
 Open access  Journal Article  DOI:10.1177/014662169101500307

A comparison of two area measures for detecting differential item functioning
— Source link 

Seock-Ho Kim, Allan S. Cohen

Institutions: University of Wisconsin-Madison

Published on: 01 Sep 1991 - Applied Psychological Measurement (Sage Publications)

Topics: Differential item functioning, Item response theory and Item analysis

Related papers:

 The area between two item characteristic curves

 Determining the Significance of Estimated Signed and Unsigned Areas Between Two Item Response Functions

 Applications of Item Response Theory To Practical Testing Problems

 Developing a Common Metric in Item Response Theory

 An Iterative Procedure for Linking Metrics and Assessing Item Bias in Item Response Theory

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-
29sa6bjipj

https://typeset.io/
https://www.doi.org/10.1177/014662169101500307
https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-29sa6bjipj
https://typeset.io/authors/seock-ho-kim-kzqkqth1hz
https://typeset.io/authors/allan-s-cohen-4emidb0ewt
https://typeset.io/institutions/university-of-wisconsin-madison-1lo9rg1b
https://typeset.io/journals/applied-psychological-measurement-1r6vq88g
https://typeset.io/topics/differential-item-functioning-1w32foh8
https://typeset.io/topics/item-response-theory-4z18r051
https://typeset.io/topics/item-analysis-2j0xheu4
https://typeset.io/papers/the-area-between-two-item-characteristic-curves-3n0t4wlgag
https://typeset.io/papers/determining-the-significance-of-estimated-signed-and-3jaokrhctp
https://typeset.io/papers/applications-of-item-response-theory-to-practical-testing-3dcjmzgee2
https://typeset.io/papers/developing-a-common-metric-in-item-response-theory-187914cgx1
https://typeset.io/papers/an-iterative-procedure-for-linking-metrics-and-assessing-xyjmaw75mr
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-29sa6bjipj
https://twitter.com/intent/tweet?text=A%20comparison%20of%20two%20area%20measures%20for%20detecting%20differential%20item%20functioning&url=https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-29sa6bjipj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-29sa6bjipj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-29sa6bjipj
https://typeset.io/papers/a-comparison-of-two-area-measures-for-detecting-differential-29sa6bjipj


269

A Comparison of Two Area Measures for

Detecting Differential Item Functioning
Seock-Ho Kim and Allan S. Cohen

University of Wisconsin

The area between two item response functions

is often used as a measure of differential item

functioning under item response theory. This area
can be measured over either an open interval (i.e., exact)
or closed interval. Formulas are presented for com-

puting the closed-interval signed and unsigned
areas. Exact and closed-interval measures were

estimated on data from a test with embedded items

intentionally constructed to favor one group over
another. No real differences in detection of these

items were found between exact and closed-interval

methods. Index terms: BILOG, closed interval,
differential item functioning, item response func-
tions, open interval, signed area, unsigned area.

The closed-interval area between two item response functions (IRFS) from two different groups
has been used in a number of studies as a measure of differential item functioning (DIF) (Ironson
& Subkoviak, 1979; Linn, Levine, Hastings, & Wardrop, 1981; McCauley & Mendoza, 1985; Rudner,

Getson, & Knight, 1980; Shepard, Camilli, & Averill, 1981; Shepard, Camilli, & Williams, 1984; 1985).
The use of the closed interval assumes that the limits of the interval define the region of the 0 scale

that is of interest; generally, this is the portion with the most examinees. It is typically not of interest
to examine differences in area at the extremes of the scale. Consequently, there seems to be little reason

for setting the limits of the closed interval much beyond -+- 4 on the 0 scale.

Raju (1988) suggested, however, that the particular set of limits is often arbitrary and that another

set of limits might be selected that would be finite, yet different from the first, and for which the
area would also be different. Such arbitrariness, Raju noted, should be removed by integrating 0 over

the entire scale to obtain a measure of the exact area between the two IRFS. Although this argument
seems compelling, Raju illustrated the differences between the exact and the closed-interval areas for

only a single item. If the exact method is in fact superior, then it should detect DIF better than the
closed-interval method over all the items in a test. This paper presents a comparison of the exact

and the closed-interval area measures on a set of actual test data. The data contained a set of items

that were intentionally constructed to favor one group of examinees over the other group in the sample.

Signed and Unsigned Areas Clver a Closed Interval

Raju (1988) presented general equations for two exact area measures-the exact signed area (ESA)
and the exact unsigned area (EUA)-between two IRFs for the one- (IPM), two- (2PM), and three-

parameter (3PM) models. Rudner (1977) and Rudner et al. (1980) described a method of summing
the differences between two IRFs over successive intervals of width .005 between two finite points
on the 0 scale. Although Rudner’s summing method is conceptually simple and easy to implement
for a computer program, computing area in this way can take substantial computing time. The closed-

interval area between two IRFs can also be obtained from an integration method that results in more
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accurate estimates and in considerable reduction of computing time. A special case of this method

has been noted by Shepard et al. (1981), but no details of the method were given.
For completeness, therefore, the general equations are presented below for the closed-interval area

measures-the closed-interval signed area (CUA) and the closed-interval unsigned area (cu~)-between
two IRF for the IPM, 2PM, and 3PM. These formulas are easily contrasted with the exact area formulas

given by Raju.
The IRF of the 3PM for an item is given by

a, b, and c are parameters characterizing the item, and D is a scaling constant, usually set to 1 or 1.7.
The area under the IRF between two finite points [8p 82] on the 0 scale can be written as

In a DIF study, there are two sets of item parameters for each item: (a~, b~, c,) from the reference

group and (a,, bp, c,) from the focal group. The CSA and CUA between two IRFS in the interval [8]> 82]
can take the following general forms:

One-Parameter (Rasch) Model

The ipm (Wright, 1977) is the special case of the 3PM when D = 1, aR = a, = 1, and c, = c, = 0

for all items. Consequently, there is no point on the 0 scale where the two IRFS cross each other.
The CSA and CUA between two IFS are defined by

where CSA(6) denotes the CSA as defined in Equation 6.

Two-Parameter Model

When the 2PM is used to estimate item parameters, cR = c, = 0, there are two cases: Case I in

which aR = aF = a and Case II in which aR &dquo;* a~. For either case, the CSA can be expressed as
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Case I. There is no finite intersection point on the 0 scale because ccR = aF = a. Thus, the CSA

can be simplified as

The CUA between two IRFs has the form

Case II. Because aR =1= aF, the crossing point of the two IRFS is

When 0, is located outside the interval [81> 82], the CUA is defined as

When 8X is found within the interval [81> 82], the CUA is defined as

Three-Parameter Model

When the 3PM is used to estimate item parameters, there are four possible cases: Case I in which

CR = c, = c and aR = aF = a; Case II in which cR = c, = c and aR =1= a~; Case III when cR ~ c,

and aR = aF = a; and Case IV in which cR ~ c, and aR ~ ap Case I and Case II are essentially the

same as for the 2PM.

CSA is obtained in the same way for all four cases and can be expressed as

Case I. Because c~ = c, = c and a., = ~aF = a, there is no finite point on the 0 scale where

the two IRFS cross each other. The CSA can be simplified as

The CUA between the two IRFs has the form

Case II. In this case the crossing point of the two IRFS can be obtained from Equation 11. When

8x is located outside the interval [01, 82], CUA is defined as 
.
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When 8x is located inside the interval, CUA is defined as

Case III. Because = aF = a, the crossing point of the two IRFS is

When 8X is located outside the interval [0,, 82], CUA is defined as

If &reg;x does not exist, that is, either

cR > c, , and bR :5 b, ; or c, < c, and bR ;::: b, ; then there is no finite crossing point on the 0 scale.

In these special situations, CUA is defined as

When 0, exists and is located inside the interval [0,, 82], CUA is defined as:

Case Ih In this case the Newton-Raphson method of approximation (Burden & Faires, 1985)
is used to find the crossing points. There may be either 0, 1, or 2 crossing points on the 0 scale.

For the Newton-Raphson procedure, let

where P* is defined in Equation 2. By giving an initial value 60, the crossing point 8x can be
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approximated using

where f’(8n) is the derivative of f (0) at 0~.
When exs are located outside the interval [e1> e2], the CUA can be written as

When there is only one crossing point, 0,, within the interval, cuA is defined as

If there are two crossing points, 8x] and 8X2 (0,. < 8x) within the interval [0,, 82], the CUA is

Method

Data

Data from Subkoviak, Mack, Ironson, and Craig (1984) were reanalyzed for the purposes of this

study. The Subkoviak et al. (1984) data consisted of two samples: 1,008 Black and 1,021 White col-

lege students. Because of limitations on the microcomputer version of BILOG (Mislevy & Bock, 1986),
two random subsets were selected consisting of 1,000 examinees each from the White and Black groups,
respectively.

The instrument was a 50-item vocabulary test with four choices for each item. Examinees were

asked to select an option that had the same meaning as the stem. In the test, 40 of the items con-

tained standard American English vocabulary words and were drawn from the Verbal Section of the

College Qualification Test (Psychological Corporation, 1956). The remaining 10 items were inten-

tionally constructed to be differentially easier for Black examinees. One item with this intentional

DIF was inserted randomly into each consecutive block of five items on the test.

Estimation of Item Parameters

Selection of an item response theory (IRT) model. Application of an IRF model requires the data
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to be unidimensional. Using Reckase’s (1979) suggested criterion, the contribution of the first com-

ponent from the unrotated solution of a principal components analysis using tetrachoric correlations

indicated sufficient unidimensionality for use of an IRT model for the White data (26070) and was

marginal for the Black data (16%).
Most work in detection of DIF under IRT has focused on use of the 2PM or the 3PM. Difficulties,

such as estimation of the c parameter of the 3PM, have been noted (Baker, 1986; Shepard et al., 1981).
To some extent, difficulty in estimation of c can be averted by using a modification of the 3PM in

which c is fixed for all items. As Raju (1988) suggested, this version of the 3PM is more appropriate
for estimates of exact areas, because when Cp =1= c, the exact area is infinite. For purposes of this

study, both the 3PM and the 3PM with a fixed or equal c parameter (3PM-c) were used.
Estimation of a common c. Estimation of item parameters was done using PC-BILOG (Mislevy &

Bock, 1986). PC-BILOG implements a marginal Bayesian estimation procedure-marginal maximum
a posteriori estimation (Bock & Aitkin, 1981). A common or fixed c was estimated in the following

way: First, a sample of 1,000 cases (500 Black and 500 White examinees) was randomly drawn from
the Black and White datasets, and parameters were estimated for the 3PM. The average c for this

dataset was .23. Next, the 3PM-c with a value of c = .23 was estimated in each dataset separately.

Area Measures

Under IRT, in the absence of DIF, the IRFS computed from each group of examinees will be identi-

cal and the area between the two IRFS, after being placed on the same metric, will be 0. In this study,
all item parameters for both groups were placed on the same scale using the test characteristic curve

method (Stocking & Lord, 1983) as implemented in program EQUATE (Baker, 1990).
Four area measures were computed from the sets of equated item parameters: Csr~(14); CuA(17)

or CuA(18); Es~-Equation 7 in Raju (1988); and EUA-Equation 8 or Equation 24 in Raju (1988).
In the present context, Raju’s ESA and EUA can be rewritten as

and

or

When calculating signed area measures, the Black group was treated as the reference group and the

White group as the focal group. Hence a positive value for both CSA and ESA indicated an item favor-

ing the Black group.
For purposes of analysis, the 10 items with intentional DIF were coded 1, and the 40 standard

vocabulary items were coded 0. Point-biserial correlations were then computed between the 0-1 coding
of the items and each of the four area measures to determine the success of each area measure in

detecting the items with intentional DIF. In addition, intercorrelations among the area measures were

computed as an indication of the similarity between area measures.
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Error tes in Detection of DIF

Error rates in detection of a priori DIF in the experimentally manipulated items were also estimated.

First, it was assumed that each area measure was normally distributed, and a mean and standard
deviation for that area measure was estimated based on the 40 nonmanipulated items. Next, two critical
values were selected using one-tailed .05 and .01 levels of significance. Area measures greater than

the critical value were identified as DIF items. Classification of items in this way resulted in two types
of errors: false negatives and false positives. False negatives occurred when items containing a priori
DIF had an area measure smaller than the critical value. Items containing no a priori DIF but iden-
tified as having an area measure larger than the critical value were considered false positives. Clearly,
with p = .05, more false positive identifications are likely to occur than with p = .01.

Results

Detection of A Priori DIF

Point-biserial correlations of a priori DIF indices with each of the four area measures are given
in Table 1. Correlations with a priori DIF for signed area measures were essentially the same for both
the closed (r = .745) and exact (r = .743) areas. A similar result occurred for unsigned areas (r = .795

and r = .807, respectively). This suggests that there was probably no difference between the exact

and closed-interval areas with respect to detection of DIF in these items. Correlations between a priori
DIF and the unsigned area measures were slightly larger than for the signed measures, suggesting that

the unsigned area measure, whether exact or closed interval, was more sensitive to detection of the
a priori DIF.

Relationships Among Area Measures

The correlation between the closed-interval measures (given in Table 1) was lower (r = .861) than
between the exact measures (r = .932). This suggests that exact measures were more alike than were

closed-interval measures. There was substantial agreement, however, between closed-interval and exact

measures for both signed area measures (r = .985) and unsigned area measures (r = .966). This in-

dicated that the two methods, exact and closed interval, provided very similar information.

Error tes in Detection of DIF

Table 2 presents error rates in detection of DIF for each area measure. In terms of type of error,

Table 1

Correlations of A Priori DIF Indices and Area Measures

aCorrelations with a priori DIF are point-biserials.
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Table 2

False Positive (FP) and False Negative (FN)
Classification Errors in the Detection of DIF

about the same numbers of false positive errors were made whether closed-interval or exact methods

were used. Seven of the 10 items with a priori DIF were detected correctly by all four area measures.
In addition, 9 of the 10 items were correctly detected by the combined use of the signed and unsigned
closed-interval area measures. All 10 of the items were detected by the combined use of the signed
and unsigned exact areas.

Five items were falsely identified by one of the four measures. Of these items, four were identified

by either the signed or the unsigned version of both the exact and closed-interval area measures. The
closed-interval method was slightly less prone to making an error of this type.

Comparison of 3PM and 3PNI-c ea Measures

The exact area method is relatively easy to estimate in comparison to the closed-interval method.
As Raju (1988) has noted, the choice of the limits on the closed interval is arbitrary. However, a major
disadvantage of the exact area measure is that it cannot be estimated when c~ ~ c,. Under these

conditions, if 3PM item parameter estimates are to be used, the 3PM-C usually needs to be used. A

disadvantage of the 3PM-C is that it requires two calibration runs: the first to estimate the common
c and the second to estimate the 3pm-c. The 3PM, however, only requires a single run and, therefore,
is somewhat more convenient to use. In view of these advantages and disadvantages, it was of interest
to determine whether differences occurred in detection of a priori DIF or in classification of items
as functioning differentially, when the closed-interval measure was estimated for the 3PM as com-

pared to the exact or closed-interval measures for the 3PM-C.

Detection of a priori DIF. Point-biserial correlations between the index of a priori DIP and the
area measure are given in Table 1. The correlation of .870 with a priori DIF for CSA for the 3PM (3PM-
CSA) is slightly higher than similar correlations for the other area measures. This would suggest that
the 3PM-CSA is slightly more sensitive than any of the other measures. The correlation for CUA

(r = .756), however, is at the low end of the values reported for the other four area measures.

Relationships among 3PM and 3PM-c area measures. The correlations in Table 1 indicate that the

signed area measures are more similar to each other than they are to the unsigned measures. Simi-

larly, the unsigned measures are more strongly related to one another than they are to the signed
measures. The magnitudes of the correlations in Table 1, however, indicate a relatively strong set of

relationships among all the area measures, whether based on the 3PM or 3PM-c (range &reg; .842 to .985).
This suggests that much of the same information might be available regardless of whether area measures
were obtained from 3PM or 3PM-C item parameter estimates.

Comparison of classification error rates. The error rates for the closed-interval measures are given
in Table 2 along with those for the measures based on the 3PM-c. The rates for the 3PM-CSA were

lower than for any of the other measures. No errors were made by 3PM-CSA at the .01 level and two
false positive errors were made at the .05 level. These results indicate a relative superiority for the
3PM-CSA over all other measures used in this study. The 3PM-CUA error rate, however, was slightly
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higher than the other area measures, particularly at the .05 level.
With respect to the specific items that were misclassified, no overlap occurred in the false positives

made by the 3PM-CSA and 3PM-CUA. Consequently, combined use of the two closed-interval measures
at the .05 level would have resulted in making a total of six false positive errors. False negative errors
are generally more serious in DIF studies. Therefore, a test developer would want to use a more con-
servative level of significance in order to decrease the rate of false negative errors. As might be an-

ticipated, and as can be seen from the data in Table 2, the more conservative the level of significance,
the greater the number of false positive errors, regardless of which area measure is used.

Discussion

An important benefit from the present study is that the comparisons of these area measures were
done in the context of real, experimentally manipulated data as opposed to either nonmanipulated
or simulated data. Studies that seek to examine the presence of DIP in nonmanipulated datasets do
not necessarily provide the best results because the presence of DIF is only inferred after the data
are analyzed. Data simulations can provide an important means of testing hypotheses about the
behavior of statistics. However, results based on simulated data suffer from the fact that the simula-

tion data are really only generalizable to data that meet the conditions under which the data were

generated (Lord, 1980).
The results of this study were encouraging because they indicated that detection of a priori DIF

is good using any of the methods in this study. The best detection occurred with the closed-interval

signed method based on 3PM parameter estimates. This was evident in the correlations between the
area measures and the a priori DIF indices, and also in the classification errors.

For purposes of this study, identification of non-DIF items as functioning differentially was labeled
a false positive. In actuality, these items may have been functioning differentially; they were only
errors in the sense that the items had not been manipulated experimentally to contain a priori DIF.
Error rates were relatively low for both exact and closed-interval methods, suggesting that both methods
were sensitive to this kind of DIF. The number of false negative errors decreased as the critical value

became more conservative. By the same token, the number of false positives increased as the criterion
became more conservative.

The results of the study indicate little difference in detection of DIF between the two methods for

computing area. Choice of one method or the other, therefore, seems to be a matter of reasonable
indifference. The computational simplicity of the exact method seems to give it an advantage over
the slightly more complicated computations required for the closed-interval methods. Further, the
exact method does not introduce an arbitrariness into the area estimation problem. One difficulty
with the exact method, however, occurs with the 3PM when unequal c parameters are present. Under
such conditions, the exact method yields infinite areas. If a three-parameter model is to be used with
the exact method, then a common c must first be estimated before items can be calibrated with the

3PM-c. This is really only a minor nuisance given the speed of modern computers. However, because
the 3PM does not require an arbitrary assumption that all the items have an equal lower asymptote
as does the 3PM-c, and assuming the model itself is appropriate for the data, in view of the relative

similarity in the results from both 3PM and 3PM-c procedures, the closed-interval method may be the
method of choice.
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