fragmented,
adapter ligated and enriched by 15 polymerase chain reaction
(PCR) cycles for library generation. The library size distribution
was validated on the Agilent Bioanalyzer (Santa Clara, CA,
United States) using a DNA 1000 kit. The final library
was generated from a band between 200 and 500 bp with
a peak at ∼260 bp. Using Illumina TruSeq RNA Sample
Preparation Kit and SBS Kit v3 (San Diego, CA, United States),
samples were prepared for sequencing. Paired-end RNA-Seq
cluster generation and sequencing by synthesis was performed
using Illumina HiScan or HiSeq 2000 sequencers according
to the manufacture’s protocol. Depths of 30–130 million
of paired 100 bp reads were generated for each sample.
Details of the methods are as previously described (Wang
et al., 2014). The raw data fastq files are available in the
National Center for Biotechnology Information Sequence Read
Archive (SRA; Leinonen et al., 2011) under accession number
SRP039021.

Preprocessing of RNA-Seq Data
Alignment, quantification and normalization of the RNA-Seq
data are as previously described (Wang et al., 2014). Briefly, RNA-
Seq reads in fastq files were mapped using the Magic aligner
(ftp://ftp.ncbi.nlm.nih.gov/repository/acedb/Software/Magic) to
the following references:

• The Rattus norvegicus genome build RGSC v3.4
• The RefSeq and AceView 2008 (Thierry-Mieg and Thierry-

Mieg, 2006) gene and transcript models, respectively
• Mitochondrial genes
• rRNA genes (manually constructed from multiple GenBank

accessions, in the absence of RefSeq)
• External RNA Control Consortium (ERCC) RNA spike

in control sequences (National Institute of Standards and
Technology, Gaithersburg, MD, United States)

• A control genome constructed by complementing the
R. norvegicus genome bases (i.e., exchange A:T and G:C), but
not reversing the order. As such, the control genome has
exactly the same composition as the reference genome but
alignments to it are false positives and removed
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TABLE 1 | Chemicals, modes of action, and exposures.

MOA Chemical Dose (mg/kg body

weight)

Duration

(days)

Agent type

Aryl hydrocarbon receptor (AhR) 3-Methylcholanthrene (3ME) 300 5 Carcinogen

Leflunomide (LEF) 60 5 Antirheumatic drug

beta-Naphthoflavone (NAP) 1,500 5 Putative chemopreventive agent

Orphan nuclear hormone receptors (CAR/PXR) Phenobarbital (PHE) 54 5 Barbiturate drug

Methimazole (MET) 100 3 Antithyroid drug

Econazole (ECO) 334 5 Antifungal medication

Cytotoxicity (Cytotox) Chloroform (CHO) 600 5 Organic compound

Thioacetamide (THI) 200 5 Carcinogen

Carbon tetrachloride (CAR) 1,175 7 Solvent for cleaning products, refrigerant

DNA Damage (DNA_Damage) Aflatoxin B1 (AFL) 0.3 5 Mycotoxin

Ifosfamide (IFO) 143 3 Chemotherapy drug

N-Nitrosodimethylamine (NIT) 10 5 Organic compound

Peroxisome proliferator-activated receptor alpha

(PPARA)

Pirinixic acid (PIR) 364 5 Hypolipidemic drug

Bezafibrate (BEZ) 617 7 Hypolipidemic drug

Nafenopin (NAF) 338 5 Hypolipidemic drug

No mismatch is reported closer than 8 bases to the edge of the
aligned segment. Reads mapping to several alternative transcripts
of the same gene are retained but counted only once. The
read count for each transcript per sample was transformed and
normalized as follows:

Index = log2

(

Z +
√

(4+ Z2)
)

− 1

Where Z = 1012( n
NL ), n is the read count of the transcript,

N is the read depth for the sample and L is the length of the
transcript. For transcripts that are not highly expressed (<3
read counts) the Index was imputed with 5.0. The preprocessed
data (not imputed) is available in GEO under accession number
GSE55347.

To match AceView transcripts from the RNA-Seq platform
to probe sets on the Affymetrix microarray, each transcript
sequence was mapped against the Affymetrix probes from each
probe set using the Magic Aligner and allowing for a single-
mismatch. Transcripts (n = 28, 975) mapping to at least 8
probes within a probe set unambiguously (meaning not mapping
to any other probes from other probe sets) are considered a
one-to-one match in terms of them being representative of
the same transcript probe set. These were then mapped to
UniGene (Pontius et al., 2002) cluster IDs (March 30, 2016)
for Gene Ontology (GO) biological process (BP) enrichment
analysis.

TempO-Seq Analysis
The sequencing library for the rat liver RNA samples (identical
samples employed for RNA-Seq in the previously published
SEQC toxicogenomics study Wang et al., 2014) was prepared
by BioSpyder Technologies, Inc. (Carlsbad, CA, United States)
according to their protocol guidelines. One microliter of each
RNA sample (500–660 ng/uL) was hybridized with the S1500+
beta detector oligo pool mix (2 µl per sample) using the

following thermocycler settings: 10min at 70◦C, followed by
gradual decrease to 45◦C over 49min, and ending with 45◦C
for 1min. Hybridization was followed by nuclease digestion
(24 µl nuclease mix addition followed by 90min at 37◦C),
ligation (24 µl ligation mix addition followed by 60min at
37◦C), then heat denaturation (at 80◦C for 30min). Ten
microliters of each ligation product were then transferred to
a 96-well PCR amplification microplate that also contained
10 µl of PCR mix per well. Through amplification well-
specific, “barcoded” primer pairs were introduced to templates.
Five microliters of the PCR amplification products from each
well were then pooled into a single sequencing library. The
TempO-Seq library was then processed with a PCR clean-
up kit (Machery-Nagel, Mountain View, CA, United States)
prior to sequencing. Sequencing was performed using a 50
cycle single-end read flow cell on a NextSeq 550 Sequencing
System (Illumina, San Diego, CA, United States). Processing of
sequencing data was conducted using Illumina’s BCL2FASTQ
software employing default parameter settings. Sequencing data
were demultiplexed to generate fastq files and passed through
internal quality controls. fastq files were analyzed using the
TempO-SeqR software package (BioSpyder Technologies, Inc.,
Carlsbad, CA, United States). The raw data fastq files are
available in the SRA under accession number SRP158667. The
TempO-SeqR package maps reads from the fastq file using the
Bowtie2-2.1.0 algorithm (Langmead et al., 2009) to a subset of
the rat transcriptome (Refseq release 70 downloaded July 23rd
2015) reflecting the 50 nt sequences targeted by the detector
oligos. Indels were not allowed, up to 2 base pair mismatches
were allowed and multimapping of sequence reads was not
allowed. The output of the TempO-SeqR package was a table
of counts with each column representing a sample and each
row representing a gene generated using the QuasR v1.8.4
Bioconductor package (Gaidatzis et al., 2015). The count data
matrix is available in GEO under accession number GSE118956.
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Gene symbols were mapped to UniGene cluster IDs (June 6,
2015).

Preprocessing of TempO-Seq Data
Of the 2,284 genes targeted in the rat S1500+ beta gene set (NTP
Tox21 S1500 Webpage: https://ntp.niehs.nih.gov/results/tox21/
researchphases/index.html), those with a total read count ≤214
across all the samples were removed leaving 2,055 genes. The
counts per gene were normalized to counts per million (CPM)
by dividing it by the total read count per sample and multiply by
106. The CPM normalized data was then transformed with log2
using an offset of 1.

Log2 Ratio Values Generation
For each gene/transcript in a data set, the average of the log2
normalized data for the control samples were subtracted from
the log2 normalized data of each gene/transcript within a sample
matched according to nutritional status of the vehicle (i.e., corn
oil vs. other non-nutritive vehicles).

Principal Variance Component Analysis
Principal Variance Components Analysis (PVCA; Li et al., 2009)
combines the use of principal component analysis (PCA) with
variance components analysis (VCA) through mixed linear
modeling of gene expression data with random effect terms
that account for variation related to factors in the experimental
design. The variance of each random effect is called a variance
component. Briefly, given a general linear model where y =

Xβ + e and y denotes gene expression observations, X is the
design matrix, β is the known fixed effects parameter vector
and e is the unexplained variation. However, if the experimental
design contains random factor levels, the model becomes a
mixed effect linear model y = Xβ + Zu + e, where in
addition to the terms denoted in a fixed effect model, Z is the
design matrix for random effects, u is the vector of unknown
random-effect parameters, and e is the unobserved vector of
independent and identically distributed (iid) Gaussian random
errors.

Given that the variance of y is V=ZGZ’ + R, V can be
modeled by setting up the random effects design matrix Z and
by specifying the variance-covariance structure for G and R. In

usual variance component models, G is a diagonal matrix with
variance components on the diagonal, each replicated along the
diagonal corresponding to the design matrix Z. R is simply the
residual variance component times the n x n identity matrix.
Thus, the goal becomes finding a reasonable estimate of G and
R. The method of restricted maximum likelihood (REML) is the
standard procedure to accomplish this and was specified in the
lmer function of the lme4 R package (RDevelopment Core Team,
2012) for fitting linear mixed effects models (Bates et al., 2015).

The following steps comprise of PVCA:

• From a PxN (genes by samples) matrix of log2 ratio values,
obtain the NxN correlation matrix

• Perform PCA on the correlation matrix to obtain eigenvalues
• Determine the first K principal components (PCs) to explain

≥58.76% of the variation in the data
• Fit all factors as random effects in a mixed linear model using

the K PCs and REML to obtain unbiased estimates of variance
• Standardize the variance component estimates from themodel
• Compute weighted proportions of the standardized variance

component estimates. Here the weights are the proportions of
variation explained by the PCs

• Compute weighted average proportions of the standardize
variance component estimates by averaging model effects
according to the proportion of total variance across all
estimates including the residual

Root Mean Squared Distance
Root mean squared distance (RMSD) is a measure of the gene
expression distance between pairs of biological replicates (Wang
et al., 2014). The gene expression distance between biological
replicates x and y is

RMSDxy =

√

∑N
i=1

(

Iix − Iiy
)2

N

where I is the log2 gene expression ratio of ith gene/transcript
in the corresponding biological replicate, and N is the number
of genes/transcripts on the gene expression platform. For each
chemical, there are three biological replicates and for each MOA
there are three chemicals. The pairwise RMSD measures (n =

FIGURE 1 | Study design. The study comprised of gene expression data acquired from male Sprague-Dawley rats dosed once daily in triplicate for 3, 5, or 7 days

depending on the test chemical or matched control, and livers were harvested 24 h after the last dose. The abbreviations for the names of the chemicals are listed in

Table 1. There were five modes of action (MOAs) with three chemicals per MOA. The MOAs are PPARA, peroxisome proliferator-activated receptor alpha; CAR/PXR,

orphan nuclear hormone receptors; AhR, aryl hydrocarbon receptor; Cytotoxic, cytotoxicity, and DNA Damage. Comparisons between the data from TempO-Seq to

microarray and RNA-Seq were performed by statistical and bioinformatics methodologies.
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36) between treated rats within a MOA were averaged. This
MOA-RMSD can be interpreted as a measure of the difference
among the chemicals within a MOA. To compare the three
gene expression platforms, the five MOA-RMSD measures were
averaged to give a Platform-RMSD.

Mode of Action ANOVA
To obtain genes from each platform that vary significantly by
MOA, wemodeled the gene expression data with aMOA analysis
of variance (MOA-ANOVA)

Yijkl = µ +Mi + Rj + C(M∗R)ijk + εijkl

where Yijkl represents the lth log2 ratio gene expression
observation on the ith MOA (M), jth route (R) and kth

TABLE 2 | Platforms used for comparison.

Gene

expression

type

Microarray RNA-Seq TempO-Seq

Platform Affymetrix whole

genome GeneChip

Rat Genome 230

2.0

Illumina HiScan &

HiSeq 2000

BioSpyder

S1500+ Beta

Technology In situ

oligonucleotide

array

Next generation

nucleotide chain

termination

sequencing by

synthesis

Templated

oligonucleotide

detection

Gene

content/gene

model

∼31,000 gene

probe sets

∼38,100 AceView

transcripts

∼2,200 Refseq

genes

Normalization RMA Magic normalized

index

TPM

Transformation Log2 Log2 Log2

chemical (C). µ is the grand mean for the whole experiment
and εijkl represents the random error. The errors are assumed
to be normally and independently distributed with mean 0
and standard deviation δ for all measurements. Chemical is a
random effect. Multiple testing correction was controlled at a
false discovery rate (FDR) of 0.05 (Benjamini and Hochberg,
1995).

Gene Expression Profile Signal to Noise
Let us denote each gene expression log2 ratio as gij where i
indicates a MOA inter-group index from 1 to m, j is the MOA
intra-group index from 1 to ni,m is the number of MOAs and ni
is the number of chemicals in ith MOA inter-group. To evaluate
a gene expression profile within a MOA, we calculate each MOA

intra-group average gi and sample variance si
2
. We define a gene

expression profile’s signal as

S =







max
{

ḡi
}

, if min
{

ḡi
}

> 0

−min
{

ḡi
}

, elseif max
{

ḡi
}

< 0

max
{

ḡi
}

−min
{

ḡi
}

otherwise

where 1≤ i ≤m.
We then define a gene expression profile’s noise as the square-root
of the pooled variance

N =

√

√

√

√

√

√

√

√

m
∑

i

[

(ni − 1) · s2i
]

m
∑

i
(ni − 1)

m
∑

i

1

ni

FIGURE 2 | Variance components explained. Shown on the y-axis is the weighted average of the proportion of variance explained by platform for each of the mixed

effect linear model terms denoted in the x-axis.
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where the sample variance

s2i =

ni
∑

j
(gij − ḡi)

2

ni − 1
.

From S and N, we define a gene expression profile’s signal-
to-noise ratio as SNR = S/N. We use Extracting Patterns and
Identifying co-Expressed Genes (EPIG; Chou et al., 2007) to
(1) obtain a gene expression profile’s SNR statistics and (2)
cluster gene expression profiles into significant (p < E10−4)
co-expression patterns.

Gene Ontology Subtrees to Tag and
Annotate Genes Within a Set
To compare each platform in terms of enrichment of the genes
that vary by MOA, we used GO subtrees to tag and annotate
genes (goSTAG) within a set (Bennett and Bushel, 2017). Briefly,
for each list of genes that vary by MOA at FDR < 0.01, the gene
symbols were mapped to the GO BPs of the genes they represent
using version 3.4 of the GO database and the rat2302 database.
The 1.01 version of the “goSTAG” Bioconductor package in R
was used to perform enrichment of GO BP terms, clustering and
subtree generation. The union of the enriched GO BP terms from
all of the DEGs lists yielded 203 terms. BP terms which were not
significant had missing p-values and were imputed with 1.0. –
Log10 p-values, a min of 5 genes per GO BP, FDR < 0.05, Pearson

correlation similarity metric and Ward algorithm for clustering,
cluster slicing using correlation (r) of 0.1 and aminimum of 5 GO
BP terms per cluster for subtree generation were used as input
and parameters. Clusters (those with a 1– r≥ 0.9) of GOBP terms
(n ≥ 5) were labeled according to the node having the maximum
number of paths to it within the GO BP subtree directed acyclic
graph derived from the terms in the cluster.

RESULTS

Study Design and Exposures
Gene expression analysis has advanced over the past 20+
years. Two main platforms for surveying genome-wide gene
expression are microarray and RNA-Seq. Each of these platforms
has its advantages and disadvantages (Lowe et al., 2017).
The SEQC/MAQC3 consortium evaluated the concordance
between Affymetrix microarray and Illumina RNA-Seq using

TABLE 3 | Replication agreement and signal to noise within platform.

Measure Microarray RNA-Seq TempO-Seq

Ave. Chemical-RMSD 0.33 0.98 0.71

Platform-RMSD 0.42 1.11 0.93

Average SNR 6.6 6.9 9.14

FIGURE 3 | Gene expression patterns with maximal signal to noise. For each platform, the EPIG pattern with the maximal signal to noise ratio (SNR) is shown. The

y-axis is the log2 ratio of gene expression (treated to the average of the control [matched according to nutritional status of the vehicle]), the x-axis is the samples

grouped by MOA (represented by the colors and symbols in the legend). The table inset displays the magnitude of fold change, the noise and the SNR for each of the

patterns shown.
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toxicogenomics gene expression data (Wang et al., 2014). We
used the SEQC/MAQC3 study design to compare the two
aforementioned platforms (with transcripts matched between the
two) with the TempO-Seq platform targeting the rat S1500+ beta
gene set. As shown in Figure 1, the study design consists of rats
exposed in triplicate to 45 chemical or controls whereby three
of the chemicals share one of five MOAs: PPARA, CAR/PXR,
AhR, cytotoxicity, and DNA damage. The chemicals, the MOA
that each one represents, exposure doses and durations and the
types of agents are listed in Table 1. The doses and durations of
the exposures were selected to ensure a maximal transcriptional
response. Animals were dosed once daily for 3, 5, or 7 days,
depending on the chemical. Livers were harvested 24 h after
the last dose, RNA samples extracted and then prepared for
gene expression analysis. We used three statistical strategies and
bioinformatics tools to examine GOBPs, metabolic pathways and
BP subnetworks for comparison of the three platforms.

Specifications of the Platforms
Table 2 details some general specifications of the three gene
expression platforms. The Affymetrix rat whole genome
microarray with >31,000 gene probe sets uses in situ
hybridization for interrogation of gene expression. The de
facto normalization procedure is RMA. The Illumina RNA-
Seq next generation HiScan or HiSeq 2000 platforms were

used. They measure gene expression by nucleotide chain
termination sequencing by synthesis. Although at this time
there is no standard approach for bioinformatics analysis
of RNA-Seq data, we used the AceView transcriptome gene
model and Magic normalization index that performed the best
among several bioinformatics pipelines in the SEQC/MAQC3
consortium evaluation (Wang et al., 2014). In addition, 28,
975 transcripts from the two aforementioned platforms were
matched bioinformatically (see the Materials and Methods
section) to assure a one-to-one mapping. Finally, BioSpyder’s
rat S1500+ beta TempO-Seq platform differs from RNA-Seq in
that it uses templated oligonucleotides representative of >2,200
Refseq genes to sequence captured RNA templates. Filtering by
total read counts retained 2,055 genes (see the Materials and
Methods section). We used CPM for normalization. The data
from all three platforms were log2 transformed to make the data
more normally distributed.

Variance Components of the Study Design
Captured by the Platforms
The study design contained factors that represents the chemical
used for exposure, the MOA of the chemical and the route
of the exposure. We performed PVCA on the normalized and
log2 transformed data from each platform to determine which

FIGURE 4 | Principal component analysis of the data. (A) Microarray. (B) RNA-Seq. (C) TempO-Seq. PCA performed using the log2 ratio expression data (treated to

matched control according to nutritional status) of the genes that vary by MOA at FDR < 0.01.
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captured the most variation in gene expression. As shown
in Figure 2, the microarray platform captured slightly more
variance related to the chemical used for treatment (0.449),
but the TempO-Seq platform captured variation related to
the MOA (0.377) slightly more than the other two platforms.
It seems that the RNA-Seq platform had more unexplained
variation captured as residuals. This was not related to the
two different Illumina sequencers used (data not shown). Route
showed no difference in the variation captured by the three
platforms.

Expression Pattern Magnitude of Change
and Signal to Noise Revealed by Each
Platform
One of the more informative ways to compare gene expression
data is to assess the magnitude of change and the SNR
of a response. To compare the gene expression from the
three platforms, we analyzed the data using EPIG which used
magnitude of fold change, correlation and SNR to categorize
gene expression profiles into co-expressed patterns (Chou et al.,
2007). Shown in Figure 3 is the pattern of gene expression
from each platform that had the maximal magnitude of fold
change relative to control. The samples were grouped by MOA.
Although RNA-Seq had the highest magnitude of fold change

(4.47), the noise of the expression profiles that made up the
pattern is higher (0.31) than the other two platforms. When all
the patterns for each platform were taken into consideration,
the average SNR was substantially higher for TempO-Seq than
the other two platforms (Table 3). This may be related to the
EPIG analysis of the TempO-Seq data yielding only four patterns
whereas microarray yielded 17 and RNA-Seq yielded 11 (data not
shown).

Cohesiveness of Replicate Gene
Expression by Platform
A unique design of the study is that there is replication at the
animal level, the chemical level, and the MOA level (Figure 1).
We harnessed this feature to assess how well each platform
captured similar gene expression between replicates. We used
RMSD to assess the gene expression distance between pairs of
biological replicates. A smaller measure means the replicates are
closer to each other in terms of gene expression. The platform-
RMSD is an aggregate (overall average) of the distance between
animals treated with a chemical, the chemicals within a MOA
and the five MOAs. The average chemical-RMSD is the mean
of the RMSDs for each chemical by platform. As shown in
Table 3, the Platform-RMSD and average chemical-RMSD were
more than 2 times lower for microarray than for the other

FIGURE 5 | Clustering of data. (A) Microarray. (B) RNA-Seq. (C) TempO-Seq. Clustering performed using the log2 ratio expression data (treated to matched control

according to nutritional status) of the genes that vary by MOA at FDR < 0.01 with cosine correlation as the similarity metric and the Ward clustering criterion. The data

for clustering was standardized to a mean of 0 and standard deviation of 1. Samples’ MOA colored as in the legend to Figure 4A.
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two platforms. RNA-Seq had the highest RMSD (1.11 at the
platform level and 0.98 at the chemical level) which may be
related to the higher noise level seen in the expression pattern
for this platform (Figure 3). Despite the relatively noisy RNA-Seq
platform, PCA of the gene expression data revealed that RNA-Seq
captured a higher percent of the variability (55.5%) in the data
than the other two platforms and also projected the samples in
3-dimensional space closer to each other in terms of MOA (Data
not shown).

Biological Responsiveness by Platform
Since three chemicals share a MOA, for each platform we
used an ANOVA model with MOA as a main factor to
identify genes that vary significantly at an FDR < 0.01. For
microarray, RNA-Seq and TempO-Seq, 9,499 probe sets, 7,217
transcripts and 1,366 genes were detected as varying, respectively
(Supplemental Table 1). These genes should drive the clustering
of the gene expression data by MOA. As shown in Figures 4,
5, respectively, PCA and 2-dimensional hierarchical clustering

FIGURE 6 | Clustering of the data using a common gene set. (A) Hierarchical clustering performed using the log2 ratio expression data (treated to matched control

according to nutritional status) of the genes that vary by MOA at FDR < 0.01 and map to 731 UniGene cluster IDs that overlap between the three platforms. Genes

that were mapped to the same UniGene cluster ID were averaged. The cosine correlation was used as the similarity metric and the Ward clustering criterion for

merging clusters. Samples’ MOA colored as in the legend to Figure 4A. Platforms are represented by the following colors: pink, Affymetrix; light blue, RNA-Seq;

yellow, TempO-Seq. (B) PCA of the data used in (A). Principal component (PC) #1 = 34%, PC #2 = 16.6 %, and PC #3 = 9.53.
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of the data from each platform by their MOA varying genes
was reasonably good. However, each platform had at least two
MOAs with a chemical that didn’t cluster with its respective
MOA chemicals. For microarray NIT and LEF didn’t cluster
with DNA damage and AhR MOA chemicals, respectively. For
RNA-Seq LEF, ECO and one biological replicate of CAR didn’t
cluster with AhR, CAR/PXR, and cytotoxicity MOA chemicals,
respectively. For TempO-Seq LEF and ECO didn’t cluster with
Ahr, and CAR/PXR MOA chemicals, respectively. In addition,
one biological replicate of MET and CAR and didn’t cluster with
their biological replicates in the CAR/PXR and cytotoxicityMOA
chemicals, respectively.

For better cluster resolution, we mapped the MOA
varying genes from each platform to UniGene cluster
IDs and then compiled the log2 ratio data from all three
platforms using the 731 UniGene cluster IDs that overlapped
(Supplemental Table 2). Genes that were mapped to the same
UniGene cluster ID were averaged. As shown in Figure 6A, the
clustering of the samples was mostly by MOA except for LEF,
AFL and one biological replicate from CAR. PCA of the data
captures ∼60% of the variation in the data and projected the
samples in 3-dimensional space closer to each other in terms of
MOA except for LEF and NIT samples from all three platforms
(Figure 6B).

Enrichment of GO biological processes by the platforms’
varying genes yielded 49 significant categories (FDR < 5%)
that overlapped (Figure 7A). Microarray had the most enriched
categories (n = 173), followed by RNA-Seq (n = 141), and
then TempO-Seq (n = 99). Some of the enriched GO biological
processes that overlapped related to fatty acid metabolism,
apoptosis, liver development, and lipid metabolism (Table 4).
As shown in Figure 7B, the correlation of the 49 GO biological
processes fold enrichment between the three platforms was very
high (r > +0.9).

Comparing and contrasting gene set enrichments can be
challenging when there are many categories to consider. To more
formally compare the three platforms in terms of biology, we
used goSTAG to identify subtrees of enriched GO BPs from
the MOA varying genes and then find the categories that are
shared or differ between platforms. As shown in Figure 8, all
three platforms enriched for subtrees that map to fatty acid
beta-oxidation and glycine metabolic process. However, TempO-
Seq enriched for subtrees that map to negative regulation of
ERK1 and ERK2 cascade. RNA-Seq uniquely enriched subtrees
that map to ATP metabolic process and microarray exclusively
enriched for subtrees that map to positive regulation of glycolytic
process.

DISCUSSION

Over the last two decades gene expression analysis has advanced
to permit genome-wide transcriptomics. Affymetrix microarray
and Illumina RNA-Seq are two platforms that have gained
popularity for gene expression analysis. Each has its own
advantages and disadvantages but currently, the platform of
choice for gene expression analysis seems to be RNA-Seq.

Comparison of the two platforms was performed using liver
RNA samples from rats exposed to chemicals that have particular
modes of action (MOAs;Wang et al., 2014; Figure 1 andTable 1).
We used the microarray and RNA-Seq training data from these
samples to compare with the data generated from the samples
using the TempO-Seq platform. TempO-Seq is unique in that the
platform’s gene content (∼2,200) consists of bioinformatically
curated (Mav et al., 2018) and expert domain-nominated rat
genes that represent the totality of biological perturbation space
(Table 2). This makes the TempO-Seq platform very appealing
for transcriptomics in that (1) sequencing of the RNA is from

FIGURE 7 | Comparison of enriched GO biological processes (BPs). (A) Overlap of enriched GO BPs < FDR 5%. Minimum number of genes = 3 for TempO-Seq and

5 for the other two. (B) Pairwise comparison of GO BPs fold enrichment from the 49 categories in common between the three platforms. Red line is the linear fit

(regression line) with 95% level confidence boundaries.
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TABLE 4 | Enriched GO BPs (FDR < 5%) that overlap between platforms®.

GOID GO BP Term Microarray RNA-seq TempO-seq

Count % Pop Hits FE Count % Pop Hits FE Count % Pop Hits FE

GO:0001666 Response to hypoxia 119 2.11 270 1.55 99 2.18 270 1.59 39 3.32 270 2.28

GO:0001731 Formation of translation

preinitiation complex

17 0.30 24 2.50 18 0.40 24 3.24 9 0.77 24 5.92

GO:0001889 Liver development 85 1.51 145 2.07 81 1.78 145 2.42 32 2.72 145 3.48

GO:0006413 Translational initiation 32 0.57 52 2.17 29 0.64 52 2.41 13 1.11 52 3.95

GO:0006446 Regulation of translational

initiation

19 0.34 31 2.16 17 0.37 31 2.37 12 1.02 31 6.11

GO:0006457 Protein folding 57 1.01 112 1.79 49 1.08 112 1.89 17 1.45 112 2.40

GO:0006629 Lipid metabolic process 44 0.78 89 1.74 42 0.93 89 2.04 17 1.45 89 3.01

GO:0006631 Fatty acid metabolic

process

33 0.58 60 1.94 32 0.71 60 2.31 12 1.02 60 3.16

GO:0006635 Fatty acid beta-oxidation 35 0.62 46 2.68 31 0.68 46 2.92 23 1.96 46 7.89

GO:0006637 Acyl-coa metabolic process 19 0.34 28 2.39 16 0.35 28 2.47 9 0.77 28 5.07

GO:0006695 Cholesterol biosynthetic

process

17 0.30 26 2.30 17 0.37 26 2.83 8 0.68 26 4.86

GO:0006749 Glutathione metabolic

process

31 0.55 52 2.10 28 0.62 52 2.33 11 0.94 52 3.34

GO:0006915 Apoptotic process 157 2.78 366 1.51 120 2.64 366 1.42 41 3.49 366 1.77

GO:0006953 Acute-phase response 25 0.44 38 2.32 19 0.42 38 2.16 9 0.77 38 3.74

GO:0006979 Response to oxidative

stress

76 1.35 146 1.83 61 1.34 146 1.81 22 1.87 146 2.38

GO:0007568 Aging 150 2.66 315 1.68 125 2.75 315 1.72 51 4.34 315 2.56

GO:0007584 Response to nutrient 69 1.22 137 1.77 59 1.30 137 1.86 19 1.62 137 2.19

GO:0007623 Circadian rhythm 52 0.92 121 1.51 46 1.01 121 1.64 18 1.53 121 2.35

GO:0009636 Response to toxic

substance

65 1.15 119 1.92 61 1.34 119 2.22 30 2.55 119 3.98

GO:0009749 Response to glucose 54 0.96 106 1.80 47 1.04 106 1.92 18 1.53 106 2.68

GO:0010033 Response to organic

substance

72 1.28 152 1.67 69 1.52 152 1.96 32 2.72 152 3.32

GO:0010243 Response to

organonitrogen compound

35 0.62 68 1.81 34 0.75 68 2.16 14 1.19 68 3.25

GO:0014070 Response to organic cyclic

compound

138 2.45 272 1.79 128 2.82 272 2.04 50 4.26 272 2.90

GO:0031100 Organ regeneration 45 0.80 91 1.74 39 0.86 91 1.85 22 1.87 91 3.82

GO:0031667 Response to nutrient levels 49 0.87 112 1.54 42 0.93 112 1.62 22 1.87 112 3.10

GO:0032355 Response to estradiol 91 1.61 201 1.60 81 1.78 201 1.74 40 3.40 201 3.14

GO:0032496 Response to

lipopolysaccharide

114 2.02 280 1.43 101 2.23 280 1.56 39 3.32 280 2.20

GO:0032869 Cellular response to insulin

stimulus

66 1.17 123 1.89 56 1.23 123 1.97 26 2.21 123 3.34

GO:0033539 Fatty acid beta-oxidation

using acyl-coa

dehydrogenase

16 0.28 19 2.97 15 0.33 19 3.42 9 0.77 19 7.48

GO:0042493 Response to drug 246 4.36 528 1.64 211 4.65 528 1.73 82 6.98 528 2.45

GO:0042542 Response to hydrogen

peroxide

40 0.71 78 1.81 31 0.68 78 1.72 14 1.19 78 2.83

GO:0043065 Positive regulation of

apoptotic process

133 2.36 338 1.39 115 2.53 338 1.47 53 4.51 338 2.47

GO:0043066 Negative regulation of

apoptotic process

203 3.60 517 1.38 177 3.90 517 1.48 60 5.11 517 1.83

GO:0043434 Response to peptide

hormone

63 1.12 129 1.72 51 1.12 129 1.71 19 1.62 129 2.32

(Continued)
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TABLE 4 | Continued

GOID GO BP Term Microarray RNA-seq TempO-seq

Count % Pop Hits FE Count % Pop Hits FE Count % Pop Hits FE

GO:0045471 Response to ethanol 82 1.45 193 1.50 74 1.63 193 1.66 34 2.89 193 2.78

GO:0046686 Response to cadmium ion 27 0.48 45 2.11 22 0.48 45 2.12 12 1.02 45 4.21

GO:0051289 Protein homotetramerization 37 0.66 76 1.72 34 0.75 76 1.94 20 1.70 76 4.15

GO:0051301 Cell division 83 1.47 179 1.63 63 1.39 179 1.52 27 2.30 179 2.38

GO:0051384 Response to glucocorticoid 69 1.22 133 1.83 56 1.23 133 1.82 23 1.96 133 2.73

GO:0051603 Proteolysis involved in

cellular protein catabolic

process

28 0.50 51 1.93 24 0.53 51 2.04 11 0.94 51 3.40

GO:0055088 Lipid homeostasis 27 0.48 42 2.27 24 0.53 42 2.47 11 0.94 42 4.13

GO:0055114 Oxidation-reduction process 314 5.56 651 1.70 262 5.77 651 1.74 88 7.49 651 2.13

GO:0070542 Response to fatty acid 26 0.46 39 2.35 25 0.55 39 2.77 11 0.94 39 4.45

GO:0071407 Cellular response to organic

cyclic compound

53 0.94 122 1.53 48 1.06 122 1.70 22 1.87 122 2.85

GO:0071456 Cellular response to hypoxia 57 1.01 137 1.47 49 1.08 137 1.55 22 1.87 137 2.53

GO:0097421 Liver regeneration 41 0.73 55 2.63 30 0.66 55 2.36 14 1.19 55 4.02

GO:0098609 Cell-cell adhesion 102 1.81 211 1.70 82 1.81 211 1.68 27 2.30 211 2.02

GO:1904871 Positive regulation of protein

localization to Cajal body

8 0.14 8 3.52 8 0.18 8 4.33 6 0.51 8 11.84

GO:1904874 Positive regulation of

telomerase RNA localization

to Cajal body

13 0.23 15 3.05 12 0.26 15 3.46 8 0.68 15 8.42

®Universe is 17,535. List totals: Microarray: 4,976; RNA-Seq: 4,053; TempO-Seq: 1,111. Enrichment performed using UniGene cluster IDs and the Database for Annotation, Visualization

and Integrated Discovery (DAVID) v6.8.

FIGURE 8 | Clustering of enriched GO BPs. goSTAG clustering of 203 enriched GO BPs using 5 genes per category, BH FDR < 0.05, correlation distance (1-Pearson

correlation) and Ward clustering, dendrogram threshold = 0.9 and minimum number of GO BP terms per cluster = 5. Data is the –log10 p-value. The more red the

intensity, the more significant the enrichment. Gray indicates that the GO BP term was not enriched significant and thus the p-value was imputed with 1.0.
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sample lysates negating the need for library construction which
are large sources of variability in RNA-Seq (Su et al., 2014),
(2) the sequencing cost is much less than RNA-Seq given
the number of targeted templates and pooling of samples in
a multiplexed sequencing run allowing for more resources
to expand experimental designs, and (3) the data storage is
reasonable and the bioinformatics more simplified leading to a
quicker turn-around in results and data analysis manageable by a
wider group of analysts.

An obvious disadvantage to the TempO-Seq platform is that
the gene content is predefined requiring extensive template
fabrication and careful probe sequence curation. Furthermore,
the targeted sequencing design renders TempO-Seq incapable
of discerning novel transcripts. Despite these shortcomings,
TempO-Seq performed similarly to microarray and RNA-
Seq with respect to analysis of the SEQC/MAQC3 MOA
toxicogenomics data. When statistical parameters were used
to evaluate the three platforms, TempO-Seq had comparable
variance structure related to chemical treatment, MOA and
route of administration (Figure 2). Not surprisingly, we
observed that RNA-Seq had higher unexplained variance
(Figure 2), a larger noise component in expression patterns
(Figure 3), and greater error between biological replicates
(Table 3). This might be due to the large variation in lowly
expressed genes that RNA-Seq detects at high sequencing
depths. When the top percentile of expressed genes from
RNA-Seq were used to evaluate expression differences between
biological replicates, the error was much lower than when
additional lower expressed genes were used (Wang et al.,
2014). TempO-Seq variation, noise, and error in gene
expression was moderate, falling between microarray and
RNA-Seq.

Since each transcript profiling platform has different numbers
of gene content and annotation, we explored the ability of
each to cluster the samples by using the set of genes that vary
statistically by MOA. We used an ANOVA model for each
data set with chemical, MOA and route as the main effects.
For microarray, RNA-Seq and TempO-Seq, 9,499 probe sets,
7,217 transcripts, and 1,366 genes were detected as significantly
(FDR < 0.01) varying, respectively (Supplemental Table 1).
These MOA-varying genes and those mapped to 731 UniGene
cluster IDs (Supplemental Table 2) as a common set were
used for cluster analysis. In both cases the clustering of the
samples by MOA for each platform was similar in that at
most two chemicals from two MOAs were not clustered with
their respective MOA chemicals (Figures 5, 6A). In addition,
the clustering of the samples by PCA with platform-specific
MOA-varying genes mapped to the common UniGene set
projected the samples into 3-dimensional space (Figure 6B)
representative of the MOAs similar to the outcome when just
MOA-varying genes from each platform were used (Figure 4).
Hence, it is plausible that the TempO-Seq platform with the
reduced gene content set is sufficient to resolve gene expression
space elicited by a wide variety of chemical stressors with
distinct MOAs. Utilization of the TempO-Seq platform for

evaluation of chemicals using gene expression suggests that
the platform may gain popularity in biomolecular screening
efforts in the near future (Grimm et al., 2016; House et al.,
2017).

It has been proven that reproducibility between gene
expression is higher when the data are compared on the pathway
level than the gene level (Guo et al., 2006; Fan et al., 2010; Wang
et al., 2014). We enriched the MOA-varying UniGenes according
to GO BPs and revealed that the reduced representation of
genes on the TempO-Seq platform had a negligible effect on the
overrepresentation (Figure 7 andTable 4). This is in line with the
bioinformatics process to select the S1500+ sentinel gene content
on the platform using diversity and co-expression importance
scores (Mav et al., 2018). These genes were selected to cover
>90% of the biological pathway space represented by MSigDB
(Subramanian et al., 2005). Yet each platform does appear to
have enrichment of unique BPs as depicted in GO subtrees of
overrepresented biological categories (Figure 8).

Having another tool for biologists to survey genome-wide
gene expression is a luxury for scientific experimentation.
With microarray fully matured and easy to analyze, and RNA-
Seq flexible to interrogate complex transcriptional machinery,
scientists have diverse platforms to investigate biological
consequences that regulate gene expression genome-wide. The
emerging TempO-Seq platform adds to the genomics tool
chest and with comparable performance capabilities to its
predecessors, will undoubtedly play a pivotal role in high-
throughput screening efforts.
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