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ABSTRACT

Validation of the decadal to centennial timescale variability of coupled climate models is limited by the scarcity
of long observational records. Proxy indicators of climate, such as tree rings, ice cores, etc., can be utilized for
this purpose. This study presents a quantitative comparison of the variability of the third version of the Hadley
Centre ocean–atmosphere coupled model with a network of temperature-sensitive tree-ring densities covering
the northern high latitudes. The tree-ring density records are up to 600 years long, and temperature reconstructions
based on two different methods of removing the bias due to changing tree age are used. The first is a standard
method that may remove low-frequency variability on timescales of the order of the tree life span (i.e., multi-
decadal to century timescales). The second (age-band decomposition) maintains low-frequency variability by
only comparing similar age tree rings at each site, thus avoiding the need to remove the age effect (but at the
cost of greater uncertainty in the earlier years when fewer tree cores are available). The variability of the model
control simulation, which represents only the internal variability of the climate system, agrees reasonably well
with the tree-ring reconstructions using the standard method at the regional level, although the model may
underestimate the variance of mean Northern Hemisphere land temperature by as much as a factor of 1.8 on
all timescales if one takes account of the uncertainty in the tree-ring reconstructions. Agreement with the age-
band decomposition tree-ring reconstructions is less good with the model underestimating the hemispheric
variance by as much as a factor of 2.1 on all timescales and by as much as a factor of 3.0 on decadal to centennial
timescales. Underestimation of the natural variability of climate by the model would be serious as it may lead
to false detections of climate change or erroneously low uncertainty estimates in future climate predictions.
However, it is shown that some of this underestimation may be due to the lack of natural climate forcing in the
model control simulation due, for example, to solar variability and volcanic eruptions. The study suggests that
further quantification of the uncertainties in the proxy data, and inclusion of natural climate forcings in the
model simulations, are important steps in making comparisons of climate models with the proxy record over
the last 1000 years.

1. Introduction

Multicentury integrations of coupled climate models
are now routinely produced at climate modeling centers.
Such simulations are performed for various purpose,
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examples of which include testing the stability of the
coupled model (e.g., Gordon et al. 2000); examining
low-frequency variability of the climate system (e.g.,
Collins et al. 2001); and defining ‘‘natural’’ climate var-
iability as a basis for statistical testing in studies of the
detection, attribution, and prediction of climate change
(e.g., Tett et al. 1999). Thus it is important that the
climate of the model is validated against observations
of the real climate system. This involves not only val-
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idating the mean climate of the model, but also vali-
dating the climate variability over a range of time- and
space scales.

In order to validate the variability of a model on
timescales of centuries one requires multicentury re-
cords of observed climate variables. These are, however,
sparse. The longest instrumentally recorded series is the
Central England Temperature record (Parker et al. 1992;
Manley 1974), reliable back to 1659, but only repre-
sentative of temperature over a relatively small geo-
graphic region. This confounds the comparison with di-
rect climate model output that is representative of, at
best, temperatures at the gridbox size (e.g., 300 km) and
may be more representative of temperatures on the
scales of many grid boxes [due to model formulation
that restricts the accumulation of energy at the grid
scale, for example, Stott and Tett (1998)]. Also, we are
often interested in global- or hemispheric-scale vari-
ability, because of its relevance to the detection, attri-
bution, and prediction of climate change, which single-
site records cannot provide. Long records of climate can
however be extracted from proxy indicators such as tree
rings, ice cores, corals, borehole temperatures, etc. (e.g.,
Briffa et al. 1998a; Jones et al. 1998; Mann et al. 1998;
Huang et al. 2000; Harris and Chapman 2001, and many
others) that are widely spread over the globe. While
these proxy records are often not direct measurements
of, for example, temperature or precipitation, they do
contain a wealth of information about past climate var-
iations.

Previous efforts to compare model and proxy vari-
ability have been somewhat qualitative in their ap-
proach. Some examples include Jones et al. (1998), who
compared the temperature variability of two coupled
models with 17 normalized proxy series representing a
variety of historical and instrumental records, tree-ring
density and width, ice cores, and corals. They found
that one of the models showed similar behavior to the
proxy data in terms of their principal spatial patterns of
variability, while the other model showed markedly dif-
ferent behavior. Crowley and Kim (1999) compared the
spectra of global temperature variability of two coupled
models with the multiproxy reconstructions of Mann et
al. (1998) and found them to agree at the 90% level
once they had removed an estimate of the naturally
forced variability from the Mann et al. (1998) data using
an energy balance model. Delworth and Mann (2000)
also compared the Mann et al. (1998) reconstructions
with model-generated interdecadal variability in the
North Atlantic region and found similar patterns of SST
variability.

There are considerable challenges that the climate
community must overcome to successfully utilize proxy
records in the validation of climate models. This in-
cludes developing methods to make quantitative com-
parisons of models and proxy data. We may distinguish
two distinct approaches to this problem: (i) an ‘‘inverse’’
method, by which the proxy data are calibrated to rep-

resent large-scale climate variables that the model can
simulate, such as temperature and precipitation, prior to
the comparison (e.g., the multiproxy reconstructions of
Mann et al. 1998), with care taken to quantify an re-
sidual variance not accounted for in the calibration pro-
cedure; (ii) a ‘‘forward’’ method, proposed by Reichert
et al. (1999), by which the model variables are processed
to represent the proxy data. This may involve scaling
down the grid-scale variables of the model to a more
representative local scale and then using physically or
statistically based methods to generate the proxy in
question, for example, glacier length (Oerlemans and
Reichert 2000) or oxygen isotope ratios.

In the study described here, a multicentury integration
of the third version of the Hadley Centre ocean–at-
mosphere coupled model (HadCM3; Gordon et al. 2000)
is compared with a number of regional temperature time
series, estimated from a network of tree-ring density
chronologies spread over the Northern Hemisphere
(Briffa et al. 2001b), primarily representative of summer
(April–September) conditions and extending back 600
years. The climate system is unlikely to be greatly af-
fected by orbital variations over this period so we use
the control simulation of the model, which has orbital
parameters that are fixed to present-day values. We
adopt the ‘‘inverse’’ method of comparing the tree-ring
data and the model. The tree-ring data have been pre-
viously averaged into nine regions that are more rep-
resentative of the space scales that can be realistically
simulated by the model (Stott and Tett 1998) and are
calibrated using observed records of temperature from
recent times (Briffa et al. 2001b). Correspondingly, we
subsample the model in the nine tree-ring regions during
the optimal (April–September) growth season of the
trees (Briffa et al. 2001b), in order to make a like-with-
like comparison.

In section 2 of the paper the tree-ring network and
its calibration are introduced and in section 3 HadCM3
is described briefly. In section 4 the model and tree-ring
reconstructions are compared visually. In section 5 their
variances are compared and in section 6 their power
spectra are compared. In section 7 the dominant spatial
patterns of variability of the model and tree rings are
contrasted and in section 8 the possible contribution to
the model variability by solar and volcanic forcing is
assessed. Finally, conclusions are drawn in section 9.

2. Tree-ring density chronologies

The climate reconstructions used here are based on a
network of 387 tree-ring density chronologies located
over much of the Northern Hemisphere extratropics
(Fig. 1). The chronologies range in length from 100 to
more than 600 years, with each consisting of, on av-
erage, data from 25 tree cores from a site close to the
present timberline (i.e., at high elevation or high lati-
tude) to maximize the potential temperature signal.
Trees that grow near the timberline tend to be stressed
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FIG. 1. Locations of individual tree-ring density chronologies
(black dots; overlap areas outlined in white) and the definition of the
nine regional series used in the calibration against observed temper-
ature (after Briffa et al. 2001a).

TABLE 1. Parameters of the calibration process of the standard tree-
ring density regional chronologies in which the tree-ring series are
regressed onto the observed temperature from 1881 to 1960 (see text
for the description of the algorithm). Here R is the correlation co-
efficient, R2 is the explained variance, b is the regression coefficient,
and rmse is the root-mean-squared error (after Briffa et al. (2001b).

R R2 (%) b Rmse

NEUR
SEUR
NSIB
ESIB
CAS
TIBP
WNA
NWNA
ECCA
NH

0.84
0.72
0.76
0.61
0.56
0.36
0.74
0.60
0.75
0.71

71
52
58
37
31
13
55
36
56
50

0.58
0.35
0.70
0.46
0.25
0.08
0.38
0.37
0.51
0.18

0.37
0.33
0.59
0.60
0.36
0.21
0.34
0.48
0.45
0.18

and are hence more sensitive to variations in climate.
Briffa et al. (2001b) show that, for this network, a much
more reliable temperature reconstruction can be ob-
tained from the density of the wood formed toward the
end of each growing season (the maximum latewood
density), than from other measures such as the width of
each tree ring. The dominant climate signal in the da-
taset as a whole is the growing season temperature (Brif-
fa et al. 2001b). The timing of the growing season varies
with location, but the mean temperature from April to
September provides the best overall correlations with
tree-ring density.

Briffa et al. (2001b) combine the chronologies into
nine regional averages (also shown in Fig. 1), and cal-
ibrate them against April–September temperatures for
each of the regions, using simple linear regression over
the period 1881–1960. The regions were defined partly
arbirarily and partly on the basis of tree genera, climate
regime, and treeline type (elevational or latitudinal).
There are a number of requirements that constrain the
most appropriate size of the regions: (i) they need to be
subhemispheric to capture spatial variability; (ii) if they
are too small (e.g., individual grid boxes) then the re-
liability of the reconstructions is less and it is already
known that the variance of the climate model is under-
estimated at this spatial scale (Stott and Tett 1998); and
(iii) the model–data comparison should inform us about
the reliability at spatial scales appropriate to the climate
signal detection and attribution problem. The defined
regions satisfy these requirements in general.

The correlations between the regional tree-ring den-
sity records and the temperatures are reproduced in Ta-

ble 1, together with the standard deviations of the re-
gression residuals [i.e., the root-mean-squared error
(rmse)]. Over the calibration period, the variance of each
reconstruction is less than the variance of the observed
temperature time series, with the difference in variance
equal to the square of the rmse. This residual variance
must be considered when comparing the variance of the
reconstructions with the climate model simulations, as
it is the component of temperature variability not re-
corded by the trees. When comparing the power spectra
or the variance of decadal means, some assumption must
also be made about the spectrum of the residuals. For
simplicity we assume here that they are white noise. In
fact, the residuals exhibit significant autocorrelation in
4 out of the 9 regions during 1881–1960, but it is unclear
how representative this is of the pre-1881 period due to
the presence of (warming) trends during 1881–1960.
This is the subject of further study, but here we retain
the white noise assumption.

Briffa et al. (2001b) also formed a weighted average
of the nine regional tree-ring density records, prior to
their calibration. The weighting was time dependent,
and was based on a statistical measure of the strength
of the climate signal in each region. This weighted av-
erage was calibrated against the observed April–Sep-
tember temperature averaged over all land areas north
of 208N, and is denoted by ‘‘NH.’’ The calibration pa-
rameters for the NH series are also given in Table 1.
Briffa et al. (2001b) show that for the NH reconstruc-
tion, and for 7 out of the 9 subregions, the correlation
with temperature is higher at the decadal timescale than
that given in Table 1.

The calibrated temperature reconstructions for the
nine subregions and the NH region are shown in Fig.
2. These are the standard tree-ring series used in the
present study. Most regions show a warming during the
first half of the twentieth century, followed by a cooling.
Summer temperatures in these regions did cool from
1940 to 1970, but this has been followed by a rapid
warming that the tree-ring density has not responded to.
Briffa et al. (1998b) identified this widespread decline
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FIG. 2. The calibrated standard tree-ring series for the nine regions and for NH (see Fig. 1 for
the definitions of the regions). The gray lines are the annually resolved data and the black lines
are decadal averages formed from these. Note the change in vertical scale for the NH series.

in the density data (and, to a lesser extent, in the tree-
ring width data not used here), and speculated that some
anthropogenic cause was likely to have superimposed
this non-temperature-related trend onto the tree-ring
density records. In this study we make the assumption
that this unknown factor is of anthropogenic origin and
did not occur in the past. Hence we attribute all earlier
variations to changes in growing-season temperatures.

In addition to responding to growing-season temper-
ature, the maximum latewood density of each tree ring
also depends upon the age of the ring (generally showing
a downward trend with increasing tree age). Since the

age-density function is unknown (and is considered to
vary with location and tree species), a generalized ex-
ponential function (a ‘‘Hugershoff’’ function, Bräker
1981) was fitted to each tree core and removed. This
detrending technique is known as ‘‘standardization,’’
and results in a loss of multicentury variance, the extent
of which is dependent on tree longevity (Cook et al.
1995; Briffa et al. 1996). The standard reconstructions
(Fig. 2) may, therefore, be lacking in multicentury var-
iability.

To broaden our comparisons we also use the recon-
structions of Briffa et al. (2001a). These are based on
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TABLE 2. Parameters of the calibration process of the ABD tree-
ring density chronologies (see text for the description of the algo-
rithm). Here R is the correlation coefficient, R2 is the explained var-
iance, b is the regression coefficient, and rmse is the root-mean-
squared error. There is no value of b for the NH reconstruction be-
cause multiple linear regression is used (after Briffa et al. (2001a).

R R2 (%) b Rmse

NEUR
SEUR
NSIB
ESIB
CAS
TIBP
WNA
NWNA
ECCA
NH

0.76
0.65
0.77
0.52
0.53
0.43
0.72
0.65
0.69
0.68

58
42
59
27
28
18
52
42
48
46

0.58
0.39
0.63
0.43
0.27
0.12
0.39
0.40
0.49
—

0.44
0.37
0.58
0.64
0.37
0.20
0.37
0.46
0.49
0.19

the same tree-ring density dataset, and are for the same
regions as the standard reconstructions. The tree cores
are separated in subgroups defined by age class (e.g.,
101–150 yr from the pith), assembled into individual
age-band time series, scaled to have equal mean and
variance and recombined for different age classes into
a single series of relative growth changes. The age de-
pendence is thus accounted for by only combining in
absolute units the density from tree rings whose age
falls in a restricted range (or band); combining different
sites, species, and age bands (to form the regional chro-
nologies) is only allowed after normalization has been
applied to remove differences in absolute means and
variances. The difference is that the tree cores are not
standardized (i.e., detrended) and, therefore, lose no
low-frequency variability. Full details of the procedure
are given in Briffa et al. (2001a).

These age-band decomposition (ABD) regional chro-
nologies are calibrated in the same way as the standard
reconstructions. The calibration statistics (reproduced
from Briffa et al. 2001a) are given in Table 2, while the
time series are shown in Fig. 3. There is no artificial
loss of multicentury variability, but this is at the cost
of greater uncertainty in the earlier part of the record
for which there are fewer tree cores (because the ABD
technique requires more tree cores). As described in
Briffa et al. (2001a), one measure of the reliability is
to evaluate the strength of the variability that is common
to all age bands. This measure leads us to truncate some
of the regional ABD series, compared to the standard
series (cf. Fig. 3 and Fig. 2).

The ABD approach to tree-ring chronology construc-
tion is a useful addition to the range of processing meth-
ods employed to remove sample age-related bias in ra-
dial tree growth measurements. It has strengths and
weaknesses in comparison to other such methods and
should not be considered to be wholly superior on in-
ferior to any of them. For example, other methods can
better reconstruct interannual variability (Briffa et al.
2001a). We use the ABD method for this study because
of its potential to express more low-frequency vari-

ability in the final chronology than other approaches. It
is the low-frequency variability that is most important
in studies of the detection and attribution of climate
change.

These two alternative, but related, sets of reconstruc-
tions of regional and near-hemispheric growing season
temperatures are used for comparison with the simulated
variability. These sets are denoted by ‘‘standard’’ and
by ABD.

3. HadCM3

The atmospheric component of HadCM3 is a version
of the Met Office’s Unified Model (Cullen 1993). The
model dynamics and physics are solved on a 2.58 3
3.758 latitude–longitude grid with 19 hybrid vertical lev-
els. The oceanic component of the model is an updated
version of that used in HadCM2 (Johns et al. 1997),
which is a version of the Cox (1984) model, with a
horizontal resolution of 1.258 3 1.258 and 20 levels in
the vertical. A significant improvement with respect to
the previous version of the model (HadCM2; Johns et
al. 1997) is the elimination of the flux adjustments that
were needed in HadCM2 to keep the model climate
stable. HadCM3 has no flux adjustment term and has a
stable climate in the global mean. More details of the
formulation of HadCM3 and its mean climate can be
found in Gordon et al. (2000) and Pope et al. (2000).
A description of the climate variability simulated by the
model is given by Collins et al. (2001).

We analyze the HadCM3 control simulation in which
all concentrations of greenhouse gases and aerosols,
etc., are set as constants representative of the preindus-
trial era. Surface air temperatures (at a height of 1.5 m)
were extracted from the HadCM3 control experiment in
a way consistent with the calibrated tree-ring densities.
Monthly mean temperatures were averaged at model
land grid points for April–September. The Northern
Hemisphere of the model was then subsampled accord-
ing to the regions defined in Fig. 1 to form 9 regional
time series of model temperatures of length 1200 yr (the
first 100 yr of the experiment were ignored because of
spinup effects). The model NH series was formed by
averaging all the April–September land temperatures
north of 208N taking into account the relative areas of
each grid box. This is in contrast to the reconstructed
tree-ring NH series that is formed as a weighted mean
of the nine regional tree-ring reconstructions (although
this mean series was then calibrated against the observed
mean temperature from all land north of 208N). A simple
mean of the nine regional series from the model explains
72% of the variance of the true NH series at all time-
scales and 90% of the variance on decadal timescales.
Forming a weighted mean of the nine model regional
series, using linear regression to determine the weights,
increases these fractions to 88% and 96%, respectively.
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FIG. 3. The calibrated ABD tree-ring series for the nine regions and for NH (see Fig. 1 for the
definitions of the regions). The gray lines are the annually resolved data and the black lines are
decadal averages formed from these. Note the change in vertical scale for the NH series.

4. Examination of time series

The regional and NH series of the tree-ring temper-
ature data, with the age effect removed by using the
standard technique, or removed by using the age-band-
ing technique, and the model series are all shown in
Figs. 2–4. A clear difference between the model and
standard tree-ring temperature reconstructions is the ex-
istence of large negative temperature anomalies on year-
ly timescales or ‘‘negative spikes’’ in the tree-ring re-
construction. These are most likely due to volcanic erup-
tions, which can cause widespread cooling if the erup-
tion is violent enough to inject sufficient aerosol

particles into the stratosphere (e.g., Sato et al. 1993).
Briffa et al. (1998a) have performed a detailed exam-
ination of the signature of volcanic eruptions in the tree-
ring chronologies and have related them to historical
records. In the 595 years of the standard NH series there
are 5 events in which the temperature anomaly drops
below 3 standard deviations from the mean, a number
that is significantly greater than that expected from a
Gaussian process at less than the 1% level. In the 1200-
yr simulated NH series there is only one negative 3s
event that would have a 73% chance of occurring in a
Gaussian time series of the same length (i.e., it is not
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FIG. 4. HadCM3 control simulation Apr–Sep land temperatures for the nine regions and for NH
(see Fig. 1 for the definitions of the regions). The gray lines are the annual (i.e., Apr–Sep) data
and the black lines are decadal averages formed from these. Note the change in vertical scale for
the NH series. Model years are arbitrary but are expressed in terms of a model start year at 1990.

significant). The regional tree-ring temperature recon-
structions show similar large negative anomalies while
the model region series do not [e.g., there are three 23s
summers in the eastern and central Canada (ECCA)
standard tree-ring series (significant at ,1%) but only
one 23s summer for the simulated ECCA series (73%
chance of occurring)]. The ABD series also show these
negative spikes but are not so amenable to the simple
analysis of counting negative anomalies because of the
complication of removing the low-frequency variability
from the series (see later). Thus the model control does

not agree with the tree-ring reconstructions in that it
lacks large negative temperature anomalies that are as-
sociated with historical volcanic eruptions. Of course
this is not surprising as the model is not forced with
the radiative effects of such volcanoes. In section 8 we
include a parameterization of ‘‘naturally forced vari-
ability,’’ including volcanic eruptions, and assess the
differences in variability between those simulations and
the control.

Figures 2–4 also show the time series averaged into
decades, which emphasizes lower-frequency variability
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FIG. 5. Standard deviations/variances of the standard tree-ring se-
ries and the HadCM3 control series for (a) annual data and (b) decadal
data. The tree-ring standard deviations are the gray bars with the
residual variance from the calibration period placed on top of these
in white. Model standard deviations are the black bars. The ratios of
the variances are shown by the numbers above the bars. The upper
numbers are the ratios without the residual variance taken into account
and the lower numbers with it taken into account. Significantly dif-
ferent ratios (at the 95% level calculated using an F test) are shown
in black and those that are not significant are shown in gray. Allowing
for autocorrelation in the F test makes little difference.

and, to a certain extent, averages out the effects of vol-
canic eruptions. Throughout the paper we use simple
nonoverlapping 10-yr averages in order to avoid com-
plications arising from estimating reduced degrees of
freedom in statistical tests and in estimating residual
variance in the calibration. The level of variability of
the standard tree-ring decadal NH series seems to be in
good agreement with the model NH variability. There
is clearly more low-frequency variability in the ABD
tree-ring series in comparison with the standard tree-
ring data, which is expected because of the nature of
the ABD technique. For example, there is one partic-
ularly large and extended negative anomaly in the ABD
northern Siberia (NSIB) series, from 1560 to 1650,
which is not evident in the standard NSIB series. Be-
cause of this low-frequency behavior, there does not
appear to be such a good agreement between the ABD
series and the model series as in the case of the standard
tree rings. In the following sections we make a quan-
titative comparison of model and tree-ring temperature
reconstructions.

5. Comparison of variance

A simple way of comparing the variability of the tree-
ring reconstructions and the model is to compute the
standard deviation or variance of each series (Fig. 5).
As indicated in section 2, there is some uncertainty in
the variance of the temperature reconstructions due to
residual variance not captured by tree-ring series during
the calibration period (the temperature variability not
recorded by the trees). Hence we make a comparison
with and without this extra variance included in the
calculation.

In this section, and in all subsequent sections, we
perform a quantitative comparison of the tree-ring re-
constructions and the model. We eliminate the problem
of the recent decline of tree-ring temperature correlation
by using only pre-1960 tree-ring data. There may, how-
ever, be some anthropogenic influence in the early part
of the twentieth century. Tett et al. 1999 estimate that
the early twentieth-century warming is due to a com-
bination of anthropogenic and solar effects, so the tree-
ring data may represent a slight overestimate of the
natural climate variability pre-1960. We consider this
possible error to be small in comparison with other er-
rors due to calibration and the removal of the age effect
from the tree cores.

For the regional series, the differences between the
standard tree-ring reconstructions and model standard
deviations on all timescales (Fig. 5a) are generally sta-
tistically significant (because of the large sample sizes)
although they are not generally large in absolute terms.
The biggest difference is 0.25 K for both the ECCA and
NSIB series with residual variance accounted for, lead-
ing to an underestimation of the variance by the model
in these regions by factors of 2.2 and 1.8, respectively.
It seems though that there is no systematic over- or

underestimation of variance in the model control sim-
ulation, nor is there any obvious regional pattern. This
is also true for the decadal standard deviations (Fig. 5b)
although some differences are less likely to be statis-
tically significant because of the reduced sample size.
Hence there appears to be no consistent bias in the am-
plitude of the variability simulated by the model control,
when compared with the standard tree-ring reconstruc-
tions for the regional series. For the NH series, the am-
plitude of the model variability is statistically indistin-
guishable from the standard tree-ring-based reconstruc-
tions when the residual variance from the calibration
procedure is not taken into account. However, when the
residual is considered, the model underestimates the NH
variance by a factor of 1.8 on all timescales and a factor
of 1.6 on decadal and longer timescales.
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FIG. 6. Standard deviations/variances of the ABD tree-ring series
and the HadCM3 control series for (a) annual data and (b) decadal
data. The tree-ring standard deviations are the gray bars with the
residual variance from the calibration period placed on top of these
in white. Model standard deviations are the black bars. The ratios of
the variances are shown by the numbers above the bars. The upper
numbers are the ratios without the residual variance taken into account
and the lower numbers with it taken into account. Significantly dif-
ferent ratios (at the 95% level calculated using an F test) are shown
in black and those that are not significant are shown in gray. Allowing
for autocorrelation in the F test makes little difference.

As is evident by the ABD tree-ring series in Fig. 3,
the agreement between the amplitude of variability of
the model and the ABD tree rings is less good. On the
whole the model underestimates the standard deviation
of temperature, especially for the decadally averaged
data (Fig. 6b) where the tree-ring reconstructions have
more variance for all the time series, except central Asia
(CAS) and the Tibetan Plateau (TIBP). The maximum
disagreement is with the NSIB series that has around 6
times more variance than the corresponding model se-
ries. The standard deviation of the ABD NH tree-ring
series, including the residual from the calibration period,
is 0.29 K (variance of 0.084 K2) compared to 0.20 K
(variance of 0.040 K2) for the model NH series. This
would mean that the variance of the HadCM3 summer
NH land temperatures could be underestimated by as

much as a factor of 2.1 on all timescales and a possible
factor of 3.0 on timescales of a decade and greater.
Hence there is a consistent underestimation of hemi-
spheric-scale variability by the model in comparison
with both the ABD tree-ring reconstructions and the tree
rings analyzed using the standard method.

6. Power spectra

A comparison of standard deviations or variances
only highlights differences in the absolute amplitude of
variability. The climate system varies differently on dif-
ferent timescales and hence it might be more instructive
to compare the relative variance of the model and tree-
ring temperature reconstructions at different timescales.
This can be achieved by comparing the power spectra
of each series. We calculate power spectra by taking the
Fourier transform of the autocovariance function of the
time series and then applying the Tukey–Hanning win-
dow to get a consistent and unbiased estimate (e.g.,
Chatfield 1984). A window width of 100 yr was used
in order to get relatively smooth, bias-free spectra, while
retaining the century timescale (the lowest frequency
estimated by the procedure corresponds to twice the
window width, 200 yr). As in the comparison of vari-
ance, account was taken of the residual variance from
the calibration procedure. This was assumed to be un-
correlated in time (white) so that the same residual pow-
er was added to the tree-ring spectra at each frequency.

Figure 7 shows the power spectra of the model and
standard tree-ring NH, northern Europe (NEUR), and
ECCA series, and Fig. 8 shows the same for the model
compared to the ABD tree-ring reconstructions. The
spectra of both the model and the tree-ring series are
generally red in character (i.e., there is more power at
low frequencies than at high frequencies) although they
are not strongly so. We can judge the redness of the
spectra by fitting an autoregressive process of order 1
[AR(1) or Markov process defined as xn11 5 a1xn 1
a0z, where the subscripts refer to discrete time intervals
(years in this case) and z is random variable (white
noise) with unit variance] to each series in turn (Table
3). In an AR(1) process the a1 coefficient (i.e., the lag-
one autocorrelation) defines the year-to-year ‘‘memory’’
of the system. The ABD tree-ring data has larger a1

coefficients than the standard data (as expected because
of the ABD technique) thus there is a greater level of
low-frequency variability compared to high-frequency
variability. The a1 coefficients for both the standard and
ABD NH series are relatively larger than nearly all of
the corresponding regional series indicating that there
is more year-to-year memory on the hemispheric scale
compared to the regional scale. In comparison with the
model, both the standard and ABD tree rings have great-
er a1 coefficients and smaller a0 coefficients, and hence
redder spectra.

There are no obvious peaks in the model or tree-ring
spectra shown in Figs. 7 and 8 and testing each indi-



1506 VOLUME 15J O U R N A L O F C L I M A T E

FIG. 7. Power spectra of the model and standard tree-ring series
for (a) NH, (b) NEUR, and (c) ECCA. In each graph the model spectra
is shown in gray, the calibrated tree-ring spectra is shown as the black
solid line and the tree-ring spectra with the residual variance added
is shown as the black dashed line. The residuals were assumed to be
uncorrelated in time. Where the model and tree-ring spectra are dif-
ferent at the 95% level according to an F test, the center of the
frequency bin is marked with a diamond.

FIG. 8. Power spectra of the model and ABD tree-ring series for
(a) NH, (b) NEUR, and (c) ECCA. In each graph the model spectra
is shown in gray, the calibrated tree-ring spectra is shown as the black
solid line and the tree-ring spectra with the residual variance added
is shown as the black dashed line. The residuals were assumed to be
uncorrelated in time. Where the model and tree-ring spectra are dif-
ferent at the 95% level according to an F test, the center of the
frequency bin is marked with a diamond.

TABLE 3. Fitted coefficients of an AR(1) process, xn11 5 a1xn 1 a0z, where z is unit variance white noise for the tree ring and HadCM3
control time series.

Region

Standard tree ring

a1 a0

ABD tree ring

a1 a0

HadCM3

a1 a0

NEUR
SEUR
NSIB
ESIB
CAS
TIBP
WNA
NWNA
ECCA
NH

0.17
0.15
0.11
0.35
0.25
0.11
0.077
0.0019
0.12
0.35

0.51
0.42
0.61
0.45
0.25
0.076
0.41
0.36
0.48
0.18

0.31
0.48
0.41
0.42
0.23
0.044
0.26
0.069
0.089
0.56

0.65
0.47
0.77
0.42
0.28
0.12
0.45
0.40
0.51
0.18

0.10
0.058
0.097
0.027
0.097
0.025
0.013
0.11
0.056
0.18

0.75
0.59
0.63
0.64
0.47
0.38
0.65
0.56
0.44
0.2
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FIG. 9. Leading EOF of the decadal-averaged standard tree-ring
series. The figures correspond to the EOF loadings multiplied by 100
for the regions indicated. The percentage at the top is the percent
total variance explained by the leading EOF.

vidual spectrum against a null hypothesis of AR(1) noise
gives no consistent peaks above, for example, the 95%
confidence level. In terms of the detection, attribution
and prediction of climate change, the most important
timescales are decades to centuries and there are some
statistically significant differences between the model
and the standard tree-ring reconstructions on these time-
scales, and many significant differences between the
ABD and model spectra. For both the tree-ring NH tem-
perature series (Figs. 7a and 8a) there is significantly
more power at the 20–40-yr timescale than the model
control. Thus there may be a ‘‘mode’’ of variability of
the Northern Hemisphere summer that has a timescale
of the order of several decades that is not simulated by
the model. We use the term mode loosely as the en-
hanced power at 20–40 yr in the tree-ring reconstruc-
tions can be explained by an AR(1) model, so may not
be generated by a cyclic phenomenon. Nevertheless,
there is a clear ‘‘hump’’ in the spectra at 20–40 yr in
many of the regional tree-ring series (see also Briffa
and Schweingruber 1992) and no corresponding features
in the model.

For the ABD data there is also significantly more
power than the model control at periods of around 100
years and longer. Again, this is unlikely to be a cyclic
mode of variability, but if there is real variability in the
climate system that is not simulated by the model on
these timescales, this will have have implications for
estimating uncertainties in detection, attribution, and
prediction of climate change if the model is used as a
surrogate for natural climate variability. As we shall see
in section 8 below, there are natural climate forcings
that vary on these timescales that may be responsible
for the underestimation of variability by the model con-
trol.

7. Spatial variability

To compare spatial patterns of variability of the model
and tree-ring temperature reconstructions we use em-
pirical orthogonal function (EOF) analysis (e.g., North
1984). First we averaged the data into decades as we
are interested in patterns of low-frequency variability
(again we take pre-1960 data only). The TIBP series
was discarded because of its poor performance in the
temperature calibration procedure (see section 2; Tables
1, 2). EOFs were computed from the covariance matrix
of the eight remaining series where covariances between
individual series were calculated using all the contem-
poraneous data for those series and each series was
weighted by relative area. Principal component (PC)
time series, which give the time-varying amplitude of
the EOF patterns, were formed by projecting the EOFs
onto the data only when data in all eight regions exists.
This is true for years 1615–1985 of the standard tree-
ring data, but only for years 1745–1985 for the ABD
data due to the reduced length of the series that results
from the age banding of individual trees (see section 2

and Briffa et al. 2001a). In comparing the model and
tree-ring variance (Fig. 5) and power spectra (Fig. 7)
account was taken of the residual variance in the cali-
bration procedure. In computing the EOFs we assume
that these residuals are uncorrelated in space and hence
do not affect the shape of the EOF (although they will
affect the fraction of the variance captured by the lead-
ing EOF). All spatial patterns shown are orthonormal
so that the dot product of the pattern with itself is unity.

The leading EOF of the standard tree-ring reconstruc-
tions (Fig. 9) explains 41% of the total variance and has
positive loadings for all regions. Thus there is a mode
of variability that involves coherent temperature anom-
alies of the same sign over the whole Northern Hemi-
sphere land area. Again, we use the term mode loosely
as there is no evidence for any cyclic behavior as the
time coefficient of the leading EOF is statistically in-
distinguishable from an AR(1) process. The second EOF
explains 16% of the variance and the third EOF explains
13%. Typical decadal anomalies associated with a 1
standard deviation anomaly in the amplitude of EOF1
are, for example, 0.13 K in the western North America
(WNA) region and 0.04 K in the northwestern North
America (NWNA) region. There is no obvious physi-
cally based spatial pattern to the EOF (other than being
a hemispheric pattern), and the pattern is stable to trun-
cating each series by up to a half and repeating the
analysis. The PC for EOF1 has a correlation with the
NH series of 0.98 indicating further the existence of a
hemispheric-wide mode of variability.

The leading EOF of the ABD tree-ring reconstruc-
tions (Fig. 10) explains 54% of the total variance and
has positive loadings in all of the regions. The second
EOF explains 17% of the variance and the third EOF
explains 11%. A measure of the similarity of EOFs is
the dot product of the two vectors that, as the EOFs are
constrained to be orthonormal, is 1 for vectors which
are identical and 0 for vectors that are orthogonal (i.e.,
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FIG. 10. Leading EOF of the decadal-averaged ABD tree-ring se-
ries. The figures correspond to the EOF loadings multiplied by 100
for the regions indicated. The percentage at the top is as in Fig. 9.

FIG. 11. Leading EOF of the decadal-averaged HadCM3 series.
The figures correspond to the EOF loadings multiplied by 100 for
the regions indicated. The percentage at the top is as in Fig. 9.

FIG. 12. Leading signal-to-noise maximizing pattern of the standard
tree ring vs model series. The figures correspond to the EOF loadings
multiplied by 100 for the regions indicated. Eigenvalue (S/N) and
percentage variance explained of the tree-ring and the model are give
on at the top.

equivalent to a pattern correlation). The dot product of
the standard tree-ring and ABD leading EOFs is 0.81
indicating a high degree of similarity between the lead-
ing modes of variability. The PC for the ABD EOF1
has a correlation with the ABD NH series of 0.95.

The leading EOF of the model data (Fig. 11) explains
37% of the total variance and has positive loadings for
each time series, with the exception of NWNA, which
has a weak negative loading. The second EOF explains
20% of the variance and the third EOF explains 13%,
so there is less variance separation than in the case of
the tree rings. The PC for the model EOF1 has a cor-
relation of 0.76 with the model NH series, somewhat
less than is the case for the tree rings again indicating
that the leading EOF is not so dominant a mode for the
model. This discrepancy is more apparent when one
considers that the tree-ring reconstructions are not com-
pletely accurate and that the regions are not fully sam-
pled by the tree-ring network, both of which would tend
to reduce the spatial coherence of the tree-ring recon-
structions. The dot product of the model EOF with the
tree-ring EOFs is 0.89 for the standard tree rings and
0.87 for the ABD tree rings indicating though that the
leading modes of variability are similar for the model
and the tree-ring reconstructions.

Thus we conclude that for both the tree-ring recon-
structions, and for the model control, there is a leading
mode of variability that is of one sign over the entire
Northern Hemisphere. Moreover there is a large degree
of similarity between both tree-ring-leading EOFs and
the model-leading EOF.

Taking the EOF analysis of tree-ring and model series
and comparing them as above gives some qualitative
idea of the similarity or difference in the spatial patterns
of variability. The algorithm described by Venzke et al.
(1999) and outlined in the appendix, however, provides
a more quantitative approach to identifying differences
between the model and the tree-ring data. The algorithm
essentially maximizes the signal-to-noise ratio (S/N) of

the tree-ring and model data in the spatial domain giving
the pattern of variability that is ‘‘most different’’ be-
tween the two datasets [Eq. (A6)]. The S/N ratio is a
measure of the difference in the spatial patterns of var-
iability between the datasets.

The S/N pattern of the standard tree-ring reconstruc-
tions and the model is shown in Fig. 12. It has an ei-
genvalue (signal-to-noise ratio) of 1.27 and explains
37% of the tree-ring variance and 24% of the model
variance. An eigenvalue of 1.27 is not particularly large
and is not statistically significant at any high probability
based on the significance test outlined in the appendix.
The pattern is similar to the leading EOFs of both the
model and tree-ring data (dot products are 0.74 and 0.92,
respectively). Thus the most different mode of vari-
ability between the standard tree-ring data and the model
points in the direction of the leading tree-ring EOF, has
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FIG. 13. Leading signal-to-noise maximizing pattern of the ABD
tree ring vs model series. The figures correspond to the EOF loadings
multiplied by 100 for the regions indicated. Values at the top are as
in Fig. 12.

only small signal-to-noise ratio and is not significantly
different to that which might be expected by chance.
The time coefficient of the S/N pattern has relatively
more power at the 20–40-yr timescales in the standard
tree-ring reconstructions than in the model (not shown),
a feature that is evident in the power spectra of the NH
series (Fig. 7), although this result is somewhat marginal
due to the short period of time over which the time
coefficients can be estimated (1615–1960).

The S/N pattern of the most different mode between
the model and the ABD data (Fig. 13) does however
have a significant eigenvalue of 6.27 (i.e., there is more
than 6 times as much variance in the ABD tree-ring
reconstructions in this pattern in comparison with the
model) and is somewhat different from the leading EOFs
of the model and ABD tree rings (dot products of 0.31
and 0.57, respectively). The maximum loadings occur
over the Siberian region (NSIB and ESIB), which cor-
responds to a region with a large prolonged negative
anomaly during the seventeenth century the like of
which is not seen in the model NSIB series (Fig. 3).
The spatial pattern and the S/N ratio greater than 6
agrees well with the simple variance comparison (Fig.
6) that found around 6 times more variance in the ABD
NSIB series on decadal timescales in comparison with
the model.

Thus, as was also indicated by the analysis of the
standard deviations and power spectra, there is little
difference in the leading spatial patterns of variability
of the model and the standard tree-ring reconstructions,
apart from an indication of some variability at 20–40
yr that the model does not simulate (although the sta-
tistical significance of this result is questionable). There
is, however, a significant pattern of variability of the
ABD tree-ring reconstructions that the model does not
simulate. This pattern is dominated by the Siberian re-
gion where the ABD tree rings show a period of negative
anomalies that lasted for several decades.

8. The contribution of ‘‘natural’’ climate forcing

We have seen that the model control simulation un-
derestimates the variability of summer NH temperatures
in comparison with both the standard and the ABD tree-
ring reconstructions. Part of this underestimation may
be due to what we term naturally forced variability (e.g.,
changes in total solar irradiance, volcanic eruptions, nat-
ural variations in greenhouse gases, land-use changes,
etc.) that are not represented in the control simulation.
It would be desirable to run HadCM3 with these forcings
included over the time period of interest here, the last
600 years, to see if the model could simulate features
such as the negative spikes and more prolonged large
regional anomalies. There is, however, considerable un-
certainty in such forcings (e.g., Crowley and Kim 1999)
suggesting that a number of simulations utilizing dif-
ferent forcing data should be considered.

We have been unable to perform such an ensemble
because of constraints on computer resources, but we
have performed an ensemble of four simulations from
1860 to 1997 that include estimates of solar (Lean et
al. 1995) and volcanic (Sato et al. 1993) forcing for use
in the detection and attribution of recent climate change.
This natural ensemble provides some information about
how much extra variance the natural forcings may add
to the control estimates of climate variability. Although
it should be remembered that the simulations use forcing
estimates only for the period 1860–1997, which may
exhibit a different level of variability than over the full
period from 1400 to the present, which the tree-ring
data represent.

The regional and NH series from the natural ensemble
are shown in Fig. 14. There are six negative spikes in
the four simulation as defined by 23s anomalies in the
natural ensemble corresponding to volcanic eruptions,
compared to only one such event in the control that has
no representation of volcanoes and hence occurs by
chance. The 23s definition of a volcano is clearly ar-
bitrary as we might expect the number of volcanoes
showing up in the natural ensemble to be a multiple of
4. This clearly highlights the problematic nature of iden-
tifying volcanic eruptions purely from their temperature
imprint. Careful cross validation with historical and oth-
er paleovariables, as in Briffa et al. (1998a), is also
desirable.

The NH time series for the four ensemble members
show some common variability and the variance of the
NH series is significantly greater than the control NH
variance (Fig. 15), by a factor of 1.6 for all timescales
and a factor of 1.9 for decadal and greater timescales.
The regional series also show more variance than the
control, although some of the differences are not sta-
tistically significant.

We estimate the power spectrum of the natural en-
semble by computing the spectrum of each individual
member and averaging (Fig. 16). For the 20–40-yr time-
scale, where the model was found to be lacking in var-
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FIG. 14. Regional and NH series from an ensemble of four HadCM3 experiments with solar
and volcanic forcing. The gray lines are the annual data and the black lines are decadal averages
formed from these. Note the change in scale for the NH series.

iance (Fig. 7), the power spectrum of the NH series of
the natural simulations shows some enhancement in
comparison with the control although there is little sign
of the hump that is apparent in both tree-ring spectra.
At low frequencies, there is significant enhancement in
the natural ensemble in comparison with the control,
indicating that the underestimation of variability by the
model on timescales of 100 yr and greater is possibly
due the lack of natural forcings. Again it is difficult to
be certain because of the relatively short time period of
the natural runs.

Comparing the average AR(1) coefficients of the nat-

ural ensemble (Table 4) with the AR(1) coefficients of
the control (Table 3) we see that the natural forcings
produce little change in the a0, or noise, coefficient. For
a1 coefficients, which give the year-to-year memory or
autocorrelation, there are small increases in the regional
coefficients in the natural simulations in comparison to
the control, and a more than doubling of the coefficient
for the NH series. Hence the naturally forced runs have
more than twice the hemispheric year-to-year memory
of the control simulation for summer land temperatures
and thus have a redder NH spectrum (Fig. 16).

There is also a significant enhancement of spectral
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FIG. 15. Standard deviations of the HadCM3 natural ensemble and
the HadCM3 control series for (a) annual data and (b) decadal data.
The natural ensemble standard deviations are the gray bars and the
control standard deviations are the black bars. The ratios of the var-
iances are shown by the numbers above the bars. Significantly dif-
ferent ratios (at the 95% level calculated using an F test) are shown
in black and those that are not significant are shown in gray.

FIG. 16. Power spectra of the natural ensemble and control for (a)
NH, (b) NEUR, and (c) ECCA. In each graph the control spectra is
shown in gray and the natural spectra in black. Where the control
and natural spectra are different at the 95% level according to an F
test, the center of the frequency bin is marked with a diamond.

power in the natural NH series around the 10-yr time-
scale in comparison with the control. While it is im-
possible to assess the individual contribution of the solar
and volcanic forcing without running a further 2 en-
sembles with each forcing separately, a spectral analysis
of the forcing series shows that, around the 10-yr time-
scale, much of the forcing comes from the volcanic term
not from the 11-yr solar cycle.

The EOF analysis of the natural ensemble (Fig. 17)
produces a leading mode of variability that is very sim-
ilar to the leading EOF of the control simulation (dot
product of 0.98), but explains more of the total variance
(55%). The most different or S/N pattern analysis (Fig.
18) shows no significant mode of variability that is dif-
ferent from the control (the pattern has a signal-to-noise
ratio of only 1.52 and a dot product of 0.97 with the
control EOF1). Thus the solar and volcanic forcing pro-
ject onto, and enhance, the natural hemisphere-wide
mode of model climate variability, but do not force a

mode of variability that is significantly different from
the internal variability of the model. Thus we may ten-
tatively conclude that, although the variance is enhanced
at low frequencies in the natural ensemble, the pattern
of variability that is different between the ABD tree-
ring reconstructions and the model (Fig. 13) is a real
pattern of variability of the climate system that is not
represented by the model and thus the model is inad-
equate in its simulation of variability. This conclusion
is tentative because of uncertainties in the tree-ring data
and because the natural ensemble is only valid for the
1860–1997 period, not over the full period of tree-ring
data, 1400–1994.

9. Conclusions

We have compared the variability of a control run of
a coupled atmosphere–ocean model with the variability
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TABLE 4. Average fitted coefficients of an AR(1) process, xn11 5
a1xn 1 a0z, where z is unit variance white noise for the HadCM3
natural ensemble.

Region

HadCM3 natural ensemble

a1 a0

NEUR
SEUR
NSIB
ESIB
CAS
TIBP
WNA
NWNA
ECCA
NH

0.1
0.071
0.11
0.05
0.1
0.14
0.068
0.21
0.13
0.4

0.74
0.58
0.67
0.69
0.47
0.42
0.7
0.57
0.46
0.23

FIG. 17. Leading EOF of the decadal averaged HadCM3 natural en-
semble. The figures correspond to the EOF loadings multiplied by 100
for the regions indicated. The percentage at the top is as in Fig. 9.

FIG. 18. Leading signal-to-noise maximizing pattern of the model
natural ensemble vs model control series. The figures correspond to
the EOF loadings multiplied by 100 for the regions indicated. Values
at the top are as in Fig. 12.

of the real climate system inferred from a network of
temperature-sensitive tree-ring densities. Two methods
of combining the records from individual tree cores were
used. The first (standard method) removes any age-de-
pendent signal by fitting and removing a curve for each
record, but potentially loses climate fluctuations on
timescales of the order of the lifetime of the tree (Briffa
et al. 2001b). The second (age-band decomposition) at-
tempts to retain this low-frequency behavior, but at the
cost of lower reliability when there are fewer tree cores
(Briffa et al. 2001a). The model control is unforced by
changes in greenhouse gases, solar variability etc., so
thus represents only the ‘‘internal’’ variability of the
climate system.

At the regional level, the variability of the model
compares reasonably well with the standard tree-ring
reconstructions in terms of the absolute magnitude of
the variance, the frequency distribution of the variance
and the spatial pattern of the variability. However, the
model underestimates the mean Northern Hemisphere
land variance by a factor of 1.8 on all timescales and a
factor of 1.6 on decadal and greater timescales if we
take into account residual temperature variance not cap-
tured during the calibration of the tree-ring data. Also,
the model lacks large single-year negative anomalies
associated with volcanic eruptions that are not repre-
sented in the control simulation. There is an indication
that the tree-ring reconstructions have some variability
on timescales of 20–40 yr that the model lacks, although
this is unlikely to be a cyclic mode of variability of the
climate system as it could easily be explained by an
AR(1) process.

The variability of the model does not compare as well
to the ABD tree-ring reconstructions. The model un-
derestimates the mean Northern Hemisphere land var-
iance by a factor of 2.1 on all timescales and a factor
of 3.0 on decadal and greater timescales taking into
account residual variance from the calibration proce-
dure. As well as the negative anomalies associated with
volcanoes and the 20–40-yr variability differences seen
in the comparison with the standard tree-ring data, there
is significantly more variance in the ABD tree-ring re-

constructions on timescales of 100 yr—much greater
than exhibited by the model control. These long time-
scales are important for the detection, attribution, and
prediction of climate change and there exists the pos-
sibility of false claims of climate change detection or
unrealistically low uncertainty estimates for future cli-
mate predictions if the tree-ring estimates are correct
and the model underestimates the magnitude of ‘‘nat-
ural’’ climate variability.

It is important to consider uncertainties in the tree-
ring reconstructions, when considering the large under-
estimation of climate variability by the model, and the
differences in its spatial pattern in comparison with the
ABD tree-ring data. Examination of Figs. 3 and 6 both
highlight the large variability of the ABD NSIB series.
This is the longest of the regional series and hence has
a large influence on the construction of the ABD NH
series. It also has the largest variance of all the regional
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ABD series and shows some considerable low-frequen-
cy variations. We have recomputed the ABD NH series
substituting the NSIB series from the standard calibra-
tion to highlight uncertainties in the tree-ring data. A
comparison of this NH series with the model gives a
reduction in the ratios of the tree ring to model variance
from 2.1 to 1.9 on all timescales and from 3.0 to 2.1
on decadal timescales (taking into account the residual
variance of the calibration procedure). The power spec-
trum of this NH series is reduced at centennial time-
scales in comparison with the ABD NH power spectrum,
but still has significantly more power than the model
NH series. The pattern of spatial variability that is most
different between the model and the ABD tree rings
(Fig. 13) is relatively unchanged on substituting the
standard NSIB series for the ABD NSIB series, although
the signal-to-noise ratio is reduced from 6.3 to 3.4.
Hence, while possible errors in the NSIB series do affect
the details of the model–tree ring comparison, they do
not significantly alter the conclusion that the model may
be underestimating natural climate variability on the
hemispheric scale.

The model control experiment only attempts to sim-
ulate the internal variability of the climate system. There
are variations in ‘‘natural forcings’’ over the time period
of the tree-ring data that may contribute to the climate
variability. The existence of single-year negative
‘‘spikes’’ in the tree-ring reconstructions show the effect
of large volcanic eruptions on climate that are not sim-
ulated in the model. We have not been able to produce
a simulation of the naturally forced climate of the last
600 years, partly due to restrictions on computer time
and partly due to the lack of accurate histories of, for
example, variations in solar output, with which to force
the model from 1400 to the present day. However, we
have analyzed an ensemble of four simulations with
solar and volcanic forcing over the period 1860–1997.
Inclusion of these forcings produces volcanic negative
‘‘spikes,’’ enhances the NH variance in comparison with
the control by a factor of 1.6 on all timescales and a
factor of 1.9 on decadal timescales. In terms of the
power spectra, there is enhancement of NH variability
at 20–40 yr and at the centennial timescale. Hence the
lack of natural forcings in the model could be respon-
sible for the underestimation of variability in compar-
ison with the tree-ring data. This conclusion is tentative
because the model was not run with natural forcing over
the full tree-ring period.

The results of this paper are in good agreement with
those of Crowley (2000) who used an energy balance
model to estimate the (naturally) forced component of
Northern Hemisphere temperature variability and then
removed this from the Mann et al. (1998) and Crowley
and Lowery (2000) reconstructions. Crowley (2000)
found that 41%–64% of the total variance of the re-
constructions could be attributed to forcing, with the
remainder due to natural internal variability. This would
imply that the total preindustrial variance in NH tem-

perature would be 1.7–2.8 greater than natural internal
variability alone, very similar to the 1.8–3.0 range es-
timated here. Crowley (2000) also compare the vari-
ability of NH temperatures from HadCM3 and other
coupled ocean–atmosphere GCMs with the Mann et al.
(1998) and Crowley and Lowery (2000) reconstructions
and find that HadCM3 is at the high end of the distri-
bution of combined paleo- and GCM estimates of nat-
ural internal variability. This tends to support our hy-
pothesis in this study that it is the absence of natural
climate forcings (solar variability and volcanoes) that
is responsible for the apparent underestimation of var-
iance by the model in comparison with the tree-ring
reconstructions, rather than any fundamental error in the
model internally generated variability.

The study raises several recommendations for the fu-
ture if the proxy record is going to be useful in the
validation of climate models.

First, it is important to quantify the uncertainties in
the proxy record in order to make quantitative com-
parisons. In this study we have taken into account the
residuals of the calibration in the comparison with the
model. In situations where proxy records are calibrated
to represent climate variables (e.g., Mann et al. 1998)
knowledge of the residuals is important as they account
for climate variability not recorded by the proxy. For
this study it is the uncertainty in the low-frequency var-
iability (as illustrated by the two alternative approaches
used to combine all the tree density records together)
that is of most importance; the calibration residuals pro-
vide only limited information about uncertainty on these
timescales. We recommend further work in quantifying
errors in such proxy climate records.

Second, it appears that, at least for the climate var-
iable considered here (summer land temperatures), that
there is significant variability that is forced by natural
factors such as variations in solar output and volcanic
eruptions, over and above the internal variability of the
climate system that arises from nonlinear interactions.
It is important, therefore, to represent these factors in
climate models in order to make a like-with-like com-
parison. This, in turn, requires estimates (with known
error characteristics) of these natural forcings, a pro-
cedure that requires analysis of various proxy indicators
(e.g., Crowley and Kim 1999).

In the absence of instrumental records of climate, the
validation of the variability of climate models on time-
scales of centuries and longer can only be achieved by
recourse to the proxy record. Given the importance of
this variability in the detection, attribution, and predic-
tion of future climate, this validation is crucial if the
models are to be used as estimates of climate variability.
However, there is still considerable progress to be made
by both the proxy data community and the modeling
community before the wealth of past climate informa-
tion can be utilized to the fullest.
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APPENDIX

The Signal-to-Noise EOF Technique of Venzke et al.

The technique developed by Venzke et al. (1999) was
used by them to find the common atmospheric response
of an ensemble of atmosphere-only model experiments
forced by observed SSTs. We reproduce the details of
the method here because of our slightly different ap-
plication, which is to find the patterns of variability that
are ‘‘most different’’ between two different datasets, in
this case between the model and climate proxy data.

Let M be a space–time matrix of model data (e.g., a
series of spatial patterns of surface temperatures) and
let O be a similar space–time matrix computed from the
observations (climate proxy). The number of space
points must be the same for M and O but the number
of time points can be different.

First perform a singular value decomposition (EOF
analysis) of M:

TM 5 E L P .M M M (A1)

Next define the prewhitening operator, F, in the trun-
cated EOF space:

(k) 21T (k)F 5 [(L ) ] E ,M M (A2)

where k is the number of EOFs retained in the trun-
cation. Then prewhiten O with F,

TO9 5 F O, (A3)

and perform an SVD of O9

TO9 5 E9L9P , (A4)

where L9 are the signal-to-noise ratios. Projecting the
EOFs back into ‘‘real’’ space,

Ẽ 5 FE9, (A5)

gives the signal-to-noise maximizing filters. The leading
spatial pattern that is most different between the model
and the observations is then given by

Op1ê 5 , (A6)1
l91

where p1 is the time series obtained by projecting O
onto the leading spatial filter ẽ1, that is,

TO ẽ1p 5 . (A7)1
l91

See Venzke et al. (1999) for more details.
A subtle, but nevertheless crucial, component of the

algorithm is the level of truncation, k, of the EOF space
in the prewhitening operator. Venzke et al. (1999) sug-
gest examining the cumulative ratio of the variance of
the model and observations, as a function of k, for pla-
teaus that suggest the stability of the algorithm. Because
of the difference between their application of the al-
gorithm and ours, this is not possible as there are no
obvious plateaus. Hence we simply take the pragmatic
approach of examining the S/N EOFs at all truncations
and picking the maximum k for which there appears to
be a region of stability in the patterns.

Another difference between the Venzke et al. (1999)
application of the algorithm and ours is in the magnitude
of the signal-to-noise ratios. In Venzke et al. (1999) the
maximum S/N ratios were reasonably large (e.g., of or-
der 10). For our application S/N ratios are more likely
to be of order unity (unless there is some large difference
between the model and the observations that would be
easily seen by looking at, e.g., variances) and hence
there is a question of statistical significance. To judge
statistical significance we substitute the matrix of ob-
served values O with randomly selected portions of the
model matrix M and repeat the analysis. This is then
repeated many times (e.g., 1000) to give a population
of S/N ratios that can be thought of as to have occurred
by chance. We then perform a t test on the S/N ratio
from analysis to get the significance level.
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