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A Comparison of Trace-Sampling Techniques 
for Multi-Megabyte Caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R. E. Kessler, Mark D. Hill, and David A. Wood 

Abstract-This paper compares the trace-sampling techniques 
of set sampling and time sampling. Using the multi-billion- 
reference traces of Borg et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuL, we apply both techniques to 
multi-megabyte caches, where sampling is most valnable. We 
evaluate whether either technique meets a 10% sampling goal: 
a method meets this goal if, at least 90% of the time, it estimates 
the trace’s true misses per instruction with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10% relative error ’ 
using <_ 10% of the trace. Results for these traces and caches 
show that set sampling meets the 10% sampling goal, while time 
sampling does not. We also find that cold-start bins in time 
samples is most effectively reduced by the technique of Wood 
et al. Nevertheless, overcoming cold-start bias quires tens of 
millions of consecutive references. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Index rem-Cache memory, cache performance, cold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstart, 
computer architecture, memory systems, performance evaluation, 
sampling techniques, trace-driven simulation. 

I. INTRODUCTION 

OMPUTER designers commonly use trace-driven sim- C ulation to evaluate alternative CPU caches [21]. But as 
cache sizes reach one megabyte and more, traditional trace- 
driven simulation requires very long traces ( e g ,  billions of 
references) to determine steady-state performance [4], [22]. 

But long traces are expensive to obtain, store, and use. 
We can avoid simulating long traces by using trace- 

sampling techniques. Let the cache performance of a small 
portion of the trace be an observation and a collection of 
observations be a sample. Sampling theory tells how to predict 
cache performance of the full trace, given a sample of unbiased 
observations [5], [ 141. With additional assumptions, we can 
also estimate how far the true value is likely to be from the 
estimate. 

Two important trace-sampling techniques are set sampling 
[7], [18] and time sampling [12], [13]. An observation in 
set sampling is the cache performance for the references to 
a single set (depicted as a horizontal slice in Fig. l), while 
an observation in time sampling is the cache performance of 
the references in a single time-contiguous trace interval (a 
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Fig. 1. Sampling as vertical and horizontal time-space slices. This figure 
shows a time-space diagram of a simulation with a very short trace.lhe time 
(position within the trace) and cache set of each reference is marked with 
an X .  An observation in set sampling is the cache performance of one set. 
References that determine a single set’s performance appear inan horizontal 
slice of this figure.An observation in time sampling is the cache performance 
of an intervalof consecutive references. These references appear in a vertical 
slice of this figure. 

vertical slice in Fig. 1). Laha et ai. [12] and Wood et al. 1251 
referred to an observation of references in a time-contiguous 
interval as a “sample.” We use sample to refer to a collection of 
observations to be consistent with statistics terminology [ 141. 

This study is the first to compare set sampling and time 
sampling. We use eight multi-billion-reference traces of large 
workloads that include multiprogramming but not operating 
system references [4], and concentrate on multi-megabyte 
caches, where sampling is most needed. For each trace and 
cache, we examine how well set and time samples from a 
trace predict the misses per instruction (MPI) of the entire 
trace. We say a sampling method is effective if it meets the 
10% sampling goal: a method meets this goal if, at least 90% 
of the time, it estimates the trace’s true misses per instruction 
with 5 10% relative error using 5 10% of the trace. 

It is critical that readers note that the 10% sampling goal 
evaluates using samples from a trace to estimate that trace’s 
MPI. We do not formally address how our traces relate to the 
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population of all traces, because we know of no research that 
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reader to decide whether they are representative of a larger 
population. Section discusses the reasoning behind the 
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With our traces and caches, we find several results per- 
taining to set sampling (Section 111). First, how we compute 
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normalize misses by the instruction fetches to the sampled 
set5 than by the fraction of sampled sets times all instruction 
fetches. Second, instead of selecting the sets in a sample 
at random, selecting sets that share several index bit values 
reduces simulation time, facilitates the simulation of cache 
hierarchies, and still accurately predicts the trace's MPI. Third, 
and most important, set sampling is effective. For our traces 
and caches, it typically meets the 10% sampling goal. 

For time-sampling (Section IV), we first compare techniques 
for overcoming cold-start bias [6], Le., determining the MPI 
for a particular trace interval without knowing the initial 
cache state. We consider leaving the cold-start bias unchanged, 
recording metrics only during the second half of each interval, 
recording metrics only for initialized sets [12], [22], stitching 
intervals together zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11, and Wood er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul.'s model for predicting 
the initialization reference miss ratio [25]. For our traces and 
caches, we obtain two results. First, on average, the technique 
of Wood et al. minimizes the cold-start bias better than the 
other techniques. Second, for the multi-megabyte caches we 
Ftudied, interval lengths of tens of millions of instructions and 
larger are needed to reduce the effects of cold-start. 

Then using Wood et al.'s technique to mitigate cold-start 
bias, we find that time sampling fails to meet the 10% 
sampling goal for our traces and caches, because: 1) many 
intervals are needed to capture workload variation, and 2) 
long intervals are necessary to overcome cold-start bias. As 

a result, for these traces and caches, set sampling is more 
effective than time sampling for estimating MPI. Set sampling 
is not appropriate, however, for caches with time-dependent 
behavior (e.g., prefetching) or interactions between sets (e.g., 
a single write buffer). 

We do not consider other (non-sampling) techniques that 
reduce trace data storage, such as, Mache [ 191, stack deletion 
and snapshot method [20], trace (tape) stripping [18], [231, 
or exploiting spatial locality [2]. These techniques can be 
used in addition to the sampling considered in this study. We 
also do not consider Przybylski's prefix technique [16], which 
prepends all previously-referenced unique addresses to each 
time-observation. This method seems unattractive for multi- 
megabyte caches where each time-observation requires its own 
prefix and each prefix must be very large for programs that 
can exercise multi-megabyte caches. 

11. METHODOLOGY 

This section describes the traces, caches, and performance 
metric we use in later sections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATruces 

The traces used in the study were collected at DEC Westem 
Research Laboratory (WRL) [3], [4] on a DEC WRL Titan 
[ 151, a loadstore ("RISC") architecture. Each trace consists 
of the execution of three to six billion instructions of large 
workloads, including multiprogramming but not operating sys- 
tem references. The traces of the multiprogrammed workloads 
represent the actual execution interleaving of the processes 
on the traced system. The traces reference from eight to 
over one hundred megabytes of unique memory locations. 
These traces are sufficiently long to overcome the cold-start 

TABLE I 
A DESCRIPTIO% OF THE STLlDlED WORKLOADS 
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Dcxnption 

A muluprogram aorkload con\!sting of (I)  Make C campilmg portions of the Magic 
source code. ( 2 )  Cirr routing the DEC%ation 3100 Printed Circuit Board (16 megabytes). 
( 3 )  Magic Dectgn Rule Checking the MulttTitan CPU chip (20 megabytes). (4) Tree 
given 10 megahytec of working space solving the same problem as the Tree workload, 
(5) another Makc that largely consists of a call to Xld to load the Magic ohject code (2C 
megabytes). and ( 6 )  an infinite loop shell of interactive Unix commands ( cp. cat. ex, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArm 
pc -aux, Is -I /* 1 The trace skipped ahout the first billion instructions so the larger pro- 
grams. Grr, Magic. Tree, and Xld. were able to initialize their large data structures and 
start using them. The p n r e s  \witch interval WdS approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200.000 instruction cy- 
des 

Thc same workload a\ Mult l  except the procev switch interval i c  approximately 4 W . m  
hasic ~ n s t ~ c t i o n  cyclm 

The Mul t l  workload excluding the Xld (Make) run (5) and the Tree program (4). Mu112 
has a lower degree 01 multiprogramming and i s  smaller than Mul t l  

'The same workload a\ Mu112 except the process w i t ch  interval is approximately 400,000 
hasic Initruction cycle\. 

A uniprogram workload uf Tv analyiing the timing of the DEC WRL MultiTitan CPU 
chip Tv required 12.5 hillion instructions to complete the timing analysis. About the 
first IO hillion in\tmction\ huild B very large linked data stmcture. The final 2-3 hillion 
inclructions traverse the structure. The end of the execution of Tv was captured on rape. 

A uniprogram u,orklnad of the Sor program doing matrix manipulations on a 800,Mx) by 
2LNl.MX) spane matrix with approximately 4 million (0.0325%) of the matrix entries k- 
ing nun-zero About thc hrnt hillion IIISIN~~IOPS create the large matrices. The rest 01 
the program 1s the matrix upcralions. The trace captures a portion of the matrix opera- 
tions. excluding initialization. 

k uniprogram workload consisting of the Tree program. Tree has two major phases that 
were traced. Ahout the first ha l f  of the instructions build a large tree suucturc that 
repreqenls a Unix-like hierarchical directory structure. The rest o f  the instructions search 
this tree to find the largest memkr 

A uniprogram workload of Linear analyzing the power supply of  a register file Normal- ' 

ly, the program tries to minimize the amount of work it must do by combining circuit ~ 

structures. The trace was collected hy disabling some of these comhinmg operation\ to 

-- 

_ _ _ _ _ _ _ _ ~ ~ ~ ~ ~  ~ 

____. 

~ ~~ 

~- 

~ ~ ~ _ _ ~ ~ _ _  

produce a bigger problem, possibly reflecting the larger pmhlems of the future. i 

This table consists of a description of the user-only (no kernel references) 
workloads used in this study. Four workloads are uniprogrammed and two are 
multiprogrammed workloads. The uniprogrammed workloads consist of the 
largest programs. Several smaller programs were grouped with some standard 
Unix programs to produce the multiprogrammed workloads. 

intervals of even the large caches considered in this study. We 
chose programs with large memory requirements because of 
the likelihood that large application sizes will become more 
common as main memories of hundreds of megabytes become 
available. 

Table I describes traces in detail. The Mult2 trace includes 
a series of compiles, a printed circuit board router, a VLSI 
design rule checker. and a series of simple programs com- 
monly found on UNIXTM systems, all executing in parallel 
(about 40 megabytes active at any time) with an average of 
134 000 instructions executed between each process switch. 
The Mult2.2 trace is the Mult2 workload with a switch 
interval of 2 14 000 instructions. The Multl trace includes 
the processes in the Mult2 trace plus an execution of the 
system loader (the last phase of compilation) and a Scheme 
(Lisp variant) program (75 megabytes active) and has a switch 
interval of 138000 instructions. The Multl.2 trace is the 
Multl workload with a switch interval of 195 000 instructions. 
The Tv trace is of a VLSI timing verifier (96 megabytes). 
Sor is a uniprocessor successive-over-relaxation algorithm 
that uses large, sparse matrices (62 megabytes). Tree is a 
Scheme program that searches a large tree data structure (64 
megabytes). Lin is a power supply analyzer that uses sparse 
matrices (57 megabytes). 

B. Criche Assirmptions 

This study focuses on multi-megabyte unified (both instruc- 
tions and data cached together) caches. Earlier work has shown 

T\I 
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that both techniques are effective for smaller caches [12], 
[18]. We vary the size and set-associativity of these caches 
over a range of sizes from 1-megabyte to 16-megabytes and 
associativities from direct-mapped to four-way. The caches 
do no prefetching, use write-back and write-allocate policies, 
and have 128-byte blocks. The caches use virtual-indexing 
(i.e., select the set of a reference using the reference’s virtual 
address) with PID-hashing, an approximation to real-indexing. 
PID-hashing means that we exclusive-or the upper eight index 
bits from the virtual address with the process identifier (PID) 
of the currently executing process. We also examined several 
real-indexed caches and found that they produced results 
similar to those in this paper, which is not surprising since 
real-indexed cache performance is often close to virtual- 
indexed cache performance. The non-direct-mapped caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 
use a random replacement policy, which was easier to handle 
in the our simulation environment than is least-recently-used 
replacement. 

Since multi-megabyte caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare likely to be used in a 
cache hierarchy, we simulate them as alternative secondary 
caches placed behind a fixed primary cache. The primary 
caches are split (separate) instruction and data caches that 
are 32-kilobytes each, direct-mapped, 32-byte blocks, do no 
prefetching, use virtual indexing, and write-back and write- 
allocate policies. We do not evaluate primary cache tradeoffs 
in this study since secondary cache performance is unaffected 
by the primary caches when their sizes differ by at least a 
factor of eight [17]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. The Performance Metric: Misses Per Instruction 

We measure cache performance with misses per instruction 
(MPI) rather than miss ratio. For comparing the performance 
of alternative unified secondary caches, MPI is equivalent to 
Przybylski’s global miss ratio [ 171. Specifically, a cache’s MPI 
is equal to its global miss’ratio times the average number of 
processor references (instruction fetches and data references) 
per instruction. 

D. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10% Sampling Goal 

Given a particular trace and cache, let MPItrue be MPI 
obtained by simulating the complete trace with an initially 
empty cache (the true MPI of the complete trace). We say a 
sampling method is effective (for that trace and cache) if it 
meets the following goal: 

Defiition I) 10% Sampling Goal: A method meets the 
IO% sampling goal if, at least 90% of the time, it estimates 
the trace’s true misses per instruction with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10% relative 
error using 5 10% of the trace. 

The IO% sampling goal evaluates using samples from a 
trace to estimate MPItrue (that trace’s MPI). As discussed in 
the introduction, we do not formally address how our traces 
relate to the population of all traces, because we know of no 
research that quantitatively characterizes that population. For 
this reason, readers must choose between accepting our results 
(by assuming our traces are representative of their workload) 
and re-applying our techniques to their traces. We share this 
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failure of generalizing to the population of all traces with all 
trace-driven cache studies we are aware of. 

We chose 5 10% of the references in a trace and 5 10% 
relative error using our experience with cache design and 
evaluation. We expect cache designers would not confront the 
intellectual complexity of sampling for less than a factor of ten 
reduction in trace size. We also expect many cache designers 
would consider negligible a 10% relative error in estimating a 
trace’s MPI, since MPI variations between traces often exceed 
factors of ten. Nevertheless, other cache designers may wish to 
choose stricter or looser criteria and re-apply the techniques 
described in this paper. 

111. SET SAMPLING 

We first examine set sampling, where an observation is the 
MPI of a single set and a sample is a collection of single- 
set observations. Section 111-A discusses how to compute a 
set sample’s MPI and why it should not contain random sets, 
while Section 111-B examines how well set sampling predicts 
MPItrue, the MPI of a full trace. 

A. Constructing Set Samples 

In this section, we find 
that how we compute MPI is important; specifically, it is much 
less accurate to normalize misses by the instruction fetches to 
the sampled sets than by the fraction of sampled sets times 
all instruction fetches. Consider a cache with s sets. For each 
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ,  let miss, and instrn, be the number of the misses and 
instruction fetches to set i. Let S be a sample containing all 
references to n sets. 

We consider two ways to calculate the MPI of sample S. 
=IS, which both require two counters to process a trace. 
Both use one counter to accumulate the number of the misses 
to the sets in the sample. At the end of the trace, this counter 
equals EzES miss,. 

The sampled-instructions method uses the second counter 
to accumulate the instruction feEhes to the sets in the sample 
(EzES instrn,) and computes MPIs with: 

Calculating the MPI of a Sample: 

h Lies miss; 
MPIs = CiEs instrn; ’ 

The fraction-instructions method uses the second counter to 
to accumulate the instruction fetcJhes to all sets in the cache 
(E:=’=, instrn;) and computes MPIs with: 

h EiEs miss; 
MPIs = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7L 

; E:==, instrn; . 

An alternative view of the effort required for these two 
methods is to consider the information that must be saved 
from the full trace if cache simulation is not done when 
gathering the trace. Both methods require that all references to 
the sampled sets be saved. The fraction-instructions method 
also requires a count of the number of instruction fetches in 
the full trace. Since most trace-gathering tools accommodate 
adding a counter, we consider the difficulty of obtaining data 
for the two methods comparable. 
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Coefficient of Variation (percent) 
MP'ime IOGo ;action-instructions sampled-instructions 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 
COtttlCIENT OF VARIATION OF MPI COMPUTATIONS 

Multl 2.3% 35.2% 
1.9% 28.9% 
1.9% 24.2% 
1.3% 24.3% 
0.6% 139.0% 
0.3% 

0.59 6.8% 
0.09 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.6% 

This table illustrates the accuracy of computing the full trace MPI (column 
two) for several traces with the fraction-instructions and sampled-instructions 
methods. The accuracy is evaluated with the coefficient of variation (Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( I ) )  for the MPI estimates from a 4-megabyte direct-mapped secondary cache 
with 16 set samples of 1/16 the full trace each. The set samples are constructed 
with the constant bits method described in the next section. Results show that 
the fraction-instructions method is far superior to the sampled-instructions 
method. 

In addition, statistics for the fraction-instructions method 
are simpler than for sampled-instructions method. Since the 
frac.tion-itistructions method normalizes the number of misses 
by a constant (for a given sample size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn and number of sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs), 
its MPI estimates can be handled as simple random.variables. 
MPI estimates for the sampled-instructions method, on the 
other hand, should be modeled as the ratio of two random 
variables. 

We empirically compare the two methods by computing 
their coefficients of variation across all set samples S ( j )  
obtained with the constant-bits method, a systematic sampling 
method described in Section 111-A-2: 

where k = is the number of samples [5 ,  p. 2081. CV is the 
true coefficient of variation, because we compare the MPI's of 
all set samples from the finite population with the trace's true 
MPI. We do not compare the methods with expected error, 
c7,1(k@Is(j) - MPItrue), because the expected error of 

all set samples from the finite population is always zero. 
Experimental results, illustrated in Table 11, show that 

the fraction-instructions method performs much better, never 
having a coefficient of variation more than one-tenth the 
sampled-instructions method. The difference is infinite for the 
Sor and Lin traces because loops confine many instruction 
fetches to a few sets. 

We also investigated normalizing missi with total references 
per set and data references per set [IO]. These methods perform 
similarly to the sampled-instructions method and not as well 
as the fEtion-instructions method. We did not consider calcu- 
lating MPIs with E. L E S  miss, instrn, , because Puzak [ 181 showed 
estimating miss ratio with the arithmetic mean of the per-set 
miss ratios is inferior to dividing the misses to sampled sets 
by the references to sampled sets (the miss-ratio equivalent of 
the sampled-instructions method). For a sample containing all 

Since the fraction-instructions method performed better than 
the other methods examined, we will use it for the obtaining 
the remaining set sampling results. 

The Constunt-Bits Method: We now examine two methods 
for selecting sets to form a sample. We show why systematic 

sets, Puzak's work also implies cf=, - # MPLrue. 

filter with 

\mulate 

each cache 

- random 

;i x t s o i  

evchcack 

simulate 

each cache 

filter with 
four 

C0"StMt 

bits 

(a) (b) 

Fig. 2. Two methods for selecting the sets in a sample. This figure illustrates 
selecting sets for samples of three alternative caches (A, B, and C) using (a) 
random sets and (b) constant bits. When sets are selected at random, each 
simulation must begin by filtering the full trace. With constant-bits, on the 
other hand, a filtered trace can drive the simulation of any cache whose index 
bits contain the constant bits. 

samples constructed via constunt-bits offer advantages over 
random samples. 

Assume that we want to evaluate three caches with samples 
that contain about 1/16th the references in a full trace. Let 
the caches choose a reference's set with bit selection (i.e., the 
index bits are the least-significant address bits above the block 
offset) and have the following parameters: 

Cache A: 32-kilobyte direct-mapped cache with 32-byte 
blocks (therefore its index bits are bits 14-5, assuming refer- 
ences are byte addresses with bit 0 being least-significant); 
Cache B: 1 -megabyte two-way set-associative cache with 
128-byte blocks (index bits 18-7); and 
Cache C: 16-megabyte direct-mapped cache with 128-byte 
blocks (index bits 23-7). 
One method for selecting the sets in a sample is to choose 

them at random [ 181. To evaluate cache A with references to 
random sets, we randomly select 64 of its 1024 sets (1/16th), 
filter the full trace to extract references to those sets. and then 
simulate cache A. For cache B,  we select 128 of its 2048 
sets, filter and simulate. Similarly for cache C, we use 8192 
of its 131 072 sets. As illustrated in Fig. 2(a), selecting sets 
at random requires that each simulation begin by extracting 
references from the full trace. Furthermore, since primary and 
secondary caches usually have different sets, it is not clear 
how to simulate a hierarchy of cache when sets are selected 
at random. 

A second method, which we call constant-bits, selects 
references rather than sets [22, p. 591. The constant-bits 
method forms a filtered trace that includes all references that 
have the same value in some address bits. This filtered trace 
can then be used to simulate any cache whose index bits 
include the constant bits2 [IO]. For example, if we filter a 
trace by retaining all references that have the binary value 

'This description as~umes bir selection, Le., the set-indexing bits come 
directly from the address of the memory access [21]. The scenario is more 
complicated with other than simple bit-selection cache indexing. In particular, 
since we use PID-hashing in this study, we ensured that the hashed index 
bits did not overlap with the constant bits. Note that though we use virtual- 
indexing, one can apply the constant-bits technique to real-indexed caches. 
and to hierarchical configurations with both real and virtual indexed caches i f  
the constant bits are below the page boundary. 
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Trace 

Multl 

Multl.2 

MultZ 

Mult2.2 

Tv 

Sor 

Tree 

Lin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
El zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M p , , ~  looo 
Fraction of Sets in Sample 
1116 I I64 

0.70 1.78 1.71 
0.69 I .39 I .27 
0.61 1.02 1 .so 
0.59 1.85 I .% 
1.88 1.94 0.74 
7.54 26.05 19.45 
0.59 0.94 0.99 
0.09 1.26 I .35 
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sinm*lc TABLE 111 

RANEOM SAMPLE VARIANCE OVER SYSTEMATIC SAMPLE VARIANCE 

constant prim 
cache 

bits 

Fig. 3. Using constant-bits samples with a hierarchy. This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfigure illustrates 
how to use constant-bits samples to simulate a primary cache (P) and three 
alternative secondary caches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A ,  E and C). 
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oo00 (or one of the other 15 values) in address bits 11-8, then 
we can then use the filtered trace to select 1 4 6 4  of the sets 
in any cache whose block size is 256 bytes or less and whose 
size divided by associativity exceeds 2 kilobytes. These caches 
include caches A, B, and C, the primary caches used in this 
study (32-byte blocks, 32 kilobytes, direct-mapped) and all 
secondary caches (128-byte blocks, 1-16 megabytes, 1-4-way 
set-associative) considered in this paper. 

Constant-bits samples have two advantages over random 
samples. First, as illustrated in Fig. 2(b), using constant- 
bits samples reduces simulation time by allowing a filtered 
trace to drive the simulations of more than one altemative 
cache. Second, constant-bits samples make it straightforward 
to simulate hierarchies of caches (when all caches index with 
the constant bits). As illustrated in Fig. 3, we may simulate 
the primary cache once and then use a trace of its misses to 
simulate alternative secondary caches. 

One complexity of using constant-bits samples is that they 
are not random samples, since sets are selected systematically 
via certain bit patterns. Intuitively, constant-bits samples may 
work better than random samples if spreading the sampled sets 
throughout the cache captures more workload variation than 
selecting random sets. Constant-bits samples could perform 
worse than random samples, however, for workloads that use 
their address space systematically (e.g., frequent accesses to a 
large, fixed stride vector). 

Cochran [5, ch. 81 develops a theory of systematic samples, 
which we review in Appendix A. Since the sample mean for 
both random and systematic samples are unbiased estimates of 
the population mean, systematic sampling yields more accurate 
estimates of the population mean if and only if the variance 
of the systematic sample mean is less than the variance of a 
random sample mean. 

We examine this empirically in Table 111. For each trace 
with a 4-megabyte, direct-mapped cache, Table I11 displays the 
variance of the random sample mean divided by the variance 
of the systematic sample mean obtained with the constant 
bits method. Values greater than one indicate that systematic 
samples are more accurate than random samples; we see that 
systematic samples are more accurate or comparable to random 
samples in all cases. 

1 

Since the constant-bits method is easier to use than random 
samples and provides similar or better precision, we use the 
constant-bits method to construct set samples throughout the 
rest of this paper. 

B. What Fraction of the Full Trace is Needed? 

This section examines how well set samples estimate the 
MPI of a full trace. For reasons discussed above, we construct 
samples with the constant-bits method and calculate MPI 
estimate for a sample with the fraction-instructions method. 
We first look at the accuracy of set sampling when MPItrue is 
known; then we show how to construct confidence intervals 
for MPItrue when it is not known. 

Table IV quantifies the error between set samples and 
MPItrue for several traces, direct-mapped cache sizes, and 
sample sizes. We measure errors with coefficient of varia- 
tion calculated using (1). Table X in Appendix C gives the 
corresponding results for two-way set-associative caches. 

The key result is that, for this data and for four-way set- 
associative caches not shown here, set sampling generally 
meets the 10% sampling goal. Consider the columns labeled 
"1/16" in Tables IV and X, which correspond to samples using 
1/16th of the sets and therefore will contain less than 10% 
of the trace on average. Only Lin and Tree with 4-megabyte 
direct-mapped caches, marked with daggers, fail to have at 
least 90% of the constant-bits samples with relative errors of 
less than or equal to *lo%. (And they both have only 2 of 16 
samples with more than *lo% relative error.) The data also 
show the set sampling performs well even if 1/64th of the sets 
are sampled. 

We also observe that increasing associativity from direct- 
mapped to two-way reduces corresponding coefficients of 
variation by more than 50%. We conjecture that set sampling 
works better for two-way set-associative caches because they 
have fewer conflict misses than direct-mapped caches [8]. A 
high rate of conflict misses to a few sets can make those sets 
poor predictors of overall behavior. 

Finally, in practical applications of set sampling, we want 
to estimate the error of an MPI estimate, using only the infor- 
mation contained within the sample (i.e., not using knowledge 
of MPItrue as did Tables IV and X). As Appendix B describes, 
we do this by calculating 90% confidence intervals, assuming 
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Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASize 

t IM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 MulcI 4M 

TABLE IV . 
SET SAMPLING PRECISION FOR DIRECT MAPPED 

MPI,,", x loo0 s,,$060f Sets 1164 of Sets cv s f l o% cv 
I .55 16/16 4.3% N/A N/A 
0.70 16/16 2.3% 62/64 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 6  

MuIc1.2 4M 
16M 
IM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Mu112 4M 

16M I 033 I 16/16 1.6% I 64/64 2 % ~  
IM I I45 I 16/16 29% I N/A N/A 

0.69 16/16 1.9% 62/64 4.1% 
0.32 16/16 1.5% 63/64 3.2% 
I .24 16/16 3.4% NIA N/A 
0.61 16/16 1.9% 64/64 2.96 

Sor 4M 
16M 
IM 

Tree 4M 

16/16 1.3% 64/64 2.5% 
16M 0.27 16/16 1.8% 64/61 3.4% 

2.63 16/16 1.9% N/A NIA 
4M 1.88 16/16 0.6% 64/64 2.1% 

16M 1.03 16/16 0.6% 64/64 2.0% 
16/16 0.4% N/A NIA 

7.54 16/16 0.3% 64/61 0.7% 
I .97 16/16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0% 64/64 0.1% 
2.16 15/16 5.6% NIA N/A 
0.59 14/16 6.8% t 6/64 136% t 

Lin 4M 
16M 

16M 1 030 I 15/16 4 1% I 61/64 65% 
IM 1 I16 I 16/16 33% I N/A N/A 

0.09 14/16 7.6% t 54/64 15.0% t 
0.02 16/16 0.3% 64/64 0.5% 

~~ 

90% Confidence Intervals that Contain MP/,,, 

1/64 of Sets Trace 1 Normal'? I 11160fSets I 
fraction percent fraction percent 

Mull I 
Multl.2 
Mulf2 

Mult2.2 
Tv 
Sor 
Tree 
Lin 

yes 

Yes 

no 
yes 
no 
no 

yes 

yes 

16/16 100% 
16/16 100% 
15/16 94% 
16/16 100% 
16/16 100% 
16/16 100% 
12/16 75% 
16/16 100% 

61/64 95% 
60164 94% 
61/64 95% 
63/64 98% 
51/64 78% 
64/64 100% 
47/64 73% 
62/64 97% 

I I I I I 

For a 4-megabyte direct-mapped secondary cache and various traces and 
fraction of sets, this table gives the fraction and percent of 90% confidence 
intervals that contained MPIt,,,,. In all cases where the pefret MPI are 
normal, 90% confidence intervals usefully estimate how far MPI. is likely 
to he from MPI, r , , f ~ .  

a) random samples and b) that our estimate of the mean is 
normally distributed. Since variance of observations within our 
systematic samples is often greater than variance of the popu- 
lation, assumption a) will tend make our confidence intervals 
larger than necessary. For finite populations, assumption b) 
will generally hold if the underlying population is not highly 
skewed [5, Section 2.1 11. 

We empirically studied the usefulness of confidence inter- 
vals two ways. First, we tested the validity of assumption 
b) using normal scores plots (not shown) for sets of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- 
megabyte direct-mapped caches [ 14, p. 1721. Results show 
that assumption b) is valid for the four multiprogramming 
traces (Mult 1, Mult 1.2, Mult2, and Mult2.2) and Sor, but not 
for Tv, Tree, and Lin. Tree and Lin both have several "hot 
sets," and these outliers significantly skew their distributions. 
This suggests that confidence intervals for uniprogrammed 
traces should not be considered meaningful without additional 

evidence. Second, we examined how often the 90% confidence 
intervals actually included the true mean. Table V displays data 
for constant-bits set samples and a 4-megabyte direct-mapped 
cache. Results show that the true mean lies within the 90% 
confidence intervals of at least 90% of the samples for all 
traces where the normal approximation appears valid. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Advantages and Disadvantages oj  Set Sampling 

The most important advantage of set sampling is that, for 
our simulations, i t  meets the 10% sampling goal (Definition 
1). Especially for the multiprogrammed traces, a set sample 
automatically includes references from many execution phases, 
so an individual sample can accurately characterize the MPI 
of a full trace, including its temporal variability. The reduced 
trace data requirements of set sampling allow for simulation 
of longer traces, and therefore more algorithmic phases, in 
a smaller amount of time. Besides the data reduction, set 
sampling also reduces the memory required to simulate a 
cache. A set sample containing I / I6 of the full trace needs to 
simulate only 1/16 of the sets. 

Set sampling does have its limitations. Even with the 
constant bits method, the full trace must be retained if one 
wishes to study caches that do not index with the constant 
bits. Furthermore, set sampling may not accurately model 
caches whose performance is affected by interactions between 
references to different sets. The effectiveness of a prefetch into 
one set, for example, may depend on how many references are 
made to other sets before the prefetched block is first used. 
Similarly, the performance of a cache with a write buffer may 
be affected by how often the write buffer fills up due to a 
burst of writes to many sets. 

IV. TIME SAMPLING 

The alternative to set sampling is time sampling. Here 
an observation is the MPI of a sequence of time-contiguous 
references and is called an interval. Section IV-A discusses de- 
termining the MPI for a sample, while Section IV-B examines 
using a sample to estimate MPI for the full trace. 

A. Reducing Cold-Start Bias in Time Samples 

To significantly reduce trace storage and simulation time, we 
must estimate the true MPI for an interval without knowledge 
of initial cache state, i.e., the cache state at the beginning of 
the interval. This problem is simply the well-known cold-start 
problem applied to each interval [6]. 

The cold-start problem is a key difficulty for time sam- 
pling. Sampling theory assumes that a sample is collection 
of observations, where each observation gives the true value 
for some member of the population. Set sampling meets this 
assumption, because computing the true MPI of a set, given all 
references to the set. is straightforward. Due to the cold-start 
problem, however, statistics for time sampling are calculated 
with estimates of the MPI of each interval, rather than the true 
values of each interval. Any bias in the interval estimates will. 
of course, remain in all statistics, including the sample mean. 

We compare how well the five techniques described in Table 
VI mitigate the cold-start problem in multi-megabyte caches. 
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Multl 4M 
16M 

670 

0.62 +77% +27% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-50% +52% - 1 1 %  
0.28 +233% +114% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-80% +I3146 -12% 

TABLE VI 
TECHNIQUES FOR MITIGATING COLD-START zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I Technique 

16M 

IM 
Sor 4M 

16M 
IM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

De zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsc r i o t i o n 

0.95 +79% 6 1 %  -76% +7l% +37% 
+O% -0% -5% -11% 4% 15.68 

8.08 +Il l% +2% -18% -8% +6% 
2.00 +190% 4% -76% -8% +114% 
2.00 +13% -040 -10% +29% -1% 

COLD assumes hat Ihe initial cache state i s  empty. While this assumpion docs m af- 
fect misses to full sets or hits to any XI. it cauws COLD to overestimate MPI. bamae 
references thar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa p p u  to miss to (partially) empty sets may M may m he mi- when 
simulated with the (true) initial cache sfate. Thew potential misses are o f m  called cold- 
smrt misses IE~sF781. 

Tree 4M 
16M 

HALF uses the lint half of the instructions in an interval to (partially) initialire the cache. 
and estimates MPI with the remaining instructions. 

0.51 +107% +8% -50% +43% +24% 
0.30 +217% +35% -77% +69% +IS% 

PRlME utimales MPI wilh references to "inmalircd" xu A set In a direct-mapped 
cache is inilialired once il is filled [STONWI. while a set tn a scl-assucialive cache IS in,- 
tialized after il IS Alled and a nun-musl-menilyuscd block has k n  referenced 

STITCH approximates the cache state at the beginning of an interval wilh  he cache slaw 
a1 the end of thc prcviour interval IAoHH881 Thus one crcaies lrace for a sample h) 
srirrhing it's intervals togclhcr. 

Like COLD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINITMR simulates an interval heginning wilh an empty initial cache slate 
lnsrcad of assuming h a l l  cold-sm m i s s  miss, houcrcr. INlTMR uscs W d  et al:s 
fi-~,, lo eslimate the fraction of cold-sm misses that would have misxd if lhe initial 
cache state was known lWoHK911 The eslimate IS bascd on (I I the fraclion 01 lime !hat 
a cache block frame holds a block that will no1 be referenced heforc it IS replaced. and 
(2) the fraclion of the cache loaded dunng thc cold-sm simulation 01 an tnlerval. W k n  
we could not cstimale ( I )  with the references in an interval. we asume i t  to he 0 7 ( b u d  
onthedatainTable2of [WoHK91]). 

~- 
[LAP188]. 

Lin 4M 
16M 

We will find that none of the five effectively reduce cold-start 
bias with short intervals (e.g., < 10 million instructions for 
1 -megabyte caches). 

For a particular trace and cache, we evaluate a cold-start 
technique as follows. We select the number of instructions in 
an interval, called the interval length, and collect a systematic 
sample S of size n = 30 intervals spaced equally in the trace. 
(We chose 30, because it is a commonly-used sample size 
[ 141.) We use %cold-start technique to estimate the MPI for 
each interval, mpi,, and calculate an MPI estimate for sample 
S with: 

- I n  
M P I ~  = - G i , .  

n .  

Since with time sampling each interval has the2ame number 
of instructions, it is meaningful to compute MPIs with the 
arithmetic mean of the mpi,'s. 

Since we have the full trace, we can simulate each interval 
with its initial cache state to determine the interval's true 
MPI, mpi,, and calculate the true MPI for the sample, MPIs. 
with Cy=l mpi,. We evaluate how well a technique reduces 
cold-start bias in a sample S with3: 

2=1 

h 

0.06 +I11396 +535% -62% +217% +903% 
0.01 4 6 4 8 %  +2248% -4% +873% +1037% 

MTI~ - M P I ~  
BIASs = 

MPIs ' 

It is important to distinguish MPItrue, MPIs, and *IS. 
mpitrue is misses per instruction for all references in the trace 
(as if all references in the trace are simulated). MPIs is the 
misses per instruction of references in the observations of 
sample S, given each observation starts with its true initial 
cache state (as if all references since the last observation 
had been2mulated without recording whether they hit or 
missed). MPIs is the misses per instruction of references in 
the observations of sample S, given each observation starts 

3We calculate BIASs for PRIME with the secondary cache's local miss 
ratio rather than MPI, because counting the number of instructions is not 
straightforward when some sets are initialized but others are nat. Since BIAS.5 
is a relative error, we expect that calculating it with local miss ratio will be 
comparable to calculating it with MPI. 

b 
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TABLE VI1 
BIAS OF COLD-START TECHNIQUES WITH DIRECT-MAPPED CACHES 

Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI MPlsxlO0O I COLD HALF PRIME STKCH INITMR 

IM I 1.45 I +18% +5% -18% +23% +O% 

1.76 +15% +9% -56% +37% 4% 

with an initial cache state approximated by some cold-start 
technique. 

Since BIASs compares @IS with MPIs, rather than 
MPIt,,,, it measures cold-start bias in the sample, not how 
well the sample predicts MPIt,,,. We consider how well time 
samples predict MPItrue in Section IV-B. 

We evaluate BIASs for five cold-start techniques, eight 
traces, four interval lengths (100 thousand, 1 million, 10 
million, and 100 million instructions), three cache sizes (1, 
4, and 16 megabytes) and two associativities (direct-mapped 
and four-way). Since space precludes us from displaying 192 
cases for each cold-start technique, we present several subsets 
of the data. 

For a 10-million-instruction interval length, Table VI1 dis- 
plays BIASs for direct-mapped caches, while Table XI in 
Appendix C gives similar data for four-way set-associative 
caches. The data show several trends. First, most BIASs's 
are large, especially for caches larger than one megabyte. 
This suggests that intervals longer than many previously 
published traces are needed to effectively reduce cold-start 
bias for multi-megabyte caches. Second, COLD, HALF and 
STITCH tend to overestimate MPIs. COLD does so because 
it assumes that all cold-start misses miss. Similarly, HALF 
tends to overestimate MPIs when the first half of the trace 
does not sufficiently fill the cache. HALF can underestimate 
the sample's MPI, however, when the second half of most 
of a sample's intervals have a lower MPI than the whole 
of each interval. We believe STITCH overestimates MPIs, 
because (due to temporal locality) references are less likely 
to miss when simulated with an interval's true initial state 
than with the final state from the previous interval [24]. 
Third, PRIME underestimates MPIs for direct-mapped caches. 
PRIME calculates MPIs by effectively assuming that cold- 
start misses are as likely to miss as any other reference. Wood 
et al. [25] have shown, however, that this assumption is false, 
and that cold-start misses are much more likely to miss than 
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, ’ Cache Interval COLD HALF PRIME STITCH INITMR 

15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA13 4 

13 
4 13 

in x 

Trace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC;c; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMp,,,, looo Interval Length (Millions of Instructions) 
1 in 100 0.1 

4M 

Muit1.2 IM 
4M 

16M 

Mull2 IM 
4M 

MuIt2.2 IM 
4M 

16M 

16M 

16M 

Tv 1M 

Sor IM 

Tree IM 

4M 
16M 

4M 
16M 

4M 
16M 

Lin IM 
4M 

randomly-chosen references. PRIME is more accurate for four- 
way set-associative caches, where the heuristic of ignoring 
initial references to a most-recently-referenced block mitigates 
the underestimation. Fourth, INITMR did not consistently 
underestimate or overestimate MPIs. Finally, the large biases 
for the Lin trace with 4- and 16-megabyte caches are probably 
not important, because Lin’s true MPI’s are so small. 

Table VI11 addresses which cold-start technique is best for 
these traces and caches. For each the five cold-start techniques, 
we compute BIASs for all 192 cases. We award a point in the 
“10%” category for biases less than *lo% and award one in 
the “Win” category for the cold-start technique closest to being 
unbiased. Multiple points are awarded in the case of ties. The 
final row of Table VIII gives totals. HALF and INITMR have 
twice the “10%” score of the other approaches, while INITMR 
has more “Wins” than all the other approaches combined. 
While HALF performs well in many cases, INITMR performs 
best overall. While results for other traces and cache could 
differ, the theory behind INITMR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and this experimental 
evidence strongly support INITMR. For these reasons, we will 
use it in the rest of this paper. 

Table IX illustrates how well INITMR performs with 
three direct-mapped caches (1, 4, and 16 megabytes) and 
all four interval lengths ( 100,000, 1,000,000, 10,000,000, 
and 100,000,000 instructions). As expected, it reduces bias 
more effectively as the interval lengths get longer or cache 
size gets smaller, because cold-start becomes less dominant. 
The most striking aspect of this data is that INITMR, the 
best method, still performs terribly for intervals containing 
100,000 and 1,O00,000 instructions. This should not be not 
surprising, since the number of block frames in the caches 
(e.g., 8192 for 1-megabyte caches) far exceeds the number 
of true misses in these intervals (e.g., 1550 equals 1,000,000 
instructions times a 0.00155 MPI for Multl). Furthermore, 
it appears that INITMR does not adequately mitigate cold- 
start bias unless interval lengths are, at least, 10 million 
instructions for 1-megabyte caches, 100 million instructions 

0.70 156% 120% -11% -3%* 

1.45 103% 21% 2%* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0%’ 
0.69 123% 63% -5% -2%* 
0.32 400% 100% -3% -17% 
1.24 
0.6 I 

212% 146% -9% -3% 

127% 24% - I % *  0%* 1.18 
0.59 127% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60% -13% 0%* 

281% 335% -12% -17% 0.33 

49% 20% -3%’ o w  
48% 39% -24% o s *  

0.26 

0.27 170% 106% -3% 8% 

2.63 36% -10% -2%* n%* 

14.77 -41% -3%* o%* n%* 

2.16 249% 36% -I%* n%* 

1.88 34% -9% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4% O%* 
I .03 145% 39% 37% 12% 

7.54 -27% 44% 6%* 0%* 
I .97 83% 386% 114% -2%* 

0.59 1407% 121% 24% -7%* 
0.30 796% 198% 18% -37% 

1.16 -30% -14% 16% I%* 
0.09 1437% 946% 903% I 1 3 1  

67 I 

1 6 ~  ih 
0.1 

All I O  

TABLE IX 
BIAS5 OF INITMR TIME-SAMPLE MPI ESTIMATES 

o 0 n n o o I 2 0 1 4  
o n  n n o  i 2 4 6 

1 0 0 0 0 3 2 1 o s 9 s 5  

2 0 2 5 0 3 I 2  I 3 8  
I 2 1 4 5 4 7 5 5 7 3 2  

5 2 21 19 7 3 8 X 28 27 
100 23 6 33 13 20 8 16 14 33 24 

16M I no2 I 2567% 1318% 1037% 176% 

This table display5 BI  4S5 for INITMR with eight traces, four interval 

All All 

lengths, three direct-mapped cache sizes ( I ,  2,  and 16 megabytes). We mark 
entries with an asterisk (“*”) if , on average, interval lengths are sufficient 
to a) fill at least haf the cache and h) there are at least as many misses to 
full sets as cold-start misses. 

32 9 60 42 31 21 29 29 69 121 

for 4-megabyte caches, and more than 100 million instructions 
for 16-megabyte caches. These results are consistent with the 
rule-of-thumb that trace length should be increased by a factor 
of eight each time the cache size quadruples [22]. 

As Table IX also illustrates, however, we can determine 
when INITMR is likely to perform well. We marked each entry 
in the table with an asterisk (“*”) if, on average, the interval 
length was sufficient to a) fill at least half the cache and b) there 
were at least as many misses to full sets as cold-start misses. 
All values BIASs marked with an asterisk are less than *lo%,. 
Nevertheless, they imply that for multi-megabyte caches each 
interval should contain more instructions than have previously 
been present in many “full” traces. 

B. What Fraction of the Full Trace is Needed? 

This section examines how accurately time samples estimate 
MPIt,,,,, the MPI of the full trace. We estimate the MPI of a 
sample S, =IS, with the arithmetic mean of MPI estimates 
for each interval in the sample, where we use INITMR to 
reduce (but regrettably not eliminate) the cold-start bias of 
each interval. 

Figure 4(a) illustrates how we summarize the data. (We use 
a graphical display here instead of coefficient of variation, 
because we believe it provides more insight. We did not use a 
graphical display with set sampling, because we did not have 
enough samples to smooth the data.) For the %It 1.2 traces 
and a 4-megabyte direct-mapped cache, it plots MPIs/MPIt,,, 
on the logarithmic y-axis and the fraction of the full trace 
contained in the sample on the logarithmic x-axis. Consider the 
cone at the far left. We use 3000 1 -million-instruction intervals 
to calculate its shape. The left edge, near 0.00025, gives the 
fraction of the trace used in a sample of one interval. We deter- 
mine the end-points of the left edge with the empirical distribu- 
tion of m1.5 for single-interval samples. The upper end-point 
gi\es the 95th percentile, while the lower gives the 5th 
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Fig. 4. Cones for time sampling with Multl.2. (akones for M Z s .  (b) Cones 

for MPIs (no hat). This figure displays cones for MPIs (left) and MPIs (right) 
for the Multl.2 trace and a Cmegabyte direct-mapped cache. For an interval * 
length and sample size (whose product gives the fraction of the trace used) 
the height of a cone displays the range of the middle 90% of estimates from 
many samples. Estimates are unbiased only if they are vertically centered on 
the horizontalline at 1.0. For an interval length of 1 million instructions, for 

example, all MPIs displayed here are biased (by cold-start bias not removed 
by INITMR), while all MPIs am unbiased. 

percentile. Thus, thekngth of the left edge is the range of the 
middle 90% of the MPIs's. We compute other vertical slices 
similarly. A vertical line (not shown) in the same cone at 0.01 
(40 x 0.00025), for example, gives the range of the middle 
90% of the MPIs's for samples of 40 intervals each. The other 
two cones are for interval lengths of 10 million instructions 
(300 intervals) and 100 million instructions (30 intervals). The 
right graph gives similar data for MPIs. where we calculate 
the MPI of each interval with its true initial cache state. 

A time sample would meet the 10% sampling goal (Defini- 
tion 1) if (a) the sample's size times the length of each interval 
were less than 10% of the trace (e.g., to the left of x-axis value 
0.1 in Fig. 4(a) and (b) the cone lies between 0.9 and 1.1 (on 
the y-axis). Unfortunately, none of the three cones for Multl.2 
qualify. The cone for 1-million-instruction intervals is narrow 
enough but biased too far above 1.0, while the cones of 10 
million and 100 million instructions are too wide. 

We found similar results for the rest of the traces, dis- 
played in Fig. 5(a) and (b) of Appendix c. The cones for 
the multiprogrammed traces are similar to those of Multl.2, 
although Mult2 and Mult2.2 have more cold-start bias. The 
cones for the single applications, Tree, Tv, Sor, and Lin, 
are more idiosyncratic, reflecting application-specific behavior. 
The cones of Sor, for example, are skewed by Sor's behavior 
of alternating between low and high MPI (with a period of 
around 300 million instructions [4]) 

Thus, for these traces and caches (and for direct-mapped 
and four-way, 1- and 16-megabyte caches [ 101 time sampling 
fails to meet the 10% sampling goal. Furthermore, even if we 
eliminate cold-start bias, accurate estimates of MPItrue must 
use hundred of millions of instructions to capture temporal 
workload variations. With Multl.2 and a 4-megabyte direct- 
mapped cache, Fig. 4(b) shows that MPIs is within 10% of 
MPItrue (for 90% of the samples examined) only with samples 
of 200 intervals of length 1 million instructions, 65 10-million- 
instruction intervals, or 20 100-million-instruction intervals. 
(For much smaller caches, Laha zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. found a sample size of 

35 intervals to be sufficient [12].) This is roughly a factor of 
three decrease in sample size as interval length is multiplied 
by ten. 

Finally, we investigate whether the error in @IS can 
be estimated from information within the sample itself. We 
calculate 90% confidence intervals with the same methods as 
were used for set sampling (Appendix B). These methods, 
however, provided no information on the magnitude of cold- 
start bias, because they assume a sample is made up of 
unbiased observations. Since the cold-start bias (that was 
not removed by INITMR) is significant in many cases, 90% 
confidence intervals for time samples often do not contain 
MPItrue 90% of the time. 

Confidence intervals did work in a few cases where samples 
contained 30 or more intervals and interval lengths were 
long enough to make cold-start bias negligible [lo]. These 
cases, however, failed to meet the 10% sampling goal because 
the samples contained much more than 10% of the trace. 
Confidence intervals also worked for MPIs (whose expected 
value is MPItrue because it has no cold-start bias), when 
samples contain at least 30 intervals. 

C. Advantages and Disadvantages of Time Sampling 

The major advantage of time sampling is that it is the only 
sampling technique available for caches with timing-dependent 
behavior (e.g., that prefetch or are lockup-free [ 111) or shared 
structures across sets (e.g.. write buffers or victim caching [9]). 
Furthermore, the cold-start techniques for time sampling can 
be applied to any full-trace simulation, since a "full" trace is 
just a single, long observation from a system's workload. 

However, in these simulations, time sampling fails to meet 
the 10% sampling goal for multi-megabyte caches, because 
it needed long intervals to mitigate cold-start bias and many 
intervals to capture temporal workload variation. For the cold 
start techniques we examined, set sampling is more effective 
than time sampling at estimating the MPI's of our traces with 
multi-megabyte caches. 

V. CONCLUSION 

A straightforward application of trace-driven simulation to 
multi-megabyte caches requires very long traces that strain 
computing resources. Resource demands can be greatly re- 
duced using set sampling or time sampling. Set sampling 
estimates cache performance using information from a col- 
lection of sets, while time sampling uses information from a 
collection of trace intervals. 

This study is the first to apply set sampling and time sam- 
pling to multi-megabyte caches, where they are most useful. 
We use eight billion-reference traces of large workloads that 
include multiprogramming but not operating system references 
[4]. Given a trace and cache, we examine how well both 
techniques predict the misses per instruction (MPI) of the 
entire trace. We say a sampling method is effective if it 
meets the 10% sampling goal: a method meets this goal if, 
at least 90% of the time, it estimates the trace's true misses 
per instruction with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 10% relative error using 5 10% of the 
trace. Like most trace-driven simulation studies, we do not 
formally address how our traces relate to the population of 
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Fig. Xa).  Cones for time sampling with Multl, Mult2, Mult2.2, and Tree. 

Similar to Fig. 4(a), these figures display cones for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&@IS with the Multl, 
Mult2, Mult2.2, and Tree traces. 

all traces. Readers may accept our results (by assuming our 
traces are representative of their workload) or re-apply our 
techniques to their traces. 

With our traces and caches, we obtained several results for 
set sampling. First, how we compute MPI is important. We 
find that it is much less accurate to normalize misses by the 
instruction fetches to the sampled sets than by the fraction of 
sampled sets times all instruction fetches. Second, constructing 
samples from sets that share some common index bit values 
works well, since such samples can be used to accurately 
predict the MPI of multiple alternative caches and caches 
in hierarchies. Third, sets for our multiprogramming traces 
behave sufficiently close to normal that confidence intervals 
are meaningful and accurate. Last and most important, for our 
traces and caches, set sampling meets the 10% sampling goal. 

With our traces and caches, results for time sampling include 
the following. First, INITMR (Wood et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd ' s  &,lit [25]) 

was the most effective technique for reducing cold-start bias, 
although using half the references in a trace interval to (par- 
tially) initialize a cache often performed well. Second, interval 
lengths must be long to mitigate cold-start bias ( I O  million 
instructions for I-megabyte caches, 100 million instructions 
for 4-megabyte caches, and more than 100 million instructions 
for 16-megabyte caches). Third and most important, for these 
traces and caches, time sampling does not meet the 10%) 
sampling goal: we needed more than 10% of a trace to get 
(trace) interval lengths that adequately mitigated cold-start 
bias and have enough intervals in a sample to make accurate 
predictions. 

Thus, we found that for our traces, set sampling is more 
effective than time sampling for estimating MPI of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c 
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Fig. 5(b). Cones for time sampling%th Tv, Sor, and Lin. Similar to Fig. 

4(a), these figures display cones for MPI5 with the Tv, Sor, and Lin traces. 
Note that Lin uses a different y-axis scale. 

multi-megabyte caches. There are situations, however, when 
set sampling is not applicable, such as for caches that have 
time-dependent behavior (e.g., prefetching) or structures 
used by many sets (e.g., write buffers). In these cases, 
researchers must choose between using an entire trace and 
using time sampling. Since any trace can be considered a 
time sample of size one, either approach requires care to 
reduce the effect of cold-start bias. 

APPENDIX A 

SYSTEMATIC SAMPLES 

This appendix introduces systematic samples with a discus- 
sion derived from Cochran [5 ,  ch. 81. We use the notation 
introduced in Section I11 for consistency. 

The variance of the mean of a random sample of size 71 

from a population of size s is [8, (2.8)]: 

1=1 

where mpi, is the ith member of the population and MPItrlle 
is the population mean. 

With systematic sampling, a population of size s is sys- 
tematically divided into k samples of size 71. By definition, 
the variance of the mean of a systematic sample, an unbiased 
estimate of MPItrue, is 18, p. 2081: 

where is the mean of the j th  systematic sample. 
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TABLE X 
SET zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAMPLING PRECISION FOR 2-wAV zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111 6 of Sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/64 of Sets Trace Size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM ' ' L x 1 ~  cv cv 
IM 1.19 16/16 2.2% N/A NIA 

Multl 4M 0.55 16/16 1.7% 64/64 3.0% 
16M 0.26 16/16 1.6% 64/64 2.3% 
IM 1.18 16/16 1.6% N/A NIA 

Multl.2 4M 0.56 16/16 1.2% 64/64 2.2% 
16M 0.28 16/16 1.3% 64/64 2.1% 

Mult2 4M 0.52 16/16 1.2% 64/64 2.0% 
16M 0.24 16/16 1.9% 64/64 3.3% 
IM 0.98 16/16 1.8% N/A NIA 

Mul12.2 4M 0.51 16/16 1.5% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA64/64 1.9% 
16M 0.22 16/16 2.1% 64/64 3.5% 
IM 2.31 16/16 0.6% NIA N/A 

Tv 4M 1.76 16/16 0.3% 64/64 1.6% 
16M 0.98 16/16 0.7% 64/64 1.9% 
IM 14.66 16/16 0.3% N/A NIA 

Sor 4M 7.76 16/16 0.2% 64/64 0.5% 
16M 1.92 16/16 0.0% 64/64 0.1% 

Tnx 4M 0.49 16/16 1.5% 64/64 3.8% 
16M 0.26 16/16 0.4% 64/64 1.1% 

IM I .01 16/16 1.9% N/A N/A 

IM 1.81 16/16 3.7% NIA N/A 

IM 1.10 16/16 2.6% NIA N/A 
Lin 4M 0.06 16/16 6.0% 44/64 9.8%t 

16M 0.02 16/16 0.3% 64/64 0.5% 

This table shows the MPI of the full trace for two-way set-associative 
caches, the fraction of set samples with less than or equal to f10X relative 
error and the coefficient of variation of the set-sampling MPI estimates, similar 
to Table IV. Except where marked with a dagger(t), at least 90'A of the 
samples have relative errors of less than or equal to 610%.  

TABLE XI 
BIAS OF COLD-START TECHNIQUES WITH FOUR-WAY SET-ASSOCIATIVITY 

Trace "2: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMPlSx IWO I COLD HALF PRIME STITCH INITMR 1 -.- 
IM 0.94 +2l% -5% -6% +36% - 1 1 %  

Multl 4M 0.44 +106% +29% -51% +80% -4% 
16M 0.22 +3l3% +I579 -99% +I678 -81 
IM I .20 +15% -5% -9% 6% -7% 

Multl.2 4M 0.60 + E l %  +21% -40% +43% +I% 
16M 0.32 +232% +I186 -57% +IM% -3% 
IM 0.92 +I496 -5% -18% +33% -16% 

Mull2 4M 0.49 +84% +34% -64% +68% +2% 
16M 0.22 +3l6% +202% -78% +170% -9% 
IM 0.96 +16% +IO% -14% +38% -10% 

MuIt2.2 4M 0.52 +84% +54% -52% +73% - 1 %  
16M 0.25 +285% +221% 415% -161% -14% 
IM 2.14 +4% -2% -22% +32% -2% 

Tv 4M I .53 +14% +6% +I2% +39% -8% 
I6M 0.82 +99% +75% +195% +87% +32% 
IM 15.46 +o% -0% +o% - I  1 %  -0% 

Sor 4M 8.57 +9% - 1 %  -12% -8% -2% -. 
16M 2 I7 +I585 +34% -81% -4% +60% 
IM 160 + 1 1 %  -3% -9% +35% -6% 

Tree 4M 041 +I244 -5% -32% +70% +18% 
16M 025 +263% +38% +83% +77% -17% 
IM 069 +26% +6% +9% +6% +21% 

Lin 4M 002 +2763% +I3225 +SI% +778% +I7975 
16M 001 +4648% +2248% ---I +873% +I0378 

This table displays BZ.4.95 for five cold-start techniques, eight traces, an 
interval length of I O  million instructions, and three four-way set-associative 
cache sizes ( I ,  4, and 16 megabytes). 

Since the sample mean for both random and systematic 
samples are unbiased estimates of the population mean, a 
sampling method yields a more accurate estimate of the 
population mean, if and only if the variance of its estimate 
is less than the variance of the alternative. 

Thus, systematic samples obtained by the constant bits 
method yield more accurate estimates of MPItruc than random 
samples whenever (A l )  divided by ( A 2 )  is greater than one. 
Empirical results displayed in Table 111 of Section III-A- 
2 show that the ratio is usually greater than one, implying 
that constant bits samples are generally better than random 
samples. 

We can get more intuition into why systematic samples 
might be better than random samples by examining the deriva- 

. 
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tion in [8, p. 2081. Using classical analysis of variance, he 
shows systematic sampling is more precise, if and only i f  

1. n 

i = l  

where mpi,, is the ith member of the j t h  systematic sample. In 
other words, systematic sampling more precisely estimates the 
mean of a population if the variance between observations 
within a systematic sample is greater than the population 
variance. Thus, we found that systematic samples obtained 
using constant bits were better than random samples, because 
systematically sampling sets captured more variation than was 
present in the population of all sets. 

APPENDIX B 
COMPUTING CONFIDENCE INTERVALS 

In this appendix, we describe how we calculate the 90% 
confidence interval for a sample S containing 71. MPI observa- 
tions, mpi,, . . . , mpi,,. Since computing confidence intervals 
for systematic samples is complex [8, Section 8.1 I ] ,  we 
compute our confidence intervals by treating our systematic 
samples as random samples. Because our systematic samples 
estimate MPItrue with less variance than do random samples 
(Table 111) the confidence intervals we calculate will tend be 
larger than necessary. Thus, if sample means are approximately 
normal, as they are for five of our eight traces (Section III-A- 
2), MPItrue should lie within the 90%) confidence intervals of 
more than 90% of the samples. 

We first compute the MPI of sample S,~@IS with: 

- 1  
M P I ~  = - mpi,, 

71, 
i = l  

and estimate MPIs's standard deviation with: 

x -L x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ-- s - 71, 

J;; 

STDs is the product of three factors: 1 )  the sample standard 
deviation of the mpi,'s, given that their true mean is unknown, 
2) a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 adjustment because *Is is the mean of the 71, mpi, 's, 
and 3) a finite population correction factor [8, (2 .12) ] ,  which 
is important only when 76, the sample size, is a substantial 
fraction of s ,  the population size. The 90% confidence interval 
for &@IS is =IS f SFDs . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt:'!:, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtE(!< is the value of 
the student-t statistic that has a tail of 5% (on each end) for 
71 - 1 degrees of freedom. We approximate the t-statistic with 
a normal for most our results, because 71, is large [8, p. 271. 

J;; 

APPENDIX C 
ADDITIONAL DATA 

In this appendix, we provide additional data to support the 
claims made in the body of the text. Figures 5(a) and (b) and 
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Tables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and XI are more fully described in the body, where 
they are referenced. 
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