
664

Cache zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI:.
(Space) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1

IEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 43, NO. 6. JUNE 1994

. ;. . ~. .X . . iX X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5.. -. -. 1 : x i x x

Horizontal Slice
x x x j

X
x:x x ~

x x
X

x :

A Comparison of Trace-Sampling Techniques
for Multi-Megabyte Caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R. E. Kessler, Mark D. Hill, and David A. Wood

Abstract-This paper compares the trace-sampling techniques
of set sampling and time sampling. Using the multi-billion-
reference traces of Borg et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuL, we apply both techniques to
multi-megabyte caches, where sampling is most valnable. We
evaluate whether either technique meets a 10% sampling goal:
a method meets this goal if, at least 90% of the time, it estimates
the trace’s true misses per instruction with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10% relative error ’
using <_ 10% of the trace. Results for these traces and caches
show that set sampling meets the 10% sampling goal, while time
sampling does not. We also find that cold-start bins in time
samples is most effectively reduced by the technique of Wood
et al. Nevertheless, overcoming cold-start bias quires tens of
millions of consecutive references. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index rem-Cache memory, cache performance, cold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstart,
computer architecture, memory systems, performance evaluation,
sampling techniques, trace-driven simulation.

I. INTRODUCTION

OMPUTER designers commonly use trace-driven sim- C ulation to evaluate alternative CPU caches [21]. But as
cache sizes reach one megabyte and more, traditional trace-
driven simulation requires very long traces (e g , billions of
references) to determine steady-state performance [4], [22].

But long traces are expensive to obtain, store, and use.
We can avoid simulating long traces by using trace-

sampling techniques. Let the cache performance of a small
portion of the trace be an observation and a collection of
observations be a sample. Sampling theory tells how to predict
cache performance of the full trace, given a sample of unbiased
observations [5], [141. With additional assumptions, we can
also estimate how far the true value is likely to be from the
estimate.

Two important trace-sampling techniques are set sampling
[7], [18] and time sampling [12], [13]. An observation in
set sampling is the cache performance for the references to
a single set (depicted as a horizontal slice in Fig. l), while
an observation in time sampling is the cache performance of
the references in a single time-contiguous trace interval (a

Manuscript received September 31, 1991; revised June 1993. R. E.

Time-Space. Diagram of Memory References

x x -.....

I X

Time

Fig. 1. Sampling as vertical and horizontal time-space slices. This figure
shows a time-space diagram of a simulation with a very short trace.lhe time
(position within the trace) and cache set of each reference is marked with
an X . An observation in set sampling is the cache performance of one set.
References that determine a single set’s performance appear inan horizontal
slice of this figure.An observation in time sampling is the cache performance
of an intervalof consecutive references. These references appear in a vertical
slice of this figure.

vertical slice in Fig. 1). Laha et ai. [12] and Wood et al. 1251
referred to an observation of references in a time-contiguous
interval as a “sample.” We use sample to refer to a collection of
observations to be consistent with statistics terminology [141.

This study is the first to compare set sampling and time
sampling. We use eight multi-billion-reference traces of large
workloads that include multiprogramming but not operating
system references [4], and concentrate on multi-megabyte
caches, where sampling is most needed. For each trace and
cache, we examine how well set and time samples from a
trace predict the misses per instruction (MPI) of the entire
trace. We say a sampling method is effective if it meets the
10% sampling goal: a method meets this goal if, at least 90%
of the time, it estimates the trace’s true misses per instruction
with 5 10% relative error using 5 10% of the trace.

It is critical that readers note that the 10% sampling goal
evaluates using samples from a trace to estimate that trace’s
MPI. We do not formally address how our traces relate to the

Kessler was supported in Part by a Summer internship at Digital Equipment
Corporation and graduate fellowships from the National Science Foundation

was supported in part by the National Science Foundation (MIPS8957278
and CCR-8902536). A.T.& T. Bell Laboratories, Cray Research Foundation
and Digital Equipment Corporation. D. A. Wood was supported in part by the
National Science Foundation (CCR-9 157366) and the University of Wisconsin
Graduate School.

population of all traces, because we know of no research that

driven studies, we describe Our traces and leave it to the
and the University of Wisconsin Alumni Research Foundation, M, D, Hill quantitatively characterizes that popu1ation’ Like most trace-

reader to decide whether they are representative of a larger
population. Section discusses the reasoning behind the
10% samDling goal in more detail. . - -

The authors are with the University of Wisconsin, Computer sci-
ences Department, Madison, WI 53706 USA; e-mail: { kessler, markhill,
david) @cs.wisc.edu.

With our traces and caches, we find several results per-
taining to set sampling (Section 111). First, how we compute

IEEE Log Number 9401099. MPI is important. We find that it is much less accurate to

0018-9340/94$04.M) 0 1994 IEEE

mailto:cs.wisc.edu

KESSLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/.: A COMPARISON OF TRACE-SAMPLING TECHNIQUES FOR ML'LTI-MEGABYTE CACHES

normalize misses by the instruction fetches to the sampled
set5 than by the fraction of sampled sets times all instruction
fetches. Second, instead of selecting the sets in a sample
at random, selecting sets that share several index bit values
reduces simulation time, facilitates the simulation of cache
hierarchies, and still accurately predicts the trace's MPI. Third,
and most important, set sampling is effective. For our traces
and caches, it typically meets the 10% sampling goal.

For time-sampling (Section IV), we first compare techniques
for overcoming cold-start bias [6], Le., determining the MPI
for a particular trace interval without knowing the initial
cache state. We consider leaving the cold-start bias unchanged,
recording metrics only during the second half of each interval,
recording metrics only for initialized sets [12], [22], stitching
intervals together zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[11, and Wood er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul.'s model for predicting
the initialization reference miss ratio [25]. For our traces and
caches, we obtain two results. First, on average, the technique
of Wood et al. minimizes the cold-start bias better than the
other techniques. Second, for the multi-megabyte caches we
Ftudied, interval lengths of tens of millions of instructions and
larger are needed to reduce the effects of cold-start.

Then using Wood et al.'s technique to mitigate cold-start
bias, we find that time sampling fails to meet the 10%
sampling goal for our traces and caches, because: 1) many
intervals are needed to capture workload variation, and 2)
long intervals are necessary to overcome cold-start bias. As

a result, for these traces and caches, set sampling is more
effective than time sampling for estimating MPI. Set sampling
is not appropriate, however, for caches with time-dependent
behavior (e.g., prefetching) or interactions between sets (e.g.,
a single write buffer).

We do not consider other (non-sampling) techniques that
reduce trace data storage, such as, Mache [191, stack deletion
and snapshot method [20], trace (tape) stripping [18], [231,
or exploiting spatial locality [2]. These techniques can be
used in addition to the sampling considered in this study. We
also do not consider Przybylski's prefix technique [16], which
prepends all previously-referenced unique addresses to each
time-observation. This method seems unattractive for multi-
megabyte caches where each time-observation requires its own
prefix and each prefix must be very large for programs that
can exercise multi-megabyte caches.

11. METHODOLOGY

This section describes the traces, caches, and performance
metric we use in later sections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATruces

The traces used in the study were collected at DEC Westem
Research Laboratory (WRL) [3], [4] on a DEC WRL Titan
[151, a loadstore ("RISC") architecture. Each trace consists
of the execution of three to six billion instructions of large
workloads, including multiprogramming but not operating sys-
tem references. The traces of the multiprogrammed workloads
represent the actual execution interleaving of the processes
on the traced system. The traces reference from eight to
over one hundred megabytes of unique memory locations.
These traces are sufficiently long to overcome the cold-start

TABLE I
A DESCRIPTIO% OF THE STLlDlED WORKLOADS

665

Dcxnption

A muluprogram aorkload con\!sting of (I) Make C campilmg portions of the Magic
source code. (2) Cirr routing the DEC%ation 3100 Printed Circuit Board (16 megabytes).
(3) Magic Dectgn Rule Checking the MulttTitan CPU chip (20 megabytes). (4) Tree
given 10 megahytec of working space solving the same problem as the Tree workload,
(5) another Makc that largely consists of a call to Xld to load the Magic ohject code (2C
megabytes). and (6) an infinite loop shell of interactive Unix commands (cp. cat. ex, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArm
pc -aux, Is -I /* 1 The trace skipped ahout the first billion instructions so the larger pro-
grams. Grr, Magic. Tree, and Xld. were able to initialize their large data structures and
start using them. The p n r e s \witch interval WdS approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200.000 instruction cy-
des

Thc same workload a\ Mult l except the procev switch interval i c approximately 4 W . m
hasic ~ n s t ~ c t i o n cyclm

The Mul t l workload excluding the Xld (Make) run (5) and the Tree program (4). Mu112
has a lower degree 01 multiprogramming and i s smaller than Mul t l

'The same workload a\ Mu112 except the process w i t ch interval is approximately 400,000
hasic Initruction cycle\.

A uniprogram workload uf Tv analyiing the timing of the DEC WRL MultiTitan CPU
chip Tv required 12.5 hillion instructions to complete the timing analysis. About the
first IO hillion in\tmction\ huild B very large linked data stmcture. The final 2-3 hillion
inclructions traverse the structure. The end of the execution of Tv was captured on rape.

A uniprogram u,orklnad of the Sor program doing matrix manipulations on a 800,Mx) by
2LNl.MX) spane matrix with approximately 4 million (0.0325%) of the matrix entries k-
ing nun-zero About thc hrnt hillion IIISIN~~IOPS create the large matrices. The rest 01
the program 1s the matrix upcralions. The trace captures a portion of the matrix opera-
tions. excluding initialization.

k uniprogram workload consisting of the Tree program. Tree has two major phases that
were traced. Ahout the first ha l f of the instructions build a large tree suucturc that
repreqenls a Unix-like hierarchical directory structure. The rest o f the instructions search
this tree to find the largest memkr

A uniprogram workload of Linear analyzing the power supply of a register file Normal- '

ly, the program tries to minimize the amount of work it must do by combining circuit ~

structures. The trace was collected hy disabling some of these comhinmg operation\ to

--

_ _ _ _ _ _ _ _ ~ ~ ~ ~ ~ ~

____.

~ ~~

~-

~ ~ ~ _ _ ~ ~ _ _

produce a bigger problem, possibly reflecting the larger pmhlems of the future. i

This table consists of a description of the user-only (no kernel references)
workloads used in this study. Four workloads are uniprogrammed and two are
multiprogrammed workloads. The uniprogrammed workloads consist of the
largest programs. Several smaller programs were grouped with some standard
Unix programs to produce the multiprogrammed workloads.

intervals of even the large caches considered in this study. We
chose programs with large memory requirements because of
the likelihood that large application sizes will become more
common as main memories of hundreds of megabytes become
available.

Table I describes traces in detail. The Mult2 trace includes
a series of compiles, a printed circuit board router, a VLSI
design rule checker. and a series of simple programs com-
monly found on UNIXTM systems, all executing in parallel
(about 40 megabytes active at any time) with an average of
134 000 instructions executed between each process switch.
The Mult2.2 trace is the Mult2 workload with a switch
interval of 2 14 000 instructions. The Multl trace includes
the processes in the Mult2 trace plus an execution of the
system loader (the last phase of compilation) and a Scheme
(Lisp variant) program (75 megabytes active) and has a switch
interval of 138000 instructions. The Multl.2 trace is the
Multl workload with a switch interval of 195 000 instructions.
The Tv trace is of a VLSI timing verifier (96 megabytes).
Sor is a uniprocessor successive-over-relaxation algorithm
that uses large, sparse matrices (62 megabytes). Tree is a
Scheme program that searches a large tree data structure (64
megabytes). Lin is a power supply analyzer that uses sparse
matrices (57 megabytes).

B. Criche Assirmptions

This study focuses on multi-megabyte unified (both instruc-
tions and data cached together) caches. Earlier work has shown

T\I
Trademark AT&T Bell I.aboratorieq.

666 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
that both techniques are effective for smaller caches [12],
[18]. We vary the size and set-associativity of these caches
over a range of sizes from 1-megabyte to 16-megabytes and
associativities from direct-mapped to four-way. The caches
do no prefetching, use write-back and write-allocate policies,
and have 128-byte blocks. The caches use virtual-indexing
(i.e., select the set of a reference using the reference’s virtual
address) with PID-hashing, an approximation to real-indexing.
PID-hashing means that we exclusive-or the upper eight index
bits from the virtual address with the process identifier (PID)
of the currently executing process. We also examined several
real-indexed caches and found that they produced results
similar to those in this paper, which is not surprising since
real-indexed cache performance is often close to virtual-
indexed cache performance. The non-direct-mapped caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.
use a random replacement policy, which was easier to handle
in the our simulation environment than is least-recently-used
replacement.

Since multi-megabyte caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare likely to be used in a
cache hierarchy, we simulate them as alternative secondary
caches placed behind a fixed primary cache. The primary
caches are split (separate) instruction and data caches that
are 32-kilobytes each, direct-mapped, 32-byte blocks, do no
prefetching, use virtual indexing, and write-back and write-
allocate policies. We do not evaluate primary cache tradeoffs
in this study since secondary cache performance is unaffected
by the primary caches when their sizes differ by at least a
factor of eight [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. The Performance Metric: Misses Per Instruction

We measure cache performance with misses per instruction
(MPI) rather than miss ratio. For comparing the performance
of alternative unified secondary caches, MPI is equivalent to
Przybylski’s global miss ratio [171. Specifically, a cache’s MPI
is equal to its global miss’ratio times the average number of
processor references (instruction fetches and data references)
per instruction.

D. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10% Sampling Goal

Given a particular trace and cache, let MPItrue be MPI
obtained by simulating the complete trace with an initially
empty cache (the true MPI of the complete trace). We say a
sampling method is effective (for that trace and cache) if it
meets the following goal:

Defiition I) 10% Sampling Goal: A method meets the
IO% sampling goal if, at least 90% of the time, it estimates
the trace’s true misses per instruction with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10% relative
error using 5 10% of the trace.

The IO% sampling goal evaluates using samples from a
trace to estimate MPItrue (that trace’s MPI). As discussed in
the introduction, we do not formally address how our traces
relate to the population of all traces, because we know of no
research that quantitatively characterizes that population. For
this reason, readers must choose between accepting our results
(by assuming our traces are representative of their workload)
and re-applying our techniques to their traces. We share this

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 6, JUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1994

failure of generalizing to the population of all traces with all
trace-driven cache studies we are aware of.

We chose 5 10% of the references in a trace and 5 10%
relative error using our experience with cache design and
evaluation. We expect cache designers would not confront the
intellectual complexity of sampling for less than a factor of ten
reduction in trace size. We also expect many cache designers
would consider negligible a 10% relative error in estimating a
trace’s MPI, since MPI variations between traces often exceed
factors of ten. Nevertheless, other cache designers may wish to
choose stricter or looser criteria and re-apply the techniques
described in this paper.

111. SET SAMPLING

We first examine set sampling, where an observation is the
MPI of a single set and a sample is a collection of single-
set observations. Section 111-A discusses how to compute a
set sample’s MPI and why it should not contain random sets,
while Section 111-B examines how well set sampling predicts
MPItrue, the MPI of a full trace.

A. Constructing Set Samples

In this section, we find
that how we compute MPI is important; specifically, it is much
less accurate to normalize misses by the instruction fetches to
the sampled sets than by the fraction of sampled sets times
all instruction fetches. Consider a cache with s sets. For each
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi , let miss, and instrn, be the number of the misses and
instruction fetches to set i. Let S be a sample containing all
references to n sets.

We consider two ways to calculate the MPI of sample S.
=IS, which both require two counters to process a trace.
Both use one counter to accumulate the number of the misses
to the sets in the sample. At the end of the trace, this counter
equals EzES miss,.

The sampled-instructions method uses the second counter
to accumulate the instruction feEhes to the sets in the sample
(EzES instrn,) and computes MPIs with:

Calculating the MPI of a Sample:

h Lies miss;
MPIs = CiEs instrn; ’

The fraction-instructions method uses the second counter to
to accumulate the instruction fetcJhes to all sets in the cache
(E:=’=, instrn;) and computes MPIs with:

h EiEs miss;
MPIs = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7L

; E:==, instrn; .

An alternative view of the effort required for these two
methods is to consider the information that must be saved
from the full trace if cache simulation is not done when
gathering the trace. Both methods require that all references to
the sampled sets be saved. The fraction-instructions method
also requires a count of the number of instruction fetches in
the full trace. Since most trace-gathering tools accommodate
adding a counter, we consider the difficulty of obtaining data
for the two methods comparable.

h t S \ L t K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul A COMPARISON OF TRACE-SAMPLING TECHNIQUES FOR MULTI-MEGABYTE CACHES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

661

Coefficient of Variation (percent)
MP'ime IOGo ;action-instructions sampled-instructions

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11
COtttlCIENT OF VARIATION OF MPI COMPUTATIONS

Multl 2.3% 35.2%
1.9% 28.9%
1.9% 24.2%
1.3% 24.3%
0.6% 139.0%
0.3%

0.59 6.8%
0.09 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.6%

This table illustrates the accuracy of computing the full trace MPI (column
two) for several traces with the fraction-instructions and sampled-instructions
methods. The accuracy is evaluated with the coefficient of variation (Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(I)) for the MPI estimates from a 4-megabyte direct-mapped secondary cache
with 16 set samples of 1/16 the full trace each. The set samples are constructed
with the constant bits method described in the next section. Results show that
the fraction-instructions method is far superior to the sampled-instructions
method.

In addition, statistics for the fraction-instructions method
are simpler than for sampled-instructions method. Since the
frac.tion-itistructions method normalizes the number of misses
by a constant (for a given sample size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn and number of sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs),
its MPI estimates can be handled as simple random.variables.
MPI estimates for the sampled-instructions method, on the
other hand, should be modeled as the ratio of two random
variables.

We empirically compare the two methods by computing
their coefficients of variation across all set samples S (j)
obtained with the constant-bits method, a systematic sampling
method described in Section 111-A-2:

where k = is the number of samples [5 , p. 2081. CV is the
true coefficient of variation, because we compare the MPI's of
all set samples from the finite population with the trace's true
MPI. We do not compare the methods with expected error,
c7,1(k@Is(j) - MPItrue), because the expected error of

all set samples from the finite population is always zero.
Experimental results, illustrated in Table 11, show that

the fraction-instructions method performs much better, never
having a coefficient of variation more than one-tenth the
sampled-instructions method. The difference is infinite for the
Sor and Lin traces because loops confine many instruction
fetches to a few sets.

We also investigated normalizing missi with total references
per set and data references per set [IO]. These methods perform
similarly to the sampled-instructions method and not as well
as the fEtion-instructions method. We did not consider calcu-
lating MPIs with E. L E S miss, instrn, , because Puzak [181 showed
estimating miss ratio with the arithmetic mean of the per-set
miss ratios is inferior to dividing the misses to sampled sets
by the references to sampled sets (the miss-ratio equivalent of
the sampled-instructions method). For a sample containing all

Since the fraction-instructions method performed better than
the other methods examined, we will use it for the obtaining
the remaining set sampling results.

The Constunt-Bits Method: We now examine two methods
for selecting sets to form a sample. We show why systematic

sets, Puzak's work also implies cf=, - # MPLrue.

filter with

\mulate

each cache

- random

;i x t s o i

evchcack

simulate

each cache

filter with
four

C0"StMt

bits

(a) (b)

Fig. 2. Two methods for selecting the sets in a sample. This figure illustrates
selecting sets for samples of three alternative caches (A, B, and C) using (a)
random sets and (b) constant bits. When sets are selected at random, each
simulation must begin by filtering the full trace. With constant-bits, on the
other hand, a filtered trace can drive the simulation of any cache whose index
bits contain the constant bits.

samples constructed via constunt-bits offer advantages over
random samples.

Assume that we want to evaluate three caches with samples
that contain about 1/16th the references in a full trace. Let
the caches choose a reference's set with bit selection (i.e., the
index bits are the least-significant address bits above the block
offset) and have the following parameters:

Cache A: 32-kilobyte direct-mapped cache with 32-byte
blocks (therefore its index bits are bits 14-5, assuming refer-
ences are byte addresses with bit 0 being least-significant);
Cache B: 1 -megabyte two-way set-associative cache with
128-byte blocks (index bits 18-7); and
Cache C: 16-megabyte direct-mapped cache with 128-byte
blocks (index bits 23-7).
One method for selecting the sets in a sample is to choose

them at random [181. To evaluate cache A with references to
random sets, we randomly select 64 of its 1024 sets (1/16th),
filter the full trace to extract references to those sets. and then
simulate cache A. For cache B, we select 128 of its 2048
sets, filter and simulate. Similarly for cache C, we use 8192
of its 131 072 sets. As illustrated in Fig. 2(a), selecting sets
at random requires that each simulation begin by extracting
references from the full trace. Furthermore, since primary and
secondary caches usually have different sets, it is not clear
how to simulate a hierarchy of cache when sets are selected
at random.

A second method, which we call constant-bits, selects
references rather than sets [22, p. 591. The constant-bits
method forms a filtered trace that includes all references that
have the same value in some address bits. This filtered trace
can then be used to simulate any cache whose index bits
include the constant bits2 [IO]. For example, if we filter a
trace by retaining all references that have the binary value

'This description as~umes bir selection, Le., the set-indexing bits come
directly from the address of the memory access [21]. The scenario is more
complicated with other than simple bit-selection cache indexing. In particular,
since we use PID-hashing in this study, we ensured that the hashed index
bits did not overlap with the constant bits. Note that though we use virtual-
indexing, one can apply the constant-bits technique to real-indexed caches.
and to hierarchical configurations with both real and virtual indexed caches i f
the constant bits are below the page boundary.

668 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Trace

Multl

Multl.2

MultZ

Mult2.2

Tv

Sor

Tree

Lin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M p , , ~ looo
Fraction of Sets in Sample
1116 I I64

0.70 1.78 1.71
0.69 I .39 I .27
0.61 1.02 1 .so
0.59 1.85 I .%
1.88 1.94 0.74
7.54 26.05 19.45
0.59 0.94 0.99
0.09 1.26 I .35

IEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 43, NO. 6, JUNE 1994 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sinm*lc TABLE 111

RANEOM SAMPLE VARIANCE OVER SYSTEMATIC SAMPLE VARIANCE

constant prim
cache

bits

Fig. 3. Using constant-bits samples with a hierarchy. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfigure illustrates
how to use constant-bits samples to simulate a primary cache (P) and three
alternative secondary caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A , E and C).

! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

oo00 (or one of the other 15 values) in address bits 11-8, then
we can then use the filtered trace to select 1 4 6 4 of the sets
in any cache whose block size is 256 bytes or less and whose
size divided by associativity exceeds 2 kilobytes. These caches
include caches A, B, and C, the primary caches used in this
study (32-byte blocks, 32 kilobytes, direct-mapped) and all
secondary caches (128-byte blocks, 1-16 megabytes, 1-4-way
set-associative) considered in this paper.

Constant-bits samples have two advantages over random
samples. First, as illustrated in Fig. 2(b), using constant-
bits samples reduces simulation time by allowing a filtered
trace to drive the simulations of more than one altemative
cache. Second, constant-bits samples make it straightforward
to simulate hierarchies of caches (when all caches index with
the constant bits). As illustrated in Fig. 3, we may simulate
the primary cache once and then use a trace of its misses to
simulate alternative secondary caches.

One complexity of using constant-bits samples is that they
are not random samples, since sets are selected systematically
via certain bit patterns. Intuitively, constant-bits samples may
work better than random samples if spreading the sampled sets
throughout the cache captures more workload variation than
selecting random sets. Constant-bits samples could perform
worse than random samples, however, for workloads that use
their address space systematically (e.g., frequent accesses to a
large, fixed stride vector).

Cochran [5, ch. 81 develops a theory of systematic samples,
which we review in Appendix A. Since the sample mean for
both random and systematic samples are unbiased estimates of
the population mean, systematic sampling yields more accurate
estimates of the population mean if and only if the variance
of the systematic sample mean is less than the variance of a
random sample mean.

We examine this empirically in Table 111. For each trace
with a 4-megabyte, direct-mapped cache, Table I11 displays the
variance of the random sample mean divided by the variance
of the systematic sample mean obtained with the constant
bits method. Values greater than one indicate that systematic
samples are more accurate than random samples; we see that
systematic samples are more accurate or comparable to random
samples in all cases.

1

Since the constant-bits method is easier to use than random
samples and provides similar or better precision, we use the
constant-bits method to construct set samples throughout the
rest of this paper.

B. What Fraction of the Full Trace is Needed?

This section examines how well set samples estimate the
MPI of a full trace. For reasons discussed above, we construct
samples with the constant-bits method and calculate MPI
estimate for a sample with the fraction-instructions method.
We first look at the accuracy of set sampling when MPItrue is
known; then we show how to construct confidence intervals
for MPItrue when it is not known.

Table IV quantifies the error between set samples and
MPItrue for several traces, direct-mapped cache sizes, and
sample sizes. We measure errors with coefficient of varia-
tion calculated using (1). Table X in Appendix C gives the
corresponding results for two-way set-associative caches.

The key result is that, for this data and for four-way set-
associative caches not shown here, set sampling generally
meets the 10% sampling goal. Consider the columns labeled
"1/16" in Tables IV and X, which correspond to samples using
1/16th of the sets and therefore will contain less than 10%
of the trace on average. Only Lin and Tree with 4-megabyte
direct-mapped caches, marked with daggers, fail to have at
least 90% of the constant-bits samples with relative errors of
less than or equal to *lo%. (And they both have only 2 of 16
samples with more than *lo% relative error.) The data also
show the set sampling performs well even if 1/64th of the sets
are sampled.

We also observe that increasing associativity from direct-
mapped to two-way reduces corresponding coefficients of
variation by more than 50%. We conjecture that set sampling
works better for two-way set-associative caches because they
have fewer conflict misses than direct-mapped caches [8]. A
high rate of conflict misses to a few sets can make those sets
poor predictors of overall behavior.

Finally, in practical applications of set sampling, we want
to estimate the error of an MPI estimate, using only the infor-
mation contained within the sample (i.e., not using knowledge
of MPItrue as did Tables IV and X). As Appendix B describes,
we do this by calculating 90% confidence intervals, assuming

KtSFLFR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeI 01 A COMPARISON OF TRACE-SAMPLING TECHNIQUES EOR MULTI-MEGABYTE CACHES 669

Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASize

t IM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 MulcI 4M

TABLE IV .
SET SAMPLING PRECISION FOR DIRECT MAPPED

MPI,,", x loo0 s,,$060f Sets 1164 of Sets cv s f l o% cv
I .55 16/16 4.3% N/A N/A
0.70 16/16 2.3% 62/64 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 6

MuIc1.2 4M
16M
IM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Mu112 4M

16M I 033 I 16/16 1.6% I 64/64 2 % ~
IM I I45 I 16/16 29% I N/A N/A

0.69 16/16 1.9% 62/64 4.1%
0.32 16/16 1.5% 63/64 3.2%
I .24 16/16 3.4% NIA N/A
0.61 16/16 1.9% 64/64 2.96

Sor 4M
16M
IM

Tree 4M

16/16 1.3% 64/64 2.5%
16M 0.27 16/16 1.8% 64/61 3.4%

2.63 16/16 1.9% N/A NIA
4M 1.88 16/16 0.6% 64/64 2.1%

16M 1.03 16/16 0.6% 64/64 2.0%
16/16 0.4% N/A NIA

7.54 16/16 0.3% 64/61 0.7%
I .97 16/16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0% 64/64 0.1%
2.16 15/16 5.6% NIA N/A
0.59 14/16 6.8% t 6/64 136% t

Lin 4M
16M

16M 1 030 I 15/16 4 1% I 61/64 65%
IM 1 I16 I 16/16 33% I N/A N/A

0.09 14/16 7.6% t 54/64 15.0% t
0.02 16/16 0.3% 64/64 0.5%

~~

90% Confidence Intervals that Contain MP/,,,

1/64 of Sets Trace 1 Normal'? I 11160fSets I
fraction percent fraction percent

Mull I
Multl.2
Mulf2

Mult2.2
Tv
Sor
Tree
Lin

yes

Yes

no
yes
no
no

yes

yes

16/16 100%
16/16 100%
15/16 94%
16/16 100%
16/16 100%
16/16 100%
12/16 75%
16/16 100%

61/64 95%
60164 94%
61/64 95%
63/64 98%
51/64 78%
64/64 100%
47/64 73%
62/64 97%

I I I I I

For a 4-megabyte direct-mapped secondary cache and various traces and
fraction of sets, this table gives the fraction and percent of 90% confidence
intervals that contained MPIt,,,,. In all cases where the pefret MPI are
normal, 90% confidence intervals usefully estimate how far MPI. is likely
to he from MPI, r , , f ~ .

a) random samples and b) that our estimate of the mean is
normally distributed. Since variance of observations within our
systematic samples is often greater than variance of the popu-
lation, assumption a) will tend make our confidence intervals
larger than necessary. For finite populations, assumption b)
will generally hold if the underlying population is not highly
skewed [5, Section 2.1 11.

We empirically studied the usefulness of confidence inter-
vals two ways. First, we tested the validity of assumption
b) using normal scores plots (not shown) for sets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4-
megabyte direct-mapped caches [14, p. 1721. Results show
that assumption b) is valid for the four multiprogramming
traces (Mult 1, Mult 1.2, Mult2, and Mult2.2) and Sor, but not
for Tv, Tree, and Lin. Tree and Lin both have several "hot
sets," and these outliers significantly skew their distributions.
This suggests that confidence intervals for uniprogrammed
traces should not be considered meaningful without additional

evidence. Second, we examined how often the 90% confidence
intervals actually included the true mean. Table V displays data
for constant-bits set samples and a 4-megabyte direct-mapped
cache. Results show that the true mean lies within the 90%
confidence intervals of at least 90% of the samples for all
traces where the normal approximation appears valid. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Advantages and Disadvantages oj Set Sampling

The most important advantage of set sampling is that, for
our simulations, i t meets the 10% sampling goal (Definition
1). Especially for the multiprogrammed traces, a set sample
automatically includes references from many execution phases,
so an individual sample can accurately characterize the MPI
of a full trace, including its temporal variability. The reduced
trace data requirements of set sampling allow for simulation
of longer traces, and therefore more algorithmic phases, in
a smaller amount of time. Besides the data reduction, set
sampling also reduces the memory required to simulate a
cache. A set sample containing I / I6 of the full trace needs to
simulate only 1/16 of the sets.

Set sampling does have its limitations. Even with the
constant bits method, the full trace must be retained if one
wishes to study caches that do not index with the constant
bits. Furthermore, set sampling may not accurately model
caches whose performance is affected by interactions between
references to different sets. The effectiveness of a prefetch into
one set, for example, may depend on how many references are
made to other sets before the prefetched block is first used.
Similarly, the performance of a cache with a write buffer may
be affected by how often the write buffer fills up due to a
burst of writes to many sets.

IV. TIME SAMPLING

The alternative to set sampling is time sampling. Here
an observation is the MPI of a sequence of time-contiguous
references and is called an interval. Section IV-A discusses de-
termining the MPI for a sample, while Section IV-B examines
using a sample to estimate MPI for the full trace.

A. Reducing Cold-Start Bias in Time Samples

To significantly reduce trace storage and simulation time, we
must estimate the true MPI for an interval without knowledge
of initial cache state, i.e., the cache state at the beginning of
the interval. This problem is simply the well-known cold-start
problem applied to each interval [6].

The cold-start problem is a key difficulty for time sam-
pling. Sampling theory assumes that a sample is collection
of observations, where each observation gives the true value
for some member of the population. Set sampling meets this
assumption, because computing the true MPI of a set, given all
references to the set. is straightforward. Due to the cold-start
problem, however, statistics for time sampling are calculated
with estimates of the MPI of each interval, rather than the true
values of each interval. Any bias in the interval estimates will.
of course, remain in all statistics, including the sample mean.

We compare how well the five techniques described in Table
VI mitigate the cold-start problem in multi-megabyte caches.

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Multl 4M
16M

670

0.62 +77% +27% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-50% +52% - 1 1 %
0.28 +233% +114% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-80% +I3146 -12%

TABLE VI
TECHNIQUES FOR MITIGATING COLD-START zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I Technique

16M

IM
Sor 4M

16M
IM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

De zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsc r i o t i o n

0.95 +79% 6 1 % -76% +7l% +37%
+O% -0% -5% -11% 4% 15.68

8.08 +Il l% +2% -18% -8% +6%
2.00 +190% 4% -76% -8% +114%
2.00 +13% -040 -10% +29% -1%

COLD assumes hat Ihe initial cache state i s empty. While this assumpion docs m af-
fect misses to full sets or hits to any XI. it cauws COLD to overestimate MPI. bamae
references thar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa p p u to miss to (partially) empty sets may M may m he mi- when
simulated with the (true) initial cache sfate. Thew potential misses are o f m called cold-
smrt misses IE~sF781.

Tree 4M
16M

HALF uses the lint half of the instructions in an interval to (partially) initialire the cache.
and estimates MPI with the remaining instructions.

0.51 +107% +8% -50% +43% +24%
0.30 +217% +35% -77% +69% +IS%

PRlME utimales MPI wilh references to "inmalircd" xu A set In a direct-mapped
cache is inilialired once il is filled [STONWI. while a set tn a scl-assucialive cache IS in,-
tialized after il IS Alled and a nun-musl-menilyuscd block has k n referenced

STITCH approximates the cache state at the beginning of an interval wilh he cache slaw
a1 the end of thc prcviour interval IAoHH881 Thus one crcaies lrace for a sample h)
srirrhing it's intervals togclhcr.

Like COLD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINITMR simulates an interval heginning wilh an empty initial cache slate
lnsrcad of assuming h a l l cold-sm m i s s miss, houcrcr. INlTMR uscs W d et al:s
fi-~,, lo eslimate the fraction of cold-sm misses that would have misxd if lhe initial
cache state was known lWoHK911 The eslimate IS bascd on (I I the fraclion 01 lime !hat
a cache block frame holds a block that will no1 be referenced heforc it IS replaced. and
(2) the fraclion of the cache loaded dunng thc cold-sm simulation 01 an tnlerval. W k n
we could not cstimale (I) with the references in an interval. we asume i t to he 0 7 (b u d
onthedatainTable2of [WoHK91]).

~-
[LAP188].

Lin 4M
16M

We will find that none of the five effectively reduce cold-start
bias with short intervals (e.g., < 10 million instructions for
1 -megabyte caches).

For a particular trace and cache, we evaluate a cold-start
technique as follows. We select the number of instructions in
an interval, called the interval length, and collect a systematic
sample S of size n = 30 intervals spaced equally in the trace.
(We chose 30, because it is a commonly-used sample size
[141.) We use %cold-start technique to estimate the MPI for
each interval, mpi,, and calculate an MPI estimate for sample
S with:

- I n
M P I ~ = - G i , .

n .

Since with time sampling each interval has the2ame number
of instructions, it is meaningful to compute MPIs with the
arithmetic mean of the mpi,'s.

Since we have the full trace, we can simulate each interval
with its initial cache state to determine the interval's true
MPI, mpi,, and calculate the true MPI for the sample, MPIs.
with Cy=l mpi,. We evaluate how well a technique reduces
cold-start bias in a sample S with3:

2=1

h

0.06 +I11396 +535% -62% +217% +903%
0.01 4 6 4 8 % +2248% -4% +873% +1037%

MTI~ - M P I ~
BIASs =

MPIs '

It is important to distinguish MPItrue, MPIs, and *IS.
mpitrue is misses per instruction for all references in the trace
(as if all references in the trace are simulated). MPIs is the
misses per instruction of references in the observations of
sample S, given each observation starts with its true initial
cache state (as if all references since the last observation
had been2mulated without recording whether they hit or
missed). MPIs is the misses per instruction of references in
the observations of sample S, given each observation starts

3We calculate BIASs for PRIME with the secondary cache's local miss
ratio rather than MPI, because counting the number of instructions is not
straightforward when some sets are initialized but others are nat. Since BIAS.5
is a relative error, we expect that calculating it with local miss ratio will be
comparable to calculating it with MPI.

b

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 6, JUNE 1994

TABLE VI1
BIAS OF COLD-START TECHNIQUES WITH DIRECT-MAPPED CACHES

Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI MPlsxlO0O I COLD HALF PRIME STKCH INITMR

IM I 1.45 I +18% +5% -18% +23% +O%

1.76 +15% +9% -56% +37% 4%

with an initial cache state approximated by some cold-start
technique.

Since BIASs compares @IS with MPIs, rather than
MPIt,,,, it measures cold-start bias in the sample, not how
well the sample predicts MPIt,,,. We consider how well time
samples predict MPItrue in Section IV-B.

We evaluate BIASs for five cold-start techniques, eight
traces, four interval lengths (100 thousand, 1 million, 10
million, and 100 million instructions), three cache sizes (1,
4, and 16 megabytes) and two associativities (direct-mapped
and four-way). Since space precludes us from displaying 192
cases for each cold-start technique, we present several subsets
of the data.

For a 10-million-instruction interval length, Table VI1 dis-
plays BIASs for direct-mapped caches, while Table XI in
Appendix C gives similar data for four-way set-associative
caches. The data show several trends. First, most BIASs's
are large, especially for caches larger than one megabyte.
This suggests that intervals longer than many previously
published traces are needed to effectively reduce cold-start
bias for multi-megabyte caches. Second, COLD, HALF and
STITCH tend to overestimate MPIs. COLD does so because
it assumes that all cold-start misses miss. Similarly, HALF
tends to overestimate MPIs when the first half of the trace
does not sufficiently fill the cache. HALF can underestimate
the sample's MPI, however, when the second half of most
of a sample's intervals have a lower MPI than the whole
of each interval. We believe STITCH overestimates MPIs,
because (due to temporal locality) references are less likely
to miss when simulated with an interval's true initial state
than with the final state from the previous interval [24].
Third, PRIME underestimates MPIs for direct-mapped caches.
PRIME calculates MPIs by effectively assuming that cold-
start misses are as likely to miss as any other reference. Wood
et al. [25] have shown, however, that this assumption is false,
and that cold-start misses are much more likely to miss than

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
KESSLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.: A COMPARISON OF TRACE-SAMPLING TECHNIQUES FOR MULTI-MEGABYTE CACHES

, ’ Cache Interval COLD HALF PRIME STITCH INITMR

15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 4

13
4 13

in x

Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC;c; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMp,,,, looo Interval Length (Millions of Instructions)
1 in 100 0.1

4M

Muit1.2 IM
4M

16M

Mull2 IM
4M

MuIt2.2 IM
4M

16M

16M

16M

Tv 1M

Sor IM

Tree IM

4M
16M

4M
16M

4M
16M

Lin IM
4M

randomly-chosen references. PRIME is more accurate for four-
way set-associative caches, where the heuristic of ignoring
initial references to a most-recently-referenced block mitigates
the underestimation. Fourth, INITMR did not consistently
underestimate or overestimate MPIs. Finally, the large biases
for the Lin trace with 4- and 16-megabyte caches are probably
not important, because Lin’s true MPI’s are so small.

Table VI11 addresses which cold-start technique is best for
these traces and caches. For each the five cold-start techniques,
we compute BIASs for all 192 cases. We award a point in the
“10%” category for biases less than *lo% and award one in
the “Win” category for the cold-start technique closest to being
unbiased. Multiple points are awarded in the case of ties. The
final row of Table VIII gives totals. HALF and INITMR have
twice the “10%” score of the other approaches, while INITMR
has more “Wins” than all the other approaches combined.
While HALF performs well in many cases, INITMR performs
best overall. While results for other traces and cache could
differ, the theory behind INITMR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and this experimental
evidence strongly support INITMR. For these reasons, we will
use it in the rest of this paper.

Table IX illustrates how well INITMR performs with
three direct-mapped caches (1, 4, and 16 megabytes) and
all four interval lengths (100,000, 1,000,000, 10,000,000,
and 100,000,000 instructions). As expected, it reduces bias
more effectively as the interval lengths get longer or cache
size gets smaller, because cold-start becomes less dominant.
The most striking aspect of this data is that INITMR, the
best method, still performs terribly for intervals containing
100,000 and 1,O00,000 instructions. This should not be not
surprising, since the number of block frames in the caches
(e.g., 8192 for 1-megabyte caches) far exceeds the number
of true misses in these intervals (e.g., 1550 equals 1,000,000
instructions times a 0.00155 MPI for Multl). Furthermore,
it appears that INITMR does not adequately mitigate cold-
start bias unless interval lengths are, at least, 10 million
instructions for 1-megabyte caches, 100 million instructions

0.70 156% 120% -11% -3%*

1.45 103% 21% 2%* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0%’
0.69 123% 63% -5% -2%*
0.32 400% 100% -3% -17%
1.24
0.6 I

212% 146% -9% -3%

127% 24% - I % * 0%* 1.18
0.59 127% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60% -13% 0%*

281% 335% -12% -17% 0.33

49% 20% -3%’ o w
48% 39% -24% o s *

0.26

0.27 170% 106% -3% 8%

2.63 36% -10% -2%* n%*

14.77 -41% -3%* o%* n%*

2.16 249% 36% -I%* n%*

1.88 34% -9% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4% O%*
I .03 145% 39% 37% 12%

7.54 -27% 44% 6%* 0%*
I .97 83% 386% 114% -2%*

0.59 1407% 121% 24% -7%*
0.30 796% 198% 18% -37%

1.16 -30% -14% 16% I%*
0.09 1437% 946% 903% I 1 3 1

67 I

1 6 ~ ih
0.1

All I O

TABLE IX
BIAS5 OF INITMR TIME-SAMPLE MPI ESTIMATES

o 0 n n o o I 2 0 1 4
o n n n o i 2 4 6

1 0 0 0 0 3 2 1 o s 9 s 5

2 0 2 5 0 3 I 2 I 3 8
I 2 1 4 5 4 7 5 5 7 3 2

5 2 21 19 7 3 8 X 28 27
100 23 6 33 13 20 8 16 14 33 24

16M I no2 I 2567% 1318% 1037% 176%

This table display5 BI 4S5 for INITMR with eight traces, four interval

All All

lengths, three direct-mapped cache sizes (I , 2, and 16 megabytes). We mark
entries with an asterisk (“*”) if , on average, interval lengths are sufficient
to a) fill at least haf the cache and h) there are at least as many misses to
full sets as cold-start misses.

32 9 60 42 31 21 29 29 69 121

for 4-megabyte caches, and more than 100 million instructions
for 16-megabyte caches. These results are consistent with the
rule-of-thumb that trace length should be increased by a factor
of eight each time the cache size quadruples [22].

As Table IX also illustrates, however, we can determine
when INITMR is likely to perform well. We marked each entry
in the table with an asterisk (“*”) if, on average, the interval
length was sufficient to a) fill at least half the cache and b) there
were at least as many misses to full sets as cold-start misses.
All values BIASs marked with an asterisk are less than *lo%,.
Nevertheless, they imply that for multi-megabyte caches each
interval should contain more instructions than have previously
been present in many “full” traces.

B. What Fraction of the Full Trace is Needed?

This section examines how accurately time samples estimate
MPIt,,,,, the MPI of the full trace. We estimate the MPI of a
sample S, =IS, with the arithmetic mean of MPI estimates
for each interval in the sample, where we use INITMR to
reduce (but regrettably not eliminate) the cold-start bias of
each interval.

Figure 4(a) illustrates how we summarize the data. (We use
a graphical display here instead of coefficient of variation,
because we believe it provides more insight. We did not use a
graphical display with set sampling, because we did not have
enough samples to smooth the data.) For the %It 1.2 traces
and a 4-megabyte direct-mapped cache, it plots MPIs/MPIt,,,
on the logarithmic y-axis and the fraction of the full trace
contained in the sample on the logarithmic x-axis. Consider the
cone at the far left. We use 3000 1 -million-instruction intervals
to calculate its shape. The left edge, near 0.00025, gives the
fraction of the trace used in a sample of one interval. We deter-
mine the end-points of the left edge with the empirical distribu-
tion of m1.5 for single-interval samples. The upper end-point
gi\es the 95th percentile, while the lower gives the 5th

612 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 43, NO. 6, JUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1994

j 1 , , tZ"_;t":'\ (,,,,, I , , ,J k,,l , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,,,,,11 , , , , ,,,, j 100 Million Insrmc~ions -
0 0.001 001 01 1 0001 001 01 I

Fmron of Full Trace Data Fraction of Full zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATrace Data

(a) (b)

Fig. 4. Cones for time sampling with Multl.2. (akones for M Z s . (b) Cones

for MPIs (no hat). This figure displays cones for MPIs (left) and MPIs (right)
for the Multl.2 trace and a Cmegabyte direct-mapped cache. For an interval *
length and sample size (whose product gives the fraction of the trace used)
the height of a cone displays the range of the middle 90% of estimates from
many samples. Estimates are unbiased only if they are vertically centered on
the horizontalline at 1.0. For an interval length of 1 million instructions, for

example, all MPIs displayed here are biased (by cold-start bias not removed
by INITMR), while all MPIs am unbiased.

percentile. Thus, thekngth of the left edge is the range of the
middle 90% of the MPIs's. We compute other vertical slices
similarly. A vertical line (not shown) in the same cone at 0.01
(40 x 0.00025), for example, gives the range of the middle
90% of the MPIs's for samples of 40 intervals each. The other
two cones are for interval lengths of 10 million instructions
(300 intervals) and 100 million instructions (30 intervals). The
right graph gives similar data for MPIs. where we calculate
the MPI of each interval with its true initial cache state.

A time sample would meet the 10% sampling goal (Defini-
tion 1) if (a) the sample's size times the length of each interval
were less than 10% of the trace (e.g., to the left of x-axis value
0.1 in Fig. 4(a) and (b) the cone lies between 0.9 and 1.1 (on
the y-axis). Unfortunately, none of the three cones for Multl.2
qualify. The cone for 1-million-instruction intervals is narrow
enough but biased too far above 1.0, while the cones of 10
million and 100 million instructions are too wide.

We found similar results for the rest of the traces, dis-
played in Fig. 5(a) and (b) of Appendix c. The cones for
the multiprogrammed traces are similar to those of Multl.2,
although Mult2 and Mult2.2 have more cold-start bias. The
cones for the single applications, Tree, Tv, Sor, and Lin,
are more idiosyncratic, reflecting application-specific behavior.
The cones of Sor, for example, are skewed by Sor's behavior
of alternating between low and high MPI (with a period of
around 300 million instructions [4])

Thus, for these traces and caches (and for direct-mapped
and four-way, 1- and 16-megabyte caches [101 time sampling
fails to meet the 10% sampling goal. Furthermore, even if we
eliminate cold-start bias, accurate estimates of MPItrue must
use hundred of millions of instructions to capture temporal
workload variations. With Multl.2 and a 4-megabyte direct-
mapped cache, Fig. 4(b) shows that MPIs is within 10% of
MPItrue (for 90% of the samples examined) only with samples
of 200 intervals of length 1 million instructions, 65 10-million-
instruction intervals, or 20 100-million-instruction intervals.
(For much smaller caches, Laha zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. found a sample size of

35 intervals to be sufficient [12].) This is roughly a factor of
three decrease in sample size as interval length is multiplied
by ten.

Finally, we investigate whether the error in @IS can
be estimated from information within the sample itself. We
calculate 90% confidence intervals with the same methods as
were used for set sampling (Appendix B). These methods,
however, provided no information on the magnitude of cold-
start bias, because they assume a sample is made up of
unbiased observations. Since the cold-start bias (that was
not removed by INITMR) is significant in many cases, 90%
confidence intervals for time samples often do not contain
MPItrue 90% of the time.

Confidence intervals did work in a few cases where samples
contained 30 or more intervals and interval lengths were
long enough to make cold-start bias negligible [lo]. These
cases, however, failed to meet the 10% sampling goal because
the samples contained much more than 10% of the trace.
Confidence intervals also worked for MPIs (whose expected
value is MPItrue because it has no cold-start bias), when
samples contain at least 30 intervals.

C. Advantages and Disadvantages of Time Sampling

The major advantage of time sampling is that it is the only
sampling technique available for caches with timing-dependent
behavior (e.g., that prefetch or are lockup-free [111) or shared
structures across sets (e.g.. write buffers or victim caching [9]).
Furthermore, the cold-start techniques for time sampling can
be applied to any full-trace simulation, since a "full" trace is
just a single, long observation from a system's workload.

However, in these simulations, time sampling fails to meet
the 10% sampling goal for multi-megabyte caches, because
it needed long intervals to mitigate cold-start bias and many
intervals to capture temporal workload variation. For the cold
start techniques we examined, set sampling is more effective
than time sampling at estimating the MPI's of our traces with
multi-megabyte caches.

V. CONCLUSION

A straightforward application of trace-driven simulation to
multi-megabyte caches requires very long traces that strain
computing resources. Resource demands can be greatly re-
duced using set sampling or time sampling. Set sampling
estimates cache performance using information from a col-
lection of sets, while time sampling uses information from a
collection of trace intervals.

This study is the first to apply set sampling and time sam-
pling to multi-megabyte caches, where they are most useful.
We use eight billion-reference traces of large workloads that
include multiprogramming but not operating system references
[4]. Given a trace and cache, we examine how well both
techniques predict the misses per instruction (MPI) of the
entire trace. We say a sampling method is effective if it
meets the 10% sampling goal: a method meets this goal if,
at least 90% of the time, it estimates the trace's true misses
per instruction with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10% relative error using 5 10% of the
trace. Like most trace-driven simulation studies, we do not
formally address how our traces relate to the population of

hESFLFR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY I <I / A COMPARISON OF TRACE-SAMPLING TECHNIQUES FOR ULLTl \.ltGABYTE CACHFS

INITMR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE\limalcs lor Multl INITMR E w n a i e i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtor Mull2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- I ' ' " ' J ' ' 1 ' ' """I ' ' ""'3 t ' ' """I ' ' """I ' ' """I ' ' ""7

Fraction olFull Trace Data

INITMR Esttmales tor Mu112.2

Fracuon of Full Trace Dam

INlTMR Eslimates tar Tree zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d I'll - I I I I,,,

= 0001 0 0 1 (1 1 I
Fraction of Full Trace Data Fraction olFull Tracc Data

Fig. Xa). Cones for time sampling with Multl, Mult2, Mult2.2, and Tree.

Similar to Fig. 4(a), these figures display cones for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&@IS with the Multl,
Mult2, Mult2.2, and Tree traces.

all traces. Readers may accept our results (by assuming our
traces are representative of their workload) or re-apply our
techniques to their traces.

With our traces and caches, we obtained several results for
set sampling. First, how we compute MPI is important. We
find that it is much less accurate to normalize misses by the
instruction fetches to the sampled sets than by the fraction of
sampled sets times all instruction fetches. Second, constructing
samples from sets that share some common index bit values
works well, since such samples can be used to accurately
predict the MPI of multiple alternative caches and caches
in hierarchies. Third, sets for our multiprogramming traces
behave sufficiently close to normal that confidence intervals
are meaningful and accurate. Last and most important, for our
traces and caches, set sampling meets the 10% sampling goal.

With our traces and caches, results for time sampling include
the following. First, INITMR (Wood et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ' s &,lit [25])

was the most effective technique for reducing cold-start bias,
although using half the references in a trace interval to (par-
tially) initialize a cache often performed well. Second, interval
lengths must be long to mitigate cold-start bias (I O million
instructions for I-megabyte caches, 100 million instructions
for 4-megabyte caches, and more than 100 million instructions
for 16-megabyte caches). Third and most important, for these
traces and caches, time sampling does not meet the 10%)
sampling goal: we needed more than 10% of a trace to get
(trace) interval lengths that adequately mitigated cold-start
bias and have enough intervals in a sample to make accurate
predictions.

Thus, we found that for our traces, set sampling is more
effective than time sampling for estimating MPI of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c

d - I , 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 l I 1 1 , 1 , 1

= I l I K l l 001 0 1 I
Fraction 111 Full Trxe Data

Fig. 5(b). Cones for time sampling%th Tv, Sor, and Lin. Similar to Fig.

4(a), these figures display cones for MPI5 with the Tv, Sor, and Lin traces.
Note that Lin uses a different y-axis scale.

multi-megabyte caches. There are situations, however, when
set sampling is not applicable, such as for caches that have
time-dependent behavior (e.g., prefetching) or structures
used by many sets (e.g., write buffers). In these cases,
researchers must choose between using an entire trace and
using time sampling. Since any trace can be considered a
time sample of size one, either approach requires care to
reduce the effect of cold-start bias.

APPENDIX A

SYSTEMATIC SAMPLES

This appendix introduces systematic samples with a discus-
sion derived from Cochran [5 , ch. 81. We use the notation
introduced in Section I11 for consistency.

The variance of the mean of a random sample of size 71

from a population of size s is [8, (2.8)]:

1=1

where mpi, is the ith member of the population and MPItrlle
is the population mean.

With systematic sampling, a population of size s is sys-
tematically divided into k samples of size 71. By definition,
the variance of the mean of a systematic sample, an unbiased
estimate of MPItrue, is 18, p. 2081:

where is the mean of the j th systematic sample.

614

TABLE X
SET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAMPLING PRECISION FOR 2-wAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111 6 of Sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/64 of Sets Trace Size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ' ' L x 1 ~ cv cv
IM 1.19 16/16 2.2% N/A NIA

Multl 4M 0.55 16/16 1.7% 64/64 3.0%
16M 0.26 16/16 1.6% 64/64 2.3%
IM 1.18 16/16 1.6% N/A NIA

Multl.2 4M 0.56 16/16 1.2% 64/64 2.2%
16M 0.28 16/16 1.3% 64/64 2.1%

Mult2 4M 0.52 16/16 1.2% 64/64 2.0%
16M 0.24 16/16 1.9% 64/64 3.3%
IM 0.98 16/16 1.8% N/A NIA

Mul12.2 4M 0.51 16/16 1.5% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64/64 1.9%
16M 0.22 16/16 2.1% 64/64 3.5%
IM 2.31 16/16 0.6% NIA N/A

Tv 4M 1.76 16/16 0.3% 64/64 1.6%
16M 0.98 16/16 0.7% 64/64 1.9%
IM 14.66 16/16 0.3% N/A NIA

Sor 4M 7.76 16/16 0.2% 64/64 0.5%
16M 1.92 16/16 0.0% 64/64 0.1%

Tnx 4M 0.49 16/16 1.5% 64/64 3.8%
16M 0.26 16/16 0.4% 64/64 1.1%

IM I .01 16/16 1.9% N/A N/A

IM 1.81 16/16 3.7% NIA N/A

IM 1.10 16/16 2.6% NIA N/A
Lin 4M 0.06 16/16 6.0% 44/64 9.8%t

16M 0.02 16/16 0.3% 64/64 0.5%

This table shows the MPI of the full trace for two-way set-associative
caches, the fraction of set samples with less than or equal to f10X relative
error and the coefficient of variation of the set-sampling MPI estimates, similar
to Table IV. Except where marked with a dagger(t), at least 90'A of the
samples have relative errors of less than or equal to 610%.

TABLE XI
BIAS OF COLD-START TECHNIQUES WITH FOUR-WAY SET-ASSOCIATIVITY

Trace "2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMPlSx IWO I COLD HALF PRIME STITCH INITMR 1 -.-
IM 0.94 +2l% -5% -6% +36% - 1 1 %

Multl 4M 0.44 +106% +29% -51% +80% -4%
16M 0.22 +3l3% +I579 -99% +I678 -81
IM I .20 +15% -5% -9% 6% -7%

Multl.2 4M 0.60 + E l % +21% -40% +43% +I%
16M 0.32 +232% +I186 -57% +IM% -3%
IM 0.92 +I496 -5% -18% +33% -16%

Mull2 4M 0.49 +84% +34% -64% +68% +2%
16M 0.22 +3l6% +202% -78% +170% -9%
IM 0.96 +16% +IO% -14% +38% -10%

MuIt2.2 4M 0.52 +84% +54% -52% +73% - 1 %
16M 0.25 +285% +221% 415% -161% -14%
IM 2.14 +4% -2% -22% +32% -2%

Tv 4M I .53 +14% +6% +I2% +39% -8%
I6M 0.82 +99% +75% +195% +87% +32%
IM 15.46 +o% -0% +o% - I 1 % -0%

Sor 4M 8.57 +9% - 1 % -12% -8% -2% -.
16M 2 I7 +I585 +34% -81% -4% +60%
IM 160 + 1 1 % -3% -9% +35% -6%

Tree 4M 041 +I244 -5% -32% +70% +18%
16M 025 +263% +38% +83% +77% -17%
IM 069 +26% +6% +9% +6% +21%

Lin 4M 002 +2763% +I3225 +SI% +778% +I7975
16M 001 +4648% +2248% ---I +873% +I0378

This table displays BZ.4.95 for five cold-start techniques, eight traces, an
interval length of I O million instructions, and three four-way set-associative
cache sizes (I , 4, and 16 megabytes).

Since the sample mean for both random and systematic
samples are unbiased estimates of the population mean, a
sampling method yields a more accurate estimate of the
population mean, if and only if the variance of its estimate
is less than the variance of the alternative.

Thus, systematic samples obtained by the constant bits
method yield more accurate estimates of MPItruc than random
samples whenever (A l) divided by (A 2) is greater than one.
Empirical results displayed in Table 111 of Section III-A-
2 show that the ratio is usually greater than one, implying
that constant bits samples are generally better than random
samples.

We can get more intuition into why systematic samples
might be better than random samples by examining the deriva-

.
IEEE TRANSACTIONS ON COMPUTERS. VOL. 43. NO. 6. JUNE 1994

tion in [8, p. 2081. Using classical analysis of variance, he
shows systematic sampling is more precise, if and only i f

1. n

i = l

where mpi,, is the ith member of the j t h systematic sample. In
other words, systematic sampling more precisely estimates the
mean of a population if the variance between observations
within a systematic sample is greater than the population
variance. Thus, we found that systematic samples obtained
using constant bits were better than random samples, because
systematically sampling sets captured more variation than was
present in the population of all sets.

APPENDIX B
COMPUTING CONFIDENCE INTERVALS

In this appendix, we describe how we calculate the 90%
confidence interval for a sample S containing 71. MPI observa-
tions, mpi,, . . . , mpi,,. Since computing confidence intervals
for systematic samples is complex [8, Section 8.1 I] , we
compute our confidence intervals by treating our systematic
samples as random samples. Because our systematic samples
estimate MPItrue with less variance than do random samples
(Table 111) the confidence intervals we calculate will tend be
larger than necessary. Thus, if sample means are approximately
normal, as they are for five of our eight traces (Section III-A-
2), MPItrue should lie within the 90%) confidence intervals of
more than 90% of the samples.

We first compute the MPI of sample S,~@IS with:

- 1
M P I ~ = - mpi,,

71,
i = l

and estimate MPIs's standard deviation with:

x -L x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ-- s - 71,

J;;

STDs is the product of three factors: 1) the sample standard
deviation of the mpi,'s, given that their true mean is unknown,
2) a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 adjustment because *Is is the mean of the 71, mpi, 's,
and 3) a finite population correction factor [8, (2 .12)] , which
is important only when 76, the sample size, is a substantial
fraction of s , the population size. The 90% confidence interval
for &@IS is =IS f SFDs . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt:'!:, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtE(!< is the value of
the student-t statistic that has a tail of 5% (on each end) for
71 - 1 degrees of freedom. We approximate the t-statistic with
a normal for most our results, because 71, is large [8, p. 271.

J;;

APPENDIX C
ADDITIONAL DATA

In this appendix, we provide additional data to support the
claims made in the body of the text. Figures 5(a) and (b) and

KESSLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd.: A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOMPARISON OF TRACE-SAXIPLISG TECHNIQUES FOR MULTI-MEGABYTE CACHES 675

Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and XI are more fully described in the body, where
they are referenced.

ACKNOWLEDGMENT

We would like to thank The Western Research Laboratory
of Digital Equipment Corporation, especially A. Borg and
D. Wall, for the traces used in this study. J . Bartlett, R. De
Leone, J . Dion, N. Jouppi, B. Mayo, and D. Stark all were a
tremendous help in providing traceable applications. P. Vixie
and C. Hawk helped to store the traces. P. Beebe and the
Systems Lab were able to satisfy our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenormous computing
needs. M. Litzkow and M. Livny adapted Condor to the
requirements of these simulations. H. Stone gave comments
on an earlier version of this work, while S. Adve, V. Adve,
G . Gibson and the anonymous referees scrutinized drafts of

paper.

REFERENCES

A. Agarwal, J . Hennessy, and M. Horowitz, “Cache performance
of operating system and multiprogramming workloads,” ACM Trans.
Computer Syst., vol. 6, no. 4, pp. 393431, Nov. 1988.
A. Agarwal and M. Huffman, “Blocking: Exploiting spatial locality for
trace compaction,” Proc. Con$ Measurement and Modeling of Computer
systems 1990, pp. 48-57.
A. Borg, R. E. Kessler, G. Lazana and D. W. Wall, “Long address traces
from risc machines: Generation and analysis,” Res. Rep. 89/14, Western
Res. Lab., Digital Equipment Corp., Palo Alto, CA, Sept. 1989.
A. Borg, R. E. Kessler. and D. W. Wall, “Generation and analysis
of very long address traces,” in Proc. 17th Annu. Int. Symp. Comput.
Architecture, 1990, pp. 270-279.
W. G . Cochran, Sampling Techniques, 3rd ed. New York: John Wiley,
1977.
M. C. Easton and R. Fagin, “Cold-start vs. warm-start miss ratios,”
Commun. ACM, vol. 21, no. IO, pp. 866-872, Oct. 1978.
P. Heidelberger and H. S. Stone, “Parallel trace-driven cache simulation
by time partitioning,” IBM Res. Rep. RC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15500, no. 68960, Feb. 1990.
M. D. Hill and A. J . Smith, “Evaluating associativity in CPU caches,”
IEEE Trans. Comput., vol. 38, no. 12, pp. 16 12- 1630, Dec. 1989.
N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,’’ in Proc.
17th Annu. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInt. Symp. Comput. Architecture, 1990, pp. 364-373.
R. E. Kessler, “Analysis of multi-megabyte secondary CPU cache
memories,” Ph.D. thesis, Comput. Sci. Tech. Rep. no. 1032, Univ. of
Wisconsin-Madison, WI, July 1991.
D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in Proc. 8th Annu. Int. Symp. Comput. Architecture, 1981, pp. 81-87.
S . Laha, J . H. Patel, and R. K. Iyer, “Accurate low-cost methods
for performance evaluation of cache memory systems,” IEEE Trans.
Comput., vol. 37, no. I I , pp. 1325-1336, Nov. 1988.
S . Laha, “Accurate low-cost methods for performance evaluation of
cache memory systems,’’ Ph.D. Thesis, Univ. of Illinois Urbana-
Champaign, IL, 1988.
1. Miller, J . E. Freund, and R. Johnson, Probability and Staristics for
Engineers, fourth ed.
M. J . K. Nielsen, “Titan system manual,’’ Res. Rep. 86/1, Western Res.
Lab., Digital Equipment Corp., Palo Alto, CA, Sept. 1986.
S. A. Przybylski, “Performance-directed memory hierarchy design,”
Ph.D. thesis, Tech. Rep. CSL-TR-88-366, Stanford Univ., Stanford,
CA, Sept. 1988.
S . Przybylski, M. Horowitz, and J . Hennessy, “Characteristics of
performance-optimal multi-level cache hierarchies,” in Proc. 16th Annu.
Int. Symp. Comput. Architecture. 1989, pp. I 14- I2 1
T. R. Puzak, “Analysis of cache replacement algorithms,” Ph.D. thesis,
Univ. of Massachusetts, Amherst. MA, Feb. 1985.
A. D. Samples, “Mache: No-loss trace compaction,” in Proc. Int. Conf:
Measurement and Modeling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Comput. Sur . , 1989, pp. 89-97.
A. J . Smith, “Two methods for the efficient analysis of memory address
trace data,” IEEE Trans. Sofncore En?.. vol. SE-3, no. I , pp. Y4-101,
Jan. 1977.

Englewood Cliffs, NJ: Prentice Hall, 1990.

121) -, “Cache memories,” Computing Surveys, vol. 14, no. 3 , pp.
473-530, Sept. 1982.

1221 H. S . Stone. High-Performunce Computer Architecture, second ed.
Reading, MA: Addison-Wesley, 1990.

[2 3] W. Wang and J . Baer, “Efficient trace-driven simulation methods for
cache performance analysis,” in Proc. Con$ Measurement nnd Modeling
of Comput. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASw.. 1990, pp. 27-36.

1241 D. A. Wood, ”The design and evaluation of in-cache address transla-
tion,” Ph.D. thesis, Comput. Sci. Division, Tech, Rep, UCBKSD 90/565.
Univ. of California, Berkeley, CA, Mar. 1990.

1251 D. A. Wood, M . D. Hill, and R. E. Kessler, “A model for estimating
trace-sample miss ratios,” in Proc. ACM SICMETRICS Con$ Meusrrre-
ment and Modeling of’ Comput. S.ysr., 199 I , pp. 79-89.

Richard E. Kessler (S’85-M’91) earned the B.S.
degree with high distinction in electrical and com-
puter engineering from the University of Iowa, Iowa
City, in 1987, and the M.S. and Ph.D. degrees in
Computer Science from the University of Wiscon-
sin, Madison, in 1989 and 1991, respectively.

He is currently a Senior Architecture Engineer at
Cray Research, Inc., Chippewa Falls, WI, special-
izing on the Massively-Parallel Processing (MPP)
systems. His research interests include the architec-
ture, operating systems, and performance analysis

of computing systems. His recent research focuses largely on the architecture,
analysis, and design of large-scale multiprocessing systems.

Dr. Kessler is a member of ACM.

Mark D. Hill (S’81-M’87) earned the B.S.E. degree
in computer engineering from the University of
Michigan, Ann Arbor, in 1981, and the M.S. and
Ph.D. degrees in computer science from the Uni-
versity of California, Berkeley, in 1983 and 1987,
respectively.

He is currently an Assistant Professor in the
Computer Sciences Department at the University of
Wisconsin, Madison. He is interested in the design
and evaluation of computer architectures. His recent
work focuses on the memory systems of high-

performance uniprocessors and shared-memory multiprocessors. J. R. L a m ,
D. A. Wood and he currently co-lead the ARPA-and NSF-sponsored Wisconsin
Wind Tunnel Project that is exploring cost-effective and scalable support for
shared memory in parallel supercomputers.

Dr. Hill is a 1989 recipient of the National Science Foundation’s Presiden-
tial Young Investigator award and a member of ACM.

David A. Wood (S’81-M’90) received the B.S. de-
gree in electrical engineering and computer science
at the University of California, Berkeley, in I98 I .
After graduation, he worked on one of the earli-
est shared-memory multiprocessors at the Synapse
Computer Corporation, where he helped develop
a relational database system. He then returned to
U.C. Berkeley, where he earned the Ph.D. degree in
computer science in 1990 under Prof. R. Katz.

He is currently an Assistant Professor in the
Computer Sciences and Electrical and Computer

Engineering Departments at the University of Wisconsin, Madison. His
interests range from VLSI design to operating systems, but focus on the
design and evaluation of computer architectures, with an emphasis on memory
systems for shared-memory multiprocessors. Together with M. D. Hill and J .
R. Larus, he co-leads the NSF-sponsored Wisconsin Wind Tunnel Project that
is exploring cost-effective and scalable support for shared memory in parallel
supercomputers.

Dr. Wood i \ a 1991 recipient of the National Science Foundation‘s
Presidential Young Investigator award and a member of the ACM.

