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Abstract

In this paper, we derive the scaling laws of the sum rate for fading MIMO Gaussian broadcast

channels using time-sharing to the strongest user, dirty paper coding (DPC), and beamforming

when the number of users (receivers) n is large. Throughout the paper, we assume a fix av-

erage transmit power and consider a block fading Rayleigh channel. First, we show that for a

system with M transmit antennas and users equipped with N antennas, the sum rate scales like

M log log nN for DPC and beamforming when M is fixed and for any N (either growing to in-

finity or not). On the other hand, when both M and N are fixed, the sum rate of time-sharing to

the strongest user scales like min(M,N) log log n. Therefore, the asymptotic gain of DPC over

time-sharing for the sum rate is M
min(M,N) when M and N are fixed. It is also shown that if M

grows as log n, the sum rate of DPC and beamforming will grow linearly in M , but with different

constant multiplicative factors. In this region, the sum rate capacity of time-sharing scales like

N log log n.
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1 Introduction

Using multiple antennas has been shown to increase the capacity of a point-to-point communication

link linearly with min(M, N) for large signal to noise ratios, where M and N are the number of

transmit and receiver antennas, respectively [1]. Recently, there has been a large amount of interest

in the area of MIMO multiuser systems, more specifically, the capacity of MIMO Gaussian broadcast

channels [2].

An example of a multiuser system is the broadcast channel which resembles the down-link com-

munication in cellular systems. It is known that the single antenna broadcast channel is degraded so

its capacity region is known and achieved by superposition coding [3, 4]. Furthermore, if the users

are homogeneous and the transmitter has full channel state information (CSI), using time division

multiplexing and transmitting to the best user maximizes the sum rate capacity (we call this schedul-

ing time-sharing). However, if the transmitter and the receivers have full CSI, the MIMO broadcast

channel is not degraded. In [6, 7, 8, 9], it is proved that the sum rate capacity with full CSI in both

the transmitter and all the receivers is achieved by using dirty paper coding (DPC). In [5], it is further

shown that the capacity region is in fact achieved by DPC.

On the other hand, traditionally beamforming has been used for the down-link scheduling in

MIMO broadcast systems as a heuristic method to reduce the interference in the system. As pointed

out in [11, 12, 13], even though the sum rate capacity of MIMO BC using DPC can be stated as a

convex problem using duality, the sum rate (or throughput) achieved by optimal beamforming cannot

be written as a convex optimization problem, and therefore numerically comparing the throughput of

DPC and beamforming is computationally intensive, especially for a large number of users.

In this paper we investigate the scaling laws of the sum rate capacity of Gaussian MIMO broadcast

channels with many users n using time-sharing, DPC, and beamforming and when the transmitter has

M antennas and each receiver is equipped with N antennas. Previously, in [14, 12], asymptotic results

for the sum rate of DPC and beamforming have been derived when n and M have the same growth

rate. Furthermore, in [16], the asymptotic behavior of the throughput for DPC and time-sharing are

obtained for large signal to noise ratios and large M when the other parameters of the system are

fixed. However, motivated by a cellular system with large number of users (say 100) and having

M ≤ 5 which is about log n, we consider a different region in which n is large and M is either fixed
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or growing to infinity with much less pace, i.e., logarithmically with n (see also [15]). This work also

generalizes a result in [17] where the scaling laws of the sum rate of DPC is derived for the case where

M is fixed and N = 1. Furthermore, we use the sum rate of the random beamforming proposed in

[17] as a lower bound for the sum rate of DPC and beamforming which turns out to be tight for the

regions considered in this paper.

In [16], it is conjectured that for MIMO BC the ratio of the sum rate using DPC over that of time-

sharing is bounded by min
{

M
min(M,N)

, n
}

where M , N are the number of transmit/receive antennas

and n denotes the number of users. In fact, we prove that the aforementioned ratio for a Rayleigh

fading channel is equal to M
min(M,N)

for large number of users and when M and N are fixed.

This paper is organized as follows: Section 2 introduces our notation and the channel model.

Section 3, 4 and 5 deal with scaling laws of the sum rate for time-sharing, DPC, and beamforming,

respectively. Section 6 compares the scaling laws for different scheduling schemes and Section 7

concludes the paper.

2 System Model

We consider a Gaussian broadcast channel with n homogeneous users, a transmitter with M antennas

and receivers equipped with N antennas. We also assume a block fading model for the channel with

coherence interval of T , so that the channel remains constant for T channel uses. Therefore we may

write the received vector at the i’th receiver as,

Yi = HiS + Ni, i = 1, . . . , n, (1)

where Hi (N × M ) represents the channel, S (M × 1) is the transmit symbol, Ni is the N × 1 noise

vector. Both Hi’s and Ni’s have independently and identically distributed (i.i.d.) complex Gaussian

distribution with zero mean and the variance of one, CN(0, 1). Furthermore, the average power

constraint of the input signal implies that tr {E(SS∗)} ≤ P , where P is the total average transmit

power which is assumed to be fixed throughout the paper. We further assume that the base station

is subject to short term power constraint, i.e., the base station should satisfy the power constraint for

each fading state [10].
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Throughout the paper, we use f(n) = O(g(n)) to denote that limn→∞ |f(n)
g(n)

| ≤ α where α is a

positive constant independent of n. Similarly, f(n) = o(g(n)) denotes that the limit of the ratio of

f(n) and g(n) tends to zero as n grows.

3 Scaling Laws of Time-Sharing

In a single antenna broadcast system with full CSI in the transmitter, the sum-rate capacity can be

achieved by using time-sharing and sending to the user with the largest capacity. However, for a

multi-antenna broadcast system with full CSI in the transmitter, this is not the case. In this section,

we derive the scaling laws for the sum rate of multi-antenna broadcast channel using time-sharing (to

the strongest user) for large number of users.

It is clear that, by only sending to the strongest user, the sum-rate (denoted by E{Rts}) can be

written as [16, 11],

E{Rts} = E

{
max

i=1,...,n
C(Hi, P )

}
= E

{
max

i=1,...,n
max

Pi≥0,tr(Pi)≤P
log det (I + HiPiH

∗
i )

}
. (2)

where C(Hi, P ) is the capacity of the link between the transmitter and the i’th receiver with the

channel matrix Hi, and Pi (M×M ) is the optimal covariance matrix of the transmitted signal. Lemma

1 considers the case where M and N are fixed and n grows to infinity. Lemma 2 presents the result

for the case that M is also growing to infinity but logarithmically with n.

Lemma 1. For M , N , and P fixed, we have,

lim
n→∞

E{Rts}
min(M, N) log log n

= 1 (3)

Proof: First, we assume M ≥ N , the case where N > M can be analyzed similarly. Using the

inequality det(A) ≤
(

tr(A)
N

)N

where A is an N ×N matrix, we can bound C(Hi, P ) as,

C(Hi, P ) ≤ N log

(
1 +

1

N
tr(HiPiH

∗
i )

)
(4)

Defining Hi = [hi
1 . . . hi

M ] (where hi
j (N × 1) is the j’th column of Hi), we can use the inequality

tr(HiPiH
∗
i ) ≤ max

1≤j≤M
hi∗

j hi
jtr(Pi). (5)
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We can also find a lower bound by assigning equal power to N transmit antennas instead of M .

Clearly, this leads to,

C(Hi, P ) ≥ N log

(
1 +

P

N
λmin(H

′

iH
′∗
i )

)
(6)

where λmin(·) denotes the minimum eigenvalue of its argument and the matrix H
′
i (N × N ) is a

truncated version of Hi (N×M ) by omitting M−N columns of Hi. Using (4) and (6), we may write

the expected sum rate of the time-sharing scheme as,

E

{
N log

(
1 +

P

N2
max
1≤i≤n

λmin(H
′

iH
′∗
i )

)}
≤ E{Rts} ≤ E

{
max

i=1,...,n
N log

(
1 +

P

N
max

1≤j≤M
hi∗

j hi
j

)}
.

(7)

It is worth noting that hi∗
j hi

j’s have χ2(2N) distribution. In [19], it is shown that Nλmin(H
′
iH

′∗
i ) is

exponentially distributed ([19], Theorem 5.5, p.62). Therefore, using the results in extreme value

theory (see Appendix A of [17] and [20]), it can be shown that,

Pr

{
log nM + (N − 2) log log nM + O(log log log n) ≤ max

1≤i≤nM,1≤j≤M
hi∗

j hi
j

≤ log nM + N log log nM + O(log log log n)

}
= 1−O

(
1

log n

)
(8)

where hi∗
j hi

j for i = 1, . . . , n and j = 1, . . . ,M , are i.i.d. and have χ2(2N) distribution.

Noting that Nλmin(H
′
iH

′∗
i ) has χ2(2) distribution, we can similarly prove that,

Pr

{
log n− log log n ≤ max

1≤i≤n
Nλmin(H

′

iH
′∗
i ) ≤ log n + log log n

}
= 1−O

(
1

log n

)
. (9)

Defining A = log nM + N log log nM + O(log log log n), we can now obtain an upper bound for

E{Rts} as,

E{Rts} ≤ E

{
Rts| max

1≤i≤n,1≤j≤M
hi∗

j hi
j ≤ A

}
Pr

{
max

1≤i≤n,1≤j≤M
hi∗

j hi
j ≤ A

}
+

∫ ∞

A

N log(1 +
P

N
x)nfN(x)(1− FN(x))n

≤ N log

(
1 +

P

N
log n

)
+

∫ ∞

A

N log(1 +
P

N
x)nfN(x) (10)

where fN(x) and FN(x) are the PDF and CDF of the a χ2(2N) random variable. Denoting the second

term in the right hand side of (10) by G(n), it is straightforward to show that limn→∞
G(n)

log log n
= 0

using L’Hopital’s rule. Therefore, we can state that

E{Rts} ≤ N log

(
1 +

P

N
log n

)
+ o(log log n). (11)
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Similarly, a lower bound can be written as

E{Rts} ≥ E
{

Rts| log n ≤ maxNλmin(H
′

iH
′∗
i ) ≤ log n + log log n

}
×

Pr
{

log n ≤ maxNλmin(H
′

iH
′∗
i ) ≤ log n + log log n

}
= N log

(
1 +

P

N2
log n

)(
1− 1

log n

)
. (12)

Eqs. (11) and (12) complete the proof and lead to (3).

Lemma 2. For M = β1 log n where β1 is a constant independent of n and for N and P fixed, we

have,

lim
n→∞

E{Rts}
N log log n

= 1 (13)

Proof: The proof is along the same line as the proof of Lemma 1. Clearly, assuming M ≥ N ,

Eq. (7) holds for any M , N and P . Furthermore, the derivation of the upper and lower bounds in

Lemma 1 was based on the distribution of max
1≤i≤n,1≤j≤M

hi∗
j hi

j or max1≤i≤nNλminH
′
iH

′∗
i where hi∗

j hi
j’s

and HiH
∗
i have χ2(2N) or χ2(2) distributions for any M and N , respectively. As N is assumed fixed,

both bounds both hold and therefore E{Rts} is growing like N log log n.

4 Scaling Laws of DPC

In [17], assuming a transmitter with M antennas, single antenna receivers and total average transmit

power of M , it is proved that the sum rate capacity of DPC scales like M log log n for large values of

n and when M is fixed. In this section, we first generalize this result to the case of having multiple

antenna users, i.e., N ≥ 1, and when the average total transmit power is fixed. Again, we further look

into the scaling laws of the sum rate when M is also going to infinity logarithmically with n, i.e. with

a much lower pace than n.

In the following Lemma, we show that when M is fixed the sum rate scales like M log log nN as

n grows to infinity and for any N no matter whether N grows to infinity or not.

Lemma 3. For M and P fixed and any N , we have,

lim
n→∞

E{RDPC}
M log log nN

= 1. (14)
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Proof: The sum rate in MIMO BC channel has been recently addressed by several authors [6, 7, 8].

Using the duality between the broadcast channel and multiple access channel (MAC), the sum rate of

MIMO BC, E{RDPC} is equal to [7, 8],

E{RDPC} = E

{
max

{P1≥0,...,Pn≥0,
P

tr(Pi)≤P}
log det

(
I +

n∑
i=1

H∗
i PiHi

)}
(15)

where Hi are N ×M channel matrices with i.i.d. CN(0, 1) distributions, Pi (N ×N ) is the optimal

power scheduling, and P is the total transmit power.

Using the inequality det(A) ≤
(

tr(A)
M

)M

where A is an M ×M matrix, we can write (15) as,

E{RDPC} ≤ ME

{
max

{P1,...,Pn,
Pn

i=1 tr(Pi)≤P}
log

(
1 +

∑
tr(H∗

i PiHi)

M

)}
(16)

Denoting the matrix H∗
i =

[
gi∗
1 . . . gi∗

N

]
(where gi

j (1×M ) is the j’th row of Hi), we can state the

following inequality,

tr(H∗
i PiHi) ≤ max

1≤j≤N
gi

jg
i∗
j tr(Pi). (17)

Using (17) and (16), we obtain,

E{RDPC} ≤ ME

 max
{P1,...,Pn,

P
tr(Pi)≤P}

log

1 +

∑n
i=1 max

1≤j≤N
gi

jg
i∗
j tr(Pi)

M


≤ ME

 max
{P1,...,Pn,

P
tr(Pi)≤P}

log

1 +
max
1≤k≤n

max
1≤j≤N

gk
j g

k∗
j

∑n
i=1 tr(Pi)

M


= ME

{
log

(
1 +

P

M
max

1≤i≤nN
κi

)}
. (18)

where κi’s are i.i.d. random variables with χ2(2M) distribution. Eq. (8) states that with high

probability the maximum of nN i.i.d. random variables with χ2(2M) distribution behaves like

log nN + O(log log n) [17] (see also Eq. (9)). Therefore similar to the argument in (10), we may

write

E{RDPC} ≤ M log (1 + P log nN) + o(log log n). (19)

To prove that M log log nN is achievable, we use the scheme proposed in [17] with partial side in-

formation that achieves M log log nN when M is fixed. It is worth noting that in [17], the average

transmit power was M (P = M ), however, since M is fixed, it is easy to see that changing the average
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total transmit power from M to P (another constant) does not affect the scaling law of the sum rate.

Therefore,

E{RDPC} ≥ M log log nN + O(log log log n). (20)

Eq. (19) and (20) complete the proof of the lemma.

The next Lemma considers a different region in which M is also logarithmically increasing with

n.

Lemma 4. For M = β log n and fixed N , P and β, we have,

lim
n→∞

E{RDPC}
M

= γ (21)

where γ is a constant independent of n. Furthermore, we can bound γ by γ ≤ log(1 + α) where α is

the unique solution to α− β log α = 1 + β − β log β.

Proof: As we stated in the proof of Lemma 1 (i.e. Eq. (18)), we can write the following upper

bound for the sum rate capacity for any n and M ,

E{RDPC} ≤ ME

{
log

(
1 +

P

M
max

1≤i≤nN
κi

)}
. (22)

where κi’s are i.i.d. χ2(2M) random variables, i.e., M = β log n. The only difference here is that M

is also a function of n and is going to infinity. In Appendix A, we prove that,

Pr

{
max

1≤i≤nN
κi ≤ α log n + O(log log n)

}
= 1−O

(
1

log n

)
. (23)

The upper bound in the Lemma follows by using the same technique as in Lemma 1.

In order to find a lower bound, we may use any suboptimal scheduling and show that its sum-rate

is bigger than αM where α is a constant independent of n. This is in fact done in [17] using a random

beamforming method. This completes the proof of the Lemma.

5 Scaling Laws of Beamforming

Traditionally, transmit beamforming has been used as a method in multiple transmit antenna systems

to suppress the interference in the receivers. In this case, the transmitted signal is
∑M

m=1 φmsm where
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φm’s are beams carrying information symbols sm for M different users. The weight vectors φm should

be chosen such that total transmit power is less than P and the sum-rate is maximized. We denote the

resulting sum rate by E{RBF}.

Clearly the sum rate of DPC is an upper bound for the sum-rate achieved by any beamforming

scheme. In order to find a lower bound on the sum-rate of the optimal beamforming (that maximizes

the sum-rate), we can use a random beamforming scheme as in [17], in which φm’s are random

orthonormal vectors, to find a lower bound for the throughput of the beamforming (see also [18]).

It is shown in [17], that under average transmit power of M (P = M ), the sum rate of random

beamforming scales like M log log n and M log(1+c) as M is fixed or logarithmically increases with

n, respectively. In particular, when M , N , and the total average transmit power are fixed, it is shown

that

lim
n→∞

E{RBF}
M log log nN

= 1, (24)

Using the same technique as in [17], we can generalize the result to the case where P is fixed and M

grows like logarithmically with n. We summarize the results in the following corollary:

Corollary 1. Let Nand P be fixed and E{RBF} denotes the sum-rate achieved by beamforming. If

M = log n+3 log log n
c
P

+log(1+c)
where c is a constant, then

lim
n→∞

E{RBF}
M

= γ′, (25)

where γ′ is a constant less than γ in Lemma 4 and larger than log(1 + c).

Proof: The upper bound follows from the fact that E(RBF ) ≤ E(RDPC). As for the lower bound,

we use the scheme of [17] to deduce that E{RBF} ≥ log(1 + c)M + O(log log n). The proof is very

similar to the proof for the case where the average transmit power per antenna is fixed (P = M ) as in

Theorem 1 and 2 of [17]. We omit the proof for the sake of brevity.

6 Comparison of Time-Sharing, Beamforming, and DPC

Clearly, the scaling law of the sum rate is the same for beamforming and DPC when M is fixed and

n grows to infinity. As the number of antennas is getting large and grows logarithmically with n, the
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sum rate of DPC and beamforming have the same growth rate, however, the beamforming is worse by

a multiplicative constant.

On the other hand, in [16], the scaling laws of DPC and time-sharing are compared for the case of

large P and large number of transmit antennas when all the other parameters are fixed. It is shown that

in these cases, the ratio of the sum rate of DPC over that of time-sharing is equal to min
(

M
min(M,N)

, n
)

.

Based on the results in the previous sections, we can also compare the sum rate of DPC and time-

sharing in a Rayleigh fading channel and for the case of large number of users and when the transmit

antennas are fixed or grows logarithmically with n. Lemma 1 and 4 imply that for M and N fixed and

when M ≥ N , we have

lim
n→∞

E{RDPC}
E{Rts}

= lim
n→∞

M log log n

min(M, N) log log n
=

M

min(M, N)
. (26)

Eq. (26) proves that the sum-rate of DPC (and beamforming) outperform that of the time-sharing if

the transmitter is equipped with multiple antennas.

7 Conclusion

In this paper, we obtained the scaling laws of the sum rate of MIMO Gaussian broadcast channel

using DPC, beamforming, and time-sharing. The focus of this work was in the case of large number

of users and when the number of transmit antennas is fixed or growing logarithmically with n. It is

shown that when M and N (number of transmit/receiver antennas) are fixed, the gain in using DPC

over time-sharing is equal to M
min(M,N)

.

A Proof of Eq. (23)

In this appendix, we investigate the behavior of the maximum of n i.i.d. random variable κi for

i = 1, . . . , n with χ2(2M) distribution where M = β log n. Clearly the cumulative distribution

function of κi can be written as,

F (x) = Pr{κi ≤ x} = 1− e−x

M−1∑
m=0

xm

m!
= 1− Γ(M, x)

Γ(M)
(A.1)
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In order to find the behavior of the maximum of κi’s, we have to compute F n(x). Following the

technique in [17], we initially solve the following equality,

F (xl) = 1− Γ(M, xl)

Γ(M)
= 1− (log n)3

n
(A.2)

It is worth noting that both arguments of the incomplete Gamma function in Eq. (A.2) are going to

infinity. The asymptotic expansion of the incomplete Gamma function has been studied by Tricomi

[22, 23] and it is shown that

Γ(M, x) =
e−xxM

x−M + 1

{
1− M − 1

(x−M + 1)2
+

2(M − 1)

(x−M + 1)3
+ O

(
(M − 1)2

(x−M + 1)4

)}
(A.3)

as the modulus of
√

M/(x − M) tends to zero. We can also write the asymptotic expansion of the

Gamma function as [24] as,

log Γ(M) = M log M −M − 1

2
log M + O(1). (A.4)

Using the asymptotic expansions, we can solve (A.2) to get xl = α log n − 5
2
log log n + o(log log n)

where α satisfies,

α− β log α = 1 + β − β log β. (A.5)

Therefore the probability that the maximum of κi’s is less than xl can be written as,

Pr

{
max
1≤i≤n

κi ≤ xl

}
= (F (xl))

n =

(
1− (log n)3

n

)n

= O
(
e−(log n)3

)
. (A.6)

We can also find xu such that F (xu) = 1 − 1
n log n

as xu = α log n + 3
2
log log n + o(log log n).

Therefore,

Pr

{
max
1≤i≤n

κi ≤ xu

}
= (F (xu))

n =

(
1− 1

n log n

)n

= 1−O(
1

log n
). (A.7)

Eq. (A.6) and (A.7) can be combined to get,

Pr

{
α log n− 5

2
log log n + o(log log n) ≤ max

1≤i≤n
κi ≤ α log n +

3

2
log log n + o(log log n)

}
= 1−O

(
1

log n

)
. (A.8)

that completes the proof for Eq. (23).
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